forked from jmcmahan/LinVer-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
draw_posterior_sample.m
executable file
·37 lines (35 loc) · 1.24 KB
/
draw_posterior_sample.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function sample = draw_posterior_sample(param, post, M)
% draw_posterior_sample(param, post, N) - Draw N samples from the posterior
% defined by post for the problem defined by param.
if strcmp(param.unknowns, 'beta')
L = chol(post.sigma2 / param.lambda);
sample = zeros(M, param.Nbeta);
for j = 1:M
sample(j, :) = post.mu2' + randn(1, param.Nbeta)*L;
end
elseif strcmp(param.unknowns, 'beta_lambda')
L = chol(post.sigma2);
sample = zeros(M, param.Nbeta+1);
for j = 1:M
l = gamrnd(post.a1, 1/post.b1);
sample(j, 1:param.Nbeta) = post.loc' + randn(1, param.Nbeta)*L/sqrt(l);
sample(j, end) = l;
end
elseif strcmp(param.unknowns, 'beta_lambda_phi')
sample = zeros(M, param.Nbeta+2);
phi = phirnd(post, param, M);
% Reuse the code for evaluating the lambda / beta parameters with the
% samples of phi drawn here.
paramj = param;
paramj.unknowns = 'beta_lambda';
for j = 1:M
paramj.phi = phi(j);
postj = eval_posterior(paramj);
L = chol(postj.sigma2);
l = gamrnd(postj.a1, 1/postj.b1);
sample(j, 1:paramj.Nbeta) = postj.loc' + randn(1, paramj.Nbeta)*L/sqrt(l);
sample(j, end-1) = l;
sample(j, end) = phi(j);
end
end
end