forked from ccluri/metabolic_spiking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fig1a.py
313 lines (280 loc) · 11.4 KB
/
fig1a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
from utils import Recorder, Q_nak
from mitochondria import Mito
from steady_state import get_steady_state
from lifcell import LIFCell
from gates import ros_inf, get_ros
import figure_properties as fp
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.collections import LineCollection
import matplotlib.patches as mpatches
from matplotlib import cm
def single_spike(ax0):
'''Dummy spike'''
params = {'deltaga': 0, 'refrc': 10,
'Q': 1, 'init_atp': 1, 'g_nap': 1.25}
c = LIFCell('test', **params)
dt = 0.01
time = 500
t = np.arange(0, time, dt)
i_inj = np.zeros_like(t)
t_start = 150
t_end = 155
i_inj[int(t_start/dt):int(t_end/dt)] = 150
r = Recorder(c, ['v'], time, dt)
for i in range(len(t)):
c.i_inj = i_inj[i]
c.update_vals(dt)
r.update(i)
ax0.plot(t, r.out['v'], c='k', lw=0.5)
ax0.set_ylabel('Memb. Pot. (mV)')
# ax0.text(0, 0, '(mV)', va='center', ha='left')
ax0.set_xlim(-25, 500)
return ax0
def spike_quanta(baseline_atp, q):
'''Perturbation due to a spike'''
dt = 0.01
time = 500
factor = 0.1e-4
tt = np.arange(0, time, dt)
m = Mito(baseline_atp=baseline_atp)
m.steadystate_vals(time=2000) # state 4 - wait till we reach here
Q_val = Q_nak(tt, q)
spike_val = np.zeros_like(tt)
t_start = 150
spike_val[int(t_start/dt):] += Q_val[:len(spike_val[int(t_start/dt):])]
rec_vars_list = ['atp', 'psi', 'k_ant']
m_record = Recorder(m, rec_vars_list, time, dt)
for ii, tt in enumerate(np.arange(0, time, dt)):
try:
m.update_vals(dt, atp_cost=spike_val[ii],
leak_cost=spike_val[ii]*factor)
except IndexError:
m.update_vals(dt, leak_cost=0, atp_cost=0)
m_record.update(ii)
return m_record
def quantum(ax1):
'''Illustrating baseline plus Q atp->adp'''
dt = 0.01
tt = np.arange(0, 500, dt)
Qval = np.zeros_like(tt)
vals = Q_nak(tt, 30)
Qval[int(150/dt):] += vals[:len(Qval[int(150/dt):])]
points = np.array([tt, Qval]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
norm = plt.Normalize(0, 500)
lc = LineCollection(segments, cmap='viridis_r', norm=norm)
# Set the values used for colormapping
lc.set_array(tt)
lc.set_linewidth(1)
ax1.add_collection(lc)
ax1.set_xlabel('Time (ms)')
ax1.set_ylim(-10, 40)
ax1.set_ylabel(r'$ATP_C \rightarrow ADP_C$' +
'\n(%s)' % kANT_units)
ax1.set_yticks([])
labels = [item.get_text() for item in ax1.get_yticklabels()]
empty_string_labels = [' ']*len(labels)
ax1.set_yticklabels(empty_string_labels)
ax1.plot(-25, 0, marker='*', c='k', clip_on=False, markersize=7.5,
markeredgecolor='none')
ax1.text(s='+Q', x=85, y=27.5, fontsize=7)
ax1.set_xlim(-25, 500)
def excursion(ax2):
baselines = [30, 150]
star_colors = ['black', 'gold']
dt = 0.01
tt = np.arange(0, 500, dt)
lns = []
for cc, baseline_atp in zip(star_colors, baselines):
m_state1 = spike_quanta(baseline_atp=baseline_atp, q=50)
lns.append(ax2.plot(m_state1.out['atp'], m_state1.out['psi'],
lw=1, c='white', alpha=0))
points = np.array([m_state1.out['atp'],
m_state1.out['psi']]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
norm = plt.Normalize(0, 500)
lc = LineCollection(segments, cmap='viridis_r', norm=norm)
# Set the values used for colormapping
lc.set_array(tt)
lc.set_linewidth(1)
ax2.add_collection(lc)
if cc == 'gold':
ax2.plot(m_state1.out['atp'][0], m_state1.out['psi'][0],
marker='*', c=cc, clip_on=False, markersize=7,
markeredgecolor='k', markeredgewidth=0.5)
else:
ax2.plot(m_state1.out['atp'][0], m_state1.out['psi'][0],
marker='*', c=cc, clip_on=False, markersize=7.5,
markeredgecolor='none')
fp.add_arrow(lns[0][0], position=0.85, color='k', size=6.5)
fp.add_arrow(lns[0][0], position=0.74, color='k', size=6.5)
ax2.set_aspect('equal')
ax2.set_xlim(0, 1.)
