forked from jmcmahan/LinVer-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dram_from_linver.m
executable file
·189 lines (156 loc) · 5.93 KB
/
dram_from_linver.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
function sol = dram_from_linver(param, adderror)
if nargin < 2
adderror = false;
end
G = param.G;
Nbeta = param.Nbeta;
% We'll set this one up to do all the parameter inference in the
% chain, i.e., without using the gamma distribution to sample
% lambda
Cinv = eval_corrfuncinv(param);
if strcmp(param.unknowns, 'beta')
% Lambda is known in this case, so use it
qcov = inv(G'*Cinv*G) / param.lambda;
Nparam = Nbeta;
elseif strcmp(param.unknowns, 'beta_lambda')
% This is using the actual parameters for initialization,
% since it's simpler. It should be ok, as we're verifying the
% distribution, not any particular point estimate. The idea is
% that we are assuming this can be initialized in some reasonable
% way that gives similar results.
res = param.y - G*param.beta;
s2ols = res'*Cinv*res / (param.N - Nbeta - 1);
qcov = zeros(Nbeta+1);
% Beta part of the initial proposal covariance
qcov(1:Nbeta,1:Nbeta) = inv(G'*Cinv*G) * s2ols;
% Lambda part of the initial proposal covariance
qcov(Nbeta+1,Nbeta+1) = 10;
Nparam = Nbeta + 1;
elseif strcmp(param.unknowns, 'beta_lambda_phi')
res = param.y - G*param.beta;
% Note this is also using the true information about phi, since
% Cinv is computed with the actual parameter.
s2ols = res'*Cinv*res / (param.N - Nbeta - 1);
qcov = zeros(Nbeta+2);
% Beta part of the initial proposal covariance
qcov(1:Nbeta,1:Nbeta) = inv(G'*Cinv*G) * s2ols;
% Lambda part of the initial proposal covariance
qcov(Nbeta+1,Nbeta+1) = 10;
% Phi part of the initial proposal covariance
qcov(Nbeta+2,Nbeta+2) = 5e-2;
Nparam = Nbeta + 2;
end
drampar = cell(Nparam, 1);
for j = 1:Nbeta
if strcmp(param.prior.type, 'noninformative')
drampar{j} = {'', param.beta(j), param.betarange(j, 1), ...
param.betarange(j, 2)};
elseif strcmp(param.prior.type, 'gaussian')
drampar{j} = {'', param.beta(j), param.betarange(j, 1), ...
param.betarange(j, 2), ...
param.prior.mu0(j), ...
sqrt(param.prior.sigma0(j,j)) };
end
end
if strcmp(param.unknowns, 'beta_lambda') ...
|| strcmp(param.unknowns, 'beta_lambda_phi')
drampar{Nbeta+1} = {'', param.lambda, param.lambdarange(1), ...
param.lambdarange(2)};
end
if strcmp(param.unknowns, 'beta_lambda_phi')
drampar{end} = {'', param.phi, param.phirange(1), ...
param.phirange(2)};
end
if strcmp(param.unknowns, 'beta')
% Use the known true-value of lambda
priorfun = @(th, mu, sig) param.lambda * sum( ((th-mu)./sig).^2 );
else
% True value of lambda unknown, so use the sampled value
priorfun = @(th, mu, sig) -(param.Nbeta-2)*log(th(Nbeta+1)) + th(Nbeta+1) * ...
sum( ((th(1:Nbeta)-mu(1:Nbeta)) ./sig(1:Nbeta)).^2 );
end
data.ydata = param.y';
data.xdata = linspace(0, 1, param.N);
% The model sigma is set to 1, since we are trying to infer it as
% part of the random walk. May be interesting to try this with sigma
% updated automatically.
model.sigma2 = 1;
model.priorfun = priorfun;
model.N = param.N;
if strcmp(param.unknowns, 'beta')
model.ssfun = @(theta, data) ssfun1(theta, data, param, Cinv, adderror);
elseif strcmp(param.unknowns, 'beta_lambda')
model.ssfun = @(theta, data) ssfun2(theta, data, param, Cinv, adderror);
elseif strcmp(param.unknowns, 'beta_lambda_phi')
model.ssfun = @(theta, data) ssfun3(theta, data, param, adderror);
end
options.qcov = qcov;
% Defaults
%options.adaptint = 100;
%options.drscale = [5 4 3];
options.adaptint = 200;
options.drscale = [6 5 4];
options.burnintime = 20000;
options.updatesigma = 0;
if isfield(param, 'nsimu')
options.nsimu = param.nsimu;
end
[res, chain] = mcmcrun(model, data, drampar, options);
sol.res = res;
sol.chain = chain;
end
function ss = ssfun1(theta, data, param, Cinv, adderror)
% Log-likelihood function when beta is unknown
G = param.G;
if isrow(theta);
theta = theta';
end
if isrow(data.ydata)
y = data.ydata';
end
yhat = G*theta;
resid = y - yhat;
ss = resid'*Cinv*resid * param.lambda;
if adderror
ss = ss * 2;
end
end
function ss = ssfun2(theta, data, param, Cinv, adderror)
% Log-likelihood function when beta, lambda are unknown
G = param.G;
if isrow(theta);
theta = theta';
end
if isrow(data.ydata)
y = data.ydata';
end
beta = theta(1:param.Nbeta);
lambda = theta(param.Nbeta+1);
yhat = G*beta;
resid = y - yhat;
ss = resid'*Cinv*resid * lambda - param.N * log(lambda);
if adderror
ss = ss * 2;
end
end
function ss = ssfun3(theta, data, param, adderror)
% Log-likelihood function when beta,lambda,phi are unknown
G = param.G;
if isrow(theta);
theta = theta';
end
if isrow(data.ydata)
y = data.ydata';
end
beta = theta(1:param.Nbeta);
lambda = theta(param.Nbeta+1);
phi = theta(param.Nbeta+2);
Cinv = eval_corrfuncinv(param, phi);
detC = eval_det(param, phi);
yhat = G*beta;
resid = y - yhat;
ss = resid'*Cinv*resid * lambda + log(detC) - param.N * log(lambda);
if adderror
ss = ss * 2;
end
end