From e104bd20442a6d17f6ebc0209be4a5f52ca9651d Mon Sep 17 00:00:00 2001 From: Ryan May Date: Tue, 22 May 2018 14:04:48 -0600 Subject: [PATCH 1/5] Update surface data notebook to access NCSS using CSV (Fixes #293) This will hopefully keep us from crashing the server. For this notebook, using CSV isn't actually all that painful. --- .../Surface Data with Siphon and MetPy.ipynb | 92 ++++++------------- 1 file changed, 30 insertions(+), 62 deletions(-) diff --git a/notebooks/Surface_Data/Surface Data with Siphon and MetPy.ipynb b/notebooks/Surface_Data/Surface Data with Siphon and MetPy.ipynb index 0ddd7134..7f5f51b2 100644 --- a/notebooks/Surface_Data/Surface Data with Siphon and MetPy.ipynb +++ b/notebooks/Surface_Data/Surface Data with Siphon and MetPy.ipynb @@ -137,7 +137,7 @@ "query.time(datetime(2017, 9, 10, 12))\n", "query.variables('temperature', 'dewpoint', 'altimeter_setting',\n", " 'wind_speed', 'wind_direction', 'sky_coverage')\n", - "query.accept('netcdf4')" + "query.accept('csv')" ] }, { @@ -151,23 +151,6 @@ "data" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that the station information variables (like longitude) have a different shape than the data variables (like temperature)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(data.variables['temperature'])\n", - "print(data.variables['longitude'])" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -186,43 +169,23 @@ "from metpy.calc import get_wind_components\n", "from metpy.units import units\n", "\n", - "\n", - "# Access is just like netcdf4-python\n", - "lats = data['latitude'][:]\n", - "lons = data['longitude'][:]\n", - "tair = data['temperature'][:]\n", - "dewp = data['dewpoint'][:]\n", - "alt = data['altimeter_setting'][:]\n", + "# Since we used the CSV data, this is just a dictionary of arrays\n", + "lats = data['latitude']\n", + "lons = data['longitude']\n", + "tair = data['temperature']\n", + "dewp = data['dewpoint']\n", + "alt = data['altimeter_setting']\n", "\n", "# Convert wind to components\n", - "u, v = get_wind_components(data['wind_speed'][:], data['wind_direction'][:] * units.degree)\n", + "u, v = get_wind_components(data['wind_speed'], data['wind_direction'] * units.degree)\n", "\n", "# Need to handle missing (NaN) and convert to proper code\n", - "cloud_cover = 8 * data['sky_coverage'][:] / 100.\n", + "cloud_cover = 8 * data['sky_coverage'] / 100.\n", "cloud_cover[np.isnan(cloud_cover)] = 10\n", "cloud_cover = cloud_cover.astype(np.int)\n", "\n", "# For some reason these come back as bytes instead of strings\n", - "stid = np.array([s.tostring().decode() for s in data['station_id'][:]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To handle the differently shaped variables, we can use the variable \"stationIndex\", which has the index of the station information for each observation. We can use this to generate longitude, etc. to match the observations. To do so, we take advantage of NumPy's ability to index using an array of indices:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "indices = data['stationIndex'][:]\n", - "longitude = lons[indices]\n", - "latitude = lats[indices]\n", - "station_id = stid[indices]" + "stid = np.array([s.tostring().decode() for s in data['station']])" ] }, { @@ -269,7 +232,7 @@ "ax.gridlines()\n", "\n", "# Create a station plot pointing to an Axes to draw on as well as the location of points\n", - "stationplot = StationPlot(ax, longitude, latitude, transform=ccrs.PlateCarree(),\n", + "stationplot = StationPlot(ax, lons, lats, transform=ccrs.PlateCarree(),\n", " fontsize=12)\n", "stationplot.plot_parameter('NW', tair, color='red')\n", "\n", @@ -299,7 +262,7 @@ "\n", "# Project points so that we're filtering based on the way the stations are laid out on the map\n", "proj = ccrs.Stereographic(central_longitude=-95, central_latitude=35)\n", - "xy = proj.transform_points(ccrs.PlateCarree(), longitude, latitude)\n", + "xy = proj.transform_points(ccrs.PlateCarree(), lons, lats)\n", "\n", "# Reduce point density so that there's only one point within a 200km circle\n", "mask = reduce_point_density(xy, 200000)" @@ -326,7 +289,7 @@ "ax.gridlines()\n", "\n", "# Create a station plot pointing to an Axes to draw on as well as the location of points\n", - "stationplot = StationPlot(ax, longitude[mask], latitude[mask], transform=ccrs.PlateCarree(),\n", + "stationplot = StationPlot(ax, lons[mask], lats[mask], transform=ccrs.PlateCarree(),\n", " fontsize=12)\n", "stationplot.plot_parameter('NW', tair[mask], color='red')\n", "stationplot.plot_barb(u[mask], v[mask])\n", @@ -398,7 +361,7 @@ "ax.gridlines()\n", "\n", "# Create a station plot pointing to an Axes to draw on as well as the location of points\n", - "stationplot = StationPlot(ax, longitude[mask], latitude[mask], transform=ccrs.PlateCarree(),\n", + "stationplot = StationPlot(ax, lons[mask], lats[mask], transform=ccrs.PlateCarree(),\n", " fontsize=12)\n", "stationplot.plot_parameter('NW', tair[mask], color='tab:red')\n", "stationplot.plot_barb(u[mask], v[mask])\n", @@ -412,7 +375,7 @@ " formatter=lambda v: str(int(v * 10))[-3:])\n", "\n", "# Plot station id\n", - "stationplot.plot_text((2, 0), station_id[mask])\n", + "stationplot.plot_text((2, 0), stid[mask])\n", "\n", "" ] @@ -454,7 +417,7 @@ "query.time_range(start_time, end_time)\n", "query.variables('altimeter_setting', 'temperature', 'dewpoint',\n", " 'wind_direction', 'wind_speed')\n", - "query.accept('netcdf4')" + "query.accept('csv')" ] }, { @@ -479,7 +442,7 @@ "metadata": {}, "outputs": [], "source": [ - "print(list(data.variables))" + "print(list(data.keys()))" ] }, { @@ -495,7 +458,7 @@ "metadata": {}, "outputs": [], "source": [ - "station_id = data['station_id'][0].tostring()\n", + "station_id = data['station'][0].tostring()\n", "print(station_id)" ] }, @@ -520,7 +483,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's get the time into a datetime object" + "Let's get the time into datetime objects. We see we have an array with byte strings in it, like station id above." ] }, { @@ -529,16 +492,14 @@ "metadata": {}, "outputs": [], "source": [ - "from netCDF4 import num2date\n", - "time_var = data.variables['time']\n", - "time = num2date(time_var[:], time_var.units)" + "data['time']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Now for the obligatory time series plot..." + "So we can use a list comprehension to turn this into a list of date time objects:" ] }, { @@ -547,7 +508,14 @@ "metadata": {}, "outputs": [], "source": [ - "wind_data = data.variables['wind_speed'][:]" + "time = [datetime.strptime(s.decode('ascii'), '%Y-%m-%dT%H:%M:%SZ') for s in