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Unsupervised learning
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UNSUPERVISED LEARNING

So far, we were dealing with different types of neural networks
designed for classification and regression tasks.

In these supervised learning scenarios, we exploit information of
class memberships (or numeric values) to train our algorithm. That
means in particular, that we have access to labeled data.

Recall from the very first lecture, that there exists another learning
paradigm, unsupervised learning, where :

training data consists of unlabeled input points xxx(1), . . . ,xxx(n)

and one aims at finding and describing intrinsic structure in
the data.

There is much more unlabeled data than labeled! But what can we
learn from it?
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UNSUPERVISED LEARNING - EXAMPLES

1. Clustering.

Figure: Different cluster analysis results on a dataset. True labels (the colors in the
original data) are shown here but the algorithms only operate on unlabelled data.
(Source : Wikipedia)
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UNSUPERVISED LEARNING - EXAMPLES

2. Dimensionality reduction/manifold learning.
E.g. for visualisation in a low dimensional space.

Figure: Principal Component Analysis (PCA)
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UNSUPERVISED LEARNING - EXAMPLES

2. Dimensionality reduction/manifold learning.
E.g. for image compression.

Figure: from https://de.slideshare.net/hcycon/bildkompression
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UNSUPERVISED LEARNING - EXAMPLES

3. Feature extraction/representation learning.

Figure: Source: Wikipedia

E.g. for semi-supervised learning: features learned from an
unlabeled dataset are employed to improve performance in a
supervised setting.
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UNSUPERVISED LEARNING - EXAMPLES

4. Density fitting/learning a generative model.

Figure: A generative model can reconstruct the missing portions of the
images. (Bornschein, Shabanian, Fischer & Bengio, ICML, 2016)
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MANIFOLD LEARNING

Manifold hypothesis: Data of interest lies on an embedded
non-linear manifold within the higher-dimensional space.

A manifold:
is a topological space that locally resembles the Euclidean
space.
in ML, more loosely refers to a connected set of points that
can be approximated well by considering only a small number
of dimensions.

Figure: from Goodfellow et. al
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MANIFOLD LEARNING

An important characterization of a manifold is the set of its tangent
planes.

Definition: At a point xxx on a d-dimensional manifold, the tangent
plane is given by d basis vectors that span the local directions of
variation allowed on the manifold.

Figure: A pictorial representation of the tangent space of a single point, x , on
a manifold (Goodfellow et al. (2016)).
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MANIFOLD LEARNING

Manifold hypothesis does not need to hold true.

In the context of AI tasks (e.g. processing images, sound, or text) it
seems to be at least approximately correct, since :

probability distributions over images, text strings, and sounds
that occur in real life are highly concentrated (randomly
sampled pixel values do not look like images, randomly
sampling letters is unlikely to result in a meaningful sentence).
samples are connected to each other by other samples, with
each sample surrounded by other highly similar samples that
can be reached by applying transformations (E.g. for images:
Dim or brighten the lights, move or rotate objects, change the
colors of objects, etc).
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REVISION OF PCA

The purpose of PCA is to project the data x(1), . . . , x(n) onto a
lower-dimensional subspace (e.g. to save memory).

For each point x(i) ∈ Rp we need to find a corresponding code
vector c(i) ∈ Rl with l < p. That step is accomplished by the
encoding function which produces the code for an input:

f (x) = c

Additionally, we need a decoding function to produce the
reconstruction of the input given its code:

x ≈ g(f (x))

We can choose matrix multiplication to map the data back into Rp:
g(c) = Dc, with D ∈ Rp×l , defining the decoding.
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REVISION OF PCA

To keep the encoding problem easy, PCA constrains the columns
of D to be orthogonal.

