Method | Base (%) | Pruned (%) |
|
Speed Up |
---|---|---|---|---|
NIPS [1] | - | - | -0.03 | 1.76x |
Geometric [2] | 93.59 | 93.26 | -0.33 | 1.70x |
Polar [3] | 93.80 | 93.83 | +0.03 | 1.88x |
CP [4] | 92.80 | 91.80 | -1.00 | 2.00x |
AMC [5] | 92.80 | 91.90 | -0.90 | 2.00x |
HRank [6] | 93.26 | 92.17 | -0.09 | 2.00x |
SFP [7] | 93.59 | 93.36 | -0.23 | 2.11x |
ResRep [8] | 93.71 | 93.71 | +0.00 | 2.12x |
Group-L1 | 93.53 | 92.93 | -0.60 | 2.12x |
Group-BN | 93.53 | 93.29 | -0.24 | 2.12x |
Group-GReg | 93.53 | 93.55 | +0.02 | 2.12x |
Ours w/o SL | 93.53 | 93.46 | -0.07 | 2.11x |
Ours | 93.53 | 93.77 | +0.38 | 2.13x |
GBN [9] | 93.10 | 92.77 | -0.33 | 2.51x |
AFP [10] | 93.93 | 92.94 | -0.99 | 2.56x |
C-SGD [11] | 93.39 | 93.44 | +0.05 | 2.55x |
GReg-1 [12] | 93.36 | 93.18 | -0.18 | 2.55x |
GReg-2 [12] | 93.36 | 93.36 | -0.00 | 2.55x |
Ours w/o SL | 93.53 | 93.36 | -0.17 | 2.51x |
Ours | 93.53 | 93.64 | +0.11 | 2.57x |
Note 1:
Note 2: Baseline methods are not implemented in this repo, because they may require additional modifications to the standard models and training scripts. We are working to support more algorithms.
Note 3: Donwload pretrained resnet-56 from Dropbox or Github Release
Note 4: Training logs are available at run/.
Note 5: "w/o SL" = "without sparse learning"
wget https://github.com/VainF/Torch-Pruning/releases/download/v1.1.4/cifar10_resnet56.pth
or train a new model:
python main.py --mode pretrain --dataset cifar10 --model resnet56 --lr 0.1 --total-epochs 200 --lr-decay-milestones 120,150,180
A group-level pruner adapted from Pruning Filters for Efficient ConvNets
# 2.11x
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method l1 --speed-up 2.11 --global-pruning
A group-level pruner adapted from Learning Efficient Convolutional Networks through Network Slimming
# 2.11x
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method slim --speed-up 2.11 --global-pruning --reg 1e-5
A group-level pruner adapted from Neural Pruning via Growing Regularization
# 2.11x
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method growing_reg --speed-up 2.11 --global-pruning --reg 1e-4 --delta_reg 1e-5
# 2.11x without sparse learning (Ours w/o SL)
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method group_norm --speed-up 2.11 --global-pruning
# 2.55x without sparse learning (Ours w/o SL)
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method group_norm --speed-up 2.55 --global-pruning
# 2.11x (Ours)
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method group_sl --speed-up 2.11 --global-pruning --reg 5e-4
# 2.55x (Ours)
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method group_sl --speed-up 2.55 --global-pruning --reg 5e-4
Method | Base (%) | Pruned (%) |
|
Speed Up |
---|---|---|---|---|
OBD [13] | 73.34 | 60.70 | -12.64 | 5.73x |
OBD [13] | 73.34 | 60.66 | -12.68 | 6.09x |
EigenD [13] | 73.34 | 65.18 | -8.16 | 8.80× |
GReg-1 [12] | 74.02 | 67.55 | -6.67 | 8.84× |
GReg-2 [12] | 74.02 | 67.75 | -6.27 | 8.84× |
Ours w/o SL | 73.50 | 67.60 | -5.44 | 8.87x |
Ours | 73.50 | 70.39 | -3.11 | 8.92× |
wget https://github.com/VainF/Torch-Pruning/releases/download/v1.1.4/cifar100_vgg19.pth
or train a new model:
python main.py --mode pretrain --dataset cifar100 --model vgg19 --lr 0.1 --total-epochs 200 --lr-decay-milestones 120,150,180
# 8.84x without sparse learning (Ours w/o SL)
python main.py --mode prune --model vgg19 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar100 --method group_norm --speed-up 8.84 --global-pruning
# 8.84x (Ours)
python main.py --mode prune --model vgg19 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar100 --method group_sl --speed-up 8.84 --global-pruning --reg 5e-4
python -m torch.distributed.launch --nproc_per_node=4 --master_port 18119 --use_env main_imagenet.py --model resnet50 --epochs 90 --batch-size 64 --lr-step-size 30 --lr 0.01 --prune --method l1 --pretrained --output-dir run/imagenet/resnet50_sl --target-flops 2.00 --cache-dataset --print-freq 100 --workers 16 --data-path PATH_TO_IMAGENET --output-dir PATH_TO_OUTPUT_DIR # &> output.log
For the latest results on Vision Transformers, please refer to examples/transformers.
