-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_imp_downstream.py
236 lines (190 loc) · 9.58 KB
/
main_imp_downstream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
'''
iterative pruning for supervised task
with lottery tickets or pretrain tickets
support datasets: cifar10, Fashionmnist, cifar100, svhn
'''
import os
import pdb
import time
import pickle
import random
import shutil
import argparse
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
import torch
import torch.optim
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
import torchvision.models as models
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from utils import *
from pruning_utils import *
parser = argparse.ArgumentParser(description='PyTorch Iterative Pruning')
##################################### data setting #################################################
parser.add_argument('--data', type=str, default='../data', help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset[cifar10&100, svhn, fmnist')
##################################### model setting #################################################
parser.add_argument('--arch', type=str, default='resnet50', help='model architecture[resnet18, resnet50, resnet152]')
##################################### basic setting #################################################
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--seed', default=None, type=int, help='random seed')
parser.add_argument('--resume', action="store_true", help="resume from checkpoint")
parser.add_argument('--checkpoint', type=str, default=None, help='checkpoint file')
parser.add_argument('--print_freq', default=50, type=int, help='print frequency')
parser.add_argument('--save_dir', help='The directory used to save the trained models', default=None, type=str)
##################################### training setting #################################################
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=2e-4, type=float, help='weight decay')
parser.add_argument('--epochs', default=182, type=int, help='number of total epochs to run')
parser.add_argument('--warmup', default=1, type=int, help='warm up epochs')
parser.add_argument('--decreasing_lr', default='91,136', help='decreasing strategy')
##################################### Pruning setting #################################################
parser.add_argument('--pruning_times', default=19, type=int, help='overall times of pruning')
parser.add_argument('--rate', default=0.2, type=float, help='pruning rate')
parser.add_argument('--prune_type', default='lt', type=str, help='IMP type (lt, pt, rewind_lt or pt_trans)')
parser.add_argument('--random_prune', action="store_true", help="whether using random pruning")
parser.add_argument('--pretrained', default=None, type=str, help='pretrained weight for pt')
parser.add_argument('--conv1', action="store_true", help="whether pruning&loading conv1")
parser.add_argument('--fc', action="store_true", help="whether loading fc")
parser.add_argument('--rewind_epoch', default=9, type=int, help='rewind checkpoint')
def main():
best_sa = 0
args = parser.parse_args()
print(args)
print('*'*50)
print('Dataset: {}'.format(args.dataset))
print('Model: {}'.format(args.arch))
print('*'*50)
print('Pruning type: {}'.format(args.prune_type))
if args.random_prune:
print('Random Unstructure Pruning')
else:
print('L1 Unstructure Pruning')
torch.cuda.set_device(int(args.gpu))
os.makedirs(args.save_dir, exist_ok=True)
if args.seed:
setup_seed(args.seed)
# prepare dataset
model, train_loader, val_loader, test_loader = setup_model_dataset(args)
model.cuda()
criterion = nn.CrossEntropyLoss()
decreasing_lr = list(map(int, args.decreasing_lr.split(',')))
if args.prune_type == 'lt':
print('lottery tickets setting (rewind to random init')
initalization = deepcopy(model.state_dict())
elif args.prune_type == 'pt_trans':
print('pretrain tickets with {}'.format(args.pretrained))
pretrained_weight = torch.load(args.pretrained, map_location = torch.device('cuda:'+str(args.gpu)))
if 'state_dict' in pretrained_weight.keys():
pretrained_weight = pretrained_weight['state_dict']
load_weight_pt_trans(model, pretrained_weight, args)
initalization = deepcopy(model.state_dict())
elif args.prune_type == 'pt':
initalization = None
elif args.prune_type == 'rewind_lt':
initalization = None
else:
raise ValueError('Unknow pruning type')
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
if args.resume:
print('resume from checkpoint')
checkpoint = torch.load(args.checkpoint, map_location = torch.device('cuda:'+str(args.gpu)))
best_sa = checkpoint['best_sa']
start_epoch = checkpoint['epoch']
all_result = checkpoint['result']
start_state = checkpoint['state']
if start_state > 0:
current_mask = extract_mask(checkpoint['state_dict'])
prune_model_custom(model, current_mask, conv1=args.conv1)
check_sparsity(model, conv1=args.conv1)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
initalization = checkpoint['init_weight']
print('loading state:', start_state)
print('loading from epoch: ',start_epoch, 'best_sa=', best_sa)
else:
all_result = {}
all_result['train'] = []
all_result['test_ta'] = []
all_result['ta'] = []
start_epoch = 0
start_state = 0
print('######################################## Start Standard Training Iterative Pruning ########################################')
for state in range(start_state, args.pruning_times):
print('******************************************')
print('pruning state', state)
print('******************************************')
check_sparsity(model, conv1=args.conv1)
for epoch in range(start_epoch, args.epochs):
print(optimizer.state_dict()['param_groups'][0]['lr'])
acc = train(train_loader, model, criterion, optimizer, epoch, args)
if state == 0:
if epoch == args.rewind_epoch-1:
if args.prune_type == 'rewind_lt':
torch.save(model.state_dict(), os.path.join(args.save_dir, 'epoch_{}_rewind_weight.pt'.format(epoch+1)))
initalization = deepcopy(model.state_dict())
# evaluate on validation set
tacc = test(val_loader, model, criterion, args)
# evaluate on test set
test_tacc = test(test_loader, model, criterion, args)
scheduler.step()
all_result['train'].append(acc)
all_result['ta'].append(tacc)
all_result['test_ta'].append(test_tacc)
# remember best prec@1 and save checkpoint
is_best_sa = tacc > best_sa
best_sa = max(tacc, best_sa)
save_checkpoint({
'state': state,
'result': all_result,
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_sa': best_sa,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'init_weight': initalization
}, is_SA_best=is_best_sa, pruning=state, save_path=args.save_dir)
plt.plot(all_result['train'], label='train_acc')
plt.plot(all_result['ta'], label='val_acc')
plt.plot(all_result['test_ta'], label='test_acc')
plt.legend()
plt.savefig(os.path.join(args.save_dir, str(state)+'net_train.png'))
plt.close()
#report result
check_sparsity(model, conv1=args.conv1)
print('* best SA={}'.format(all_result['test_ta'][np.argmax(np.array(all_result['ta']))]))
all_result = {}
all_result['train'] = []
all_result['test_ta'] = []
all_result['ta'] = []
best_sa = 0
start_epoch = 0
if args.prune_type == 'pt':
print('* loading pretrained weight')
initalization = torch.load(os.path.join(args.save_dir, '0model_SA_best.pth.tar'), map_location = torch.device('cuda:'+str(args.gpu)))['state_dict']
if args.random_prune:
pruning_model_random(model, args.rate, conv1=args.conv1)
else:
pruning_model(model, args.rate, conv1=args.conv1)
current_mask = extract_mask(model.state_dict())
remove_prune(model, conv1=args.conv1)
#rewind weight to init
model.load_state_dict(initalization)
prune_model_custom(model, current_mask, conv1=args.conv1)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
if __name__ == '__main__':
main()