-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_pretrain.py
455 lines (392 loc) · 18.3 KB
/
train_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""
Copyright (c) VisualJoyce.
Licensed under the MIT license.
"""
import argparse
import glob
import os
import re
import shutil
from collections import Counter
from itertools import chain
from os.path import exists, join
from time import time
import numpy as np
import torch
from horovod import torch as hvd
# from apex import amp
from sklearn.metrics.pairwise import cosine_similarity
from torch.cuda.amp import autocast, GradScaler
from torch.nn import functional as F
from torch.nn.utils import clip_grad_norm_
from tqdm import tqdm
from chengyubert.data import create_dataloaders, intermediate_dir
from chengyubert.data.dataset import DATA_REGISTRY
from chengyubert.data.evaluation import judge
from chengyubert.models import build_model
from chengyubert.optim import get_lr_sched
from chengyubert.optim.misc import build_optimizer
from chengyubert.utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
broadcast_tensors)
from chengyubert.utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
from chengyubert.utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed
from chengyubert.utils.save import ModelSaver, save_training_meta
def train(model, dataloaders, opts):
# make sure every process has same model parameters in the beginning
broadcast_tensors([p.data for p in model.parameters()], 0)
set_dropout(model, opts.dropout)
# Prepare optimizer
optimizer = build_optimizer(model, opts)
scaler = GradScaler()
global_step = 0
if opts.rank == 0:
save_training_meta(opts)
TB_LOGGER.create(join(opts.output_dir, 'log'))
pbar = tqdm(total=opts.num_train_steps, desc=opts.model)
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
os.makedirs(join(opts.output_dir, 'results'), exist_ok=True) # store val predictions
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
else:
LOGGER.disabled = True
pbar = NoOp()
model_saver = NoOp()
LOGGER.info(f"***** Running training with {opts.n_gpu} GPUs *****")
LOGGER.info(" Num examples = %d", len(dataloaders['train'].dataset))
LOGGER.info(" Batch size = %d", opts.train_batch_size)
LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps)
LOGGER.info(" Num steps = %d", opts.num_train_steps)
running_loss = RunningMeter('loss')
model.train()
n_examples = 0
n_epoch = 0
best_ckpt = 0
best_eval = 0
start = time()
# quick hack for amp delay_unscale bug
optimizer.zero_grad()
optimizer.step()
while True:
for step, batch in enumerate(dataloaders['train']):
targets = batch['targets']
del batch['gather_index']
n_examples += targets.size(0)
with autocast():
loss = model(**batch, compute_loss=True)
loss = loss.mean()
delay_unscale = (step + 1) % opts.gradient_accumulation_steps != 0
scaler.scale(loss).backward()
if not delay_unscale:
# gather gradients from every processes
# do this before unscaling to make sure every process uses
# the same gradient scale
grads = [p.grad.data for p in model.parameters()
if p.requires_grad and p.grad is not None]
all_reduce_and_rescale_tensors(grads, float(1))
running_loss(loss.item())
if (step + 1) % opts.gradient_accumulation_steps == 0:
global_step += 1
# learning rate scheduling
lr_this_step = get_lr_sched(global_step, opts)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
# log loss
losses = all_gather_list(running_loss)
running_loss = RunningMeter(
'loss', sum(l.val for l in losses) / len(losses))
TB_LOGGER.add_scalar('loss', running_loss.val, global_step)
TB_LOGGER.step()
# update model params
if opts.grad_norm != -1:
# Unscales the gradients of optimizer's assigned params in-place
scaler.unscale_(optimizer)
grad_norm = clip_grad_norm_(model.parameters(), opts.grad_norm)
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
# scaler.step() first unscales gradients of the optimizer's params.
# If gradients don't contain infs/NaNs, optimizer.step() is then called,
# otherwise, optimizer.step() is skipped.
scaler.step(optimizer)
