-
Notifications
You must be signed in to change notification settings - Fork 16
/
spm_CTseg.m
489 lines (450 loc) · 15.5 KB
/
spm_CTseg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
function [res,vol] = spm_CTseg(in, odir, tc, def, correct_header, skullstrip, vox, v_settings, tol)
% A CT segmentation+spatial normalisation routine for SPM12.
% FORMAT [res,vol] = spm_CTseg(in, odir, tc, def, correct_header, skullstrip, vox, v_settings, tol)
%
% This algorithm produces native|warped|modulated space segmentations of:
% 1. Gray matter (GM)
% 2. White matter (WM)
% 3. Cerebrospinal fluid (CSF)
% 4. Bone (BONE)
% 5. Soft tissue (ST)
% 6. Background (BG)
% the outputs are prefixed as the SPM12 unified segmentation (c*, wc*, mwc*).
%
% ARGS:
% --------------
% in (char|nifti): Input CT scan, either path (char array) or SPM
% nifti object.
%
% odir (char): Directory where to write outputs, defaults to same as
% input CT scan.
%
% tc (logical(6, 3)): Matrix where native, warped and warped modulated are
% indexed by columns and tissue classes are indexed by rows
% (in the above order).
%
% def (logical): Write deformations? Defaults to true.
%
% correct_header (logical): Correct messed up CT header, defaults to true.
%
% skullstrip (logical): Write skull-stripped CT scan to disk, prefixed
% 'ss_'. Defaults to false.
%
% vox (double): Template space voxel size, defaults to voxel size of
% template.
%
% v_settings (int|int(1,5)): Spatial regularisation settings. See Multi-
% Brain toolbox. If singleton, acts as a
% multiplication factor on the default.
%
% tol (double): Stopping tolerance. Defaults to 0.5*0.001. Larger = faster
% and less accurate.
%
% RETURNS:
% --------------
% res - A struct with paths to algorithm results.
%
% vol - A struct with total brain and intercranial volume (TBV and TIV), in
% millilitres.
%
% REFERENCES:
% --------------
% The algorithm that was used to train this model is described in the paper:
%
% Brudfors M, Balbastre Y, Flandin G, Nachev P, Ashburner J. (2020).
% Flexible Bayesian Modelling for Nonlinear Image Registration.
% International Conference on Medical Image Computing and Computer
% Assisted Intervention.
%
% and in the PhD dissertation:
%
% Brudfors, M. (2020).
% Generative Models for Preprocessing of Hospital Brain Scans.
% Doctoral dissertation, UCL (University College London).
%
% Please consider citing if you find this code useful. A more detailed
% paper validating the method will hopefully be published soon.
%
% CONTACT:
% --------------
% Mikael Brudfors, [email protected], 2020
%_______________________________________________________________________
if ~nargin
spm_jobman('interactive','','spm.tools.CTseg');
return;
end
if nargin < 2, odir = ''; end
if nargin < 3, tc = true; end
if size(tc,2) == 1
tc = repmat(tc, 1, 3);
end
if nargin < 4, def = true; end
if nargin < 5, correct_header = true; end
if nargin < 6, skullstrip = false; end
if nargin < 7, vox = NaN; end
if nargin < 8
v_settings = [0.0001 0 0.4 0.1 0.4] * 2;
elseif numel(v_settings) == 1
v_settings = [0.0001 0 0.4 0.1 0.4] .* v_settings;
end
if nargin < 9, tol = 0.001; end
% check MATLAB path
%--------------------------------------------------------------------------
if isempty(fileparts(which('spm')))
error('SPM12 not on the MATLAB path! Download from https://www.fil.ion.ucl.ac.uk/spm/software/download/');
end
if isempty(fileparts(which('spm_shoot3d')))
error('Shoot toolbox not on the MATLAB path! Add from spm12/toolbox/Shoot');
end
if isempty(fileparts(which('spm_dexpm')))
error('Longitudinal toolbox not on the MATLAB path! Add from spm12/toolbox/Longitudinal');
end
% add MB toolbox
addpath(fullfile(spm('dir'),'toolbox','mb'));
if isempty(fileparts(which('spm_mb_fit')))
error('Multi-Brain toolbox not on the MATLAB path! Download/clone from https://github.com/WTCN-computational-anatomy-group/mb and place in the SPM12 toolbox folder.');
end
if ~(exist('spm_gmmlib','file') == 3)
error('Multi-Brain GMM library is not compiled, please follow the Install instructions on the Multi-Brain GitHub README.')
