-
Notifications
You must be signed in to change notification settings - Fork 0
/
AA_SchwRcEJ20.m
1498 lines (1444 loc) · 88.1 KB
/
AA_SchwRcEJ20.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\[CurlyEpsilon][1] = Sqrt[-6 + r\[UnderBracket]Subscript\[UnderBracket]c]/
r\[UnderBracket]Subscript\[UnderBracket]c^2
\[CurlyEpsilon][2] =
(-3*Sqrt[(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)*
r\[UnderBracket]Subscript\[UnderBracket]c]*
(-298 + 185*r\[UnderBracket]Subscript\[UnderBracket]c -
34*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
2*r\[UnderBracket]Subscript\[UnderBracket]c^3))/
(4*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
r\[UnderBracket]Subscript\[UnderBracket]c^4)
\[CurlyEpsilon][3] =
(-2863476 + 4257312*r\[UnderBracket]Subscript\[UnderBracket]c -
2639481*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
884115*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
172800*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
19732*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
1224*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
32*r\[UnderBracket]Subscript\[UnderBracket]c^7)/
(16*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(9/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^5)
\[CurlyEpsilon][4] = (-5*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(3/2)*(-444327000 + 741495204*
r\[UnderBracket]Subscript\[UnderBracket]c -
540189522*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
225670731*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
59608212*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
10325802*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
1173504*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
84480*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
3504*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
64*r\[UnderBracket]Subscript\[UnderBracket]c^9))/
(128*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^7*
r\[UnderBracket]Subscript\[UnderBracket]c^(13/2))
\[CurlyEpsilon][5] = (3*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
(1816493921616 - 3955861916448*
r\[UnderBracket]Subscript\[UnderBracket]c +
3898445788920*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
2299718882088*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
904602894261*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
249962629656*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
49744592184*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
7181900016*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
746429872*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
54468480*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
2650496*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
77312*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
1024*r\[UnderBracket]Subscript\[UnderBracket]c^12))/
(1024*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(19/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^8)
\[CurlyEpsilon][6] = (-7*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(5/2)*(-494808967821024 + 1327858638025968*
r\[UnderBracket]Subscript\[UnderBracket]c - 1646439642699408*
r\[UnderBracket]Subscript\[UnderBracket]c^2 +
1251440200589400*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
652152667495830*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
246801316020723*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
70058631689358*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
15186040860198*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
2533345445040*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
325100207520*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
31816477968*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
2331099072*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
123745152*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
4493440*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
99840*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
1024*r\[UnderBracket]Subscript\[UnderBracket]c^15))/
(2048*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^12*
r\[UnderBracket]Subscript\[UnderBracket]c^(19/2))
\[CurlyEpsilon][7] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^3*
(9040056157212600384 - 28816758918121581504*
r\[UnderBracket]Subscript\[UnderBracket]c + 43023291869597097456*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
39977598116085537888*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
25908729389989318908*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
12435551958765856284*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
4580653136451471729*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1323738353715061428*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
304153817969286684*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
55959551207773848*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
8259936082338024*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
975302105075136*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
91384248930240*r\[UnderBracket]Subscript\[UnderBracket]c^12 -
6698556608640*r\[UnderBracket]Subscript\[UnderBracket]c^13 +
375456241152*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
15519495168*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
445317120*r\[UnderBracket]Subscript\[UnderBracket]c^16 -
7913472*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
65536*r\[UnderBracket]Subscript\[UnderBracket]c^18))/
(16384*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(29/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^11)
\[CurlyEpsilon][8] = (-9*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(7/2)*(-5349871847936709489792 + 19744797330039776994240*
r\[UnderBracket]Subscript\[UnderBracket]c - 34459672448054128831392*
r\[UnderBracket]Subscript\[UnderBracket]c^2 + 37825881277779651230256*
r\[UnderBracket]Subscript\[UnderBracket]c^3 - 29297759929169300852568*
r\[UnderBracket]Subscript\[UnderBracket]c^4 + 17026037661141808551252*
r\[UnderBracket]Subscript\[UnderBracket]c^5 - 7705634305524886701822*
r\[UnderBracket]Subscript\[UnderBracket]c^6 + 2782200300715204345569*
r\[UnderBracket]Subscript\[UnderBracket]c^7 - 814297966811950443912*
r\[UnderBracket]Subscript\[UnderBracket]c^8 + 195205968131987962966*
r\[UnderBracket]Subscript\[UnderBracket]c^9 -
38564473859389210160*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
6295427971344981064*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
848778456260641184*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
94169664159871952*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
8536524382084096*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
625147823062528*r\[UnderBracket]Subscript\[UnderBracket]c^15 -
36363900237824*r\[UnderBracket]Subscript\[UnderBracket]c^16 +