data['time']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Now for the obligatory time series plot..." ] }, { @@ -559,7 +527,7 @@ "from matplotlib.dates import DateFormatter, AutoDateLocator\n", "\n", "fig, ax = plt.subplots(figsize=(10, 6))\n", - "ax.plot(time, wind_data, color='tab:blue')\n", + "ax.plot(time, data['wind_speed'], color='tab:blue')\n", "\n", "ax.set_title('Site: {} Date: {}'.format(station_id, time[0].strftime('%Y/%m/%d')))\n", "ax.set_xlabel('Hour of day')\n", From fa56520139d284ec06226796c034553da485a752 Mon Sep 17 00:00:00 2001 From: Ryan May Date: Tue, 22 May 2018 14:24:37 -0600 Subject: [PATCH 2/5] Update model data notebook (Fixes #295) Change to use xarray in a few places, and address the fact that netcdf4-python returns masked arrays. --- .../Downloading model fields with NCSS.ipynb | 108 +++++++++--------- 1 file changed, 53 insertions(+), 55 deletions(-) diff --git a/notebooks/Model_Output/Downloading model fields with NCSS.ipynb b/notebooks/Model_Output/Downloading model fields with NCSS.ipynb index 0ffe97f8..a0a631d6 100644 --- a/notebooks/Model_Output/Downloading model fields with NCSS.ipynb +++ b/notebooks/Model_Output/Downloading model fields with NCSS.ipynb @@ -142,21 +142,11 @@ "data" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ncvar = data.variables['Temperature_isobaric']\n", - "ncvar" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We need to find the right variable for time (the GRIB collections can have multiple). To do so generally, we need to look at the `coordinates` attribute to see what the correct name of the time variable is." + "We can use a library called XArray to make working with this a little simpler" ] }, { @@ -165,12 +155,11 @@ "metadata": {}, "outputs": [], "source": [ - "# Find the correct time dimension name\n", - "for coord in ncvar.coordinates.split():\n", - " if 'time' in coord:\n", - " timevar = data.variables[coord]\n", - " break\n", - "timevar" + "from xarray.backends import NetCDF4DataStore\n", + "import xarray as xr\n", + "\n", + "# We need the datastore so that we can open the existing netcdf dataset we downloaded\n", + "ds = xr.open_dataset(NetCDF4DataStore(data))" ] }, { @@ -179,14 +168,15 @@ "metadata": {}, "outputs": [], "source": [ - "timevar[:]" + "var = ds['Temperature_isobaric']\n", + "var" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We need to convert the time variable to `datetime`s. We can use `num2date` to handle this for us:" + "XArray handles parsing things like date and times for us" ] }, { @@ -195,10 +185,7 @@ "metadata": {}, "outputs": [], "source": [ - "from netCDF4 import num2date\n", - "\n", - "time = num2date(timevar[:], timevar.units)\n", - "time[6]" + "ds['time1']" ] }, { @@ -214,8 +201,8 @@ "metadata": {}, "outputs": [], "source": [ - "longitude = data.variables['longitude'][:]\n", - "latitude = data.variables['latitude'][:]" + "longitude = ds['longitude']\n", + "latitude = ds['latitude']" ] }, { @@ -253,7 +240,7 @@ "\n", "fig = plt.figure(figsize=(12, 8))\n", "ax = fig.add_subplot(1, 1, 1, projection=ccrs.LambertConformal())\n", - "mesh = ax.pcolormesh(longitude, latitude, ncvar[t_step].squeeze(),\n", + "mesh = ax.pcolormesh(longitude, latitude, var[t_step].squeeze(),\n", " transform=data_projection, zorder=0)\n", "\n", "# add some common geographic features\n", @@ -266,9 +253,16 @@ "\n", "# add a colorbar\n", "cax = fig.colorbar(mesh)\n", - "cax.set_label(ncvar.units)" + "cax.set_label(var.attrs['units'])" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -338,20 +332,12 @@ "\n", "# Download data using NCSS\n", "data = ncss.get_data(query)\n", + "ds = xr.open_dataset(NetCDF4DataStore(data))\n", "\n", - "longitude = data.variables['longitude'][:]\n", - "latitude = data.variables['latitude'][:]\n", - "temp_var = data.variables['Temperature_isobaric']\n", - "height_var = data.variables['Geopotential_height_isobaric']\n", - "\n", - "# Find the correct time dimension name\n", - "for coord in ncvar.coordinates.split():\n", - " if 'time' in coord:\n", - " timevar = data.variables[coord]\n", - " break\n", - "time = num2date(timevar[:], timevar.units)\n", - "\n", - "data_projection = ccrs.PlateCarree()\n", + "longitude = ds['longitude']\n", + "latitude = ds['latitude']\n", + "temp_var = ds['Temperature_isobaric']\n", + "height_var = ds['Geopotential_height_isobaric']\n", "time_index = 0\n", "\n", "# Plot using CartoPy and Matplotlib\n", @@ -363,7 +349,7 @@ " transform=data_projection, zorder=0)\n", "ax.contour(longitude, latitude, height_var[time_index].squeeze(), contours, colors='k',\n", " transform=data_projection, linewidths=2, zorder=1)\n", - "ax.set_title(time[time_index])\n", + "ax.set_title(ds['time1'][time_index].values)\n", "\n", "# add some common geographic features\n", "ax.coastlines(resolution='10m', color='black')\n", @@ -396,7 +382,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [ "cat = TDSCatalog('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/GFS/'\n", @@ -410,7 +398,7 @@ "point_query.variables('u-component_of_wind_isobaric', 'v-component_of_wind_isobaric')\n", "point_query.lonlat_point(-101.877, 33.583)\n", "\n", - "# get the data!\n", + "# get the data! Unfortunately, xarray does not quite like what comes out of thredds\n", "point_data = ncss.get_data(point_query)" ] }, @@ -437,11 +425,12 @@ "relh = point_data.variables[\"Relative_humidity_isobaric\"]\n", "\n", "# download data and assign the units based on the variables metadata\n", - "p = pressure[:].squeeze() * units(pressure.units)\n", - "T = temp[:].squeeze() * units(temp.units)\n", - "u = u_cmp[:].squeeze() * units(u_cmp.units)\n", - "v = v_cmp[:].squeeze() * units(v_cmp.units)\n", - "relh = relh[:].squeeze() * units('percent')" + "# Need to put units on the left to assure things work properly with masked arrays\n", + "p = units(pressure.units) * pressure[:].squeeze()\n", + "T = units(temp.units) * temp[:].squeeze()\n", + "u = units(u_cmp.units) * u_cmp[:].squeeze()\n", + "v = units(v_cmp.units) * v_cmp[:].squeeze()\n", + "relh = units('percent') * relh[:].squeeze()" ] }, { @@ -454,7 +443,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [ "import metpy.calc as mpcalc\n", @@ -466,7 +457,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now, let's change those units to what we typically see used in Skew-T diagrams" + "Now, let's change those units to what we typically see used in Skew-T diagrams. We use `ito` to do this in-place rather than manually reassigning to the same variable." ] }, { @@ -475,11 +466,11 @@ "metadata": {}, "outputs": [], "source": [ - "p = p.to(units.millibar)\n", - "T = T.to(units.degC)\n", - "Td = Td.to(units.degC)\n", - "u = u.to(units.knot)\n", - "v = v.to(units.knot)" + "p.ito(units.millibar)\n", + "T.ito(units.degC)\n", + "Td.ito(units.degC)\n", + "u.ito(units.knot)\n", + "v.ito(units.knot)" ] }, { @@ -509,6 +500,13 @@ "skew.plot_moist_adiabats()\n", "skew.plot_mixing_lines()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From c96a911ab8471532035f00417dbfcf9e6c0e0b22 Mon Sep 17 00:00:00 2001 From: Ryan May Date: Tue, 22 May 2018 16:09:28 -0600 Subject: [PATCH 3/5] Fix up exercise for advanced metpy --- notebooks/MetPy_Advanced/Isentropic Analysis.ipynb | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/notebooks/MetPy_Advanced/Isentropic Analysis.ipynb b/notebooks/MetPy_Advanced/Isentropic Analysis.ipynb index 14f6ad21..48bd0be7 100644 --- a/notebooks/MetPy_Advanced/Isentropic Analysis.ipynb +++ b/notebooks/MetPy_Advanced/Isentropic Analysis.ipynb @@ -178,6 +178,10 @@ "lon = ds['lon']\n", "press = ds['isobaric']\n", "temperature = ds['Temperature_isobaric'][0]\n", + "\n", + "# Need to adjust units on humidity because '%' causes problems\n", + "ds['Relative_humidity_isobaric'].attrs['units'] = 'percent'\n", + "\n", "rh = ds['Relative_humidity_isobaric'][0]\n", "height = ds['Geopotential_height_isobaric'][0]\n", "u = ds['u-component_of_wind_isobaric'][0]\n", @@ -281,8 +285,8 @@ "outputs": [], "source": [ "# Needed to make numpy broadcasting work between 1D pressure and other 3D arrays\n", - "# Use .values to get numpy array rather than xarray DataArray\n", - "pressure_for_calc = press.values[:, None, None] \n", + "# Use .metpy.unit_array to get numpy array with units rather than xarray DataArray\n", + "pressure_for_calc = press.metpy.unit_array[:, None, None] \n", "\n", "#\n", "# YOUR CODE: Calculate mixing ratio using something from mpcalc\n", @@ -335,7 +339,8 @@ "
\n", "
\n",
     "# Needed to make numpy broadcasting work between 1D pressure and other 3D arrays\n",
-    "pressure_for_calc = press.values[:, None, None]\n",
+    "# Use .metpy.unit_array to get numpy array with units rather than xarray DataArray\n",
+    "pressure_for_calc = press.metpy.unit_array[:, None, None]  \n",
     "\n",
     "# Calculate mixing ratio using something from mpcalc\n",
     "mixing = mpcalc.mixing_ratio_from_relative_humidity(rh, temperature, pressure_for_calc)\n",

From d34a5192c9ed1deba644d5ed7f5067a399ac124d Mon Sep 17 00:00:00 2001
From: Ryan May 
Date: Tue, 22 May 2018 16:16:56 -0600
Subject: [PATCH 4/5] A few more fixes for the satellite notebook

---
 .../Working with Satellite Data.ipynb         | 37 ++++++-------------
 1 file changed, 11 insertions(+), 26 deletions(-)

diff --git a/notebooks/Satellite_Data/Working with Satellite Data.ipynb b/notebooks/Satellite_Data/Working with Satellite Data.ipynb
index fdce8166..ea40b29a 100644
--- a/notebooks/Satellite_Data/Working with Satellite Data.ipynb	
+++ b/notebooks/Satellite_Data/Working with Satellite Data.ipynb	
@@ -161,6 +161,7 @@
     "print(ds.name)\n",
     "ds = ds.remote_access(service='OPENDAP')\n",
     "ds = NetCDF4DataStore(ds)\n",
+    "ds = xr.open_dataset(ds)\n",
     "
\n", "
" ] @@ -550,34 +551,18 @@ "ds = cat.datasets.filter_time_nearest(datetime(2017, 9, 9, 6))\n", "print(ds.name)\n", "ds = ds.remote_access(service='OPENDAP')\n", + "ds = NetCDF4DataStore(ds)\n", + "ds = xr.open_dataset(ds)\n", "timestamp = datetime.strptime(ds.start_date_time, '%Y%j%H%M%S')\n", - "data_var = ds.variables['Sectorized_CMI']\n", - "\n", - "x = ds.variables['x'][:]\n", - "y = ds.variables['y'][:]\n", - "proj_var = ds.variables[data_var.grid_mapping]\n", + "data_var = ds.metpy.parse_cf('Sectorized_CMI')\n", "\n", - "# Create a Globe specifying a spherical earth with the correct radius\n", - "globe = ccrs.Globe(ellipse='sphere', semimajor_axis=proj_var.semi_major,\n", - " semiminor_axis=proj_var.semi_minor)\n", - "\n", - "# Select the correct projection.\n", - "\n", - "if proj_var.grid_mapping_name == 'lambert_conformal_conic':\n", - " proj = ccrs.LambertConformal(central_longitude=proj_var.longitude_of_central_meridian,\n", - " central_latitude=proj_var.latitude_of_projection_origin,\n", - " standard_parallels=[proj_var.standard_parallel],\n", - " globe=globe)\n", - "\n", - "else:\n", - " proj = ccrs.Mercator(central_longitude=proj_var.longitude_of_projection_origin, \n", - " latitude_true_scale=proj_var.standard_parallel,\n", - " globe=globe)\n", + "x = ds['x']\n", + "y = ds['y']\n", "\n", - "wv_norm, wv_cmap = registry.get_with_range('WVCIMSS_r', 195, 265)\n", + "wv_norm, wv_cmap = colortables.get_with_range('WVCIMSS_r', 195, 265)\n", "\n", "fig = plt.figure(figsize=(10, 10))\n", - "ax = fig.add_subplot(1, 1, 1, projection=proj)\n", + "ax = fig.add_subplot(1, 1, 1, projection=data_var.metpy.cartopy_crs)\n", "\n", "im = ax.imshow(data_var[:], extent=(x.min(), x.max(), y.min(), y.max()), origin='upper',\n", " cmap=wv_cmap, norm=wv_norm)\n", @@ -673,9 +658,6 @@ "import matplotlib as mpl\n", "mpl.rcParams['animation.embed_limit'] = 50\n", "\n", - "# Add the MetPy Logo\n", - "add_metpy_logo(fig, x=15, y=15)\n", - "\n", "# List used to store the contents of all frames. Each item in the list is a tuple of\n", "# (image, text)\n", "artists = []\n", @@ -701,6 +683,9 @@ "ax.coastlines(resolution='50m', color='black')\n", "ax.add_feature(cfeature.BORDERS, linewidth=2)\n", "\n", + "# Add the MetPy Logo\n", + "add_metpy_logo(fig, x=15, y=15)\n", + "\n", "# Loop over the datasets and make the animation\n", "for ds in datasets[::6]:\n", "\n", From 9c471d74130fdab173db5b1b2ea0ce4c7019da0c Mon Sep 17 00:00:00 2001 From: Ryan May Date: Tue, 22 May 2018 16:37:56 -0600 Subject: [PATCH 5/5] Fix up Downloading GFS notebook --- .../Bonus/Downloading GFS with Siphon.ipynb | 356 ++---------------- 1 file changed, 36 insertions(+), 320 deletions(-) diff --git a/notebooks/Bonus/Downloading GFS with Siphon.ipynb b/notebooks/Bonus/Downloading GFS with Siphon.ipynb index 1d1c2d82..a89eefc5 100644 --- a/notebooks/Bonus/Downloading GFS with Siphon.ipynb +++ b/notebooks/Bonus/Downloading GFS with Siphon.ipynb @@ -50,21 +50,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DatasetCollection([('Best GFS Quarter Degree Forecast Time Series',\n", - " Best GFS Quarter Degree Forecast Time Series)])" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "%matplotlib inline\n", "from siphon.catalog import TDSCatalog\n", @@ -77,52 +65,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We pull out this dataset and look at the access urls. Note there are many ways to access the data. " + "We pull out this dataset and call `subset()` to set up requesting a subset of the