One way to obtain the optimal code c∗ is to minimize the distance
between the input x and its reconstruction g(c) (that means, linear
transformation with minimum reconstruction error):

c∗ = arg min
c
||x− g(c)||22

Solving this optimization problem leads to

c = DT x

Thus, to encode a vector, we apply the encoder function

f (x) = DT x
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REVISION OF PCA

We can also define the PCA as the reconstruction operation:

r(x) = g(f (x)) = DDT x

To find the encoding matrix D∗, we minimize the Frobenius norm of
the matrix of errors computed over all dimensions and points:

D∗ = arg min
D

√∑
i,j

(
x(i)

j − r(x(i))j

)2
, subject to DTD = Il

for l = 1, D∗ collapses to a single vector and we can rewrite the
equation as

d∗ = arg min
d
||X− XddT ||2F , subjected to dT d = 1

The optimal d∗ is given by the eigenvector of XT X corresponding
to the largest eigenvalue.
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REVISION OF PCA

In general, for l = k (with k < p) , the optimal reconstruction X∗,
by the Eckart-Young-Mirsky Theorem, is the truncated Singular
Value Decomposition (SVD) of X :

X∗ = UkΣk V>k

where, the diagonal matrix Σk contains the k largest singular
values and the columns of the matrices Uk and Vk are the
corresponding right singular vectors and left singular vectors,
respectively.

Here, the optimal encoding matrix D∗ consists of the k left singular
vectors as columns.
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REVISION OF PCA

The first principal component has the largest possible variance (that is,
accounts for as much of the variability in the data as possible).

Each succeeding component in turn has the highest variance possible
under the constraint that it is orthogonal to the preceding components.

credit:Syed Nazrul

Figure: The vectors shown are the (scaled) eigenvectors. Keeping only the first
principal component results in dimensionality reduction.
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UNSUPERVISED DEEP LEARNING

Given i.i.d. (unlabeled) data x1, x2, . . . , xn ∼ pdata, in unsupervised
deep learning, one usually trains :

an autoencoder (a special kind of neural network) for
representation learning (feature extraction, dimensionality
reduction, manifold learning, ...), or,

a generative model, i.e. a probabilistic model of the data
generating distribution pdata (data generation, outlier detection,
missing feature extraction, reconstruction, denoising or planning in
reinforcement learning, ...).
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Autoencoder
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AUTOENCODER (AE)-TASK AND STRUCTURE

Autoencoders (AEs) are a special kind of feedforward neural
networks.

Task: reconstruction of the input.

They consist of two parts:

encoder function z = f (x).
decoder that produces the reconstruction r = g(z).

Loss function: L (x, g(f (x))).

Goal: Learn good internal representations z (also called code).
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AUTOENCODER (AE)- COMPUTATIONAL GRAPH

The general structure of an AE as a computational graph:

An AE has two computational steps:

the encoder enc, mapping x to z.
the decoder dec, mapping z to r.
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UNDERCOMPLETE AUTOENCODERS

If an AE simply learns the identity dec(enc(x)) = x, it would be of
no use. In fact, we want the AE to learn a representation z that
encodes “useful” or “significant” properties of the data.

One possibility to do so is to restrict the architecture, such that
code dimension < input dimension.

Such an AE is called undercomplete.
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UNDERCOMPLETE AUTOENCODERS

In other words: In an undercomplete AE, the hidden layer has
fewer neurons than the input layer.

⇒ That will force the AE to

capture only the most salient features of the training data!
learn a “compressed” representation of the input.

Training an AE is done by minimizing a loss function which
penalizes the reconstruction dec(enc(x)) for differing from x. The
MSE, ||x− g(f (x))||22, is a typical choice.

For optimization, the very same optimization techniques as for
standard feed-forward nets are applied (SGD, RMSProp,
ADAM,...).
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UNDERCOMPLETE AUTOENCODERS

Example: For an undercomplete AE with :

linear decoder g(zzz) = Wzzz
mean squared error loss L = ||xxx − g(f (xxx))||22
input normalized to have zero mean

optimal encoder corresponds to Principal Component Analysis
(PCA).

An AE with a non-linear decoder/encoder can be seen as a
non-linear generalization of PCA.

Problem: If an AE is overcomplete (code dimension > input
dimension) or encoder and decoder are too powerful, the AE can
learn to simply copy the input.
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OVERCOMPLETE AE – PROBLEM

Example 1: Overcomplete AE (code dimension ≥ input dimension).
⇒ even a linear AE can copy the input to the output without learning
anything useful.

Figure: Overcomplete AE that learned to copy its inputs to the hidden layer
and then to the output layer (Credits to A.-L. Popkes and P. Wenker).
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VERY POWERFUL AE – PROBLEM

Example 2: Very powerful nonlinear AE that learns a 1D code:

Encoder: learns to map each training example x(i) to the code i .