1638587686912*r\[UnderBracket]Subscript\[UnderBracket]c^17 -
55056275456*r\[UnderBracket]Subscript\[UnderBracket]c^18 +
1296089088*r\[UnderBracket]Subscript\[UnderBracket]c^19 -
19038208*r\[UnderBracket]Subscript\[UnderBracket]c^20 +
131072*r\[UnderBracket]Subscript\[UnderBracket]c^21))/
(262144*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^17*
r\[UnderBracket]Subscript\[UnderBracket]c^(25/2))
\[CurlyEpsilon][9] = -1/262144*
((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^4*
(12240949268306781100672000 - 64340560820389389859896320*
r\[UnderBracket]Subscript\[UnderBracket]c +
156957367081943358891459840*r\[UnderBracket]Subscript\[UnderBracket]c^
2 - 238244692824566657728900096*
r\[UnderBracket]Subscript\[UnderBracket]c^3 +
253841729036347294060053632*r\[UnderBracket]Subscript\[UnderBracket]c^
4 - 202721861982517743752472960*
r\[UnderBracket]Subscript\[UnderBracket]c^5 +
126395857078774048842570400*r\[UnderBracket]Subscript\[UnderBracket]c^
6 - 63223702662709119920550400*
r\[UnderBracket]Subscript\[UnderBracket]c^7 +
25856036749494219602809428*r\[UnderBracket]Subscript\[UnderBracket]c^
8 - 8761730079064097613425996*
r\[UnderBracket]Subscript\[UnderBracket]c^9 +
2483354169599759455080369*r\[UnderBracket]Subscript\[UnderBracket]c^
10 - 592439182575739281191340*
r\[UnderBracket]Subscript\[UnderBracket]c^11 +
119408011055913746795046*r\[UnderBracket]Subscript\[UnderBracket]c^
12 - 20363510266714699748672*
r\[UnderBracket]Subscript\[UnderBracket]c^13 +
2936326570135158399736*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
356958050454566273568*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
36385838905296867760*r\[UnderBracket]Subscript\[UnderBracket]c^16 -
3083810005862253312*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
214657433726960640*r\[UnderBracket]Subscript\[UnderBracket]c^18 -
12057677832973824*r\[UnderBracket]Subscript\[UnderBracket]c^19 +
532799702075392*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
17822140364800*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
424019017728*r\[UnderBracket]Subscript\[UnderBracket]c^22 -
6391529472*r\[UnderBracket]Subscript\[UnderBracket]c^23 +
45875200*r\[UnderBracket]Subscript\[UnderBracket]c^24))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(39/2)*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c)*
r\[UnderBracket]Subscript\[UnderBracket]c^14)
\[CurlyEpsilon][10] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^(9/2)*
(61131187939699974270930817024 - 366015183753996746097454956544*
r\[UnderBracket]Subscript\[UnderBracket]c +
1048689390572231857894380079104*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
1911651084770562764038097571840*
r\[UnderBracket]Subscript\[UnderBracket]c^3 +
2488698197827079860652954273536*
r\[UnderBracket]Subscript\[UnderBracket]c^4 -
2463506655779917764000580588544*
r\[UnderBracket]Subscript\[UnderBracket]c^5 +
1928128501578314827100717209344*
r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1225220031000954861458321708544*
r\[UnderBracket]Subscript\[UnderBracket]c^7 +
644120253901040792053341805680*
r\[UnderBracket]Subscript\[UnderBracket]c^8 -
284045833901777290925532147392*
r\[UnderBracket]Subscript\[UnderBracket]c^9 +
106152696863320146055725765128*
r\[UnderBracket]Subscript\[UnderBracket]c^10 -
33876224434885697843716464400*
r\[UnderBracket]Subscript\[UnderBracket]c^11 +
9282650472141684251610354345*r\[UnderBracket]Subscript\[UnderBracket]c^
12 - 2192296736851959201226576620*
r\[UnderBracket]Subscript\[UnderBracket]c^13 +
447254128075597742977602720*r\[UnderBracket]Subscript\[UnderBracket]c^
14 - 78886909810382052266410920*
r\[UnderBracket]Subscript\[UnderBracket]c^15 +
12023311744591211668454408*r\[UnderBracket]Subscript\[UnderBracket]c^
16 - 1580414344811086666451232*
r\[UnderBracket]Subscript\[UnderBracket]c^17 +
178540055715527604116288*r\[UnderBracket]Subscript\[UnderBracket]c^
18 - 17244096248637807486784*
r\[UnderBracket]Subscript\[UnderBracket]c^19 +
1413451192594688432448*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
97336894059637276672*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
5554981346557958144*r\[UnderBracket]Subscript\[UnderBracket]c^22 -
257827775047987200*r\[UnderBracket]Subscript\[UnderBracket]c^23 +
9477441278369792*r\[UnderBracket]Subscript\[UnderBracket]c^24 -
265268127375360*r\[UnderBracket]Subscript\[UnderBracket]c^25 +
5307511537664*r\[UnderBracket]Subscript\[UnderBracket]c^26 -
67568402432*r\[UnderBracket]Subscript\[UnderBracket]c^27 +
411041792*r\[UnderBracket]Subscript\[UnderBracket]c^28))/
(2097152*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^22*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
r\[UnderBracket]Subscript\[UnderBracket]c^(31/2))
\[GothicCapitalE][1] =
(2*Sqrt[-3 + r\[UnderBracket]Subscript\[UnderBracket]c]*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c))/
(Sqrt[-6 + r\[UnderBracket]Subscript\[UnderBracket]c]*
r\[UnderBracket]Subscript\[UnderBracket]c^(3/2))
\[GothicCapitalE][2] = -1/2*((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)*
(1676 - 1612*r\[UnderBracket]Subscript\[UnderBracket]c +
595*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
100*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
6*r\[UnderBracket]Subscript\[UnderBracket]c^4))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^3*
r\[UnderBracket]Subscript\[UnderBracket]c^3)
\[GothicCapitalE][3] = (Sqrt[-3 + r\[UnderBracket]Subscript\[UnderBracket]c]*
(4924968 - 8698100*r\[UnderBracket]Subscript\[UnderBracket]c +
6685810*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
2941503*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
817127*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
147772*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
16980*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1120*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
32*r\[UnderBracket]Subscript\[UnderBracket]c^8))/
(8*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(11/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^(9/2))
\[GothicCapitalE][4] =
-1/64*((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
(3532654320 - 6749253600*r\[UnderBracket]Subscript\[UnderBracket]c +
5772844200*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
2924355368*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
977180151*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
226649668*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
37228450*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
4294272*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
331808*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
15360*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
320*r\[UnderBracket]Subscript\[UnderBracket]c^10))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^8*
r\[UnderBracket]Subscript\[UnderBracket]c^6)