data." ] }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'CdmRemote': 'http://thredds.ucar.edu/thredds/cdmremote/grib/NCEP/GFS/Global_0p25deg/Best',\n", - " 'ISO': 'http://thredds.ucar.edu/thredds/iso/grib/NCEP/GFS/Global_0p25deg/Best',\n", - " 'NCML': 'http://thredds.ucar.edu/thredds/ncml/grib/NCEP/GFS/Global_0p25deg/Best',\n", - " 'NetcdfSubset': 'http://thredds.ucar.edu/thredds/ncss/grib/NCEP/GFS/Global_0p25deg/Best',\n", - " 'OPENDAP': 'http://thredds.ucar.edu/thredds/dodsC/grib/NCEP/GFS/Global_0p25deg/Best',\n", - " 'UDDC': 'http://thredds.ucar.edu/thredds/uddc/grib/NCEP/GFS/Global_0p25deg/Best',\n", - " 'WCS': 'http://thredds.ucar.edu/thredds/wcs/grib/NCEP/GFS/Global_0p25deg/Best',\n", - " 'WMS': 'http://thredds.ucar.edu/thredds/wms/grib/NCEP/GFS/Global_0p25deg/Best'}" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "best_ds = list(best_gfs.datasets.values())[0]\n", - "best_ds.access_urls" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `NetcdfSubset` entry is what we're after...we'll use this in our NCSS class. Let's import the NCSS class from Siphon and then pass in the NetcdfSubset access url. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "from siphon.ncss import NCSS\n", - "ncss = NCSS(best_ds.access_urls['NetcdfSubset'])" + "best_ds = list(best_gfs.datasets.values())[0]\n", + "ncss = best_ds.subset()" ] }, { @@ -135,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -151,159 +104,11 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'5-Wave_Geopotential_Height_isobaric',\n", - " 'Absolute_vorticity_isobaric',\n", - " 'Albedo_surface_Mixed_intervals_Average',\n", - " 'Apparent_temperature_height_above_ground',\n", - " 'Best_4_layer_Lifted_Index_surface',\n", - " 'Categorical_Freezing_Rain_surface_Mixed_intervals_Average',\n", - " 'Categorical_Ice_Pellets_surface_Mixed_intervals_Average',\n", - " 'Categorical_Rain_surface_Mixed_intervals_Average',\n", - " 'Categorical_Snow_surface_Mixed_intervals_Average',\n", - " 'Cloud_Work_Function_entire_atmosphere_single_layer_Mixed_intervals_Average',\n", - " 'Cloud_mixing_ratio_isobaric',\n", - " 'Cloud_water_entire_atmosphere_single_layer',\n", - " 'Convective_Precipitation_Rate_surface_Mixed_intervals_Average',\n", - " 'Convective_available_potential_energy_pressure_difference_layer',\n", - " 'Convective_available_potential_energy_surface',\n", - " 'Convective_inhibition_pressure_difference_layer',\n", - " 'Convective_inhibition_surface',\n", - " 'Convective_precipitation_surface_Mixed_intervals_Accumulation',\n", - " 'Dewpoint_temperature_height_above_ground',\n", - " 'Downward_Long-Wave_Radp_Flux_surface_Mixed_intervals_Average',\n", - " 'Downward_Short-Wave_Radiation_Flux_surface_Mixed_intervals_Average',\n", - " 'Field_Capacity_surface',\n", - " 'Geopotential_height_highest_tropospheric_freezing',\n", - " 'Geopotential_height_isobaric',\n", - " 'Geopotential_height_maximum_wind',\n", - " 'Geopotential_height_potential_vorticity_surface',\n", - " 'Geopotential_height_surface',\n", - " 'Geopotential_height_tropopause',\n", - " 'Geopotential_height_zeroDegC_isotherm',\n", - " 'Ground_Heat_Flux_surface_Mixed_intervals_Average',\n", - " 'Haines_index_surface',\n", - " 'ICAO_Standard_Atmosphere_Reference_Height_maximum_wind',\n", - " 'ICAO_Standard_Atmosphere_Reference_Height_tropopause',\n", - " 'Ice_cover_surface',\n", - " 'Icing_severity_isobaric',\n", - " 'Land-sea_coverage_nearest_neighbor_land1sea0_surface',\n", - " 'Land_cover_0__sea_1__land_surface',\n", - " 'Latent_heat_net_flux_surface_Mixed_intervals_Average',\n", - " 'MSLP_Eta_model_reduction_msl',\n", - " 'Maximum_temperature_height_above_ground_Mixed_intervals_Maximum',\n", - " 'Meridional_Flux_of_Gravity_Wave_Stress_surface_Mixed_intervals_Average',\n", - " 'Minimum_temperature_height_above_ground_Mixed_intervals_Minimum',\n", - " 'Momentum_flux_u-component_surface_Mixed_intervals_Average',\n", - " 'Momentum_flux_v-component_surface_Mixed_intervals_Average',\n", - " 'Ozone_Mixing_Ratio_isobaric',\n", - " 'Per_cent_frozen_precipitation_surface',\n", - " 'Planetary_Boundary_Layer_Height_surface',\n", - " 'Potential_Evaporation_Rate_surface',\n", - " 'Potential_temperature_sigma',\n", - " 'Precipitable_water_entire_atmosphere_single_layer',\n", - " 'Precipitation_rate_surface_Mixed_intervals_Average',\n", - " 'Pressure_convective_cloud_bottom',\n", - " 'Pressure_convective_cloud_top',\n", - " 'Pressure_height_above_ground',\n", - " 'Pressure_high_cloud_bottom_Mixed_intervals_Average',\n", - " 'Pressure_high_cloud_top_Mixed_intervals_Average',\n", - " 'Pressure_low_cloud_bottom_Mixed_intervals_Average',\n", - " 'Pressure_low_cloud_top_Mixed_intervals_Average',\n", - " 'Pressure_maximum_wind',\n", - " 'Pressure_middle_cloud_bottom_Mixed_intervals_Average',\n", - " 'Pressure_middle_cloud_top_Mixed_intervals_Average',\n", - " 'Pressure_of_level_from_which_parcel_was_lifted_pressure_difference_layer',\n", - " 'Pressure_potential_vorticity_surface',\n", - " 'Pressure_reduced_to_MSL_msl',\n", - " 'Pressure_surface',\n", - " 'Pressure_tropopause',\n", - " 'Relative_humidity_entire_atmosphere_single_layer',\n", - " 'Relative_humidity_height_above_ground',\n", - " 'Relative_humidity_highest_tropospheric_freezing',\n", - " 'Relative_humidity_isobaric',\n", - " 'Relative_humidity_pressure_difference_layer',\n", - " 'Relative_humidity_sigma',\n", - " 'Relative_humidity_sigma_layer',\n", - " 'Relative_humidity_zeroDegC_isotherm',\n", - " 'Sensible_heat_net_flux_surface_Mixed_intervals_Average',\n", - " 'Snow_depth_surface',\n", - " 'Soil_temperature_depth_below_surface_layer',\n", - " 'Specific_humidity_height_above_ground',\n", - " 'Specific_humidity_pressure_difference_layer',\n", - " 'Storm_relative_helicity_height_above_ground_layer',\n", - " 'Sunshine_Duration_surface',\n", - " 'Surface_Lifted_Index_surface',\n", - " 'Temperature_altitude_above_msl',\n", - " 'Temperature_height_above_ground',\n", - " 'Temperature_high_cloud_top_Mixed_intervals_Average',\n", - " 'Temperature_isobaric',\n", - " 'Temperature_low_cloud_top_Mixed_intervals_Average',\n", - " 'Temperature_maximum_wind',\n", - " 'Temperature_middle_cloud_top_Mixed_intervals_Average',\n", - " 'Temperature_potential_vorticity_surface',\n", - " 'Temperature_pressure_difference_layer',\n", - " 'Temperature_sigma',\n", - " 'Temperature_surface',\n", - " 'Temperature_tropopause',\n", - " 'Total_cloud_cover_boundary_layer_cloud_Mixed_intervals_Average',\n", - " 'Total_cloud_cover_convective_cloud',\n", - " 'Total_cloud_cover_entire_atmosphere_Mixed_intervals_Average',\n", - " 'Total_cloud_cover_high_cloud_Mixed_intervals_Average',\n", - " 