Decoder: learns to map these integer indices back to the values of
specific training examples.
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LEARNING MANIFOLDS WITH AES

AE training procedures involve a compromise between two forces:

1 Learning a representation zzz of a training example xxx such that
xxx can be approximately recovered from zzz through a decoder.

2 Satisfying an architectural constraint or regularization penalty.

Together, they force the hidden units to capture information about
the structure of the data generating distribution

Important principle: AEs can afford to represent only the variations
that are needed to reconstruct training examples.

If the data-generating distribution concentrates near a
low-dimensional manifold, this yields representations that implicitly
capture a local coordinate system for the manifold.
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LEARNING MANIFOLDS WITH AES

Only the variations tangent to the manifold around xxx need to
correspond to changes in zzz = f (xxx). Hence the encoder learns a
mapping from the input space to a representation space that is
only sensitive to changes along the manifold directions, but that is
insensitive to changes orthogonal to the manifold.

Figure: from Goodfellow et al. (2016)
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EXPERIMENT: LEARN TO ENCODE MNIST

Let us try to compress the MNIST data as good as possible.

Therefore, we will fit an undercomplete autoencoder to learn the
best possible representation,

⇒ as few as possible dimensions in the internal representation z.

Figure: Flow chart of our our autoencoder: reconstruct the input with fixed
dimensions dim(z) << dim(x).
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: Architecture of the autoencoder.
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EXPERIMENT: LEARN TO ENCODE MNIST

z = c(784, 256, 64, 32, 16, 8, 4, 2, 1)

input = mx.symbol.Variable("data") # mnist with 28x28 = 784

encoder = mx.symbol.FullyConnected(input, num_hidden = z[i])

decoder = mx.symbol.FullyConnected(encoder, num_hidden = 784)

activation = mx.symbol.Activation(decoder, "sigmoid")

output = mx.symbol.LinearRegressionOutput(activation)

model = mx.model.FeedForward.create(output,

X = train.x, y = train.x,

num.round = 50,

array.batch.size = 32,

optimizer = "adam",

initializer = mx.init.uniform(0.01),

eval.metric = mx.metric.mse

)
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 784 = dim(x).
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 256.
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 64.
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 32.
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 16.
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 8.
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 4.
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 2.
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EXPERIMENT: LEARN TO ENCODE MNIST

Figure: The top row shows the original digits, the bottom row the
reconstructed ones.

dim(z) = 1.
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Regularized Autoencoder
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REGULARIZED AUTOENCODER

Goal: choose code dimension and capacity of encoder/decoder
based on the problem.

Regularized AEs modify the original loss function to:

prevent the network from trivially copying the inputs.
encourage additional properties.

Examples:

Sparse AE: sparsity of the representation.
Denoising AE: robustness to noise.
Contractive AE: small derivatives of the representation
w.r.t. input.

⇒ A regularized AE can be overcomplete and nonlinear but still learn
something useful about the data distribution!
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DENOISING AUTOENCODER (DAE)

Idea: representation should be robust to introduction of noise.

Produce corrupted version x̃ of input x, e.g. by

random assignment of subset of inputs to 0.
adding Gaussian noise.

Modified reconstruction loss: L(x, g(f (x̃))
⇒ denoising AEs must learn to undo this corruption.
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DENOISING AUTOENCODER (DAE)

With the corruption process, we induce stochasticity into the DAE.

Formally: let C(x̃|x) present the conditional distribution of
corrupted samples x̃, given a data sample x.

Like feedforward NNs can model a distribution over targets p(y|x),
output units and loss function of an AE can be chosen such that
one gets a stochastic decoder pdecoder (x|z).
E.g. linear output units to parametrize the mean of Gaussian
distribution for real valued x and negative log-likelihood loss (which
is equal to MSE).

The DAE then learns a reconstruction distribution preconstruct(x|x̃)
from training pairs (x, x̃).