\[GothicCapitalE][5] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(5/2)*(-8105535791584 + 19399236283568*
r\[UnderBracket]Subscript\[UnderBracket]c -
21293827677872*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
14221423794904*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
6462737204118*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
2116474582479*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
515820348192*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
95169857128*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
13361966944*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
1416069008*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
110243840*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
5953280*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
198656*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
3072*r\[UnderBracket]Subscript\[UnderBracket]c^13))/
(512*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(21/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^(15/2))
\[GothicCapitalE][6] = -1/1024*
((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^3*
(4871794064075584 - 14030321634325952*
r\[UnderBracket]Subscript\[UnderBracket]c + 18821352134591280*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
15625864141668064*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
8995746198969516*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
3812687501765180*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
1232580604275021*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
310672940273852*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
61862754548978*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
9796652706560*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
1234469431696*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
122942475392*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
9512116096*r\[UnderBracket]Subscript\[UnderBracket]c^12 -
552972288*r\[UnderBracket]Subscript\[UnderBracket]c^13 +
22729728*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
587776*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
7168*r\[UnderBracket]Subscript\[UnderBracket]c^16))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^13*
r\[UnderBracket]Subscript\[UnderBracket]c^9)
\[GothicCapitalE][7] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(7/2)*(-12134663084495414400 + 40885496226815782848*
r\[UnderBracket]Subscript\[UnderBracket]c - 64866606259143398304*
r\[UnderBracket]Subscript\[UnderBracket]c^2 +
64444940222434132144*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
44972426527950660568*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
23435806376748968884*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
9464318449512309054*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
3033653428945332665*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
784099263484559072*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
165100330921308820*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
28491104680244112*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
4039260792672296*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
469890441888512*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
44602000386880*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
3413929999360*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
206304789504*r\[UnderBracket]Subscript\[UnderBracket]c^15 -
9493938176*r\[UnderBracket]Subscript\[UnderBracket]c^16 +
312664064*r\[UnderBracket]Subscript\[UnderBracket]c^17 -
6553600*r\[UnderBracket]Subscript\[UnderBracket]c^18 +
65536*r\[UnderBracket]Subscript\[UnderBracket]c^19))/
(8192*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(31/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^(21/2))
\[GothicCapitalE][8] = -1/131072*
((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^4*
(62141908647333827821824 - 239920537479374202651648*
r\[UnderBracket]Subscript\[UnderBracket]c + 439676291766077668553472*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
508921634948453073874944*r\[UnderBracket]Subscript\[UnderBracket]c^
3 + 417644574194988595114464*
r\[UnderBracket]Subscript\[UnderBracket]c^4 -
258555621293693182179072*r\[UnderBracket]Subscript\[UnderBracket]c^
5 + 125436361142403980975568*
r\[UnderBracket]Subscript\[UnderBracket]c^6 -
48900635969882994175168*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
15584429012654206148425*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
4108870169062640270236*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
903497597600108320294*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
166550099552014784800*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
25807623022825890056*r\[UnderBracket]Subscript\[UnderBracket]c^12 -
3362976794220453216*r\[UnderBracket]Subscript\[UnderBracket]c^13 +
367817178214766928*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
33604235832754176*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
2542404770263040*r\[UnderBracket]Subscript\[UnderBracket]c^16 -
157012472692736*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
7733723734016*r\[UnderBracket]Subscript\[UnderBracket]c^18 -
292654940160*r\[UnderBracket]Subscript\[UnderBracket]c^19 +
7990542336*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
139984896*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
1179648*r\[UnderBracket]Subscript\[UnderBracket]c^22))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^18*
r\[UnderBracket]Subscript\[UnderBracket]c^12)
\[GothicCapitalE][9] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(9/2)*(-325316655617099224750568960 + 1416428159137152819310785280*
r\[UnderBracket]Subscript\[UnderBracket]c -
2945313955958856383833843200*r\[UnderBracket]Subscript\[UnderBracket]c^
2 + 3893767391913738720455608064*
r\[UnderBracket]Subscript\[UnderBracket]c^3 -
3675427333491969278050838848*r\[UnderBracket]Subscript\[UnderBracket]c^
4 + 2637204152092324116074562720*
r\[UnderBracket]Subscript\[UnderBracket]c^5 -
1495176450941844221863773920*r\[UnderBracket]Subscript\[UnderBracket]c^
6 + 687354453546248684996786480*
r\[UnderBracket]Subscript\[UnderBracket]c^7 -
260886215807201782468114662*r\[UnderBracket]Subscript\[UnderBracket]c^
8 + 82815739380385872051786139*
r\[UnderBracket]Subscript\[UnderBracket]c^9 -
22192062258573017612446656*r\[UnderBracket]Subscript\[UnderBracket]c^
10 + 5053065238008314594840400*
r\[UnderBracket]Subscript\[UnderBracket]c^11 -
981968988686443027482624*r\[UnderBracket]Subscript\[UnderBracket]c^
12 + 163288209783257362758528*
r\[UnderBracket]Subscript\[UnderBracket]c^13 -
23257019261756107352064*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
2835616447540008666752*r\[UnderBracket]Subscript\[UnderBracket]c^15 -