More results will be released soon!
python benchmark_latency.py
[Iter 0] Pruning ratio: 0.00, MACs: 4.12 G, Params: 25.56 M, Latency: 45.22 ms +- 0.03 ms
[Iter 1] Pruning ratio: 0.05, MACs: 3.68 G, Params: 22.97 M, Latency: 46.53 ms +- 0.06 ms
[Iter 2] Pruning ratio: 0.10, MACs: 3.31 G, Params: 20.63 M, Latency: 43.85 ms +- 0.08 ms
[Iter 3] Pruning ratio: 0.15, MACs: 2.97 G, Params: 18.36 M, Latency: 41.22 ms +- 0.10 ms
[Iter 4] Pruning ratio: 0.20, MACs: 2.63 G, Params: 16.27 M, Latency: 39.28 ms +- 0.20 ms
[Iter 5] Pruning ratio: 0.25, MACs: 2.35 G, Params: 14.39 M, Latency: 34.60 ms +- 0.19 ms
[Iter 6] Pruning ratio: 0.30, MACs: 2.02 G, Params: 12.46 M, Latency: 33.38 ms +- 0.27 ms
[Iter 7] Pruning ratio: 0.35, MACs: 1.74 G, Params: 10.75 M, Latency: 31.46 ms +- 0.20 ms
[Iter 8] Pruning ratio: 0.40, MACs: 1.50 G, Params: 9.14 M, Latency: 29.04 ms +- 0.19 ms
[Iter 9] Pruning ratio: 0.45, MACs: 1.26 G, Params: 7.68 M, Latency: 27.47 ms +- 0.28 ms
[Iter 10] Pruning ratio: 0.50, MACs: 1.07 G, Params: 6.41 M, Latency: 20.68 ms +- 0.13 ms
[Iter 11] Pruning ratio: 0.55, MACs: 0.85 G, Params: 5.14 M, Latency: 20.48 ms +- 0.21 ms
[Iter 12] Pruning ratio: 0.60, MACs: 0.67 G, Params: 4.07 M, Latency: 18.12 ms +- 0.15 ms
[Iter 13] Pruning ratio: 0.65, MACs: 0.53 G, Params: 3.10 M, Latency: 15.19 ms +- 0.01 ms
[Iter 14] Pruning ratio: 0.70, MACs: 0.39 G, Params: 2.28 M, Latency: 13.47 ms +- 0.01 ms
[Iter 15] Pruning ratio: 0.75, MACs: 0.29 G, Params: 1.61 M, Latency: 10.07 ms +- 0.01 ms
[Iter 16] Pruning ratio: 0.80, MACs: 0.18 G, Params: 1.01 M, Latency: 8.96 ms +- 0.02 ms
[Iter 17] Pruning ratio: 0.85, MACs: 0.10 G, Params: 0.57 M, Latency: 7.03 ms +- 0.04 ms
[Iter 18] Pruning ratio: 0.90, MACs: 0.05 G, Params: 0.25 M, Latency: 5.81 ms +- 0.03 ms
[Iter 19] Pruning ratio: 0.95, MACs: 0.01 G, Params: 0.06 M, Latency: 5.70 ms +- 0.03 ms
[Iter 20] Pruning ratio: 1.00, MACs: 0.01 G, Params: 0.06 M, Latency: 5.71 ms +- 0.03 ms
ResNet50 pre-trained on ImageNet-1K, local pruning without fine-tuning.
python benchmark_importance_criteria.py
Single-layer
means group_reduction='first'
, which only leverages the first layer of a group for importance estimation.
[1] Nisp: Pruning networks using neuron importance score propagation.
[2] Filter pruning via geometric median for deep convolutional neural networks acceleration.
[3] Neuron-level structured pruning using polarization regularizer.
[4] Pruning Filters for Efficient ConvNets.
[5] Amc: Automl for model compression and acceleration on mobile devices.
[6] Hrank: Filter pruning using high-rank feature map.
[7] Soft filter pruning for accelerating deep convolutional neural networks
[8] Resrep: Lossless cnn pruning via decoupling remembering and forgetting.
[9] Gate decorator: Global filter pruning method for accelerating deep convolutional neural networks.
[10] Auto-balanced filter pruning for efficient convolutional neural networks.
[11] Centripetal sgd for pruning very deep convolutional networks with complicated structure
[12] Neural pruning via growing regularization
[13] Eigendamage: Structured pruning in the kroneckerfactored eigenbasis.