'Total_cloud_cover_low_cloud_Mixed_intervals_Average',\n", - " 'Total_cloud_cover_middle_cloud_Mixed_intervals_Average',\n", - " 'Total_ozone_entire_atmosphere_single_layer',\n", - " 'Total_precipitation_surface_Mixed_intervals_Accumulation',\n", - " 'U-Component_Storm_Motion_height_above_ground_layer',\n", - " 'Upward_Long-Wave_Radp_Flux_atmosphere_top_Mixed_intervals_Average',\n", - " 'Upward_Long-Wave_Radp_Flux_surface_Mixed_intervals_Average',\n", - " 'Upward_Short-Wave_Radiation_Flux_atmosphere_top_Mixed_intervals_Average',\n", - " 'Upward_Short-Wave_Radiation_Flux_surface_Mixed_intervals_Average',\n", - " 'V-Component_Storm_Motion_height_above_ground_layer',\n", - " 'Ventilation_Rate_planetary_boundary',\n", - " 'Vertical_Speed_Shear_potential_vorticity_surface',\n", - " 'Vertical_Speed_Shear_tropopause',\n", - " 'Vertical_velocity_pressure_isobaric',\n", - " 'Vertical_velocity_pressure_sigma',\n", - " 'Visibility_surface',\n", - " 'Volumetric_Soil_Moisture_Content_depth_below_surface_layer',\n", - " 'Water_equivalent_of_accumulated_snow_depth_surface',\n", - " 'Water_runoff_surface_Mixed_intervals_Accumulation',\n", - " 'Wilting_Point_surface',\n", - " 'Wind_speed_gust_surface',\n", - " 'Zonal_Flux_of_Gravity_Wave_Stress_surface_Mixed_intervals_Average',\n", - " 'u-component_of_wind_altitude_above_msl',\n", - " 'u-component_of_wind_height_above_ground',\n", - " 'u-component_of_wind_isobaric',\n", - " 'u-component_of_wind_maximum_wind',\n", - " 'u-component_of_wind_planetary_boundary',\n", - " 'u-component_of_wind_potential_vorticity_surface',\n", - " 'u-component_of_wind_pressure_difference_layer',\n", - " 'u-component_of_wind_sigma',\n", - " 'u-component_of_wind_tropopause',\n", - " 'v-component_of_wind_altitude_above_msl',\n", - " 'v-component_of_wind_height_above_ground',\n", - " 'v-component_of_wind_isobaric',\n", - " 'v-component_of_wind_maximum_wind',\n", - " 'v-component_of_wind_planetary_boundary',\n", - " 'v-component_of_wind_potential_vorticity_surface',\n", - " 'v-component_of_wind_pressure_difference_layer',\n", - " 'v-component_of_wind_sigma',\n", - " 'v-component_of_wind_tropopause'}" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "ncss.variables" ] @@ -317,20 +122,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "var=Temperature_surface&time=2018-03-02T18%3A02%3A09.758969&west=249&east=260&south=35&north=43&accept=netcdf4" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from datetime import datetime\n", "query.lonlat_box(north=43, south=35, east=260, west=249).time(datetime.utcnow())\n", @@ -347,23 +141,17 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['Temperature_surface', 'reftime1', 'time1', 'lat', 'lon']" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ + "from xarray.backends import NetCDF4DataStore\n", + "import xarray as xr\n", + "\n", "data = ncss.get_data(query)\n", - "list(data.variables.keys())" + "data = xr.open_dataset(NetCDF4DataStore(data))\n", + "\n", + "list(data)" ] }, { @@ -375,99 +163,43 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "temp_3d = data.variables['Temperature_surface']" + "temp_3d = data['Temperature_surface']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We need to look at the ``coordinates`` attribute to determine the name of the proper time variable for this variable, since the GRIB collection can have multiple time variables." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'reftime1 time1 lat lon '" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "temp_3d.coordinates" + "We'll pull out the useful variables for latitude, and longitude, and time (which is the time, in hours since the forecast run). Notice the variable names are labeled to show how many dimensions each variable is. This will come in to play soon when we prepare to plot. Try printing one of the variables to see some info on the data!" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Helper function for finding proper time variable\n", "def find_time_var(var, time_basename='time'):\n", - " for coord_name in var.coordinates.split():\n", + " for coord_name in var.coords:\n", " if coord_name.startswith(time_basename):\n", - " return coord_name\n", + " return var.coords[coord_name]\n", " raise ValueError('No time variable found for ' + var.name)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "time_coord_name = find_time_var(temp_3d)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll pull out the useful variables for latitude, and longitude, and time (which is the time, in hours since the forecast run). Notice the variable names are labeled to show how many dimensions each variable is. This will come in to play soon when we prepare to plot. Try printing one of the variables to see some info on the data!" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\n", - "float64 time1(time1)\n", - " units: Hour since 2018-02-28T00:00:00Z\n", - " standard_name: time\n", - " long_name: GRIB forecast or observation time\n", - " calendar: proleptic_gregorian\n", - " _CoordinateAxisType: Time\n", - "unlimited dimensions: \n", - "current shape = (1,)\n", - "filling on, default _FillValue of 9.969209968386869e+36 used" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "time_1d = data.variables[time_coord_name]\n", - "lat_1d = data.variables['lat']\n", - "lon_1d = data.variables['lon']\n", + "time_1d = find_time_var(temp_3d)\n", + "lat_1d = data['lat']\n", + "lon_1d = data['lon']\n", "time_1d" ] }, @@ -480,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -488,13 +220,8 @@ "from netCDF4 import num2date\n", "from metpy.units import units\n", "\n", - "# Reduce the dimensions of the data\n", - "temp_2d = temp_3d[:].squeeze() * units(temp_3d.units)\n", - "lat_1d = lat_1d[:].squeeze()\n", - "lon_1d = lon_1d[:].squeeze()\n", - "\n", - "# Convert the number of hours since the reference time to an actual date\n", - "time_val = num2date(time_1d[:].squeeze(), time_1d.units)\n", + "# Reduce the dimensions of the data and get as an array with units\n", + "temp_2d = temp_3d.metpy.unit_array.squeeze()\n", "\n", "# Combine latitude and longitudes \n", "lon_2d, lat_2d = np.meshgrid(lon_1d, lat_1d)" @@ -509,22 +236,11 