forked from weihuayi/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex18.cpp
309 lines (270 loc) · 10.4 KB
/
ex18.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// MFEM Example 18
//
// Compile with: make ex18
//
// Sample runs:
//
// ex18 -p 1 -r 2 -o 1 -s 3
// ex18 -p 1 -r 1 -o 3 -s 4
// ex18 -p 1 -r 0 -o 5 -s 6
// ex18 -p 2 -r 1 -o 1 -s 3
// ex18 -p 2 -r 0 -o 3 -s 3
//
// Description: This example code solves the compressible Euler system of
// equations, a model nonlinear hyperbolic PDE, with a
// discontinuous Galerkin (DG) formulation.
//
// Specifically, it solves for an exact solution of the equations
// whereby a vortex is transported by a uniform flow. Since all
// boundaries are periodic here, the method's accuracy can be
// assessed by measuring the difference between the solution and
// the initial condition at a later time when the vortex returns
// to its initial location.
//
// Note that as the order of the spatial discretization increases,
// the timestep must become smaller. This example currently uses a
// simple estimate derived by Cockburn and Shu for the 1D RKDG
// method. An additional factor can be tuned by passing the --cfl
// (or -c shorter) flag.
//
// The example demonstrates user-defined bilinear and nonlinear
// form integrators for systems of equations that are defined with
// block vectors, and how these are used with an operator for
// explicit time integrators. In this case the system also
// involves an external approximate Riemann solver for the DG
// interface flux. It also demonstrates how to use GLVis for
// in-situ visualization of vector grid functions.
//
// We recommend viewing examples 9, 14 and 17 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <sstream>
#include <iostream>
// Classes FE_Evolution, RiemannSolver, and FaceIntegrator
// shared between the serial and parallel version of the example.
#include "ex18.hpp"
// Choice for the problem setup. See InitialCondition in ex18.hpp.
int problem;
// Equation constant parameters.
const int num_equation = 4;
const double specific_heat_ratio = 1.4;
const double gas_constant = 1.0;
// Maximum characteristic speed (updated by integrators)
double max_char_speed;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
problem = 1;
const char *mesh_file = "../data/periodic-square.mesh";
int ref_levels = 1;
int order = 3;
int ode_solver_type = 4;
double t_final = 2.0;
double dt = -0.01;
double cfl = 0.3;
bool visualization = true;
int vis_steps = 50;
int precision = 8;
cout.precision(precision);
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&problem, "-p", "--problem",
"Problem setup to use. See options in velocity_function().");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: 1 - Forward Euler,\n\t"
" 2 - RK2 SSP, 3 - RK3 SSP, 4 - RK4, 6 - RK6.");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step. Positive number skips CFL timestep calculation.");
args.AddOption(&cfl, "-c", "--cfl-number",
"CFL number for timestep calculation.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Read the mesh from the given mesh file. This example requires a 2D
// periodic mesh, such as ../data/periodic-square.mesh.
Mesh mesh(mesh_file, 1, 1);
const int dim = mesh.Dimension();
MFEM_ASSERT(dim == 2, "Need a two-dimensional mesh for the problem definition");
// 3. Define the ODE solver used for time integration. Several explicit
// Runge-Kutta methods are available.
ODESolver *ode_solver = NULL;
switch (ode_solver_type)
{
case 1: ode_solver = new ForwardEulerSolver; break;
case 2: ode_solver = new RK2Solver(1.0); break;
case 3: ode_solver = new RK3SSPSolver; break;
case 4: ode_solver = new RK4Solver; break;
case 6: ode_solver = new RK6Solver; break;
default:
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
return 3;
}
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement, where 'ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < ref_levels; lev++)
{
mesh.UniformRefinement();
}
// 5. Define the discontinuous DG finite element space of the given
// polynomial order on the refined mesh.
DG_FECollection fec(order, dim);
// Finite element space for a scalar (thermodynamic quantity)
FiniteElementSpace fes(&mesh, &fec);
// Finite element space for a mesh-dim vector quantity (momentum)
FiniteElementSpace dfes(&mesh, &fec, dim, Ordering::byNODES);
// Finite element space for all variables together (total thermodynamic state)
FiniteElementSpace vfes(&mesh, &fec, num_equation, Ordering::byNODES);
// This example depends on this ordering of the space.