295303779187720686080*r\[UnderBracket]Subscript\[UnderBracket]c^16 +
26157770320676263168*r\[UnderBracket]Subscript\[UnderBracket]c^17 -
1957509751719526400*r\[UnderBracket]Subscript\[UnderBracket]c^18 +
122474863283060736*r\[UnderBracket]Subscript\[UnderBracket]c^19 -
6305558207397888*r\[UnderBracket]Subscript\[UnderBracket]c^20 +
260709273436160*r\[UnderBracket]Subscript\[UnderBracket]c^21 -
8332605652992*r\[UnderBracket]Subscript\[UnderBracket]c^22 +
193292402688*r\[UnderBracket]Subscript\[UnderBracket]c^23 -
2894069760*r\[UnderBracket]Subscript\[UnderBracket]c^24 +
20971520*r\[UnderBracket]Subscript\[UnderBracket]c^25))/
(2097152*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(41/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^(27/2))
\[GothicCapitalE][10] = -1/4194304*
((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^5*
(216728283143345325964405128192 - 1050781874056829372409635466240*
r\[UnderBracket]Subscript\[UnderBracket]c +
2444939162738945652847845839616*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
3635518948114642367394550372352*
r\[UnderBracket]Subscript\[UnderBracket]c^3 +
3881112635735218806704184967552*
r\[UnderBracket]Subscript\[UnderBracket]c^4 -
3168166202084791647028211405952*
r\[UnderBracket]Subscript\[UnderBracket]c^5 +
2056515840644606846540160974048*
r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1089879691681719503880479969728*
r\[UnderBracket]Subscript\[UnderBracket]c^7 +
480445869136659807193402413516*
r\[UnderBracket]Subscript\[UnderBracket]c^8 -
178578716030889168289643209004*
r\[UnderBracket]Subscript\[UnderBracket]c^9 +
56532548422564705023920888287*
r\[UnderBracket]Subscript\[UnderBracket]c^10 -
15356164678946270066196702004*
r\[UnderBracket]Subscript\[UnderBracket]c^11 +
3598634681482780340208693198*
r\[UnderBracket]Subscript\[UnderBracket]c^12 -
730314671613135357284790912*r\[UnderBracket]Subscript\[UnderBracket]c^
13 + 128660763587801783687384112*
r\[UnderBracket]Subscript\[UnderBracket]c^14 -
19699748659561198244062784*r\[UnderBracket]Subscript\[UnderBracket]c^
15 + 2621629122352162636568992*
r\[UnderBracket]Subscript\[UnderBracket]c^16 -
302901358607176055790592*r\[UnderBracket]Subscript\[UnderBracket]c^
17 + 30314109997208825900288*
r\[UnderBracket]Subscript\[UnderBracket]c^18 -
2618058431216608714752*r\[UnderBracket]Subscript\[UnderBracket]c^19 +
194043136591216968704*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
12244033133565968384*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
650189357012549632*r\[UnderBracket]Subscript\[UnderBracket]c^22 -
28571010569076736*r\[UnderBracket]Subscript\[UnderBracket]c^23 +
1013207153508352*r\[UnderBracket]Subscript\[UnderBracket]c^24 -
27900820586496*r\[UnderBracket]Subscript\[UnderBracket]c^25 +
560084287488*r\[UnderBracket]Subscript\[UnderBracket]c^26 -
7289700352*r\[UnderBracket]Subscript\[UnderBracket]c^27 +
46137344*r\[UnderBracket]Subscript\[UnderBracket]c^28))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^23*
r\[UnderBracket]Subscript\[UnderBracket]c^15)
\[ScriptCapitalE]\[ScriptL]Toep = {\[ScriptCapitalE]^2 ->
(-4*e^2 + (-2 + p)^2)/(p*(-3 - e^2 + p)), \[ScriptL]^2 ->
p^2/(-3 - e^2 + p)}
\[ScriptCapitalE]ToJr = {\[ScriptCapitalE] ->
(J\[UnderBracket]Subscript\[UnderBracket]r*
Sqrt[-6 + r\[UnderBracket]Subscript\[UnderBracket]c])/
r\[UnderBracket]Subscript\[UnderBracket]c^2 +
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c)/
Sqrt[(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)*
r\[UnderBracket]Subscript\[UnderBracket]c] -
(3*J\[UnderBracket]Subscript\[UnderBracket]r^2*
Sqrt[(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)*
r\[UnderBracket]Subscript\[UnderBracket]c]*
(-298 + 185*r\[UnderBracket]Subscript\[UnderBracket]c -
34*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
2*r\[UnderBracket]Subscript\[UnderBracket]c^3))/
(4*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
r\[UnderBracket]Subscript\[UnderBracket]c^4) +
(J\[UnderBracket]Subscript\[UnderBracket]r^3*(-2863476 +
4257312*r\[UnderBracket]Subscript\[UnderBracket]c -
2639481*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
884115*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
172800*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
19732*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
1224*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
32*r\[UnderBracket]Subscript\[UnderBracket]c^7))/
(16*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(9/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^5) -
(5*J\[UnderBracket]Subscript\[UnderBracket]r^4*
(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^(3/2)*
(-444327000 + 741495204*r\[UnderBracket]Subscript\[UnderBracket]c -
540189522*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
225670731*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
59608212*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
10325802*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
1173504*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
84480*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
3504*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
64*r\[UnderBracket]Subscript\[UnderBracket]c^9))/
(128*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^7*
r\[UnderBracket]Subscript\[UnderBracket]c^(13/2)) +
(3*J\[UnderBracket]Subscript\[UnderBracket]r^5*
(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
(1816493921616 - 3955861916448*
r\[UnderBracket]Subscript\[UnderBracket]c + 3898445788920*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
2299718882088*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
904602894261*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
249962629656*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
49744592184*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
7181900016*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
746429872*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
54468480*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
2650496*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
77312*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
1024*r\[UnderBracket]Subscript\[UnderBracket]c^12))/
(1024*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(19/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^8) -
(7*J\[UnderBracket]Subscript\[UnderBracket]r^6*
(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^(5/2)*
(-494808967821024 + 1327858638025968*
r\[UnderBracket]Subscript\[UnderBracket]c - 1646439642699408*
r\[UnderBracket]Subscript\[UnderBracket]c^2 +
1251440200589400*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
652152667495830*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
246801316020723*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
70058631689358*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