ax2.set_ylim(0, 1.)
ax2.set_xticks([0, 0.5, 1])
ax2.set_yticks([0, 0.5, 1])
ax2.set_xlabel('$ATP_M$')
ax2.set_ylabel(r'$\Delta\psi$')
return ax2
def ros_ss(ax):
atp, psi, nad, pyr, vant, vatp, vresp = get_steady_state()
bls = np.geomspace(1, 1000, 100)
ros_vals = np.zeros_like(bls)
for ii, bl in enumerate(bls):
ros_vals[ii] = ros_inf(atp(bl), psi(bl))
ax.semilogx(bls, ros_vals, label=r'$ROS_{SS}$', lw=1, c='k')
ax.plot(30, 0, marker='*', clip_on=False, color='k', markersize=7.5,
markeredgecolor='none')
ax.plot(150, 0, marker='*', clip_on=False, color='gold', markersize=7,
markeredgecolor='k', markeredgewidth=0.5, zorder=10)
ax.set_ylim(0., 1.)
ax.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1])
ax.set_xlabel(r'Non-spiking costs (%s)' % kANT_units)
ax.set_ylabel(r'ROS level (a.u.)')
return ax
def plot_bl_curve(ax):
atp, psi, nad, pyr, vant, vatp, vresp = get_steady_state()
bls = np.geomspace(1, 1000, 100)
ax.plot(atp(bls), psi(bls), ls='-', lw=0.2, c='k')
ax.plot(atp(150), psi(150), marker='*', markersize=7, c='gold',
markeredgecolor='k', markeredgewidth=0.25)
ax.plot(atp(30), psi(30), marker='*', markersize=7.5, c='k',
markeredgecolor='none')
return ax
def ros_land(ax, cax=None):
atp, psi, nad, pyr, vant, vatp, vresp = get_steady_state()
ATP = np.arange(0, 1.05, 0.05)
PSI = np.arange(0, 1.05, 0.05)
ATP, PSI = np.meshgrid(ATP, PSI)
ROS = (ATP*PSI) + ((1-ATP)*(1-PSI))
surf = ax.contourf(ATP, PSI, ROS**3, 100, cmap=cm.Reds)
# past ret color = #009933
bstyle = mpatches.BoxStyle("Round", pad=0.0,
rounding_size=0.)
retbox = mpatches.FancyBboxPatch((0.55, 0.55), 0.45, 0.45, fill=False,
boxstyle=bstyle,
alpha=0.5, zorder=10, facecolor='None',
edgecolor='#4dac26', linewidth=2)
fetbox = mpatches.FancyBboxPatch((0.0, 0.0), 0.45, 0.45, fill=False,
boxstyle=bstyle,
alpha=0.5, zorder=10, facecolor='None',
edgecolor='#d01c8b', linewidth=2)
# ax.text(0.5, 0.15, 'FETROS', rotation=90,
# fontsize=7, color='#d01c8b').set_clip_on(False)
# ax.text(0.45, 0.65, 'RETROS', rotation=90,
# fontsize=7, color='#4dac26').set_clip_on(False)
ax.text(0.15, 0.47, 'FETROS',
fontsize=7, color='#d01c8b').set_clip_on(False)
ax.text(0.7, 1.02, 'RETROS',
fontsize=7, color='#4dac26').set_clip_on(False)
# ax.text(0.07, -.1, 'FETROS', rotation=90,
# fontsize=7, color='#d01c8b').set_clip_on(False)
# ax.text(0.65, 0.45, 'RETROS', rotation=90,
# fontsize=7, color='#4dac26').set_clip_on(False)
retbox.set_clip_on(False)
fetbox.set_clip_on(False)
ax.add_patch(retbox)
ax.add_patch(fetbox)
ax.set_aspect('equal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_xticks([0, 0.5, 1])
ax.set_yticks([0, 0.5, 1])
ax.set_xlabel(r'$ATP_M$')
ax.set_ylabel(r'$\Delta\psi$')
return ax, surf
def run_sim(test_freq, spike_quanta, psi_fac=0.1e-4, ros=get_ros(), tau_Q=100):
fname_list = [test_freq, spike_quanta, psi_fac, ros.name, tau_Q]
filename = '_'.join([str(yy) for yy in fname_list])
filename += '.npz'
try:
kk = np.load('./spike_compensation/'+filename)