MFEM_ASSERT(fes.GetOrdering() == Ordering::byNODES, "");
cout << "Number of unknowns: " << vfes.GetVSize() << endl;
// 6. Define the initial conditions, save the corresponding mesh and grid
// functions to a file. This can be opened with GLVis with the -gc option.
// The solution u has components {density, x-momentum, y-momentum, energy}.
// These are stored contiguously in the BlockVector u_block.
Array<int> offsets(num_equation + 1);
for (int k = 0; k <= num_equation; k++) { offsets[k] = k * vfes.GetNDofs(); }
BlockVector u_block(offsets);
// Momentum grid function on dfes for visualization.
GridFunction mom(&dfes, u_block.GetData() + offsets[1]);
// Initialize the state.
VectorFunctionCoefficient u0(num_equation, InitialCondition);
GridFunction sol(&vfes, u_block.GetData());
sol.ProjectCoefficient(u0);
// Output the initial solution.
{
ofstream mesh_ofs("vortex.mesh");
mesh_ofs.precision(precision);
mesh_ofs << mesh;
for (int k = 0; k < num_equation; k++)
{
GridFunction uk(&fes, u_block.GetBlock(k));
ostringstream sol_name;
sol_name << "vortex-" << k << "-init.gf";
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(precision);
sol_ofs << uk;
}
}
// 7. Set up the nonlinear form corresponding to the DG discretization of the
// flux divergence, and assemble the corresponding mass matrix.
MixedBilinearForm Aflux(&dfes, &fes);
Aflux.AddDomainIntegrator(new TransposeIntegrator(new GradientIntegrator()));
Aflux.Assemble();
NonlinearForm A(&vfes);
RiemannSolver rsolver;
A.AddInteriorFaceIntegrator(new FaceIntegrator(rsolver, dim));
// 8. Define the time-dependent evolution operator describing the ODE
// right-hand side, and perform time-integration (looping over the time
// iterations, ti, with a time-step dt).
FE_Evolution euler(vfes, A, Aflux.SpMat());
// Visualize the density
socketstream sout;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
sout.open(vishost, visport);
if (!sout)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
visualization = false;
cout << "GLVis visualization disabled.\n";
}
else
{
sout.precision(precision);
sout << "solution\n" << mesh << mom;
sout << "pause\n";
sout << flush;
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
}
// Determine the minimum element size.
double hmin = 0.0;
if (cfl > 0)
{
hmin = mesh.GetElementSize(0, 1);
for (int i = 1; i < mesh.GetNE(); i++)
{
hmin = min(mesh.GetElementSize(i, 1), hmin);
}
}
// Start the timer.
tic_toc.Clear();
tic_toc.Start();
double t = 0.0;
euler.SetTime(t);
ode_solver->Init(euler);
if (cfl > 0)
{
// Find a safe dt, using a temporary vector. Calling Mult() computes the
// maximum char speed at all quadrature points on all faces.
Vector z(A.Width());
max_char_speed = 0.;
A.Mult(sol, z);
dt = cfl * hmin / max_char_speed / (2*order+1);
}
// Integrate in time.
bool done = false;
for (int ti = 0; !done; )
{
double dt_real = min(dt, t_final - t);
ode_solver->Step(sol, t, dt_real);
if (cfl > 0)
{
dt = cfl * hmin / max_char_speed / (2*order+1);
}
ti++;
done = (t >= t_final - 1e-8*dt);
if (done || ti % vis_steps == 0)
{
cout << "time step: " << ti << ", time: " << t << endl;
if (visualization)
{
sout << "solution\n" << mesh << mom << flush;
}
}
}
tic_toc.Stop();
cout << " done, " << tic_toc.RealTime() << "s." << endl;
// 9. Save the final solution. This output can be viewed later using GLVis:
// "glvis -m vortex.mesh -g vortex-1-final.gf".
for (int k = 0; k < num_equation; k++)
{
GridFunction uk(&fes, u_block.GetBlock(k));
ostringstream sol_name;
sol_name << "vortex-" << k << "-final.gf";
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(precision);
sol_ofs << uk;
}
// 10. Compute the L2 solution error summed for all components.
if (t_final == 2.0)
{
const double error = sol.ComputeLpError(2, u0);
cout << "Solution error: " << error << endl;
}
// Free the used memory.
delete ode_solver;
return 0;
}