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxcAAAKkCAYAAAByCcJTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXmYHFd19/89Vd09i+RFtqyRbYx3eZUsyQbCTiB5E7YXAgnEZCGEH/lBkjeQkAUIATlAzBKSQEgCZgkkL4Q1EMCSFxazGPCmZUajZbTLWr1I3iSNZrrrvH+ce6tv3b5VXd3To5HE+TxPPzNddavqVtXtqvO955x7iZmhKIqiKIqiKIoyVaKZroCiKIqiKIqiKCcHKi4URVEURVEURekJKi4URVEURVEURekJKi4URVEURVEURekJKi4URVEURVEURekJKi4URVEURVEURekJKi4URVEURVEURekJKi4URVEURVEURekJKi4URVEURVEURekJlZmugKIoiqIoiqKciJxHAzyOZEbr8BAmbmXmX53RSjiouFAURVEURVGULhhHglfi7BmtwyewY+6MVsBDw6IURVEURVEURekJKi4URVEURVEURekJGhalKIqiKIqiKF1AAGKa4UrwDB/fQz0XiqIoiqIoiqL0BBUXiqIoiqIoiqL0BBUXiqIoiqIoiqL0BM25UBRFURRFUZQuIAC1aIaTLhoze3gf9VwoiqIoiqIoitITVFwoiqIoiqIoitITNCxKURRFURRFUbpAhqKd6bFojy/Uc6EoiqIoiqIoSk9QcaEoiqIoiqIoSk/QsChFURRFURRF6QY6DmboPs5Qz4WiKIqiKIqiKD1BxYWiKIqiKIqiKD1Bw6IURVEURVEUpQsiHAeT6B1nqOdCURRFURRFUZSeoOJCURRFURRFUZSeoOJCURRFURRFUZSeoDkXiqIoiqIoitIVpDN0e6jnQlEURVEURVGUnqDiQlEURVEURVGUnqBhUYqiKIqiKIrSBQTtqffR66EoiqIoiqIoSk9QcaEoiqIoiqIoSk/QsChFURRFURRF6RIdLSqLei4URVEURVEURekJKi4URVEURVEURekJKi4URVEURVEURekJmnOhKIqiKIqiKF1ABNQizblwUc+FoiiKoiiKoig9QcWFoiiKoiiKoig9QcOiFEVRFEVRFKULCECsUVEZ1HOhKIqiKIqiKEpPUHGhKIqiKIqiKEpP0LAoRVEURVEURekCCYvSuCgX9VwoiqIoiqIoitITVFwoiqIoiqIoitITVFwoiqIoiqIoitITNOdCURRFURRFUbpAZ+huRT0XiqIoiqIoiqL0BBUXiqIoiqIoiqL0BA2LUhRFURRFUZQu0Rm6s6jnQlEURVEURVGUnqDiQlEURVEURVGUnqBhUYqiKIqiKIrSBTJD90zX4vhCPReKoiiKoiiKovQEFReKoiiKoiiKovQEDYtSFEVRFEVRlC4gkE6i56GeC0VRFEVRFEVReoKKC0VRFEVRFEVReoKKC0VRFEVRFEVReoLmXCiKoiiKoihKFxABMWnOhYt6LhRFURRFURRF6QnquVAURVEURVGUkxQiugzAl5xFFwF4F4CnA7jMLDsdwCPMvDiw/WcAvATAA8x8dbvjqbhQFEVRFEVRlC44EWboZuaNABYDABHFAHYD+Doz/5MtQ0QfBvBozi4+C+BjAP6jzPFUXCiKoiiKoijKzwcvALCFmXfYBUREAF4F4PmhDZj5h0R0QdkDaM6FoiiKoiiKovx88JsA/stb9mwA+5l5Uy8OoJ4LRVEURVEURemS42C0qLlEdK/z/SZmvskvREQ1AP8bwNu9VdejVXB0jYoLRVEURVEURTlxeYiZrytR7oUAVjLzfruAiCoAXgHg2l5VRsOiFOUYQsJfENEGIjpCRExE/99M1+tkg4j+gYieIKKzjsGxvkdEa02SXKfbnkdE/0VEu4koMe1BO30URVGU6SDkofglABuYeVevDqLiYooYY6CTz+/NdJ1PZIjoISJaO9P1mAKvB/BByIgM/wjgBgArZ7RGxxlE9BLzW/nzLre/FMAfA/goMz/orTuNiD5JRA8Q0S4iej8R9XllZpf4Hf+6s8nfALgKwBu6qO5/AfgNAN8F8B5Ie0i62E/XENEVRPQOIvqBETkTRLSXiP6biJ5ZsB0R0RuI6D4iOkREjxDRd4jol3PKLyKi9xDRt8y1ZyIaL1G/5xPRt4lohxHk24nom0QUTDwssb+ziOhfiGgnER0lovuJ6BNENBQoWyWiDxHR902djxDRw0S0kojeTkSndVmHC4noP4lon6nDFiL6IBGdGij7ZCL6UyK6zVyDo+Y5eAsRvaSLY19vzv8nRoAzEX28zTaDpg73mvN/jIhGiejviejcLuowm4huJKLN5nz2E9EXiOiSgm1K37eSdfhFIrqViA4S0WEiWkVEf0hEuXYREb2SiH5szv9xcw1fHSj3xyWeIe5nbjfnoCidQESDAH4ZwH97q1pyMIjoHCJa7nz/LwA/BXCZeRa+vvBYzNybWv+cQkTLAovfAuA0AB8B8Ii37hvMvHq663WyQkQPAdhXZpzl4xEi+gYk3nEOM+cN+fZzjTGYvgXgL5j577vY/gsAfh3AOcz8kLfumwCeC+D/AqgB+C0An2HmP3bKzAbwOIBJAH+Xc5gvM/M6Z5sfAlgA4MnMPFGynqdBng9fZ+ZXlDy9nkNE3wbwYgAjAO6ECN8rIWOaA8AbmPnTge0+DuD/B7Ad8rKaBXlJnQbgdcz8Wa/8OyECqgFgA+R6JczcX1C3v4CI8ccAfB3AXgDnA/g1AP0A3sLMH+ngXOdDXpAXALgVwCoAiwC8CMAuAE93e+9MW3gI0gGwHsADAE4B8CwA15hz/wU3xKBEHa4E8GPIdfo6gM0Anmn2OQzg2cz8mFP+YwD+yJT7oanDReYaVAG8h5nf1cHxNwO4GHJN90HuwyeY+Y055fsh7WIpgLUAvgegDuAXADwDwMMAnsbMW0oefxaAH0BCMH5qzukiAK+E/O6ew8zD3jYd3bcSdbgewOcBPAHgi5Br8WumHp9j5t8LbPM2ADdCrv+XIZ0ArwIwH8ANzLzMKftUU7ciXgK5BjsAXM7MbYW2cnxySXWA/2HuxTNah5ftG72vZFjUMUHFxTRARNshL8ALmXn7zNbm5OIkEBd3A7iSmWfPdF2OV6YiLohoHoD7AdzsG+xEdAbEEHo+M3/fLHsNgJsAnMbMDbPMiotDZe+T6cX5FIDrmfmLJbe5EsAogH9xxc2xhojeAOCnzLzWW/5CAN8GcBQi1B5x1v0ygNsg9X86Mz9ull8G4F7I0O+XMPM+Z5srIQJkhJnHzW95dp64ML1sD0EM2UXus5SIFpvjPA7gTGYu5e0hos8DeA2Av2XmdzvL3wHgfQC+xsy/7iwnADVmPhrY10cA/AmADzHzX5Y5vtnuTohR/vvM/O/O8k8A+AMAH2bmP3eW/yaAHcz8U28/SyAiZQDyTNlQ8vi/BGAbgK0QUfktFIuL1wH4DIBvAng5O0YDybj4fwbgn5n5T0oe/30A3gHgcxARymb5ayAG/73M/BRvm47uW5vjz4UItSpEFK01y2dBrudiAC9l5m8721wBEX4PA1jKzHvM8nkQ4Xm2Wb6mZB2eA+A7kN/WM5h5pMx2yvGJiotWNCxqBjFu3r8noo1ENG7cs7cS0fMCZa2b9deJ6KVE9FOSUIT9RPRxYxCBiJ5m9vGIcd1+jQJuaxL39hMk7u4PUtPdvomI3kY5cd9EtJCIPk/Z8InPEdFFgbJfNXUeIqK3krjRx01PKYhogIjebOprXd0Pk7j7X+Dt6yVExADOBHAVZV3KHzNlrna/551zaL9E9OdE9CxquskzrmoiuoDEBb+dmmEJ/22MnLaY+8wAngJgllN3vz4vIgktecRcqw1E9Lf2/obOx1zH95KEGEy450/C7xHRD519riWivyKiak5dFxLRfzj3ZD8R3UFEv++VexVJvsBmkrCCJ4jobiJ6I1Hr0BkkbtaPENGYKX+QiNYT0aeJ6DxT5qsQYwcAPuTd5zIPzt+FeCS+FFhncyIazrK6WT7VoT6+avZb6Cq2kBjWo+brH/lt2ZQZJKJ3md/NESJ6lCQ852WB/aVtn4iuMm3zQZI8jsLrxsyf9IWFWb4CwF0Q4/Vp3uo3mb83WGFhttkI4JMQEfE73v7WMfM9HfTQnm2OPeJ30hjv705I739f66atENGZkJ7mA2j1SH0IwH4Av0bSS26PwyFhYfiy+XtpmeObOiyCCItRV1gY/hriLXs9yYgutg5f9IWFWb4KwP9A2u5zy9aBmb/DzFtckdAG+2z/dmCb/zF/S+U2keQlvQHyW3mbuz9m/gLEI3EdET3F2abj+9aG10DazWfdds/MhwBY4fImb5s3QAbA+bAVFmabByCetQgiDNti3pX/DXnu/JYKC+VkRBMHZwgiWgBxL58L4PsAbgZwKiRk5rtE9DvmYetzPcSd+k2Iq/q5kNCEJ5H0Ii2HxG9/CuLGfgWA8wA8NVQNyMvhMsjDjiGu4RshvTe/6dX51yBxeWSOvw3iobkewEuI6NluqIjDpyAv1OUQw/GwWX4ugA+b87gV0kt5rrkGtxPRbzGzjQMcg8Sj/yXElf2vzv7vDhyzU54POe/vmfrOhxieICJb91MArADwFQBDkGv1QiJ6ITPf0Wb/t5l6/wGAuWi+JNMQGiL6M8j1eNQc4wAk0epvINf3OcycESOQl9q3IffwVkjP2g6zP4Lcr1dDwje+AunpfRaA9wN4DhG91O31Jckl+DzkxXczgHUAzgCwBMCfQnowLf8A4CCAnwDYA+B0SDznv0FCRt7k7PdUiKF6jrkW34D0HJ4PCWH6T4jH4cvmmlwP4Hazb8setOeXzN87/RXM/CAR3Q7gGyQ9oVUAvw3g88xcL7HvXJj5UZJcoGcTUX8JA/qDkBCPNwG4B9K+ANOWiWgA8lx4KiRc6Z8hz4ffMPX/a2YOhWxdBbnOqyHX9BQAh6ZwapPmr399fhHyvLg1sM0KSFt5PsT465b7IeEqC4noycy8064wRvqTAdzJzEdK7u/ZkHfeHb5gYOZJIvouxPB8LsLi1Oel5u9wYaksNk+k5box80NEdA/kWbkEch/bkXd/eokVwS+CCEcXGzr3HXchEV0Nabejnpd5IUSIrHS9Wg4rIOf+fMjvAujyvpmOilcC+A1m/qqzmb0HtwSOfztE+DyPiMgRP0XbrICEQLfNATLPwW9BOsnezszfbLeNcvxDBEQzPxTtcYWKi5nj8xAD9mXuA8b00twJ4ONEtNwNRTC8BBKTa42QGBKz+mLIS+l6Zv6Gs78vAXgVEb2Amb/r7WsQYiRf5YQ1/A2AHwF4NRF9iZm/bpbPhxgrB83xNzvHuNbU+ROQF4HPVQCuCcTE7gFwHjPvdReaa3AXgA8T0VeYuc7MYwCWEdEfA3jAjW/tES8E8NvM/HmvLv0Qg7cCCf+421l3AeQF+O9EdGmRgcrMtwG4jSTk51S//kR0OcTgPADgOmbeZpYTgM9CeuT/FhKC4DIAMSCvDrSVP4IIi88DeL19MZt9fhDAnwN4HYBPm+VPAvAfkFjiZ7vn6qx3eS57cdamPX4JwBuJ6GPMbA2TFwN4EoD3MvPfeNv0wzyLmPnLRHQYIi5u6yQsypzXMyFhc3nx19dDEumvhxhmN0F6jEPUKJxTNZYj/O+BiKqnQn6TuTDzB40B9iYAdwfa8zvNfr4G4NVOyNZ7IOFA7zHPBz9/63kA3snM7ys6fhlIQpyeCRG7P3OWD0GE5D52cgMc7CRMC6ZyfGaeIKL/A2mfa4jo65AcgfMBvBwixH6rg11eZv6O5awvrDdJCE4Ncu6/APHm3AMR2b2swzNMHQrFBYln9X9DhMV3ispOka8AeC2AlxPRGojorUPO/ykQAfmZ/M0zdHMPpnTfOqkDMx8hol2QNvYkiMB1twlNMLYVIkgu8QRJBpJE8S9C8pn+LzO/v2R9FeWEQ8OiZgCSEViuA/Cffs8FMz8MSXo8BfLi8PmMa/QZo8MaxD9zhYXhP8zfvPCdd3thDU9AesoBwA2DeT0k1OFtrrAw29wHER7PIqInB47xvpCxx8yHfWFhlj9s6n02JGnvWPBjX1gYXgnxpnzIN7ZNqMY/QXqgnzHF478W4i34sBUW5hgM4K8AjAN4HYVHMnl7QFgAwJshXqI/cHv8zD7/2qxzjbPXQ8TKP/jnarbb5X1vSeA07fGj5uuvBOrU0svMzOMBj0w3zAEwG5L0G4SZH2bm32Xmucx8NjP/WUHPdxUSJuF/XpNT3vbEhn4DnfL7EAPurVZYmPrvhnidImR/n5btZv2UIMl3+AKkTb7dhIxY7AhJeQMS2OWnT7UezPwfAH4Vpv1DJn56DUSEfwZN468MU633OyD3/80Qw/p/ALyQOxuYoSfXzoj4z5py/8DMOzqoQ0eY9vcSAB+AeB7eDOCtEA/o9wB8KWBQjwG4Ak3vjqWb8+/2mv2JqYPvJepofyTho/0AjoY8kub6HIJ0kBTlaH0Y0on1MwA6/LhyUqOei5nh6ebvWTk9ozZH4orAunsDy2y4yH2BdbvNX7/X2fKDwLI7zN8lzjJb56cQ0YWBbS4wf6+AxEK75IYtkSQlvhXSQ3o2WuOnz8WxGao1r472vC/NuVdXmb9XoE1vdRuWmr/f81cw8z4iWmfKXAjAN+pb6m56NS+B3P+/pLDL9jCybewXzN8VZSpserD/EmL8XQDxhLm4uT63A3gQ0uP+DHOMOwEMc8lk3BKcaf4e7NH+Sid0Gw6Yv1MaVpKIzoZ4NTfmGI22jSwJrFvpipEuj1+FeOuWQjoz/q3TXZi/Ux4thCTZ/GOQ0b3eDxkZ6GJIiOQnYRKjTdl5AP4wsJsPMvPhwPKWw5m/wXoz82zjHRsC8BxTn5VE9CLroTPhrr74nMgJYeu4DuYYBAkLfTEkxDDP89YTSPK9/gvilX49JFxyAnINPgrgThNeebvdhmXEtFIJ5v7h7C6muo3JjSgTStluf2XiXQrrTTLgw1sgYvjX/PAu5USHQLGGRbmouJgZrBH0YvPJI2TYhHpb6iXWhZJ368x8wF/IzE8Q0SE