end
% Get model files
%--------------------------------------------------------------------------
dir_ctseg = fileparts(mfilename('fullpath'));
if ~(exist(fullfile(dir_ctseg,'mu_CTseg.nii'), 'file') == 2)
% Path to model zip file
pth_model_zip = fullfile(dir_ctseg, 'model.zip');
% Model file not present
if ~(exist(pth_model_zip, 'file') == 2)
% Download model file
url_model = 'https://www.dropbox.com/s/qjdqavysgqqhyzc/model.zip?dl=1';
fprintf('Downloading model files (first use only)... ')
websave(pth_model_zip, url_model);
fprintf('done.\n')
end
% Unzip model file, if has not been done
fprintf('Extracting model files (first use only)... ')
unzip(pth_model_zip, dir_ctseg);
fprintf('done.\n')
% Delete model.zip
spm_unlink(pth_model_zip);
end
% Get nifti
%--------------------------------------------------------------------------
Nii = nifti(in);
% Output directory
%--------------------------------------------------------------------------
if isempty(odir)
odir = fileparts(Nii.dat.fname);
odir = spm_file(odir,'cpath'); % Get absolute path
elseif ~(exist(odir, 'dir') == 7)
mkdir(odir);
end
% Correct orientation matrix
%--------------------------------------------------------------------------
Mc = eye(4);
oNii = Nii;
if correct_header
[Nii,Mc] = correct_orientation(Nii, odir);
end
% Get model file paths
%--------------------------------------------------------------------------
pth_mu = fullfile(dir_ctseg,'mu_CTseg.nii');
if ~(exist(pth_mu, 'file') == 2)
error('Atlas file (mu_CTseg.nii) could not be found! Has model.zip not been extracted?')
end
pth_int = fullfile(dir_ctseg,'prior_CTseg.mat');
if ~(exist(pth_int, 'file') == 2)
error('Intensity prior file (pth_int_prior.mat) could not be found! Has model.zip not been extracted?')
end
pth_Mmni = fullfile(dir_ctseg,'Mmni.mat');
if ~(exist(pth_Mmni, 'file') == 2)
error('MNI affine (Mmni.mat) could not be found! Has model.zip not been extracted?')
end
% Get number of tissue classes from template
Nii_mu = nifti(pth_mu);
K = Nii_mu.dat.dim(4) + 1;
if size(tc,1) == 1
tc = repmat(tc, K, 1);
end
% For keeping modulated, if requested
tc0 = tc;
if nargout > 1
tc([1,2,3],3) = true;
end
% Run MB
%--------------------------------------------------------------------------
% algorithm settings
run = struct;
run.mu.exist = {pth_mu};
run.onam = 'CTseg';
run.odir = {odir};
run.v_settings = v_settings;
run.tol = tol;
run.aff = 'Aff(3)';
run.del_settings = 1;
% image
run.gmm.pr.file = {pth_int};
run.gmm.pr.hyperpriors = [];
run.gmm.chan.images = {Nii(1).dat.fname};
run.gmm.chan.modality = 2;
run.gmm.chan.inu.inu_reg = 1e7;
% output settings
out = struct;
out.result = {fullfile(run.odir{1},['mb_fit_' run.onam '.mat'])};
out.c = 1:K;
out.wc = find(tc(:,2))';
out.mwc = find(tc(:,3))';
out.vox = vox;
out.mrf = 1;
out.clean_gwc = struct('do',true,'gm',1,'wm',2,'csf',3,'level',1);
% fit model and write output
jobs{1}.spm.tools.mb.run = run;
jobs{2}.spm.tools.mb.out = out;
res = spm_jobman('run', jobs);
% get results
res = load(res{1}.fit{1});
dat = res.dat;
Mmu = res.sett.mu.Mmu;
res.c = cell(1,K);
res.wc = cell(1,K);
res.mwc = cell(1,K);
for k=1:K
res.c{k} = fullfile(dat.odir, ['c0' num2str(k) '_' dat.onam '.nii']);
if tc(k,2)
res.wc{k} = fullfile(dat.odir, ['wc0' num2str(k) '_' dat.onam '.nii']);
end
if tc(k,3)
res.mwc{k} = fullfile(dat.odir, ['mwc0' num2str(k) '_' dat.onam '.nii']);
end
end
vol = struct('tbv',NaN,'tiv',NaN);
if nargout > 1
% Compute TBV and TIV, note that these are computed using the
% modulated GM, WM and CSF in template space, with the field-of-view
% of the SPM12 atlas as the CTseg atlas has a larger FOV.