(Note that the encoder could also be made stochastic, modelling
pencoder (z|x̃).)
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DENOISING AUTOENCODER (DAE)

The general structure of a DAE as a computational graph:

Figure: Denoising autoencoder: “making the learned representation robust to
partial corruption of the input pattern.”
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DENOISING AUTOENCODER (DAE)

Algorithm 1 Training denoising autoencoders

1: Sample a training example x from the training data.
2: Sample a corrupted version x̃ from C(x̃|x)
3: Use (x, x̃) as a training example for estimating the AE recon-

struction preconstruct(x|x̃) = pdecoder (x|z), where
- z is the output of the encoder enc(x̃) and
- pdecoder defined by a decoder dec(z)

All we have to do to transform an AE into a DAE is to add a
stochastic corruption process on the input.

The DAE still tries to preserve the information about the input
(encode it), but also to undo the effect of a corruption process!
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DENOISING AUTOENCODER (DAE)

Figure: Denoising autoencoders - “manifold perspective” (Ian Goodfellow et
al. (2016))

A DAE is trained to map a corrupted data point x̃ back to the original
data point x.
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DENOISING AUTOENCODER (DAE)

Figure: Denoising autoencoders - “manifold perspective” (Ian Goodfellow et
al. (2016))

The corruption process C(x̃|x) is displayed by the gray circle of
equiprobable corruptions

Training a DAE by minimizing ||dec(enc(x̃))− x||2 corresponds to
minimizing Ex,x̃∼pdata(x)C(x̃|x)[log pdecoder (x|f (x̃))].
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DENOISING AUTOENCODER (DAE)

Figure: Denoising autoencoders - “manifold perspective” (Ian Goodfellow et
al. (2016))

The vector dec(enc(x̃))− x̃ points approximately towards the
nearest point in the data manifold, since dec(enc(x̃)) estimates
the center of mass of clean points x which could have given rise to
x̃.

Thus, the DAE learns a vector field dec(enc(x))− x indicated by
the green arrows.
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DENOISING AUTOENCODER (DAE)

An example of a vector field learned by a DAE.

Figure: source : Ian Goodfellow et al. (2016)
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EXPERIMENT: ENCODE MNIST WITH A DAE

We will now corrupt the MNIST data with Uniform noise and then
try to denoise it as good as possible.

Figure: Flow chart of our our autoencoder: denoise the corrupted input.
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EXPERIMENT: ENCODE MNIST WITH A DAE

To corrupt the input, we randomly add or subtract values from a
uniform distribution to each of the image entries.

Figure: Top row: original data, bottom row: corrupted mnist data.
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EXPERIMENT: ENCODE MNIST WITH A DAE
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EXPERIMENT: ENCODE MNIST WITH A DAE

Figure: The top row shows the original digits, the intermediate one the
corrupted and the bottom row the denoised/reconstructed digits (prediction).

dim(zzz) = 1568 (overcomplete).
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EXPERIMENT: ENCODE MNIST WITH A DAE

Figure: The top row shows the original digits, the intermediate one the
corrupted and the bottom row the denoised/reconstructed digits (prediction).

dim(zzz) = 784 (= dim(xxx)).

Bernd Bischl c© Winter term 2018 Deeplearning – 8 – 44 / 60



EXPERIMENT: ENCODE MNIST WITH A DAE

Figure: The top row shows the original digits, the intermediate one the
corrupted and the bottom row the denoised/reconstructed digits (prediction).

dim(zzz) = 256.
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EXPERIMENT: ENCODE MNIST WITH A DAE

Figure: The top row shows the original digits, the intermediate one the
corrupted and the bottom row the denoised/reconstructed digits (prediction).

dim(zzz) = 64.
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EXPERIMENT: ENCODE MNIST WITH A DAE

Figure: The top row shows the original digits, the intermediate one the
corrupted and the bottom row the denoised/reconstructed digits (prediction).

dim(zzz) = 32.