0e3iAZp3/KKeullCdQ7G1IKJfhMSwMsSt/w1ITkACCQl5IUoma/aAYB3RPO924RdTHf3JXuu8Xne73O+dO+x6nhxsvc9FM0kxhOsxsPveHSroYgy5+8z+fwrg3yHDqtYBzIOE+6T3zsSTPw3AMkgvqG33+4noowA+MFWjGE2vSO7QptPMgFePbum2LQD57bgUJpH4K5D781mE5+6wz5m8OR5O9cp1W5drIPk7P2FmN1F+LcncAsMQb96/MvO9kHYXausfgwjpKdfb9NDvA/BlIloNGZ7202gK8wWBOhxCM8dqSnUwwuJfILlbt0HCaqcz3wJo/mZfz9kk9G8S0cOQEZb+EUCZEfy6Of9et7dHIR1ZpyH8e8nsz4TnjQPoD+VTGS/SICQ0qiW/iWRkqH+DtMGX5eSaKMpJhYqLmcE+BF/PzGVjVaeDChGd4QsM01M1C1kj09b5Ymbe2uFx8nqh3o3mcID3uCtIhit8YYfHsT3gee26KNQgr472vF/AzC1ehR5ijzMfJiHb42yvnKVdvX/EzM8pWQcbWnUuJFm/iD805VqGiyUZptQfbQUm3Ou1JrTragAvgEx29z7Ii/kDJeuZh50w78zCUtOHPe4DU9yP2xZC5LUFYAreApLJBL8GERafgoTTteyPmfcT0SMAhojo1EDehR09KS9GviwvhIRlfT9QhzoR/RjiebsWMnzpWhT3Mm80f/Ni8zuqNzOPEdFWAE8lokET5vnt6aqDERafgAi+5QBecYx6wG3Sdst9gHQsHAVwJRENFIQYWro5/57eN7O/y83+NrorzEAKT4IIgd3eNteYY/mjO10Eaacb/N8LNUeGqgD4TZYRvhTlpEdzLmYGmxwZSn4+1oSGMHye+es+CKejzpcAuN8XFoY8g7iB5pCiPjYc5jx/hQkTuqDTCuLY3St7rZ/nrzDhR1dCjMlSws70jm0HsIQCw9jmYM+1jKizM+l+LbCucFhMZk6YeZiZ/xFNw+XlThHrwci7z3n7PQoxAi4kb9btY8Tl5u+UJsk0eUj7AFxMZohej180f3sWLmiMqm9ChMXHkSMsHL4PMaJDeTW2/UxVjNt7mDfMqV1eatJCyEAVdchIQP6s7FWI2E0QDhVtwfRYz4cIurJeN3tNWq6beUY9BSLyV3nrIoh38A2Q+3QsQ2uK7sOpZn2C5shVRYxAOgGuofDQsaG209P75uz7VwPrfhny3LnDC9cs2ibY3r2Rod7FzP6syMpJAhEQ1+IZ/RxvqLiYGX4AMQx+m2Sm0BaIaAkRzTkGdbmBiE5xjjsLklAOyMvMchOMe9+EK2QgogoF5udow3YA55g4ZXdfb4YkC4Z4GMDZFJijwRhluwC8gJx5N0zZj6JDY9XwJUgP1luJqGWoQRKeHapPh3wOYqC81TUoTW/ljZBQn3/vMD/hHyHhWp9077Gz77nevfwUJKTnz0hmmPXLu3k7283f53llno7WEa1ARIupdbQpQOLXgebwxIDcY6C7xOg7ICP6hPIRppunQSY7a+f1KcO/Q7x6H3CT+InoHABvgxi0/jwJXWGSt28G8L8AfJSZ39RGWAAS5gEA7/aeH5dBklUPQQZ5mAo/Mn9/K/CMeDpECDXQzBErxAwU8WXI0Mrv8Fb/BaQtfp2zE/9dTUQtRjXJPEAfhvy+vlPW0GeZefonkLl6Xuetfh/knn+anVnejYj5T8igD18D8Otcchb4HmHvwzvd55x5Nv2t+fpDNzyLiGpEdLmfn2dCHz8JeRa/n5xkMJJJ9JYAuM/tcOrmvpn9nWPq4D/7vgAZ4vj3SEZss+VnQXJ5gGb7tnwS0tb+zORE2W3mmTokkHekXe6ODPVFZn4vFOXnCA2LmgGYmYnoNyDzUXyBiN4KGdLwMUiv+xJIL+hC9C45NcRhSAjHKBG581ycD+DLbk8LM+8hmSn2S5Akxtsh8cZk6vxMSHvqJJn1HyGTj91FRF+BxP8/DZJv8d+QOTp8vgsJpVlBMtPtJIB7mNmOCPIhyJjjd5GMc96A9GzZBMNQT3AuLEMTvgJm/hAi+iEk1vsoxPh9KuR6nYJyPXd5x1lPMtTlBwAME9GXIff+BZCRxdYAeFeHu/1nSFLuayGC63ZIsv1cSFLssyCia42pw24i+l3I6GM/IZnscB0knGyxOceFZt+fhozGchMRvQjiUbkM4on4KmQIXJeXQITsjyHehYcg1+1lkHvkhlatgQiM1xnDajekbX46NLqYx9cg8778CpzhU6cbkuGYz4SIxF7wXkgv6vWQkJNbIdf/VeY47+5hiMXnIN6QvQAOUnjggtuYOZ1zhJlvJ6KbILH/w+b5MQsyN84pkNmnfWPvXIgBbZkNoEpEn3WWLTOjsIGZv2d+B68CsJpkKFqb0P0yyPPmvR2KOTt4xLtIcoBWQUake5HZ91u88i8H8DdE9ANIqOABiLfi+ZDf//0IJ5EX8QZInsKniOjFkOFNn2U+I2ga7Jb3Q5LEH4c8w/6aWgdouJuZl/sLQ5Dkq9jediv4f9G5D7uY+Z3OJu+GCM+XQt4Vt6OZ0L3U1MvvUFhgzmUUrbkYfwfxALwWwALzTL0QMjLfYwhPRNnpfQPk2fZKyNww6TwXJv/rTZBBAu4kGa79Mci9vhjA59iZndtss55kmPa/g7TFL0GeSa+CtIcbODs797sg17gOYGfOb8rlJnYm51OUEx0VFzMEM28lGSnpzRCD/nchhvpeyAP5QwA25++hN9WADHd7A8QYHIK8LN+BwORXzPxtkhmp3woxfJ4HGSJyL2T0n6/62xQenPlrJJO2vQ3y8pyExPA+CxIeEBIX74Qkzr7IHD+GJDjeavb5USJqAPg/kJfUQxCh8tcQYdIxzHw3ES2EnPeLIT2zdch5/8zUv8xoNO2O80EiWg95Uf4mxFuxHWKQfSAncbtofwzpnfsmxAj8FUgYg51o70Z4vcvM/FUi2gwZ/vZ5kOt8ACIyPuGU20aSqHgjxDB9oSnzOsiL3xcX34SEVTwbcl/tkLHfggy/m46CxsxHiejl5rxfAzFWAUn+bycuvgOJvf4dNHshjwWvhfyePt6LnTHzYeMJ/AvItXwzxKBbBeAjPQ6xsL3LZyM/+f8JZCc0BIA3QpL63wjJsalDOkne744c5DAHcp183GUfQ9MrBoi4+i7kfr4Y0m4ehYRl/RubeXjKYkZeeyokSfmlEJHwIKRn+l2BZNvlEAP8GZDcjtMg12KD2eafubOhaMHM60hmTb8BTaN9D0RgvyeQw2LvzynIHxnqX9CciLEdT0HrfViAZk7DKOQ5a+u7zbyr3gYRBa+HvKv2QLyd7+fAsNR5MPMhInou5FxeBZlw8VGId+LdzNwyl0QX961dHb5ARHsh77pXQ7ydGyEdV8HR0Zj5RiLaZOprh4EeAfCnzPxFr7gVVBXIiHrt+Da6G9lKUY5LqL33WzkZIaJ7AVzOnQ21qSjHPSTDl94E4H/lGLm9Pt5siEH8Y2Z+eZviiqIoyknEgv5B/ucnX96+4DTyq5tW3cfM181oJRw050JRlJONzyAcXjJdvAXiESrTQ6koiqIoJzUqLhRFOakwSaO/D+DWUDLuNPA4gN9j5qkOvaooiqIoJzyac6EoykmHyeEIzWY/Hcf6yLE4jqIoinIcQoRIZ+jOoOLi55TjKTZPURRFURRFOTnQsChFURRFURRFUXpCR56LCy64gHfs2DFddVEURVEURVEUQCYlvWCmK1EGirSv3qUjcbFjxw6sXr0aL3n7Z9A/dCkGhy5CkshQtkldJg5OmMFmmf3baMi68Qe24uiDW1A98yL0zb0QSX3ClGvI30Yj892uB4CJAzsweWAHqmecj+rpoYl+85l8ZNeMbGu3n3h4O6pzzsts36hPZM47Md85SdLlE4/sRvLEPkSz56N2+rmgSCaYpihK/48qNVDcOvF0/dE9SJ54AH1zL0LfWRcjqtYQ1wYQVyJUqjGqfRWcyt3AAAAgAElEQVTEFUKlGqNSjc3yCFEcYfyBrTi0ayNOP/8KnHbepQCAWqXcD+eRnWM4uH095lxwBU5/cnNS3QnTPhoJo2HbRcJomOVs2s0Tuzfj0R0bMOvcBRicf3HwGLZd+RzauwWHdm9E//xLMevs8LZ5HNq7BYf3jGHwnAVT3javfrnb79uCI3vGMHDOAszKOedut6UoPw700N4tGN+3CbPOvSw9Z7985H23k3c9sWczDu/ZiFPOuxynmDZi18WmrcRmW//v4T2bg22kiIpTj4M7x3Bw23rMufAKzL3gspaytUr29xAHtj370qsx/+LLUYkobdtxRIjNd/t/HBFqcYSICHs2rcP9G0dw0VXX4KLLrkIUEaoRISIpF/4fiIiwbf0o1g2vwpWLluCKhQsz9YtaJ0RrYePoCEbXrMIVixbjsqua2ze8+donk9YJ3DeOjmD98CosuHoJLr7iKlOu+TtMmIPfAWDb+rXYPLoGF1y5CE9ecBUmzQEbpoknZijziUaS+V0DwP1j67Br4wiedNlCnHPJFW3P0WXP5vVtt3WfKRh/ArT6ZtSf+ioAwK6xddi7eS3OvuRqzLuosyEiH9i6odS2oWfig9s2YM/YWpyz4GrMv/iKTNtrt717zuctuLKlvL8v//v+rRuwc90wnnzlIpy/4KpmOa8K1Th73IgIO8ZGsW10DS686hqcd2nrsYvYOTaKTWvX4MIrFuGcS69saRNuu/DfA/u3rMfOjSM466KrMe+i5m+54T1D3e8Tpg0+tH0jHtg8inmXXJU+B2px9tnj/2+fI7VKhP1b1mPPprU459KrcU7gnP3r6z4ndm9ehz0b1+L8Kxfhosuvlt+6KV41z4uYkD4jgObvfMfGUWxbN4wrr1mCy69aiGosz4r+imxXiQgRIfsXQCUmrBsZxupVq7Bk6VIsWrRI6mOO606s6FY9NsuHh4ex8r77sPTaa7Fo0SI0nGkI3MvtTk/QcJYPDw9j1cqVWLJ0Ka5euAj+NAb2yeM+k2yZkZFhjKxeiYWLl+Jy5/nlvyn9V+el8049H8oJSUfzXBARL/qrm0ERwKYBJQlnhAWAoLiw/zfFSHlh4S4/ESmqexmRQVGcqmKKYkSVmvwfEBUuFMWo1AYQ1wYQVWvmex8q1RiRERlxhVDtq8j/cYRKTZZbA8ulrMCoRIR6joE9Uc8aIen/9SR9EHHCaNQZzJy2F58iA77hW1w9oFPBcCz3XyQg2q2PPUOjrLgAgLhCmW3Kiouy7SiPSo7hYMkTF+nx46Z4sOKinbCIKWw0lBEW1SiCvcxlhEQ7Evfl30Zc2LKNpPl/npBoJJwpkySMBpsyHYgK3zCcbibqCXj8EHjlt8C/8Oppq0ORcV+rtBq1neyrzPpaQBSk5QsERKjNtcs9bRRcviTHZnDbSMKcioB2AsN+t/jvDvdehkSGe13KiIqichb3GZX7HMt5NgDZ54O7jRUa1ThCNaKOhEUEecba6vqiIiQoytCpyAj9tPKEBtB8RrllmkIku52/64vPOhXMfNxnSi8YmMX/elFnorzX/PK6e4+reS6mlNCdZ/gBrV4Lt3ynwuJEolMRFBuh0DDnHEG+i8hoCgog30vRjqQ+YQRKLAZDIwFFhKSeIIpiJPUEdVufhNCoJ5gAWgTGRD3pSGAArS+KWiVqeZmYDVIvBiIgrgCNOhBF4XZGEfXc4J9uATFTx+oVvRAW002R1wIIC4t29EJY9EJUdEovhUU3osL/nU9VVOZRq0RIKjEm0SqGe0FRJ0uZdu6LgrL4bcYVBCHvQ6hcuj5Qr2pgmW0PEVqfu7YN5LXlahxhspGY44swn2gk6TVpJJwKeNs2Yuc3aJf57w5/e/v/VERFSBgW7SskKOw553kpfEHhCo1uhUXVVLUbQWFX+9rQbtdgTveXcPMYzIyY3Puf3d4ta4ncg6SXl1KhYddHEXlCpLndifeGVFy6EhccsA19r0W2vKNYc4TFdENR3FPvR689Ka7I4KSRigxLN6LChxPxjERRH+qTDREYjtjghFGfTNJGERIYneL2MtuXhf8ycQoDEC/GsRYYx7Nnosy+23kvumE6DLVeGJj1hDPtqgxFbbid16IXwqKTnsQ8Gm28zKGQqOz67oWF3xMd+msJdh4ULAd60C4ou5+iY5VlKkZnLyjyPrjH8X+nIdFQJG5dg70vpmZb8AsGnmFuj7b9rVgPRkRhgQE0O5msYGgknLneE/Wk5d0REhmh8wDai4o8T1PoHlsR04mXIiQoANdz0Z3HwhcVec+VoseNu859pMRE6TPGFxlWYLjkiQ0ASOBcRzheiwKh4e/sWHtApwIRENc058Kla8+Fn2vhUuS1kPWthvl0eS1sr/9UOVZhWb7ImCqcNDLCynovIsDxWMSI46bIaNQZFEk+RMN7KHfivfDxe6TaejG6FBhxHE1LaFRZOhUSjUbSEp7US3otPtp5LY4leYZGiHZei7xwqF4IC/9l30E0alf4XoupCIvxeiMtG/oLhI15u77M/Qlt39FzxrvAUxUreUZnnsEJNENdXIrCi9rWoaSAyHgtCq51SHT46ycTRgwx9qvOJZxMOFMH+yx262jPtRpHgGk7rsBw62fFhCsw7HIAuUKj7v3e/d9/p6Iiz+Ph3l97nu28FO0ERXM5