% ------------
% zero voxels outside of SPM12 atlas field-of-view
pth_spm = nifti(fullfile(spm('Dir'),'tpm','TPM.nii'));
for k=1:3
spm_CTseg_util('mask_outside_fov', pth_spm, res.mwc{k});
end
% Compute TBV and TIV from modulated template space segmentations
vol = struct('tbv',0,'tiv',0);
for k=1:3
Nii_mwc = nifti(res.mwc{k});
sm_dat = sum(Nii_mwc.dat(:));
if k < 3
vol.tbv = vol.tbv + sm_dat;
end
vol.tiv = vol.tiv + sm_dat;
end
vx = sqrt(sum(Nii_mwc(1).mat(1:3,1:3).^2));
vol.tbv = prod(vx(1:3))*vol.tbv;
vol.tiv = prod(vx(1:3))*vol.tiv;
for k=1:3
if ~tc0(k, 3)
spm_unlink(res.mwc{k});
res.mwc{k} = [];
end
end
tc = tc0;
end
% Reslice template space segmentations to MNI space
reslice2mni(res,pth_Mmni,Mmu);
if correct_header
% Reslice corrected native space segmentations to original native space.
M1 = spm_get_space(Nii(1).dat.fname); % get corrected orientation matrix
spm_unlink(Nii(1).dat.fname); % delete corrected image
Nii = oNii; % reset to original input image
M0 = spm_get_space(Nii(1).dat.fname); % get corrected orientation matrix
% new field-of-view
M = Mc\M1\M0;
y = spm_CTseg_util('affine', Nii.dat.dim, M);
% reslice segmentations
for k=1:K
if isempty(res.c{k}), continue; end
Nii_c = nifti(res.c{k});
rc = spm_diffeo('bsplins',single(Nii_c.dat()),y,[1 1 1 0 0 0]);
spm_CTseg_util('write_nii',res.c{k},rc,M0,sprintf('Tissue (%d)',k), 'uint8')
end
end
res.s = '';
if skullstrip
% Produce skull-stripped CT scan (prefixed 'ss_')
%----------------------------------------------------------------------
% Get native-space responsibilities
Z = [];
for k=1:K
Nii_c = nifti(res.c{k});
Z = cat(4, Z, single(Nii_c.dat()));
end
Z = bsxfun(@rdivide, Z, sum(Z,4) + eps('single')); % renormalise (resps could have been resliced)
% Copy image
[~,nam,ext] = fileparts(Nii(1).dat.fname);
nfname = fullfile(run.odir{1},['ss_' nam ext]);
copyfile(Nii(1).dat.fname,nfname);
% Make mask and apply
Nii_s = nifti(nfname);
img = single(Nii_s.dat());
msk = sum(Z(:,:,:,[1 2 3]),4) >= 0.5;
img(~msk) = 0;
% Modify copied image's data
Nii_s.dat(:,:,:) = img;
res.s = nfname;
clear msk Z
end
% Delete unrequested native space segmentations
res_c = res.c;
res.c = cell(1,sum(tc(:,1)));
k1 = 1;
for k=1:K
if ~tc(k,1)
spm_unlink(res_c{k});
else
res.c{k1} = res_c{k};
k1 = k1 + 1;
end
end
% Save deformation?
