forked from waldeland/CNN-for-ASI
-
Notifications
You must be signed in to change notification settings - Fork 2
/
tb_logger.py
133 lines (106 loc) · 4.51 KB
/
tb_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Compatability Imports
from __future__ import print_function
from os.path import join
try:
import tensorflow as tf
except:
print('Tensorflow could not be imported, therefore tensorboard cannot be used.')
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
import torch
import datetime
class TBLogger(object):
def __init__(self, log_dir, folder_name = '' ):
self.log_dir = join(log_dir, folder_name + ' ' + datetime.datetime.now().strftime("%I%M%p, %B %d, %Y"))
self.log_dir = self.log_dir.replace('//','/')
self.writer = tf.summary.FileWriter(self.log_dir)
#Add scalar
def log_scalar(self, tag, value, step=0):
summary = tf.Summary(value=[tf.Summary.Value(tag=tag,
simple_value=value)])
self.writer.add_summary(summary, step)
def make_list_of_2D_array(self, im):
if type(im) == type([]):
return im
ims = []
if len(im.shape) == 2:
ims.append(im)
elif len(im.shape) == 3:
for i in range(im.shape[0]):
ims.append(np.squeeze(im[i,:,:]))
elif len(im.shape) == 4:
for i in range(im.shape[0]):
ims.append(np.squeeze(im[i, 0, :, :]))
return ims
def log_images(self, tag, images, step=0, dim = 2, max_imgs = 50,cm='jet'):
#Make sure images are on numpy format in case the input is a Torch-variable
images = self.convert_to_numpy(images)
try:
if len(images.shape)>2:
dim = 3
except:
None
#Make list of images
if dim == 2:
images = self.make_list_of_2D_array(images)
#If 3D we make one list for each slice-type
if dim == 3:
new_images_ts, new_images_il, new_images_cl = self.get_slices_from_3D(images)
self.log_images(tag + '_timeslice', new_images_ts, step, 2, max_imgs)
self.log_images(tag + '_inline', new_images_il, step, 2, max_imgs)
self.log_images(tag + '_crossline', new_images_cl, step, 2, max_imgs)
return
im_summaries = []
for nr, img in enumerate(images):
#Grayscale
if cm == 'gray' or cm == 'grey':
img = img.astype('float')
img = np.repeat(np.expand_dims(img,2),3,2)
img -= img.min()
img /= img.max()
img *= 255
img = img.astype('uint8')
# Write the image to a string
s = BytesIO()
plt.imsave(s, img, format='png')
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
im_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, nr),
image=img_sum))
#if nr == max_imgs-1:
# break
# Create and write Summary
summary = tf.Summary(value=im_summaries)
self.writer.add_summary(summary, step)
# Cuts out middle slices from image
def get_slices_from_3D(self, img):
new_images_ts = []
new_images_il = []
new_images_cl = []
if len(img.shape) == 3:
new_images_ts.append(np.squeeze(img[img.shape[0] / 2, :, :]))
new_images_il.append(np.squeeze(img[:, img.shape[1] / 2, :]))
new_images_cl.append(np.squeeze(img[:, :, img.shape[2] / 2]))
elif len(img.shape) == 4:
for i in range(img.shape[0]):
new_images_ts.append(np.squeeze(img[i, img.shape[1] / 2, :, :]))
new_images_il.append(np.squeeze(img[i, :, img.shape[2] / 2, :]))
new_images_cl.append(np.squeeze(img[i, :, :, img.shape[3] / 2]))
elif len(img.shape) == 5:
for i in range(img.shape[0]):
new_images_ts.append(np.squeeze(img[i, 0, img.shape[2] / 2, :, :]))
new_images_il.append(np.squeeze(img[i, 0, :, img.shape[3] / 2, :]))
new_images_cl.append(np.squeeze(img[i, 0, :, :, img.shape[4] / 2]))
return new_images_ts, new_images_il, new_images_cl
#Convert torch to numpy
def convert_to_numpy(self,im):
if type(im) == torch.autograd.Variable:
#Put on CPU
im = im.cpu()
#Get np-data
im = im.data.numpy()
return im