forked from weihuayi/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex28.cpp
267 lines (238 loc) · 8.98 KB
/
ex28.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// MFEM Example 28
//
// Compile with: make ex28
//
// Sample runs: ex28
// ex28 --visit-datafiles
// ex28 --order 2
//
// Description: Demonstrates a sliding boundary condition in an elasticity
// problem. A trapezoid, roughly as pictured below, is pushed
// from the right into a rigid notch. Normal displacement is
// restricted, but tangential movement is allowed, so the
// trapezoid compresses into the notch.
//
// /-------+
// normal constrained --->/ | <--- boundary force (2)
// boundary (4) /---------+
// ^
// |
// normal constrained boundary (1)
//
// This example demonstrates the use of the ConstrainedSolver
// framework.
//
// We recommend viewing Example 2 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <set>
using namespace std;
using namespace mfem;
// Return a mesh with a single element with vertices (0, 0), (1, 0), (1, 1),
// (offset, 1) to demonstrate boundary conditions on a surface that is not
// axis-aligned.
Mesh * build_trapezoid_mesh(double offset)
{
MFEM_VERIFY(offset < 0.9, "offset is too large!");
const int dimension = 2;
const int nvt = 4; // vertices
const int nbe = 4; // num boundary elements
Mesh * mesh = new Mesh(dimension, nvt, 1, nbe);
// vertices
double vc[dimension];
vc[0] = 0.0; vc[1] = 0.0;
mesh->AddVertex(vc);
vc[0] = 1.0; vc[1] = 0.0;
mesh->AddVertex(vc);
vc[0] = offset; vc[1] = 1.0;
mesh->AddVertex(vc);
vc[0] = 1.0; vc[1] = 1.0;
mesh->AddVertex(vc);
// element
Array<int> vert(4);
vert[0] = 0; vert[1] = 1; vert[2] = 3; vert[3] = 2;
mesh->AddQuad(vert, 1);
// boundary
Array<int> sv(2);
sv[0] = 0; sv[1] = 1;
mesh->AddBdrSegment(sv, 1);
sv[0] = 1; sv[1] = 3;
mesh->AddBdrSegment(sv, 2);
sv[0] = 2; sv[1] = 3;
mesh->AddBdrSegment(sv, 3);
sv[0] = 0; sv[1] = 2;
mesh->AddBdrSegment(sv, 4);
mesh->FinalizeQuadMesh(1, 0, true);
return mesh;
}
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
int order = 1;
bool visualization = 1;
double offset = 0.3;
bool visit = false;
OptionsParser args(argc, argv);
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&offset, "--offset", "--offset",
"How much to offset the trapezoid.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Build a trapezoidal mesh with a single quadrilateral element, where
// 'offset' determines how far off it is from a rectangle.
Mesh *mesh = build_trapezoid_mesh(offset);
int dim = mesh->Dimension();
// 3. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
// largest number that gives a final mesh with no more than 1,000
// elements.
{
int ref_levels =
(int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 4. Define a finite element space on the mesh. Here we use vector finite
// elements, i.e. dim copies of a scalar finite element space. The vector
// dimension is specified by the last argument of the FiniteElementSpace
// constructor.
FiniteElementCollection *fec = new H1_FECollection(order, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec, dim);
cout << "Number of finite element unknowns: " << fespace->GetTrueVSize()
<< endl;
cout << "Assembling matrix and r.h.s... " << flush;
// 5. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, there are no essential boundary
// conditions in the usual sense, but we leave the machinery here for
// users to modify if they wish.
Array<int> ess_tdof_list, ess_bdr(mesh->bdr_attributes.Max());
ess_bdr = 0;
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
// 6. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system. In this case, b_i equals the boundary integral
// of f*phi_i where f represents a "push" force on the right side of the
// trapezoid.
VectorArrayCoefficient f(dim);
for (int i = 0; i < dim-1; i++)
{
f.Set(i, new ConstantCoefficient(0.0));
}
{
Vector push_force(mesh->bdr_attributes.Max());
push_force = 0.0;
push_force(1) = -5.0e-2; // index 1 attribute 2
f.Set(0, new PWConstCoefficient(push_force));
}
LinearForm *b = new LinearForm(fespace);
b->AddBoundaryIntegrator(new VectorBoundaryLFIntegrator(f));
b->Assemble();
// 7. Define the solution vector x as a finite element grid function
// corresponding to fespace.
GridFunction x(fespace);
x = 0.0;
// 8. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the linear elasticity integrator with piece-wise
// constants coefficient lambda and mu. We use constant coefficients,
// but see ex2 for how to set up piecewise constant coefficients based
// on attribute.
Vector lambda(mesh->attributes.Max());
lambda = 1.0;
PWConstCoefficient lambda_func(lambda);
Vector mu(mesh->attributes.Max());
mu = 1.0;
PWConstCoefficient mu_func(mu);
BilinearForm *a = new BilinearForm(fespace);
a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func, mu_func));
// 9. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations such as: eliminating boundary
// conditions, applying conforming constraints for non-conforming AMR,
// static condensation, etc.
a->Assemble();
SparseMatrix A;
Vector B, X;
a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
cout << "done." << endl;
cout << "Size of linear system: " << A.Height() << endl;
// 10. Set up constraint matrix to constrain normal displacement (but
// allow tangential displacement) on specified boundaries.
Array<int> constraint_atts(2);
constraint_atts[0] = 1; // attribute 1 bottom
constraint_atts[1] = 4; // attribute 4 left side
Array<int> lagrange_rowstarts;
SparseMatrix* local_constraints =
BuildNormalConstraints(*fespace, constraint_atts, lagrange_rowstarts);
// 11. Define and apply an iterative solver for the constrained system
// in saddle-point form with a Gauss-Seidel smoother for the
// displacement block.
GSSmoother M(A);
SchurConstrainedSolver * solver =
new SchurConstrainedSolver(A, *local_constraints, M);
solver->SetRelTol(1e-5);
solver->SetMaxIter(2000);
solver->SetPrintLevel(1);
solver->Mult(B, X);
// 12. Recover the solution as a finite element grid function. Move the
// mesh to reflect the displacement of the elastic body being
// simulated, for purposes of output.
a->RecoverFEMSolution(X, *b, x);
mesh->SetNodalFESpace(fespace);
GridFunction *nodes = mesh->GetNodes();
*nodes += x;
// 13. Save the refined mesh and the solution in VisIt format.
if (visit)
{
VisItDataCollection visit_dc("ex28", mesh);
visit_dc.SetLevelsOfDetail(4);
visit_dc.RegisterField("displacement", &x);
visit_dc.Save();
}
// 14. Save the displaced mesh and the inverted solution (which gives the
// backward displacements to the original grid). This output can be
// viewed later using GLVis: "glvis -m displaced.mesh -g sol.gf".
{
x *= -1; // sign convention for GLVis displacements
ofstream mesh_ofs("displaced.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 15. Send the above data by socket to a GLVis server. Use the "n" and "b"
// keys in GLVis to visualize the displacements.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x << flush;
}
// 16. Free the used memory.
delete local_constraints;
delete solver;
delete a;
delete b;
if (fec)
{
delete fespace;
delete fec;
}
delete mesh;
return 0;
}