forked from Graph-COM/SUREL_Plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
136 lines (121 loc) · 4.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import random
import torch
import numpy as np
from torch_geometric.utils import negative_sampling, add_self_loops
from sklearn.preprocessing import normalize
def set_random_seed(args):
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
def encoding(x, adj, encoding='DEG'):
agg = None
if encoding == 'DEG':
x += normalize(adj, norm='l1', axis=1)
x_deg = x.getnnz(axis=1)
x_deg = np.log(x_deg + 1)
# x_deg = x_deg / x_deg.max()
agg = x.copy()
x.data = (x > 0).multiply(x_deg).data
elif encoding == 'SPD':
x0 = x > 0
x1 = adj > 0
x2 = x1 ** 2
x = x1 + x0.multiply(x2 * 0.5) + x0 * 0.3
x.setdiag(2.3)
elif encoding == 'PPR':
x.data = (x.data + 0.1)/(x.data.max()+0.1)
else:
raise NotImplementedError
return x, agg
def evaluate_hits(pos_pred, neg_pred, evaluator):
results = {}
for K in [10, 20, 50, 100]:
evaluator.K = K
res_hits = evaluator.eval({
'y_pred_pos': pos_pred,
'y_pred_neg': neg_pred,
})[f'hits@{K}']
results[f'Hits@{K}'] = res_hits
return results
def get_pos_neg_edges(split, split_edge, edge_index, num_nodes, percent=100):
if 'edge' in split_edge['train']:
if percent < 100:
print("Warning: partial validation may only be applied under metric MRR.")
pos_edge = split_edge[split]['edge'].t()
if split == 'train':
new_edge_index, _ = add_self_loops(edge_index)
neg_edge = negative_sampling(
new_edge_index, num_nodes=num_nodes, num_neg_samples=pos_edge.size(1))
else:
neg_edge = split_edge[split]['edge_neg'].t()
# subsample for pos_edge
np.random.seed(123)
num_pos = pos_edge.size(1)
perm = np.random.permutation(num_pos)
perm = perm[:int(percent / 100 * num_pos)]
pos_edge = pos_edge[:, perm]
# subsample for neg_edge
np.random.seed(123)
num_neg = neg_edge.size(1)
perm = np.random.permutation(num_neg)
perm = perm[:int(percent / 100 * num_neg)]
neg_edge = neg_edge[:, perm]
elif 'source_node' in split_edge['train']:
source = split_edge[split]['source_node']
target = split_edge[split]['target_node']
if split == 'train':
target_neg = torch.randint(0, num_nodes, [target.size(0), 1],
dtype=torch.long)
else:
target_neg = split_edge[split]['target_node_neg']
# subsample
np.random.seed(123)
num_source = source.size(0)
perm = np.random.permutation(num_source)
perm = perm[:int(percent / 100 * num_source)]
source, target, target_neg = source[perm], target[perm], target_neg[perm, :]
pos_edge = torch.stack([source, target])
neg_per_target = target_neg.size(1)
neg_edge = torch.stack([source.repeat_interleave(neg_per_target),
target_neg.view(-1)])
elif 'hedge' in split_edge['train']:
pos_edge = split_edge[split]['hedge']
neg_edge = split_edge[split]['hedge_neg'].t()
if percent < 100:
np.random.seed(123)
num_pos = pos_edge.size(1)
perm = np.random.permutation(num_pos)
perm = perm[:int(percent / 100 * num_pos)]
pos_edge = pos_edge[:, perm]
neg_edge = neg_edge.view(num_pos, -1, 3)[perm].reshape(-1, 3)
pos_edge = pos_edge.t()
else:
raise NotImplementedError
return pos_edge, neg_edge
def save_checkpoint(state, filename='checkpoint'):
print("=> Saving checkpoint")
torch.save(state, f'{filename}.pth.tar')
def load_checkpoint(filename, model, optimizer=None):
checkpoint = torch.load(f'{filename}.pth.tar')
print(f"<= Loading checkpoint from epoch {checkpoint['epoch']}")
model.load_state_dict(checkpoint['state_dict'])
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
def f_output(results, metric, logger):
if 'Hits' in metric:
for key, result in results.items():
_, valid_hits, test_hits = result
logger.info(f'{key}\t '
f'Valid: {100 * valid_hits:.2f}%, '
f'Test: {100 * test_hits:.2f}%')
else:
_, valid_mrr, test_mrr = results
logger.info(f'{metric}\t'
f'Valid: {valid_mrr:.4f}, '
f'Test: {test_mrr:.4f}')