# Updates the scale for next iteration.
scaler.update()
optimizer.zero_grad()
pbar.update(1)
if global_step % 100 == 0:
# monitor training throughput
tot_ex = sum(all_gather_list(n_examples))
ex_per_sec = int(tot_ex / (time() - start))
LOGGER.info(f'{opts.model}: {n_epoch}-{global_step}: '
f'{tot_ex} examples trained at '
f'{ex_per_sec} ex/s '
f'best_acc-{best_eval * 100:.2f}')
TB_LOGGER.add_scalar('perf/ex_per_s',
ex_per_sec, global_step)
if global_step % opts.valid_steps == 0:
log = evaluation(model,
dict(filter(lambda x: x[0].startswith('val'), dataloaders.items())),
opts, global_step)
log_eval = log['val/acc']
if log_eval > best_eval:
best_ckpt = global_step
best_eval = log_eval
pbar.set_description(f'{opts.model}: {n_epoch}-{best_ckpt} best_acc-{best_eval * 100:.2f}')
model_saver.save(model, global_step)
if global_step >= opts.num_train_steps:
break
if global_step >= opts.num_train_steps:
break
n_epoch += 1
LOGGER.info(f"Step {global_step}: finished {n_epoch} epochs")
# if n_epoch >= opts.num_train_epochs:
# break
return best_ckpt
@torch.no_grad()
def validate(opts, model, val_loader, split, global_step):
val_loss = 0
tot_score = 0
n_ex = 0
val_mrr = 0
st = time()
results = []
with tqdm(range(len(val_loader.dataset) // opts.size), desc=f'{split}-{opts.rank}') as tq:
for i, batch in enumerate(val_loader):
qids = batch['qids']
targets = batch['targets']
del batch['targets']
del batch['qids']
del batch['gather_index']
scores, over_logits = model(**batch, targets=None, compute_loss=False)
loss = F.cross_entropy(scores, targets, reduction='sum')
val_loss += loss.item()
tot_score += (scores.max(dim=-1, keepdim=False)[1] == targets).sum().item()
max_prob, max_idx = scores.max(dim=-1, keepdim=False)
answers = max_idx.cpu().tolist()
targets = torch.gather(batch['option_ids'], dim=1, index=targets.unsqueeze(1)).cpu().numpy()
for j, (qid, target) in enumerate(zip(qids, targets)):
g = over_logits[j].cpu().numpy()
top_k = np.argsort(-g)
val_mrr += 1 / (1 + np.argwhere(top_k == target).item())
results.extend(zip(qids, answers))
n_ex += len(qids)
tq.update(len(qids))
out_file = f'{opts.output_dir}/results/{split}_results_{global_step}_rank{opts.rank}.csv'
with open(out_file, 'w') as f:
for id_, ans in results:
f.write(f'{id_},{ans}\n')
val_loss = sum(all_gather_list(val_loss))
val_mrr = sum(all_gather_list(val_mrr))
# tot_score = sum(all_gather_list(tot_score))
n_ex = sum(all_gather_list(n_ex))
tot_time = time() - st
val_loss /= n_ex
val_mrr = val_mrr / n_ex
out_file = f'{opts.output_dir}/results/{split}_results_{global_step}.csv'
if not os.path.isfile(out_file):
with open(out_file, 'wb') as g:
for f in glob.glob(f'{opts.output_dir}/results/{split}_results_{global_step}_rank*.csv'):
shutil.copyfileobj(open(f, 'rb'), g)
sum(all_gather_list(opts.rank))
txt_db = os.path.join('/txt',
intermediate_dir(opts.pretrained_model_name_or_path),
getattr(opts, f'{split}_txt_db'))
val_acc = judge(out_file, f'{txt_db}/answer.csv')
val_log = {f'{split}/loss': val_loss,
f'{split}/acc': val_acc,
f'{split}/mrr': val_mrr,
f'{split}/ex_per_s': n_ex / tot_time}
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
f"score: {val_acc * 100:.2f}, "
f"mrr: {val_mrr:.3f}")
return val_log
def evaluate_embeddings_recall(embeddings, chengyu_vocab, chengyu_synonyms_dict):
iw = [k for k in embeddings]
vectors = np.array([embeddings[iw[i]] for i in range(len(iw))])
cnt = 0
recall_at_k_cosine = {}
recall_at_k_norm = {}
k_list = [1, 3, 5, 10]
total = len(chengyu_synonyms_dict)
for w, wl in tqdm(chengyu_synonyms_dict.items()):
if w in embeddings and any([x in embeddings for x in wl]):
cnt += 1
cosine_distances = (1 - cosine_similarity(embeddings[w].reshape(1, -1), vectors)[0]).argsort()
norm_distances = np.linalg.norm(vectors - embeddings[w], axis=1).argsort()
cids = [idx for idx in cosine_distances if iw[idx] in chengyu_vocab]
nids = [idx for idx in norm_distances if iw[idx] in chengyu_vocab]
for k in k_list:
top_ids = cids[1:k + 1]
recall_at_k_cosine.setdefault(k, 0)
recall_at_k_cosine[k] += sum([1 for idx in top_ids if iw[idx] in wl])
top_ids = nids[1:k + 1]
recall_at_k_norm.setdefault(k, 0)
recall_at_k_norm[k] += sum([1 for idx in top_ids if iw[idx] in wl])
LOGGER.info(f'{cnt} word pairs appeared in the training dictionary , total word pairs {total}')
LOGGER.info(recall_at_k_cosine)
LOGGER.info(recall_at_k_norm)
return cnt, total, recall_at_k_cosine, recall_at_k_norm
def evaluation(model, data_loaders: dict, opts, global_step):
model.eval()
log = {}
for split, loader in data_loaders.items():
LOGGER.info(f"Step {global_step}: start running "
f"validation on {split} split...")
