-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1095-Find-in-Mountain-Array.cpp
144 lines (130 loc) · 4.23 KB
/
1095-Find-in-Mountain-Array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/// Author : Vicen-te
/// Date : 10/12/2023 (MM-DD-YYYY)
/**
* Description:
* (This problem is an interactive problem.)
*
* You may recall that an array arr is a mountain array if and only if:
* arr.length >= 3
* There exists some i with 0 < i < arr.length - 1 such that:
* arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
* arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
*
* Given a mountain array mountainArr, return the minimum index such that
* mountainArr.get(index) == target. If such an index does not exist, return -1.
*
* You cannot access the mountain array directly. You may only access the array using
* a MountainArray interface:
* MountainArray.get(k) returns the element of the array at index k (0-indexed).
* MountainArray.length() returns the length of the array.
*
* Submissions making more than 100 calls to MountainArray.get will be judged Wrong Answer.
* Also, any solutions that attempt to circumvent the judge will result in disqualification.
*
* Ex1.
* Input: array = [1,2,3,4,5,3,1], target = 3
* Output: 2
* Explanation: 3 exists in the array, at index=2 and index=5. Return the minimum index,
* which is 2.
*
* Ex2.
* Input: array = [0,1,2,4,2,1], target = 3
* Output: -1
* Explanation: 3 does not exist in the array, so we return -1.
*
* Algorithm:
* 1. The algorithm's goal is to find the minimum index at which the value "target",
* exist within a "MountainArray".
* 2. It employs a binary search approach, dividing the array into ascending and
* descending halves.Additionally, it identifies the peak index to determine the
* transition from ascending to descending.
*
* Time Complexity: O(log n)
* Space Complexity: O(1)
*/
/**
* // This is the MountainArray's API interface.
* // You should not implement it, or speculate about its implementation
* class MountainArray {
* public:
* int get(int index);
* int length();
* };
*/
class Solution {
public:
int binarySearch(int& begin, int& end, const int& target, MountainArray &mountainArr)
{
while (begin <= end)
{
int mid = begin + (end-begin)/2;
int mid_number = mountainArr.get(mid);
if(mid_number == target)
{
return mid;
}
else if (mid_number > target)
{
end = --mid;
}
else
{
begin = ++mid;
}
}
return -1;
}
int reverseBinarySearch(int& begin, int& end, const int& target, MountainArray &mountainArr)
{
while (begin <= end)
{
int mid = begin + (end-begin)/2;
int mid_number = mountainArr.get(mid);
if(mid_number == target)
{
return mid;
}
else if (mid_number > target)
{
begin = ++mid;
}
else
{
end = --mid;
}
}
return -1;
}
int findPeakElement(int& begin, int& end, MountainArray &mountainArr)
{
while (begin < end)
{
int mid = begin + (end-begin)/2;
if(mountainArr.get(mid) < mountainArr.get(mid+1))
{
begin = ++mid;
}
else
{
end = --mid;
}
}
return begin;
}
int findInMountainArray(int target, MountainArray &mountainArr) {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int begin = 0;
int end = mountainArr.length()-1;
int minimum_index = 0;
int peak_index = findPeakElement(begin, end, mountainArr);
begin = 0;
end = peak_index;
minimum_index = binarySearch(begin, end, target, mountainArr);
if(minimum_index != -1) return minimum_index;
begin = peak_index;
end = mountainArr.length()-1;
minimum_index = reverseBinarySearch(begin, end, target, mountainArr);
return minimum_index;
}
};