15186040860198*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
2533345445040*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
325100207520*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
31816477968*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
2331099072*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
123745152*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
4493440*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
99840*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
1024*r\[UnderBracket]Subscript\[UnderBracket]c^15))/
(2048*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^12*
r\[UnderBracket]Subscript\[UnderBracket]c^(19/2)) +
(J\[UnderBracket]Subscript\[UnderBracket]r^7*
(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^3*
(9040056157212600384 - 28816758918121581504*
r\[UnderBracket]Subscript\[UnderBracket]c + 43023291869597097456*
r\[UnderBracket]Subscript\[UnderBracket]c^2 - 39977598116085537888*
r\[UnderBracket]Subscript\[UnderBracket]c^3 + 25908729389989318908*
r\[UnderBracket]Subscript\[UnderBracket]c^4 - 12435551958765856284*
r\[UnderBracket]Subscript\[UnderBracket]c^5 + 4580653136451471729*
r\[UnderBracket]Subscript\[UnderBracket]c^6 - 1323738353715061428*
r\[UnderBracket]Subscript\[UnderBracket]c^7 + 304153817969286684*
r\[UnderBracket]Subscript\[UnderBracket]c^8 - 55959551207773848*
r\[UnderBracket]Subscript\[UnderBracket]c^9 +
8259936082338024*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
975302105075136*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
91384248930240*r\[UnderBracket]Subscript\[UnderBracket]c^12 -
6698556608640*r\[UnderBracket]Subscript\[UnderBracket]c^13 +
375456241152*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
15519495168*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
445317120*r\[UnderBracket]Subscript\[UnderBracket]c^16 -
7913472*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
65536*r\[UnderBracket]Subscript\[UnderBracket]c^18))/
(16384*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(29/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^11) -
(9*J\[UnderBracket]Subscript\[UnderBracket]r^8*
(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^(7/2)*
(-5349871847936709489792 + 19744797330039776994240*
r\[UnderBracket]Subscript\[UnderBracket]c -
34459672448054128831392*r\[UnderBracket]Subscript\[UnderBracket]c^
2 + 37825881277779651230256*
r\[UnderBracket]Subscript\[UnderBracket]c^3 -
29297759929169300852568*r\[UnderBracket]Subscript\[UnderBracket]c^
4 + 17026037661141808551252*
r\[UnderBracket]Subscript\[UnderBracket]c^5 -
7705634305524886701822*r\[UnderBracket]Subscript\[UnderBracket]c^
6 + 2782200300715204345569*
r\[UnderBracket]Subscript\[UnderBracket]c^7 -
814297966811950443912*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
195205968131987962966*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
38564473859389210160*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
6295427971344981064*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
848778456260641184*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
94169664159871952*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
8536524382084096*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
625147823062528*r\[UnderBracket]Subscript\[UnderBracket]c^15 -
36363900237824*r\[UnderBracket]Subscript\[UnderBracket]c^16 +
1638587686912*r\[UnderBracket]Subscript\[UnderBracket]c^17 -
55056275456*r\[UnderBracket]Subscript\[UnderBracket]c^18 +
1296089088*r\[UnderBracket]Subscript\[UnderBracket]c^19 -
19038208*r\[UnderBracket]Subscript\[UnderBracket]c^20 +
131072*r\[UnderBracket]Subscript\[UnderBracket]c^21))/
(262144*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^17*
r\[UnderBracket]Subscript\[UnderBracket]c^(25/2)) -
(J\[UnderBracket]Subscript\[UnderBracket]r^9*
(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^4*
(12240949268306781100672000 - 64340560820389389859896320*
r\[UnderBracket]Subscript\[UnderBracket]c +
156957367081943358891459840*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
238244692824566657728900096*
r\[UnderBracket]Subscript\[UnderBracket]c^3 +
253841729036347294060053632*
r\[UnderBracket]Subscript\[UnderBracket]c^4 -
202721861982517743752472960*
r\[UnderBracket]Subscript\[UnderBracket]c^5 +
126395857078774048842570400*
r\[UnderBracket]Subscript\[UnderBracket]c^6 -
63223702662709119920550400*
r\[UnderBracket]Subscript\[UnderBracket]c^7 +
25856036749494219602809428*
r\[UnderBracket]Subscript\[UnderBracket]c^8 -
8761730079064097613425996*r\[UnderBracket]Subscript\[UnderBracket]c^
9 + 2483354169599759455080369*
r\[UnderBracket]Subscript\[UnderBracket]c^10 -
592439182575739281191340*r\[UnderBracket]Subscript\[UnderBracket]c^
11 + 119408011055913746795046*
r\[UnderBracket]Subscript\[UnderBracket]c^12 -
20363510266714699748672*r\[UnderBracket]Subscript\[UnderBracket]c^
13 + 2936326570135158399736*
r\[UnderBracket]Subscript\[UnderBracket]c^14 -
356958050454566273568*r\[UnderBracket]Subscript\[UnderBracket]c^
15 + 36385838905296867760*
r\[UnderBracket]Subscript\[UnderBracket]c^16 -
3083810005862253312*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
214657433726960640*r\[UnderBracket]Subscript\[UnderBracket]c^18 -
12057677832973824*r\[UnderBracket]Subscript\[UnderBracket]c^19 +
532799702075392*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
17822140364800*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
424019017728*r\[UnderBracket]Subscript\[UnderBracket]c^22 -
6391529472*r\[UnderBracket]Subscript\[UnderBracket]c^23 +
45875200*r\[UnderBracket]Subscript\[UnderBracket]c^24))/
(262144*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(39/2)*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c)*
r\[UnderBracket]Subscript\[UnderBracket]c^14) +
(J\[UnderBracket]Subscript\[UnderBracket]r^10*
(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^(9/2)*
(61131187939699974270930817024 - 366015183753996746097454956544*
r\[UnderBracket]Subscript\[UnderBracket]c +
1048689390572231857894380079104*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
1911651084770562764038097571840*
r\[UnderBracket]Subscript\[UnderBracket]c^3 +
2488698197827079860652954273536*
r\[UnderBracket]Subscript\[UnderBracket]c^4 -
2463506655779917764000580588544*
r\[UnderBracket]Subscript\[UnderBracket]c^5 +
1928128501578314827100717209344*
r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1225220031000954861458321708544*
r\[UnderBracket]Subscript\[UnderBracket]c^7 +
644120253901040792053341805680*
r\[UnderBracket]Subscript\[UnderBracket]c^8 -
284045833901777290925532147392*
r\[UnderBracket]Subscript\[UnderBracket]c^9 +
106152696863320146055725765128*
r\[UnderBracket]Subscript\[UnderBracket]c^10 -
33876224434885697843716464400*
r\[UnderBracket]Subscript\[UnderBracket]c^11 +
9282650472141684251610354345*
r\[UnderBracket]Subscript\[UnderBracket]c^12 -
