forked from weihuayi/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex29p.cpp
395 lines (342 loc) · 12.2 KB
/
ex29p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// MFEM Example 29 - Parallel Version
//
// Compile with: make ex29p
//
// Sample runs: mpirun -np 4 ex29p
// mpirun -np 4 ex29p -sc
// mpirun -np 4 ex29p -mt 3 -o 3 -sc
// mpirun -np 4 ex29p -mt 3 -rs 1 -o 4 -sc
//
// Description: This example code demonstrates the use of MFEM to define a
// finite element discretization of a PDE on a 2 dimensional
// surface embedded in a 3 dimensional domain. In this case we
// solve the Laplace problem -Div(sigma Grad u) = 1, with
// homogeneous Dirichlet boundary conditions, where sigma is an
// anisotropic diffusion constant defined as a 3x3 matrix
// coefficient.
//
// This example demonstrates the use of finite element integrators
// on 2D domains with 3D coefficients.
//
// We recommend viewing examples 1 and 7 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
Mesh * GetMesh(int type);
void trans(const Vector &x, Vector &r);
void sigmaFunc(const Vector &x, DenseMatrix &s);
double uExact(const Vector &x)
{
return (0.25 * (2.0 + x[0]) - x[2]) * (x[2] + 0.25 * (2.0 + x[0]));
}
void duExact(const Vector &x, Vector &du)
{
du.SetSize(3);
du[0] = 0.125 * (2.0 + x[0]) * x[1] * x[1];
du[1] = -0.125 * (2.0 + x[0]) * x[0] * x[1];
du[2] = -2.0 * x[2];
}
void fluxExact(const Vector &x, Vector &f)
{
f.SetSize(3);
DenseMatrix s(3);
sigmaFunc(x, s);
Vector du(3);
duExact(x, du);
s.Mult(du, f);
f *= -1.0;
}
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
int order = 3;
int mesh_type = 4; // Default to Quadrilateral mesh
int mesh_order = 3;
int ser_ref_levels = 2;
int par_ref_levels = 1;
bool static_cond = false;
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&mesh_type, "-mt", "--mesh-type",
"Mesh type: 3 - Triangular, 4 - Quadrilateral.");
args.AddOption(&mesh_order, "-mo", "--mesh-order",
"Geometric order of the curved mesh.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
// 3. Construct a quadrilateral or triangular mesh with the topology of a
// cylindrical surface.
Mesh *mesh = GetMesh(mesh_type);
int dim = mesh->Dimension();
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ser_ref_levels' of uniform refinement.
for (int l = 0; l < ser_ref_levels; l++)
{
mesh->UniformRefinement();
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh.UniformRefinement();
}
// 6. Transform the mesh so that it has a more interesting geometry.
pmesh.SetCurvature(mesh_order);
pmesh.Transform(trans);
// 7. Define a finite element space on the mesh. Here we use continuous
// Lagrange finite elements of the specified order.
H1_FECollection fec(order, dim);
ParFiniteElementSpace fespace(&pmesh, &fec);
HYPRE_Int total_num_dofs = fespace.GlobalTrueVSize();
if (Mpi::Root())
{
cout << "Number of unknowns: " << total_num_dofs << endl;
}
// 8. Determine the list of true (i.e. conforming) essential boundary dofs.
// In this example, the boundary conditions are defined by marking all
// the boundary attributes from the mesh as essential (Dirichlet) and
// converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (pmesh.bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 9. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (1,phi_i) where phi_i are
// the basis functions in the finite element fespace.
ParLinearForm b(&fespace);
ConstantCoefficient one(1.0);
b.AddDomainIntegrator(new DomainLFIntegrator(one));
b.Assemble();
// 10. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero,
// which satisfies the boundary conditions.
ParGridFunction x(&fespace);
x = 0.0;
// 11. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the
// Diffusion domain integrator.
ParBilinearForm a(&fespace);
MatrixFunctionCoefficient sigma(3, sigmaFunc);
BilinearFormIntegrator *integ = new DiffusionIntegrator(sigma);
a.AddDomainIntegrator(integ);
// 12. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations such as: eliminating boundary
// conditions, applying conforming constraints for non-conforming AMR,
// static condensation, etc.
if (static_cond) { a.EnableStaticCondensation(); }
a.Assemble();
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
if (myid == 0)
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
// 13. Define and apply a parallel PCG solver for A X = B with the BoomerAMG
// preconditioner from hypre.
HypreBoomerAMG *amg = new HypreBoomerAMG;
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-12);
cg.SetMaxIter(2000);
cg.SetPrintLevel(1);
cg.SetPreconditioner(*amg);
cg.SetOperator(*A);
cg.Mult(B, X);
delete amg;
// 14. Recover the solution as a finite element grid function.