res.y = '';
if def
if correct_header
% adjust affine of deformation
M0 = spm_get_space(dat(1).psi.dat.fname);
spm_get_space(dat(1).psi.dat.fname, Mc\M0);
end
res.y = dat(1).psi.dat.fname;
else
spm_unlink(dat(1).psi.dat.fname); % Delete deformation
end
spm_unlink(dat(1).v.dat.fname); % Delete velocity field
%==========================================================================
%==========================================================================
function [Nii,Mr] = correct_orientation(Nii,odir)
f = nm_reorient(Nii.dat.fname,odir);
Mr = reset_origin(f);
Nii = nifti(f);
%==========================================================================
%==========================================================================
function Mr = reset_origin(pth)
V = spm_vol(pth);
M0 = V.mat;
dim = V.dim;
vx = sqrt(sum(M0(1:3,1:3).^2));
if det(M0(1:3,1:3))<0
vx(1) = -vx(1);
end
orig = (dim(1:3)+1)/2;
off = -vx.*orig;
M1 = [vx(1) 0 0 off(1)
0 vx(2) 0 off(2)
0 0 vx(3) off(3)
0 0 0 1];
Mr = M1/M0;
spm_get_space(pth,Mr*M0);
%==========================================================================
%==========================================================================
function npth = nm_reorient(pth,odir,vx,prefix,deg)
if nargin < 3, vx = []; end
if nargin < 4, prefix = 'temp_'; end
if nargin < 5, deg = 1; end
if ~isempty(vx) && length(vx) < 3
vx=[vx vx vx];
end
% Get information about the image volumes
V = spm_vol(pth);
% The corners of the current volume
d = V.dim(1:3);
c = [1 1 1 1
1 1 d(3) 1
1 d(2) 1 1
1 d(2) d(3) 1
d(1) 1 1 1
d(1) 1 d(3) 1
d(1) d(2) 1 1
d(1) d(2) d(3) 1]';
% The corners of the volume in mm space
tc = V.mat(1:3,1:4)*c;
if spm_flip_analyze_images, tc(1,:) = -tc(1,:); end
% Max and min co-ordinates for determining a bounding-box
mx = round(max(tc,[],2)');
mn = round(min(tc,[],2)');
vx0 = sqrt(sum(V.mat(1:3,1:3).^2));
if isempty(vx)
vx = vx0;
end
% Translate so that minimum moves to [1,1,1]
% This is the key bit for changing voxel sizes,
% output orientations etc.
mat = spm_matrix(mn)*diag([vx 1])*spm_matrix(-[1 1 1]);
% Dimensions in mm
dim = ceil((mat\[mx 1]')');
% Output image based on information from the original
VO = V;
% Create a filename for the output image (prefixed by 'r')
[~,name,ext] = fileparts(V.fname);
VO.fname = fullfile(odir,[prefix name ext]);
% Dimensions of output image
VO.dim(1:3) = dim(1:3);
% Voxel-to-world transform of output image
if spm_flip_analyze_images, mat = diag([-1 1 1 1])*mat; end
VO.mat = mat;
% Create .hdr and open output .img
VO = spm_create_vol(VO);
for i=1:dim(3) % Loop over slices of output image
% Mapping from slice i of the output image,
% to voxels of the input image
M = inv(spm_matrix([0 0 -i])*inv(VO.mat)*V.mat);
% Extract this slice according to the mapping
img = spm_slice_vol(V,M,dim(1:2),deg);
% Write this slice to output image
spm_write_plane(VO,img,i);
end % End loop over output slices
npth = VO.fname;
%==========================================================================
%==========================================================================
function reslice2mni(res, pth_Mmni, Mmu)
% Load affine matrix that aligns MB template with SPM template
load(pth_Mmni, 'Mmni');
% Get SPM template information
Niis = nifti(fullfile(spm('Dir'),'tpm','TPM.nii'));
Ms = Niis.mat;
ds = Niis.dat.dim(1:3);
vxs = sqrt(sum(Ms(1:3,1:3).^2));
% Extract affine transformation from spm_klaff result
Md = Mmni\Ms;
A = Mmu*Md/Ms;
% Do reslice
if ~isempty(res.wc)
for k=1:numel(res.wc)
if isempty(res.wc{k}), continue; end
reslice_dat(res.wc{k},A,Mmu,Ms,ds,vxs,'uint8');
end
end
if ~isempty(res.mwc)
for k=1:numel(res.mwc)
if isempty(res.mwc{k}), continue; end
reslice_dat(res.mwc{k},A,Mmu,Ms,ds,vxs,'int16');
end
end
%==========================================================================
%==========================================================================
function pth = reslice_dat(pth,A,Mmu0,Ms,ds,vxs,typ)
% Get template-space orientation matrix
% (possibly with cropped FOV and adjusted voxel size)
Mmu = spm_get_space(pth);
% Get cropping matrix
Mc = Mmu/Mmu0;
% New field of view
vx_out = sqrt(sum(Mmu(1:3,1:3).^2));
D = diag([vxs./vx_out 1]);
Mout = Ms/D;
dout = floor(D(1:3,1:3)*ds')';
% Define sampling grid
M = (Mc*Mmu0)\A*Mout;
y = spm_CTseg_util('affine',dout,M);
% Reslice
Nii = nifti(pth);
dat = spm_diffeo('bsplins',single(Nii.dat()),y,[1 1 1 0 0 0]);
spm_CTseg_util('write_nii',pth,dat,Mout,Nii.descrip,typ);
%==========================================================================