2192296736851959201226576620*
r\[UnderBracket]Subscript\[UnderBracket]c^13 +
447254128075597742977602720*
r\[UnderBracket]Subscript\[UnderBracket]c^14 -
78886909810382052266410920*
r\[UnderBracket]Subscript\[UnderBracket]c^15 +
12023311744591211668454408*
r\[UnderBracket]Subscript\[UnderBracket]c^16 -
1580414344811086666451232*r\[UnderBracket]Subscript\[UnderBracket]c^
17 + 178540055715527604116288*
r\[UnderBracket]Subscript\[UnderBracket]c^18 -
17244096248637807486784*r\[UnderBracket]Subscript\[UnderBracket]c^
19 + 1413451192594688432448*
r\[UnderBracket]Subscript\[UnderBracket]c^20 -
97336894059637276672*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
5554981346557958144*r\[UnderBracket]Subscript\[UnderBracket]c^22 -
257827775047987200*r\[UnderBracket]Subscript\[UnderBracket]c^23 +
9477441278369792*r\[UnderBracket]Subscript\[UnderBracket]c^24 -
265268127375360*r\[UnderBracket]Subscript\[UnderBracket]c^25 +
5307511537664*r\[UnderBracket]Subscript\[UnderBracket]c^26 -
67568402432*r\[UnderBracket]Subscript\[UnderBracket]c^27 +
411041792*r\[UnderBracket]Subscript\[UnderBracket]c^28))/
(2097152*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^22*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
r\[UnderBracket]Subscript\[UnderBracket]c^(31/2))}
\[CurlyEpsilon][1] = Sqrt[-6 + r\[UnderBracket]Subscript\[UnderBracket]c]/
r\[UnderBracket]Subscript\[UnderBracket]c^2
\[CurlyEpsilon][2] =
(-3*Sqrt[(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)*
r\[UnderBracket]Subscript\[UnderBracket]c]*
(-298 + 185*r\[UnderBracket]Subscript\[UnderBracket]c -
34*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
2*r\[UnderBracket]Subscript\[UnderBracket]c^3))/
(4*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
r\[UnderBracket]Subscript\[UnderBracket]c^4)
\[CurlyEpsilon][3] =
(-2863476 + 4257312*r\[UnderBracket]Subscript\[UnderBracket]c -
2639481*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
884115*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
172800*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
19732*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
1224*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
32*r\[UnderBracket]Subscript\[UnderBracket]c^7)/
(16*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(9/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^5)
\[CurlyEpsilon][4] = (-5*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(3/2)*(-444327000 + 741495204*
r\[UnderBracket]Subscript\[UnderBracket]c -
540189522*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
225670731*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
59608212*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
10325802*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
1173504*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
84480*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
3504*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
64*r\[UnderBracket]Subscript\[UnderBracket]c^9))/
(128*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^7*
r\[UnderBracket]Subscript\[UnderBracket]c^(13/2))
\[CurlyEpsilon][5] = (3*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
(1816493921616 - 3955861916448*
r\[UnderBracket]Subscript\[UnderBracket]c +
3898445788920*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
2299718882088*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
904602894261*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
249962629656*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
49744592184*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
7181900016*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
746429872*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
54468480*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
2650496*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
77312*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
1024*r\[UnderBracket]Subscript\[UnderBracket]c^12))/
(1024*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(19/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^8)
\[CurlyEpsilon][6] = (-7*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(5/2)*(-494808967821024 + 1327858638025968*
r\[UnderBracket]Subscript\[UnderBracket]c - 1646439642699408*
r\[UnderBracket]Subscript\[UnderBracket]c^2 +
1251440200589400*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
652152667495830*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
246801316020723*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
70058631689358*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
15186040860198*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
2533345445040*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
325100207520*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
31816477968*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
2331099072*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
123745152*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
4493440*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
99840*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
1024*r\[UnderBracket]Subscript\[UnderBracket]c^15))/
(2048*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^12*
r\[UnderBracket]Subscript\[UnderBracket]c^(19/2))
\[CurlyEpsilon][7] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^3*
(9040056157212600384 - 28816758918121581504*
r\[UnderBracket]Subscript\[UnderBracket]c + 43023291869597097456*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
39977598116085537888*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
25908729389989318908*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
12435551958765856284*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
4580653136451471729*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1323738353715061428*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
304153817969286684*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
55959551207773848*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
8259936082338024*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
975302105075136*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
91384248930240*r\[UnderBracket]Subscript\[UnderBracket]c^12 -
6698556608640*r\[UnderBracket]Subscript\[UnderBracket]c^13 +
375456241152*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
15519495168*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
445317120*r\[UnderBracket]Subscript\[UnderBracket]c^16 -
7913472*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
65536*r\[UnderBracket]Subscript\[UnderBracket]c^18))/
(16384*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(29/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^11)
\[CurlyEpsilon][8] = (-9*(-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(7/2)*(-5349871847936709489792 + 19744797330039776994240*