a.RecoverFEMSolution(X, b, x);
// 15. Compute error in the solution and its flux
FunctionCoefficient uCoef(uExact);
double error = x.ComputeL2Error(uCoef);
if (myid == 0) { cout << "|u - u_h|_2 = " << error << endl; }
ParFiniteElementSpace flux_fespace(&pmesh, &fec, 3);
ParGridFunction flux(&flux_fespace);
x.ComputeFlux(*integ, flux); flux *= -1.0;
VectorFunctionCoefficient fluxCoef(3, fluxExact);
double flux_err = flux.ComputeL2Error(fluxCoef);
if (myid == 0) { cout << "|f - f_h|_2 = " << flux_err << endl; }
// 16. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name, flux_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
flux_name << "flux." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
ofstream flux_ofs(flux_name.str().c_str());
flux_ofs.precision(8);
flux.Save(flux_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << x
<< "window_title 'Solution'\n" << flush;
socketstream flux_sock(vishost, visport);
flux_sock << "parallel " << num_procs << " " << myid << "\n";
flux_sock.precision(8);
flux_sock << "solution\n" << pmesh << flux
<< "keys vvv\n"
<< "window_geometry 402 0 400 350\n"
<< "window_title 'Flux'\n" << flush;
}
return 0;
}
// Defines a mesh consisting of four flat rectangular surfaces connected to form
// a loop.
Mesh * GetMesh(int type)
{
Mesh * mesh = NULL;
if (type == 3)
{
mesh = new Mesh(2, 12, 16, 8, 3);
mesh->AddVertex(-1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, 1.0, 1.0);
mesh->AddVertex(-1.0, 1.0, 1.0);
mesh->AddVertex( 0.0, -1.0, 0.5);
mesh->AddVertex( 1.0, 0.0, 0.5);
mesh->AddVertex( 0.0, 1.0, 0.5);
mesh->AddVertex(-1.0, 0.0, 0.5);
mesh->AddTriangle(0, 1, 8);
mesh->AddTriangle(1, 5, 8);
mesh->AddTriangle(5, 4, 8);
mesh->AddTriangle(4, 0, 8);
mesh->AddTriangle(1, 2, 9);
mesh->AddTriangle(2, 6, 9);
mesh->AddTriangle(6, 5, 9);
mesh->AddTriangle(5, 1, 9);
mesh->AddTriangle(2, 3, 10);
mesh->AddTriangle(3, 7, 10);
mesh->AddTriangle(7, 6, 10);
mesh->AddTriangle(6, 2, 10);
mesh->AddTriangle(3, 0, 11);
mesh->AddTriangle(0, 4, 11);
mesh->AddTriangle(4, 7, 11);
mesh->AddTriangle(7, 3, 11);
mesh->AddBdrSegment(0, 1, 1);
mesh->AddBdrSegment(1, 2, 1);
mesh->AddBdrSegment(2, 3, 1);
mesh->AddBdrSegment(3, 0, 1);
mesh->AddBdrSegment(5, 4, 2);
mesh->AddBdrSegment(6, 5, 2);
mesh->AddBdrSegment(7, 6, 2);
mesh->AddBdrSegment(4, 7, 2);
}
else if (type == 4)
{
mesh = new Mesh(2, 8, 4, 8, 3);
mesh->AddVertex(-1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, 1.0, 1.0);
mesh->AddVertex(-1.0, 1.0, 1.0);
mesh->AddQuad(0, 1, 5, 4);
mesh->AddQuad(1, 2, 6, 5);
mesh->AddQuad(2, 3, 7, 6);
mesh->AddQuad(3, 0, 4, 7);
mesh->AddBdrSegment(0, 1, 1);
mesh->AddBdrSegment(1, 2, 1);
mesh->AddBdrSegment(2, 3, 1);
mesh->AddBdrSegment(3, 0, 1);
mesh->AddBdrSegment(5, 4, 2);
mesh->AddBdrSegment(6, 5, 2);
mesh->AddBdrSegment(7, 6, 2);
mesh->AddBdrSegment(4, 7, 2);
}
else
{
MFEM_ABORT("Unrecognized mesh type " << type << "!");
}
mesh->FinalizeTopology();
return mesh;
}
// Transforms the four-sided loop into a curved cylinder with skewed top and
// base.
void trans(const Vector &x, Vector &r)
{
r.SetSize(3);
double tol = 1e-6;
double theta = 0.0;
if (fabs(x[1] + 1.0) < tol)
{
theta = 0.25 * M_PI * (x[0] - 2.0);
}
else if (fabs(x[0] - 1.0) < tol)
{
theta = 0.25 * M_PI * x[1];
}
else if (fabs(x[1] - 1.0) < tol)
{
theta = 0.25 * M_PI * (2.0 - x[0]);
}
else if (fabs(x[0] + 1.0) < tol)
{
theta = 0.25 * M_PI * (4.0 - x[1]);
}
else
{
cerr << "side not recognized "
<< x[0] << " " << x[1] << " " << x[2] << endl;
}
r[0] = cos(theta);
r[1] = sin(theta);
r[2] = 0.25 * (2.0 * x[2] - 1.0) * (r[0] + 2.0);
}
// Anisotropic diffusion coefficient
void sigmaFunc(const Vector &x, DenseMatrix &s)
{
s.SetSize(3);
double a = 17.0 - 2.0 * x[0] * (1.0 + x[0]);
s(0,0) = 0.5 + x[0] * x[0] * (8.0 / a - 0.5);
s(0,1) = x[0] * x[1] * (8.0 / a - 0.5);
s(0,2) = 0.0;
s(1,0) = s(0,1);
s(1,1) = 0.5 * x[0] * x[0] + 8.0 * x[1] * x[1] / a;
s(1,2) = 0.0;
s(2,0) = 0.0;
s(2,1) = 0.0;
s(2,2) = a / 32.0;
}