log.update(validate(opts, model, loader, split, global_step))
if split == 'val' and opts.evaluate_embedding:
embeddings_np = model.idiom_embedding.weight.detach().cpu().numpy()
embeddings = {k: embeddings_np[v] for k, v in loader.dataset.chengyu_vocab.items()}
evaluate_embeddings_recall(embeddings, loader.dataset.chengyu_vocab,
loader.dataset.chengyu_synonyms_dict)
TB_LOGGER.log_scaler_dict(log)
model.train()
return log
def get_best_ckpt(val_data_dir, opts):
pat = re.compile(r'val_results_(?P<step>\d+)_rank0.csv')
prediction_files = glob.glob('{}/results/val_results_*_rank0.csv'.format(opts.output_dir))
top_files = Counter()
for f in prediction_files:
acc = judge(f, os.path.join(val_data_dir, 'answer.csv'))
top_files.update({f: acc})
print(top_files)
for f, acc in top_files.most_common(1):
m = pat.match(os.path.basename(f))
best_epoch = int(m.group('step'))
return best_epoch
def main(opts):
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
opts.rank = rank
opts.size = hvd.size()
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
if opts.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, "
"should be >= 1".format(
opts.gradient_accumulation_steps))
set_random_seed(opts.seed)
# data loaders
DatasetCls = DATA_REGISTRY[opts.dataset_cls]
EvalDatasetCls = DATA_REGISTRY[opts.eval_dataset_cls]
splits, dataloaders = create_dataloaders(DatasetCls, EvalDatasetCls, opts)
opts.evaluate_embedding = False
# Prepare model
model = build_model(opts)
model.to(device)
if opts.mode == 'train':
best_ckpt = train(model, dataloaders, opts)
elif opts.mode == 'eval':
best_ckpt = None
if opts.rank == 0:
os.makedirs(join(opts.output_dir, 'results'), exist_ok=True) # store val predictions
else:
best_ckpt = get_best_ckpt(dataloaders['val'].dataset.db_dir, opts)
sum(all_gather_list(opts.rank))
if best_ckpt is not None:
best_pt = f'{opts.output_dir}/ckpt/model_step_{best_ckpt}.pt'
model.load_state_dict(torch.load(best_pt), strict=False)
log = evaluation(model, dict(filter(lambda x: x[0] != 'train', dataloaders.items())), opts, best_ckpt)
splits = ['val', 'test', 'ran', 'sim', 'out']
LOGGER.info('\t'.join(splits))
LOGGER.info('\t'.join(chain(
[format(log[f'{split}/acc'], "0.6f") for split in splits],
[format(log[f'{split}/mrr'], "0.6f") for split in splits]
)))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--compressed_db', action='store_true',
help='use compressed LMDB')
parser.add_argument("--model_config",
default=None, type=str,
help="json file for model architecture")
parser.add_argument("--checkpoint",
default=None, type=str,
help="pretrained model")
parser.add_argument("--model", default='paired',
choices=['snlive'],
help="choose from 2 model architecture")
parser.add_argument("--mode", default='train',
choices=['train', 'infer', 'eval'],
help="choose from 2 mode")
parser.add_argument("--output_dir", default=None, type=str,
help="The output directory where the model checkpoints will be "
"written.")
# Prepro parameters
parser.add_argument('--max_txt_len', type=int, default=60,
help='max number of tokens in text (BERT BPE)')
# training parameters
parser.add_argument("--train_batch_size",
default=4096, type=int,
help="Total batch size for training. "
"(batch by tokens)")
parser.add_argument("--val_batch_size",
default=4096, type=int,
help="Total batch size for validation. "
"(batch by tokens)")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=16,
help="Number of updates steps to accumualte before "
"performing a backward/update pass.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--valid_steps",
default=1000,
type=int,
help="Run validation every X steps")
parser.add_argument("--num_train_steps",
default=100000,
type=int,
help="Total number of training updates to perform.")
parser.add_argument("--optim", default='adam',
choices=['adam', 'adamax', 'adamw'],
help="optimizer")
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+', type=float,
help="beta for adam optimizer")
parser.add_argument("--dropout",
default=0.1,
type=float,
help="tune dropout regularization")
parser.add_argument("--weight_decay",
default=0.0,
type=float,
help="weight decay (L2) regularization")
parser.add_argument("--grad_norm",
default=0.25,
type=float,
help="gradient clipping (-1 for no clipping)")
parser.add_argument("--warmup_steps",
default=4000,
type=int,
help="Number of training steps to perform linear "
"learning rate warmup for.")
# device parameters
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead "
"of 32-bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true',
help="pin memory")
# can use config files
parser.add_argument('--config', help='JSON config files')
args = parse_with_config(parser)
hvd.init()
n_gpu = hvd.size()
args.n_gpu = n_gpu
args.output_dir = os.path.join(args.output_dir,
args.model,
os.path.basename(args.pretrained_model_name_or_path),
f'pretrain_{args.n_gpu}_{args.num_train_steps}_{args.learning_rate}')
if exists(args.output_dir) and os.listdir(f'{args.output_dir}/ckpt'):
if args.mode == 'train':
raise ValueError("Output directory ({}) already exists and is not "
"empty.".format(args.output_dir))
main(args)