r\[UnderBracket]Subscript\[UnderBracket]c - 34459672448054128831392*
r\[UnderBracket]Subscript\[UnderBracket]c^2 + 37825881277779651230256*
r\[UnderBracket]Subscript\[UnderBracket]c^3 - 29297759929169300852568*
r\[UnderBracket]Subscript\[UnderBracket]c^4 + 17026037661141808551252*
r\[UnderBracket]Subscript\[UnderBracket]c^5 - 7705634305524886701822*
r\[UnderBracket]Subscript\[UnderBracket]c^6 + 2782200300715204345569*
r\[UnderBracket]Subscript\[UnderBracket]c^7 - 814297966811950443912*
r\[UnderBracket]Subscript\[UnderBracket]c^8 + 195205968131987962966*
r\[UnderBracket]Subscript\[UnderBracket]c^9 -
38564473859389210160*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
6295427971344981064*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
848778456260641184*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
94169664159871952*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
8536524382084096*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
625147823062528*r\[UnderBracket]Subscript\[UnderBracket]c^15 -
36363900237824*r\[UnderBracket]Subscript\[UnderBracket]c^16 +
1638587686912*r\[UnderBracket]Subscript\[UnderBracket]c^17 -
55056275456*r\[UnderBracket]Subscript\[UnderBracket]c^18 +
1296089088*r\[UnderBracket]Subscript\[UnderBracket]c^19 -
19038208*r\[UnderBracket]Subscript\[UnderBracket]c^20 +
131072*r\[UnderBracket]Subscript\[UnderBracket]c^21))/
(262144*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^17*
r\[UnderBracket]Subscript\[UnderBracket]c^(25/2))
\[CurlyEpsilon][9] = -1/262144*
((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^4*
(12240949268306781100672000 - 64340560820389389859896320*
r\[UnderBracket]Subscript\[UnderBracket]c +
156957367081943358891459840*r\[UnderBracket]Subscript\[UnderBracket]c^
2 - 238244692824566657728900096*
r\[UnderBracket]Subscript\[UnderBracket]c^3 +
253841729036347294060053632*r\[UnderBracket]Subscript\[UnderBracket]c^
4 - 202721861982517743752472960*
r\[UnderBracket]Subscript\[UnderBracket]c^5 +
126395857078774048842570400*r\[UnderBracket]Subscript\[UnderBracket]c^
6 - 63223702662709119920550400*
r\[UnderBracket]Subscript\[UnderBracket]c^7 +
25856036749494219602809428*r\[UnderBracket]Subscript\[UnderBracket]c^
8 - 8761730079064097613425996*
r\[UnderBracket]Subscript\[UnderBracket]c^9 +
2483354169599759455080369*r\[UnderBracket]Subscript\[UnderBracket]c^
10 - 592439182575739281191340*
r\[UnderBracket]Subscript\[UnderBracket]c^11 +
119408011055913746795046*r\[UnderBracket]Subscript\[UnderBracket]c^
12 - 20363510266714699748672*
r\[UnderBracket]Subscript\[UnderBracket]c^13 +
2936326570135158399736*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
356958050454566273568*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
36385838905296867760*r\[UnderBracket]Subscript\[UnderBracket]c^16 -
3083810005862253312*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
214657433726960640*r\[UnderBracket]Subscript\[UnderBracket]c^18 -
12057677832973824*r\[UnderBracket]Subscript\[UnderBracket]c^19 +
532799702075392*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
17822140364800*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
424019017728*r\[UnderBracket]Subscript\[UnderBracket]c^22 -
6391529472*r\[UnderBracket]Subscript\[UnderBracket]c^23 +
45875200*r\[UnderBracket]Subscript\[UnderBracket]c^24))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(39/2)*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c)*
r\[UnderBracket]Subscript\[UnderBracket]c^14)
\[CurlyEpsilon][10] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^(9/2)*
(61131187939699974270930817024 - 366015183753996746097454956544*
r\[UnderBracket]Subscript\[UnderBracket]c +
1048689390572231857894380079104*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
1911651084770562764038097571840*
r\[UnderBracket]Subscript\[UnderBracket]c^3 +
2488698197827079860652954273536*
r\[UnderBracket]Subscript\[UnderBracket]c^4 -
2463506655779917764000580588544*
r\[UnderBracket]Subscript\[UnderBracket]c^5 +
1928128501578314827100717209344*
r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1225220031000954861458321708544*
r\[UnderBracket]Subscript\[UnderBracket]c^7 +
644120253901040792053341805680*
r\[UnderBracket]Subscript\[UnderBracket]c^8 -
284045833901777290925532147392*
r\[UnderBracket]Subscript\[UnderBracket]c^9 +
106152696863320146055725765128*
r\[UnderBracket]Subscript\[UnderBracket]c^10 -
33876224434885697843716464400*
r\[UnderBracket]Subscript\[UnderBracket]c^11 +
9282650472141684251610354345*r\[UnderBracket]Subscript\[UnderBracket]c^
12 - 2192296736851959201226576620*
r\[UnderBracket]Subscript\[UnderBracket]c^13 +
447254128075597742977602720*r\[UnderBracket]Subscript\[UnderBracket]c^
14 - 78886909810382052266410920*
r\[UnderBracket]Subscript\[UnderBracket]c^15 +
12023311744591211668454408*r\[UnderBracket]Subscript\[UnderBracket]c^
16 - 1580414344811086666451232*
r\[UnderBracket]Subscript\[UnderBracket]c^17 +
178540055715527604116288*r\[UnderBracket]Subscript\[UnderBracket]c^
18 - 17244096248637807486784*
r\[UnderBracket]Subscript\[UnderBracket]c^19 +
1413451192594688432448*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
97336894059637276672*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
5554981346557958144*r\[UnderBracket]Subscript\[UnderBracket]c^22 -
257827775047987200*r\[UnderBracket]Subscript\[UnderBracket]c^23 +
9477441278369792*r\[UnderBracket]Subscript\[UnderBracket]c^24 -
265268127375360*r\[UnderBracket]Subscript\[UnderBracket]c^25 +
5307511537664*r\[UnderBracket]Subscript\[UnderBracket]c^26 -
67568402432*r\[UnderBracket]Subscript\[UnderBracket]c^27 +
411041792*r\[UnderBracket]Subscript\[UnderBracket]c^28))/
(2097152*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^22*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
r\[UnderBracket]Subscript\[UnderBracket]c^(31/2))
\[GothicCapitalE][1] =
(2*Sqrt[-3 + r\[UnderBracket]Subscript\[UnderBracket]c]*
(-2 + r\[UnderBracket]Subscript\[UnderBracket]c))/
(Sqrt[-6 + r\[UnderBracket]Subscript\[UnderBracket]c]*
r\[UnderBracket]Subscript\[UnderBracket]c^(3/2))
\[GothicCapitalE][2] = -1/2*((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)*
(1676 - 1612*r\[UnderBracket]Subscript\[UnderBracket]c +
595*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
100*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
6*r\[UnderBracket]Subscript\[UnderBracket]c^4))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^3*
r\[UnderBracket]Subscript\[UnderBracket]c^3)
\[GothicCapitalE][3] = (Sqrt[-3 + r\[UnderBracket]Subscript\[UnderBracket]c]*
(4924968 - 8698100*r\[UnderBracket]Subscript\[UnderBracket]c +
6685810*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
2941503*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
817127*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
147772*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