bls, ros_metb_spikes = kk['bls'], kk['ros_metb_spikes']
except FileNotFoundError:
print('No prev compute found, running sim now')
bls = np.geomspace(1, 1000, 20)
ros_metb_spikes = np.zeros_like(bls)
for ij, mito_baseline in enumerate(bls):
print('Baseline : ', mito_baseline, 'Quanta :', spike_quanta)
print('Psi factor: ', psi_fac)
dt = 0.01
time = 5000
t = np.arange(0, time, dt)
qdur = 1000
qtime = np.arange(0, qdur, dt)
this_q = Q_nak(qtime, fact=spike_quanta, tau_Q=tau_Q)
qlen = len(this_q)
mi = Mito(baseline_atp=mito_baseline)
mi.steadystate_vals(time=1000)
ros.init_val(mi.atp, mi.psi)
spike_expns = np.zeros_like(t)
test_isi = 1000 / test_freq
test_isi_indx = int(test_isi / dt)
num_spikes = int(time / test_isi)
for sp in range(1, num_spikes+1):
sp_idx = test_isi_indx*sp
try:
spike_expns[sp_idx:sp_idx+qlen] += this_q
except ValueError:
spike_expns[sp_idx:] += this_q[:len(spike_expns[sp_idx:])]
ros_vals = np.zeros_like(t)
for i in range(len(t)):
mi.update_vals(dt,
atp_cost=spike_expns[i],
leak_cost=spike_expns[i]*psi_fac)
ros.update_vals(dt, mi.atp, mi.psi,
spike_expns[i]+mito_baseline)
ros_vals[i] = ros.get_val()
ros_metb_spikes[ij] = np.mean(ros_vals)
np.savez('./spike_compensation/'+filename,
bls=bls, ros_metb_spikes=ros_metb_spikes)
return bls, ros_metb_spikes
kANT_units = '10$^{-3}$/s'
# half a column size is
figsize = fp.cm_to_inches([13, 10])
fig = plt.figure(figsize=figsize)
fig.set_constrained_layout_pads(w_pad=0, h_pad=0)
gs = gridspec.GridSpec(2, 2, figure=fig,
hspace=4, wspace=1,
height_ratios=[1., 2.2],
width_ratios=[2.5, 1])
gs00 = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=gs[1, :],
width_ratios=[2, 1.2], wspace=0.2)
gs22 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs00[1],
hspace=0.1)
ax_rosland = fig.add_subplot(gs00[0])
ax_rosland, surf = ros_land(ax_rosland, None)
ax_rosland = plot_bl_curve(ax_rosland)
ax_rosss = fig.add_subplot(gs[0, 1])
ax_rosss = ros_ss(ax_rosss)
ax_rosss.spines['top'].set_visible(False)
ax_rosss.spines['right'].set_visible(False)
ax_rosss = fp.add_logticks(ax_rosss)
ax_spikecost = fig.add_subplot(gs22[1, 0])
ax_fakespike = fig.add_subplot(gs22[0, 0], sharex=ax_spikecost)
single_spike(ax_fakespike)
quantum(ax_spikecost)
excursion(ax_rosland)
ax_fakespike.spines['top'].set_visible(False)
ax_fakespike.spines['right'].set_visible(False)
ax_fakespike.spines['bottom'].set_visible(False)
ax_fakespike.get_xaxis().set_visible(False)
ax_spikecost.spines['top'].set_visible(False)
ax_spikecost.spines['right'].set_visible(False)
fp.align_axis_labels([ax_fakespike],
axis='y', value=-0.15)
fp.align_axis_labels([ax_spikecost], axis='y', value=-0.06)
fp.align_axis_labels([ax_rosland],
axis='x', value=-0.08)
fp.align_axis_labels([ax_spikecost],
axis='x', value=-0.20)
gs.tight_layout(fig)
rect = 0.52, 0.075, 0.01, 0.515
cbaxes = fig.add_axes(rect)
cb = plt.colorbar(surf, cax=cbaxes,
orientation='vertical', ticks=[0, 1])
cb.set_label('ROS level (a.u.)', labelpad=-3)
plt.savefig('Figure1a.png', dpi=300)
# plt.show()