Bernd Bischl c© Winter term 2018 Deeplearning – 8 – 44 / 60



EXPERIMENT: ENCODE MNIST WITH A DAE

Figure: The top row shows the original digits, the intermediate one the
corrupted and the bottom row the denoised/reconstructed digits (prediction).

dim(zzz) = 16.
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EXPERIMENT: ENCODE MNIST WITH A DAE

Figure: The top row shows the original digits, the intermediate one the
corrupted and the bottom row the denoised/reconstructed digits (prediction).

dim(zzz) = 8.
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EXPERIMENT: ENCODE MNIST WITH A DAE

Let us increase the amount of noise and see how the autoencoder
with dim(z) = 64 deals with it (for science!).
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EXPERIMENT: ENCODE MNIST WITH A DAE

A lot of noise.
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EXPERIMENT: ENCODE MNIST WITH A DAE

A lot of noise.
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CONTRACTIVE AUTOENCODER

Idea: extract features that only reflect variations found in the
training set.

Add explicit regularization term to the reconstruction loss:

L(xxx , g(f (xxx)) + λ‖∂f (xxx)
∂xxx ‖

2
F

⇒ Derivatives of the encoder function w.r.t. the input are
encouraged to be small.
⇒ Only a small number of input directions will have significant
derivatives.
⇒ The encoder function is encouraged to resist infinitesimal
perturbations of the input.
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DAE VS. CAE

DAE CAE
the decoder function is trained
to resist infinitesimal perturba-
tions of the input.

the encoder function is trained
to resist infinitesimal perturba-
tions of the input.
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WHICH AUTOENCODER?

Both the denoising and contractive autoencoders perform well.

Advantage of denoising autoencoder: simpler to implement

requires adding one or two lines of code to regular AE.
no need to compute Jacobian of hidden layer.

Advantage of contractive autoencoder: gradient is deterministic

can use second order optimizers (conjugate gradient, LBFGS,
etc.).
might be more stable than the denoising autoencoder, which
uses a sampled gradient.

Bernd Bischl c© Winter term 2018 Deeplearning – 8 – 48 / 60



Specific AEs and applications
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CONVOLUTIONAL AUTOENCODER (CONVAE)

For the image domain, using convolutions is advantageous. Can
we also make use of them in AEs?

In a ConvAE, the encoder consists of convolutional layers. The
decoder, on the other hand, consists of transpose convolution
layers or simple upsampling operations.
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CONVOLUTIONAL AUTOENCODER (CONVAE)

Figure: Potential architecture of a convolutional autoencoder.

We now apply this architecture to denoise MNIST.
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CONVOLUTIONAL AUTOENCODER (CONVAE)

Figure: Top row: noised data, second row: AE with dim(zzz) = 32 (roughly 50k
params), third row: ConvAE (roughly 25k params), fourth row: ground truth.
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AES FOR UNSUPERVISED PRETRAINING

Stacked AEs can be used for layer-wise unsupervised pretraining
of deep neural networks.

This corresponds to subsequently training each layer as an AE.

It aims at yielding better weight initializations for the actual
supervised training.

This usually eliminates the risk of vanishing gradients in feed
forward nets.

It played an important role in the past before general techniques
for stabilizing optimization were invented (e.g. ReLUs, batch
normalization, dropout, etc.)
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REAL-WORLD APPLICATIONS

Today, autoencoders are still used for tasks such as:

data de-noising,

compression,

and dimensionality reduction for the purpose of visualization.
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REAL-WORLD APPLICATIONS

Medical image denoising using convolutional denoising autoencoders

Figure: Top row : real image, second row : noisy version, third row : results of
a (convolutional) denoising autoencoder and fourth row : results of a median
filter (Lovedeep Gondara (2016))
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REAL-WORLD APPLICATIONS

AE-based image compression.

Figure: from Theis et al.

Bernd Bischl c© Winter term 2018 Deeplearning – 8 – 56 / 60



REAL-WORLD APPLICATIONS

Latent space traversal:

Once an AE has been trained to compress images, it’s possible to
"generate" new images by feeding arbitrary latent vectors z to the
decoder.

In fact, certain axes/directions in the latent space can correspond
to interpretable factors of variation in the images generated.

In this example, the decoder was trained to map latent code to
high-school yearbook photos and interesting axes were discovered
by performing PCA on the latent code of the training data.

Click here for a video of the experiment.
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REAL-WORLD APPLICATIONS

Latent space traversal:

Moving along one particular direction in the latent space caused a
change primarily in the color of the shirt in the generated image.
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REAL-WORLD APPLICATIONS

Latent space traversal:

A different direction in the latent space seemed to correpond to the
gender of the person in the generated image.
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