forked from jmcmahan/LinVer-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_case3.m
executable file
·121 lines (93 loc) · 3.19 KB
/
demo_case3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
N = 200; % Number of data points
Nbeta = 2; % Number of regression parameters
% True parameters. These are used to generate data and that
% data is used to infer these parameters.
beta = randn(Nbeta, 1)*10;
lambda = 100 + rand*200;
phi = 0.25;
% Non-informative prior only needs the type
prior_noninformative.type = 'noninformative';
% Gaussian prior needs the mean and covariance specified
prior_gaussian.type = 'gaussian'; % Gaussian prior
prior_gaussian.sigma0 = eye(Nbeta); % Prior unscaled covariance
prior_gaussian.mu0 = beta*1.1; % Prior mean
% This is the design matrix.
G = randn(N, Nbeta);
G(:,1) = 1;
param1.N = N;
param1.Nbeta = Nbeta;
param1.G = G;
param1.prior = prior_noninformative;
param1.beta = beta;
param1.lambda = lambda;
param1.phi = phi;
param1.betarange = [-100*ones(Nbeta,1) 100*ones(Nbeta,1)];
param1.lambdarange = [1e-1, 1e3];
% Correlation type
param1.corrfunc = 'none';
% Which parameters are unknown
param1.unknowns = 'beta_lambda_phi';
% Generate the Gaussian observation error
e1 = eval_noise(param1);
% This is the data to fit the parameters to.
param1.y = G*beta + e1 / sqrt(lambda);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Uncorrelated error
% Non-informative prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%post1 = eval_posterior(param1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Uncorrelated error
% Gaussian prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copy everything...
param2 = param1;
% ... but change to Gaussian prior
param2.prior = prior_gaussian;
%post2 = eval_posterior(param2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Equi-correlated error
% Non-informative prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param3 = param1;
param3.corrfunc = 'equal';
% Equi-correlated noise has parameter domain
% [0, 1)
param3.phirange = [0, 0.95];
e3 = eval_noise(param3);
param3.y = G*beta + e3 / sqrt(lambda);
disp('******************************************************')
disp('Beta,lambda,phi unknown, equicorrelated noise, uniform prior')
disp('******************************************************')
post3 = eval_posterior(param3);
%[chain3, aratio3, oob3] = do_simple_mcmc_better(param3, post3, 1e4);
%result3 = demo_energy_test(param3, post3, 0.05, 50, 200, 200);
disp('Done.')
disp(' ')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Equi-correlated error
% Gaussian prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param4 = param3;
param4.prior = prior_gaussian;
post4 = eval_posterior(param4);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AR(1) correlated error
% Non-informative prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param5 = param1;
param5.corrfunc = 'ar';
% AR(1)-correlated noise has parameter domain
% (-1, 1)
param5.phirange = [-0.95, 0.95];
e5 = eval_noise(param5);
param5.y = G*beta + e5 / sqrt(lambda);
post5 = eval_posterior(param5);
[chain5, aratio5, oob5] = do_simple_mcmc(param5, post5, 1e4);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AR(1) correlated error
% Gaussian prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param6 = param5;
param6.prior = prior_gaussian;
post6 = eval_posterior(param6);