forked from Plachtaa/VITS-fast-fine-tuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVC_inference.py
146 lines (134 loc) · 6.59 KB
/
VC_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import numpy as np
import torch
from torch import no_grad, LongTensor
import argparse
import commons
from mel_processing import spectrogram_torch
import utils
from models import SynthesizerTrn
import gradio as gr
import librosa
import webbrowser
from text import text_to_sequence, _clean_text
device = "cuda:0" if torch.cuda.is_available() else "cpu"
import logging
logging.getLogger("PIL").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("asyncio").setLevel(logging.WARNING)
language_marks = {
"Japanese": "",
"日本語": "[JA]",
"简体中文": "[ZH]",
"English": "[EN]",
"Mix": "",
}
lang = ['日本語', '简体中文', 'English', 'Mix']
def get_text(text, hps, is_symbol):
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def create_tts_fn(model, hps, speaker_ids):
def tts_fn(text, speaker, language, speed):
if language is not None:
text = language_marks[language] + text + language_marks[language]
speaker_id = speaker_ids[speaker]
stn_tst = get_text(text, hps, False)
with no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
sid = LongTensor([speaker_id]).to(device)
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
del stn_tst, x_tst, x_tst_lengths, sid
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
def create_vc_fn(model, hps, speaker_ids):
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
input_audio = record_audio if record_audio is not None else upload_audio
if input_audio is None:
return "You need to record or upload an audio", None
sampling_rate, audio = input_audio
original_speaker_id = speaker_ids[original_speaker]
target_speaker_id = speaker_ids[target_speaker]
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != hps.data.sampling_rate:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
with no_grad():
y = torch.FloatTensor(audio)
y = y / max(-y.min(), y.max()) / 0.99
y = y.to(device)
y = y.unsqueeze(0)
spec = spectrogram_torch(y, hps.data.filter_length,
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
center=False).to(device)
spec_lengths = LongTensor([spec.size(-1)]).to(device)
sid_src = LongTensor([original_speaker_id]).to(device)
sid_tgt = LongTensor([target_speaker_id]).to(device)
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
0, 0].data.cpu().float().numpy()
del y, spec, spec_lengths, sid_src, sid_tgt
return "Success", (hps.data.sampling_rate, audio)
return vc_fn
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", default="./G_latest.pth", help="directory to your fine-tuned model")
parser.add_argument("--config_dir", default="./finetune_speaker.json", help="directory to your model config file")
parser.add_argument("--share", default=False, help="make link public (used in colab)")
args = parser.parse_args()
hps = utils.get_hparams_from_file(args.config_dir)
net_g = SynthesizerTrn(
len(hps.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(args.model_dir, net_g, None)
speaker_ids = hps.speakers
speakers = list(hps.speakers.keys())
tts_fn = create_tts_fn(net_g, hps, speaker_ids)
vc_fn = create_vc_fn(net_g, hps, speaker_ids)
app = gr.Blocks()
with app:
with gr.Tab("Text-to-Speech"):
with gr.Row():
with gr.Column():
textbox = gr.TextArea(label="Text",
placeholder="Type your sentence here",
value="こんにちわ。", elem_id=f"tts-input")
# select character
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
label='速度 Speed')
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
btn = gr.Button("Generate!")
btn.click(tts_fn,
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,],
outputs=[text_output, audio_output])
with gr.Tab("Voice Conversion"):
gr.Markdown("""
录制或上传声音,并选择要转换的音色。
""")
with gr.Column():
record_audio = gr.Audio(label="record your voice", source="microphone")
upload_audio = gr.Audio(label="or upload audio here", source="upload")
source_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="source speaker")
target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker")
with gr.Column():
message_box = gr.Textbox(label="Message")
converted_audio = gr.Audio(label='converted audio')
btn = gr.Button("Convert!")
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
outputs=[message_box, converted_audio])
webbrowser.open("http://127.0.0.1:7860")
app.launch(share=args.share)