forked from ccluri/metabolic_spiking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig1b.py
170 lines (152 loc) · 6.32 KB
/
fig1b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
from utils import Recorder, Q_nak
from mitochondria import Mito
from steady_state import get_steady_state
from gates import ros_inf, get_ros
import figure_properties as fp
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
def spike_quanta(baseline_atp, q):
'''Perturbation due to a spike'''
dt = 0.01
time = 500
factor = 0.1e-4
tt = np.arange(0, time, dt)
m = Mito(baseline_atp=baseline_atp)
m.steadystate_vals(time=2000) # state 4 - wait till we reach here
Q_val = Q_nak(tt, q)
spike_val = np.zeros_like(tt)
t_start = 150
spike_val[int(t_start/dt):] += Q_val[:len(spike_val[int(t_start/dt):])]
rec_vars_list = ['atp', 'psi', 'k_ant']
m_record = Recorder(m, rec_vars_list, time, dt)
for ii, tt in enumerate(np.arange(0, time, dt)):
try:
m.update_vals(dt, atp_cost=spike_val[ii],
leak_cost=spike_val[ii]*factor)
except IndexError:
m.update_vals(dt, leak_cost=0, atp_cost=0)
m_record.update(ii)
return m_record
def metabolic_spikes(ax):
atp, psi, nad, pyr, vant, vatp, vresp = get_steady_state()
bls = np.geomspace(1, 1000, 100)
ros_vals = np.zeros_like(bls)
for ii, bl in enumerate(bls):
ros_vals[ii] = ros_inf(atp(bl), psi(bl))
ax.semilogx(bls, ros_vals, label='0 Hz', lw=1, c='k')
ln_cols = [fp.def_colors['ln1'],
fp.def_colors['ln2'],
fp.def_colors['ln3']]
for jj, freq in enumerate([5, 10, 20]):
b_test, vals = run_sim(freq, spike_quanta=30)
ax.semilogx(b_test, vals, label=str(int(freq))+' Hz', marker='o',
c=ln_cols[jj],
lw=0.5, markersize=2)
ax.set_xscale('log')
ax.set_ylim(0., 1.)
ax.set_xlabel('Non-spiking costs (%s)' % kANT_units)
ax.set_ylabel(r'ROS level (a.u.)')
ax.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1])
ax.legend(frameon=False, handlelength=1,
bbox_to_anchor=(0.2, .7, .6, .2),
loc='lower center', ncol=2)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return ax
def run_sim(test_freq, spike_quanta, psi_fac=0.1e-4, ros=get_ros(), tau_Q=100):
fname_list = [test_freq, spike_quanta, psi_fac, ros.name, tau_Q]
filename = '_'.join([str(yy) for yy in fname_list])
filename += '.npz'
try:
kk = np.load('./spike_compensation/'+filename)
bls, ros_metb_spikes = kk['bls'], kk['ros_metb_spikes']
except FileNotFoundError:
print('No prev compute found, running sim now')
bls = np.geomspace(1, 1000, 20)
ros_metb_spikes = np.zeros_like(bls)
for ij, mito_baseline in enumerate(bls):
print('Baseline : ', mito_baseline, 'Quanta :', spike_quanta)
print('Psi factor: ', psi_fac)
dt = 0.01
time = 5000
t = np.arange(0, time, dt)
qdur = 1000
qtime = np.arange(0, qdur, dt)
this_q = Q_nak(qtime, fact=spike_quanta, tau_Q=tau_Q)
qlen = len(this_q)
mi = Mito(baseline_atp=mito_baseline)
mi.steadystate_vals(time=1000)
ros.init_val(mi.atp, mi.psi)
spike_expns = np.zeros_like(t)
test_isi = 1000 / test_freq
test_isi_indx = int(test_isi / dt)
num_spikes = int(time / test_isi)
for sp in range(1, num_spikes+1):
sp_idx = test_isi_indx*sp
try:
spike_expns[sp_idx:sp_idx+qlen] += this_q
except ValueError:
spike_expns[sp_idx:] += this_q[:len(spike_expns[sp_idx:])]
ros_vals = np.zeros_like(t)
for i in range(len(t)):
mi.update_vals(dt,
atp_cost=spike_expns[i],
leak_cost=spike_expns[i]*psi_fac)
ros.update_vals(dt, mi.atp, mi.psi,
spike_expns[i]+mito_baseline)
ros_vals[i] = ros.get_val()
ros_metb_spikes[ij] = np.mean(ros_vals)
np.savez('./spike_compensation/'+filename,
bls=bls, ros_metb_spikes=ros_metb_spikes)
return bls, ros_metb_spikes
def figure_steady_state_simpler(ax1):
atp, psi, nad, pyr, vant, vatp, vresp = get_steady_state()
bls = np.geomspace(1, 1000, 100)
ax1.plot(bls, atp(bls), label=r'$ATP_M$', lw=1.5,
color=fp.def_colors['atp'])
ax1.plot(bls, psi(bls), label=r'$\Delta\psi$', lw=1.5,
color=fp.def_colors['psi'])
ax1.plot(bls, nad(bls), label='NAD+', lw=1.5,
color=fp.def_colors['nad'])
ax1.plot(bls, pyr(bls), label=r'Pyruvate', lw=1.5,
color=fp.def_colors['pyr'])
ax1.set_ylabel('(a.u.)')
# ax1.set_title('Substrate conc. at steady state')
ax1.set_ylim(0, 2)
ax1.set_xscale('log')
ax1.set_xlabel(r'$ATP_C \rightarrow ADP_C$ (%s)' % kANT_units+'\n\n')
ax1.legend(frameon=False, handlelength=0.7,
bbox_to_anchor=(0., .7, .5, .2),
loc='lower left',
ncol=2)
# ax1.legend(loc=8, frameon=False, ncol=3, bbox_to_anchor=(.55, 0.01))
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.set_yticks([0, 0.5, 1, 1.5, 2])
ax1.plot(30, 0, marker='*', clip_on=False, color='k',
markersize=7.5, markeredgecolor='none')
ax1.plot(150, 0, marker='*', clip_on=False, color='gold', markersize=7,
markeredgecolor='k', markeredgewidth=0.5, zorder=10)
return ax1
kANT_units = '10$^{-3}$/s'
# half a column size is
figsize = fp.cm_to_inches([8.9, 5])
fig = plt.figure(figsize=figsize)
fig.set_constrained_layout_pads(w_pad=0, h_pad=0)
gs = gridspec.GridSpec(1, 2, figure=fig,
wspace=0.5,
width_ratios=[1, 1])
ax_steadys = fig.add_subplot(gs[0, 0])
ax_steadys = figure_steady_state_simpler(ax_steadys)
ax_steadys = fp.add_logticks(ax_steadys)
ax_compensate = fig.add_subplot(gs[0, 1])
ax_compensate = metabolic_spikes(ax_compensate)
ax_compensate.spines['top'].set_visible(False)
ax_compensate.spines['right'].set_visible(False)
ax_compensate = fp.add_logticks(ax_compensate)
fp.align_axis_labels([ax_steadys, ax_compensate],
axis='x', value=-0.14)
gs.tight_layout(fig)
plt.savefig('Figure1b.png', dpi=300)
# plt.show()