-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
110 lines (96 loc) · 5.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import os
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from importlib.metadata import version
from lib.prune import prune_wanda, prune_magnitude, prune_sparsegpt, check_sparsity, find_layers, prune_gradient, prune_gblm
from lib.eval import eval_ppl
print('torch', version('torch'))
print('transformers', version('transformers'))
print('accelerate', version('accelerate'))
print('# of gpus: ', torch.cuda.device_count())
def get_llm(model, cache_dir="llm_weights"):
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.float16,
cache_dir=cache_dir,
low_cpu_mem_usage=True,
device_map="auto"
)
print("printing gpu allocation for all the layers")
print(model.hf_device_map)
model.seqlen = 2048
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='LLaMA model')
parser.add_argument('--gradient_path', default=None,type=str, help='gradient path')
parser.add_argument('--grad_norm', type=str, default="none", choices=["none", "accumulation_norm", "2-norm-sample-dim"])
parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.')
parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration samples.')
parser.add_argument('--seq_length', type=int, default=2048, help='Sequence length of the input.')
parser.add_argument('--sparsity_ratio', type=float, default=0, help='Sparsity level')
parser.add_argument('--layer_no', type=int, default=-1, help='Sparsity level')
parser.add_argument("--sparsity_type", type=str, choices=["unstructured", "4:8", "2:4"])
parser.add_argument("--prune_method", type=str, choices=["magnitude", "wanda", "sparsegpt","gradient", "gblm"])
parser.add_argument("--cache_dir", default="llm_weights", type=str )
parser.add_argument('--use_variant', action="store_true", help="whether to use the wanda variant described in the appendix")
parser.add_argument('--save', type=str, default=None, help='Path to save results.')
parser.add_argument('--save_model', type=str, default=None, help='Path to save the pruned model.')
parser.add_argument('--grad_exponent', action='store_true', help='Use gradient of exponent')
parser.add_argument('--gradient_inv', action='store_true', help='Use inverse of gradient')
args = parser.parse_args()
print(f"Working on model: {args.model}")
print(f"working on method {args.prune_method}, grad norm {args.grad_norm}, gradient path {args.gradient_path}, inverse enabled {args.gradient_inv}, sparsity type {args.sparsity_type}, seq lenght {args.seq_length}")
# Setting seeds for reproducibility
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
# Handling n:m sparsity
prune_n, prune_m = 0, 0
if args.sparsity_type != "unstructured":
assert args.sparsity_ratio == 0.5, "sparsity ratio must be 0.5 for structured N:M sparsity"
prune_n, prune_m = map(int, args.sparsity_type.split(":"))
model_name = args.model.split("/")[-1]
print(f"loading llm model {args.model}")
model = get_llm(args.model, args.cache_dir)
model.eval()
tokenizer = LlamaTokenizer.from_pretrained(args.model, use_fast=False)
device = torch.device("cuda:0")
if "30b" in args.model or "65b" in args.model or "70b" in args.model:
device = model.hf_device_map["lm_head"]
print("use device ", device)
idx = args.layer_no
print(f"pruning for sparsity_ratio {args.sparsity_ratio} by method {args.prune_method}")
if args.sparsity_ratio != 0:
print("pruning starts")
if args.prune_method == "wanda":
prune_wanda(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m, layer_no=idx)
elif args.prune_method == "gblm":
prune_gblm(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m, layer_no=idx)
elif args.prune_method == "magnitude":
prune_magnitude(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m, layer_no=idx)
elif args.prune_method == "gradient":
prune_gradient(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m, layer_no=idx)
elif args.prune_method == "sparsegpt":
prune_sparsegpt(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m, layer_no=idx)
################################################################
print("*"*30)
sparsity_ratio = check_sparsity(model, args)
print(f"sparsity sanity check {sparsity_ratio:.4f}")
print("*"*30)
################################################################
ppl = eval_ppl(model, tokenizer, device)
print(f"ppl on wikitext {ppl}")
if not os.path.exists(args.save):
os.makedirs(args.save)
save_filepath = os.path.join(args.save, "log.txt")
with open(save_filepath, "w") as f:
print("actual_sparsity\tppl", file=f, flush=True)
print(f"{sparsity_ratio:.4f}\t{ppl:.4f}", file=f, flush=True)
if args.save_model:
model.save_pretrained(args.save_model)
tokenizer.save_pretrained(args.save_model)
print("*"*30)
if __name__ == '__main__':
main()