16980*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
1120*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
32*r\[UnderBracket]Subscript\[UnderBracket]c^8))/
(8*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(11/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^(9/2))
\[GothicCapitalE][4] =
-1/64*((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^2*
(3532654320 - 6749253600*r\[UnderBracket]Subscript\[UnderBracket]c +
5772844200*r\[UnderBracket]Subscript\[UnderBracket]c^2 -
2924355368*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
977180151*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
226649668*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
37228450*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
4294272*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
331808*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
15360*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
320*r\[UnderBracket]Subscript\[UnderBracket]c^10))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^8*
r\[UnderBracket]Subscript\[UnderBracket]c^6)
\[GothicCapitalE][5] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(5/2)*(-8105535791584 + 19399236283568*
r\[UnderBracket]Subscript\[UnderBracket]c -
21293827677872*r\[UnderBracket]Subscript\[UnderBracket]c^2 +
14221423794904*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
6462737204118*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
2116474582479*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
515820348192*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
95169857128*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
13361966944*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
1416069008*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
110243840*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
5953280*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
198656*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
3072*r\[UnderBracket]Subscript\[UnderBracket]c^13))/
(512*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(21/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^(15/2))
\[GothicCapitalE][6] = -1/1024*
((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^3*
(4871794064075584 - 14030321634325952*
r\[UnderBracket]Subscript\[UnderBracket]c + 18821352134591280*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
15625864141668064*r\[UnderBracket]Subscript\[UnderBracket]c^3 +
8995746198969516*r\[UnderBracket]Subscript\[UnderBracket]c^4 -
3812687501765180*r\[UnderBracket]Subscript\[UnderBracket]c^5 +
1232580604275021*r\[UnderBracket]Subscript\[UnderBracket]c^6 -
310672940273852*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
61862754548978*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
9796652706560*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
1234469431696*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
122942475392*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
9512116096*r\[UnderBracket]Subscript\[UnderBracket]c^12 -
552972288*r\[UnderBracket]Subscript\[UnderBracket]c^13 +
22729728*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
587776*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
7168*r\[UnderBracket]Subscript\[UnderBracket]c^16))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^13*
r\[UnderBracket]Subscript\[UnderBracket]c^9)
\[GothicCapitalE][7] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(7/2)*(-12134663084495414400 + 40885496226815782848*
r\[UnderBracket]Subscript\[UnderBracket]c - 64866606259143398304*
r\[UnderBracket]Subscript\[UnderBracket]c^2 +
64444940222434132144*r\[UnderBracket]Subscript\[UnderBracket]c^3 -
44972426527950660568*r\[UnderBracket]Subscript\[UnderBracket]c^4 +
23435806376748968884*r\[UnderBracket]Subscript\[UnderBracket]c^5 -
9464318449512309054*r\[UnderBracket]Subscript\[UnderBracket]c^6 +
3033653428945332665*r\[UnderBracket]Subscript\[UnderBracket]c^7 -
784099263484559072*r\[UnderBracket]Subscript\[UnderBracket]c^8 +
165100330921308820*r\[UnderBracket]Subscript\[UnderBracket]c^9 -
28491104680244112*r\[UnderBracket]Subscript\[UnderBracket]c^10 +
4039260792672296*r\[UnderBracket]Subscript\[UnderBracket]c^11 -
469890441888512*r\[UnderBracket]Subscript\[UnderBracket]c^12 +
44602000386880*r\[UnderBracket]Subscript\[UnderBracket]c^13 -
3413929999360*r\[UnderBracket]Subscript\[UnderBracket]c^14 +
206304789504*r\[UnderBracket]Subscript\[UnderBracket]c^15 -
9493938176*r\[UnderBracket]Subscript\[UnderBracket]c^16 +
312664064*r\[UnderBracket]Subscript\[UnderBracket]c^17 -
6553600*r\[UnderBracket]Subscript\[UnderBracket]c^18 +
65536*r\[UnderBracket]Subscript\[UnderBracket]c^19))/
(8192*(-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^(31/2)*
r\[UnderBracket]Subscript\[UnderBracket]c^(21/2))
\[GothicCapitalE][8] = -1/131072*
((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^4*
(62141908647333827821824 - 239920537479374202651648*
r\[UnderBracket]Subscript\[UnderBracket]c + 439676291766077668553472*
r\[UnderBracket]Subscript\[UnderBracket]c^2 -
508921634948453073874944*r\[UnderBracket]Subscript\[UnderBracket]c^
3 + 417644574194988595114464*
r\[UnderBracket]Subscript\[UnderBracket]c^4 -
258555621293693182179072*r\[UnderBracket]Subscript\[UnderBracket]c^
5 + 125436361142403980975568*
r\[UnderBracket]Subscript\[UnderBracket]c^6 -
48900635969882994175168*r\[UnderBracket]Subscript\[UnderBracket]c^7 +
15584429012654206148425*r\[UnderBracket]Subscript\[UnderBracket]c^8 -
4108870169062640270236*r\[UnderBracket]Subscript\[UnderBracket]c^9 +
903497597600108320294*r\[UnderBracket]Subscript\[UnderBracket]c^10 -
166550099552014784800*r\[UnderBracket]Subscript\[UnderBracket]c^11 +
25807623022825890056*r\[UnderBracket]Subscript\[UnderBracket]c^12 -
3362976794220453216*r\[UnderBracket]Subscript\[UnderBracket]c^13 +
367817178214766928*r\[UnderBracket]Subscript\[UnderBracket]c^14 -
33604235832754176*r\[UnderBracket]Subscript\[UnderBracket]c^15 +
2542404770263040*r\[UnderBracket]Subscript\[UnderBracket]c^16 -
157012472692736*r\[UnderBracket]Subscript\[UnderBracket]c^17 +
7733723734016*r\[UnderBracket]Subscript\[UnderBracket]c^18 -
292654940160*r\[UnderBracket]Subscript\[UnderBracket]c^19 +
7990542336*r\[UnderBracket]Subscript\[UnderBracket]c^20 -
139984896*r\[UnderBracket]Subscript\[UnderBracket]c^21 +
1179648*r\[UnderBracket]Subscript\[UnderBracket]c^22))/
((-6 + r\[UnderBracket]Subscript\[UnderBracket]c)^18*
r\[UnderBracket]Subscript\[UnderBracket]c^12)
\[GothicCapitalE][9] = ((-3 + r\[UnderBracket]Subscript\[UnderBracket]c)^
(9/2)*(-325316655617099224750568960 + 1416428159137152819310785280*
r\[UnderBracket]Subscript\[UnderBracket]c -
2945313955958856383833843200*r\[UnderBracket]Subscript\[UnderBracket]c^
2 + 3893767391913738720455608064*
r\[UnderBracket]Subscript\[UnderBracket]c^3 -
3675427333491969278050838848*r\[UnderBracket]Subscript\[UnderBracket]c^