-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathworker.py
132 lines (109 loc) · 4.19 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from __future__ import division
import os
import time
import torch
import numpy as np
import torch.optim as optim
from tensorboardX import SummaryWriter
from setproctitle import setproctitle as ptitle
from model import build_model
from player_util import Agent
from environment import create_env
def worker(rank, args, shared_model, train_modes, n_iters, curr_env_steps, ToM_count, ToM_history, Policy_history, step_history, loss_history, env=None):
n_iter = 0
writer = SummaryWriter(os.path.join(args.log_dir, 'Agent-{}'.format(rank)))
ptitle('worker: {}'.format(rank))
gpu_id = args.gpu_id[rank % len(args.gpu_id)]
torch.manual_seed(args.seed + rank)
training_mode = args.train_mode
env_name = args.env
if gpu_id >= 0:
torch.cuda.manual_seed(args.seed + rank)
device = torch.device('cuda:' + str(gpu_id))
if len(args.gpu_id) > 1:
raise AssertionError("Do not support multi-gpu training")
#device_share = torch.device('cpu')
else:
device_share = torch.device('cuda:' + str(args.gpu_id[-1]))
else:
device = device_share = torch.device('cpu')
#device = torch.device("cpu") # there's no need for worker to use
if env == None:
env = create_env(env_name, args, rank)
if args.fix:
env.seed(args.seed)
else:
env.seed(rank % (args.seed + 1))
player = Agent(None, env, args, None, device)
player.rank = rank
player.gpu_id = gpu_id
# prepare model
player.model = shared_model
player.reset()
reward_sum = torch.zeros(player.num_agents).to(device)
reward_sum_org = np.zeros(player.num_agents)
ave_reward = np.zeros(2)
ave_reward_longterm = np.zeros(2)
count_eps = 0
#max_steps = env.max_steps
while True:
if "MSMTC" in args.env and args.random_target:
p = 0.7 - (env.max_steps/20 -1) * 0.1
env.target_type_prob = [p, 1-p]
player.env.target_type_prob = [p, 1-p]
# sys to the shared model
player.model.load_state_dict(shared_model.state_dict())
if player.done:
player.reset()
reward_sum = torch.zeros(player.num_agents).to(device)
reward_sum_org = np.zeros(player.num_agents)
count_eps += 1
player.update_rnn_hidden()
t0 = time.time()
for s_i in range(env.max_steps):
player.action_train()
if 'ToM' in args.model:
ToM_count[rank] += 1
reward_sum += player.reward
reward_sum_org += player.reward_org
if player.done:
writer.add_scalar('train/reward', reward_sum[0], n_iter)
writer.add_scalar('train/reward_org', reward_sum_org[0].sum(), n_iter)
break
fps = s_i / (time.time() - t0)
writer.add_scalar('train/fps', fps, n_iter)
n_iter += env.max_steps # s_i
n_iters[rank] = n_iter
# wait for training process
Policy_history[rank] = player.Policy_history
player.Policy_history = []
'''
# for evaluation, no need in real training
player.optimize(None, None, shared_model, training_mode, device_share)
step_history[rank] = player.step_history
loss_history[rank] = player.loss_history
'
player.step_history = []
player.loss_history = []
# evaluation end
'''
if 'ToM' in args.model:
ToM_history[rank] += player.ToM_history
player.ToM_history = []
train_modes[rank] = -10 # have to put this line at last
train_start_time = time.time()
while train_modes[rank] != -1:
current_time = time.time()
if current_time - train_start_time > 180 :
print("stuck in training")
train_modes[rank] = -100
return
# update env steps during training
env.max_steps = curr_env_steps[rank]
player.env.max_steps = env.max_steps
player.clean_buffer(player.done)
if sum(n_iters) > args.max_step:
train_modes[rank] = -100
if train_modes[rank] == -100:
env.close()
break