uhIWdr0vKKbSb+F7M1wvhtS51YuRXq+c48p9zy6zYiMkNBqJ05ZzhIZy4tHTeS5co8oadyGvRVp+msOhfGHRrfdiJvI9eiky3O1T70WtLxMeVY8IFQB1yIOzPpGgUoswMdFArSbXsRcCA8iKjCIvxrHyYPg5QscCX/zY792KjOnyXlh8t3cRxzoUair1cL0WLeuMQdELYeFWQV7W8v90igxXWDSPHY5fL/JYdCIqQr2N/rLpaRf5PdCd0guDM4/JDp4xZQREXpkiiq5NRE2xaUWGHKdZxhcagDyXbThUwpwRGIBcuwmEhYT1XPh184VGnjfDXZaXU5EnKtrdX6B9SGRmm+Ay9/rKsqkIi7KPYip4uHCOQAmJDN+LUUTIwyH7c/K1zG+1GRrl5mDkCA3lhGNqORdeIjcQNtBCXotOhEWnxnWRt6LX4VHTCUUx4kotzceYSr2T+gTi2kDzu/FecMJIIs6ERzXqCeJKVCgweoEvMmZCYBxLYVHGmzJdXozpFh9F9NqYnKgnQCXqKDQqL4kbQNtwqF4IC/edbO+uKzKA9kLDDVsoIpRw63sofC9GnrA4MtloERVlBIVdHrr3bvmittFNJ4a9h51uk0eeoLDLXIMz5LnwxUTVvJrKhHyUERF+73hPSLJiwi4DpE24x0pzNCJqERgAMt9dgWHrbp/7IVHhLysKmypK1PZHg8us8+6vrXPePQ49A4Cwd8L9XnWGKbXPhzxhQZQvLCJwT5IRXOHhCo0yIiOEbc5F4qNCXv4GUbpd5HkzgKzQOO4hAk1j9MGJSFfiImTclfFaHIsE7pCwsKMr2eN0IjBmSojYBGz74aQxZS+Gu63rvQCsx6IiIzXZXvQCgTFV74VL+pIIeTGmUWDkDZkMdO9B8GknKNz8JbJu4i69GMdCQMx0SFSnsfTtDM2WHs5AOFQvhIUbytAw1kGEbBh7J0LDx8+38MOh2iV0p98DwiIkKsp4KPxlUxEaZelEXLRLtA71YNvlvsFpe6L7nd/BZMKpmAC86xPnj7rkHx8IC43s+sJdlSYiQhI1202eyAACQgPN57Kbf9EiOBzPRSihu1OhYSkTApUnKvLuMdAqHv3fv+wbmf35YsJi1xcJi2pUJCxKPv+ofIOwQqOsyAhR9qfbDI/i4PJwIrhyItKxuAjNa2HJ81q44mGmhIX9f7pGomrk7Deu1ILL87BiIqrU0vOxoUy9EhkW671oQDwW9QnZp20UFBGiyNzXqPVB30uBAWRFxrESGJa8MCWfMgZ/GQ9F6B3BSfadMN25GP4xXGHihj10ExIVwm0rRcMV59GJsPDDHUJeCz+JO92WsuFQvRAW2ctiXtTgjBcjU8J7uZelyGDNExZJIv/7ydv+UKFFcw+E8J8P7XIwphI+FccyWpQViEWUCR8KGZt2ud+L3Wfal/w1BjozqrE1ou1OW+9PUZhUyFsRMlSrPZq8azJJgIiBRAxcm4NhRcakF9Jkj++eUxQRYLxgIYGRN4JUSDD4Hg23fOh7u7wKt210Iipc8Rj67QNhMZH1hmQN906FBRGAJAEldfhwFDDjyogQT4CEvBl5IqNbxGvBbUUGoGFRJzo9ybnI81q0S+LuFe1ERd427erkrs8TD73CFxX+6FCuMOplqBQqtdzwqPpkA5VqLCNIVSPUJxtANe65qPCpyJO1a4EBoG1Sd7fhUFNNFA+OtObEMIcEBlDei1HkvZiqZyPPaxEs22MPSkhYtBs1qmwd2oVDAXnei/LCwq1Js1qU68VISxR4M/KaYshrkZd3kScsbKKt/VskJIpEn13XicjolDgiEJo90oUjI5U8ZDeioi+OM8a/KyqaniXKGuOFvyG0lGtnxHaKW5c4itBIgElKkLDUP/VcOP/niQwrQPIEhq1rnsCw5CV1Sx1bhUWmI6FNCFSnosL+3rNeC7nXsm+k26fXMeABkDLILLfPhTLCgpKGCAvmlpdESHAAOaIjUyDgNrdfPaExRU2RIQa1FRlAVmgc7xCAqJdDxZ0ETC3nIsdrkZfEPR1ei06FhWuklw2PmoqwaNQnCr0XrqhIv8fZZTakzNa3Gy9Gmsjt1MW9dtaITYgQRbEjLIoFRq+ERtDQmKLAyCMvHKrgWTsl8jqR3Hr7AsOvw7HwYnRLUUhU6L5aQVDWexEKxynb7sp4LWy5onCoqQqLkPEUmd5cQLwYMYnt0KnjzRquknzdOjqUe9zQyFBlhEU3Q7u64q9IZAD5QqPoPrvGoxUXrpHo488NUUTI2LT7cI3N0JCiFrZhjsyoxnF48sM4fwjhIiERMmCNTd8Wf/jR7Hlzi8jIC5UKiYyQwADajyCV1xbKCo2yIVB+krZcA3PuOd7JptcCme/+9SsSEj7VSFpsNaKOhAU1HHsqFQ9Ou3brU9bLAbS+pFzxEgibcpe3xXuxktmXKzJs/kVIZCgnJt3lXDgvmpDXAsgferZXwqKsqHDL2WOXCY86FrkWIW+F/Z4ZjcMVRHHckciw4iYvyd31XtjwKEwAldr0Cozsi6G1bhNm+MteC4wywiL0vRuxUUZUhJZP1YvRy9yLZk5F+/312lsBtI/zt8tFLDRzgsrUxU3iTgVFTjjUVIVF5o5lDDK7sCky8kKlmptTYfiTS17ehRUWR+uN3FAo+//hie6fhVY8FokMID+2Pu8+uvcOACokrzI3Gdel9EhKroHYoaiwhiHQjE1nlp5aOT1KDfuIsh6D5jkX94a7QsL9nsnpKRoliOEPrJWSmLrKARhA1BIqJQWz+RZWZPgCQ+ol5112BKnmdQh7t8rmW+SFQOV5KgAExEQ21K0aRajG2aGli0REq3BzyiIsLGLzDMkVFs5LxRUP7YRGaJvsdh6BnrZCMZHzsss7HiErMszaTJK3Co0Tm85zLtrkWhR5LWZSWNjvvsBo572YjnCoIlEByMOOIkqNyEYjQRT1teSvTCVUynqR/GvkhkdFoIwxngBo1NkY9TJiTyfzDOQJitD2tUo87QLDFxau96B1m+z3IrHRiaiwv6fIeWGW8WIA5UOlsnWbmvDoNiSqG+9WGWFRRDuvha1rzQgKPxzKFRRTFRbu9WqOjNLssXVFRlHCd4zwiFEhr0U3wmKinrQIi06vfej+T0VkhPbvhrLJhrKd2yOdli/Z3ENzSfjJ2hLmkzU040juje2NlmNSahrZyxcWHACz0zaIc4WEu8yWSUVG5nwpaJYlOcLC1st6zogJzFTKi+EndTeHrqU0wbvMCFLutkBYVPjL/WW+tyIUAuWHudm6+qFu6e8+zv7WrYgMiTqgNbE5r+nlCYs4omJh4b5cnN6nboSGv13r9s5xStCyr8BzihqTAFF7kYETKyxKaSVetmxZ6cI33HDDslMufhoe33oPQIR44HRZwY7XgptGFCciKKwhO/HwDhy+fyUIhHjgtPK1ZMbkI7twdM8IKKq0bNtOWEwc2Ikju1YDFKEyOCdt9OnEchRlfgiucT5xcCcm928AExD3n1q+zobJR3djYv8GgAiVwTmI4iriar94JypVUBRlvBVRHKFSiRFXIkwc2I4ntt2DqBKjNvsMgIAoikFRBSCk29pzjaIYRBGYGfVHdmPygY1gAiqDc0AUySeK5WFFkWxvljHLg5ABTDy8DY9vvhuI5HpFkczQGUX2pdXsuWHIQ5dZHoyP7BzDvjV3AlGEgdPOTHuFI5Ke5TiKzKe53P3/wI4x7Fr5Q1AcYdacs8DMIMDMEureYEp74ci8FA/t3YwD638GiiJUZ5+R1rt5X7lZaaC5joHD+7fisc13g819Ek9twcONm5/D+7bi8S13gzlCddaclqJJwi3P2aSepPUZf0CODQaqp5xh6uYdn1vfD8yM8Qe34tGxuwBzztnyOS8Us/zQ3i14dOwuUBSjdsoZzdlfAwLCX/bEni14ePQniKsx+k49U8qkBo9rLGV7FAHg0fs3Ye/qHwNRhFmnzw320BcJi4M7x7B/+E4wIgycfqbTjrLJ2W67su3sga0bsOmuO1Ctxpgzdx76KzEiIvRVmmFR1jDpi90kzghbN6zFT753G/riCubNH+pIWKwfHcZ3b1uBOI5w1rz5IKK0Xdvfj3wHCGYZmsvWrR3BD26/BVEU48yz5knT42ZIjf3OECPS/X/rhlHce8ftSIhw6hlnNYecNcZhnrCYqCfYs3kDttzzg8y1bgeb4z+wdSO23HMHQBFmnzEXMPWxRqq9t6EOin2b12PT3XcgiiMMnj63xYB0c2TkGiZ4YsswzrhsKWIC7h8bxeoffQdxFOGMeUNyvXM+tViGNY7N/dw5tg6rf/QdDFQrmD9/PgaqMWpxhFolQn8lRn8lQi024iICajGhQoRaRNg4uhbfv+0WVCsx5g8NSXuwdXfaIZm/8kyXe7xxdAQ//M4tqMQx5g0NIYrcxF9K61gxbcx6TyKzbMPaEXzv9ltQjWOcPX9+2rbsR36PzQ85bXbj6Fr84LYViOMKzhqaZ9aRub72txRJfQnpeYAIW9avxV3fvx0gwpnzhtL2aEWObYt2f0k6rClh56Z1GPnxd0FRhNPnzsvUNzNwkHcuzMDeLeux8affRxzHOG3uvGZHgRULpq7VOEI1juSa2/pHhF2b5D5X4xjz589HfyVGXxyhGkWoxISBSiz3NiJUjJiMIrkfY+vkelXiGENDQ81riub98j8V0742rB3Bd2+7BZVKhPnz57cVFmCTyM0JhodHcPOKWxFHEYbOOssIDDgCgEFgECcgbpiXhjxJhkdGcPPyWxCbOuch2zY/VsAMDw9j+YoViKMI8886M1vO79DkBO5LcmTNKtx8y22II8LQ0JBsA07rmAY22jZnhMWNf/c+LFu27IZ2z5yZ5mM33rjs5eeegyiOZuzzmft37l22bNlNM30tLB13Jx7ZvxlUqWF832YA5bwWsq6ByQPbQXEVEwd3dnRMimJMPrILVO1v2baMx2Ly4A5EtX5MPLwtsz4v/8Cl8chuIKqgfmBnUyx18Gk8shsUV1F/ZFfuuVlhYb0Vtnd4fN9mUK0P4/s3527rej2s0IgrNTQe2wtEFSSP7Ws7S3nGw5QwDu/ZBMRVHNq1EUnCqE+KIVyfbKRD1TbqjKSRoFHPxmgf3L4eca0PB7etL+WpyJSJI9murx8PbVlXWOcQh3aNIa724YndYy3r2oVDHd4zBqrUcGTvpuZ1Mb287TwiR/ZtAsU1HNm3qWVdkbci3d78po5499nfNtSBdHj3GKjah8PeOed5J9zlh/eModLXj0O7N6bLQ8IilMj9+M4NqPT347EdG6SMY/yl29leRG+UqIPbmm0kRJGwaCSMx3ZsQFzrwyM7wtsDWa+Fy56xtegfHMDuDSPB3vEocB62Z3bDyGrMGhjA+pFVHXss1qxaiYH+AaxZtTINewGaD2B7PELT+IuNQUkErBteiYGBAYyuWekYqcUjBVmPy9bRNegbGMCW0TW5Zf1ztuzfvBaVvj48tHW0tDfBfh7cMor+gQE8vG3UGGiEwVqMwVqMWiVKPwO1OCsaKhEe2LIOg7MGsX/zKAZM+YFajNl9FQxUY/RXYlQj8SYMVmMMVqtyr2IRijs3jGDW4CB2bhiRMCbTKx36WOPPGqHb1w1j9uAgtq5bg/6KGJXVmNL/K5Fc+4rZb/o3JqxdsxKzBgcwsmYlKrEREeY+2LIiEpDm9dj7PLqmeY+tkKhGzV5ta7imPetAKoiICMOrV2FwYBDDq1elx41MG4tMO64619nWhQCMrLoPAwODGF19X067bra3rAePsHl0Nfr7+7F9/XB6T6yXoBrJ/RAvD8z3OA0/3LVhBLMGBrFvbNQINyPk4ggD1Tj4sW1k36ZR9A8MYv+mUcyqVdI2YevQV4nlWBGl97CvEsnHuc87NwxjsGqERUymPcWp16IWEypx837HBKxbsxKzBgfl9+jcE3tfQh9y7tOswQEMr1rZvLdkn61e+BE7I0QlCe5duQqD/f24d+WqZhmbs8PeXzjeBE5w732rMDjYj3vvW1n4HPChpA5K6rhv5UoM9tVw3733OvXjrIfC867Ybe9dtRqDfVXcu3K1U09vO2TPfaojUykzS8fiYmDoEiSTR9E//5J0WZlcCwConnEBuDGJ2pwnd1zR2pwnt2xbRlgAQO3MC8H1CfSddXFLOfEg1DLLXG9A7cwLgKSOyhmd1xkA4tPPRTI5jsrpTyoslyScGu7WAO6ffwkwOYH+oUtyt8sTGLUzLwCBpf5Ay/pMfodNHDfH7Zt3MRpHj6Jv3sWoTzY6Ehizz7scE0fHcer5l6e9kiI8GunHXZ4p00gw58IrMDk+jjkXXpmWrXsx4I2E0agnYDbXrM5gZgyecykak0cx+9wFAMLzrVgDuTn8qiwfPGcBuD6BgbMvTctGEaWf8LWXz+A5l4IbExg859J0WWgfdj9RJcp8BoYuAZJJDJp6u9u5x7H7jeMo/QyeuwA8eTTdloxIba1rdnkcRzjlvMuRTB7F7Cddlh4TaL7o4gohrlC6rX05AsDpF16BZOIoTj3/8o6EBQDMufAKNCaOYs6FV7TUsyhx2AqNU8+/HPWjR3HqeZdjop6g7rQxty2FRjk6Z8HVOHzoMM5esFB66hsJEmaM1xMzz0Nz9CS7zP699KrFOHTkCK5YuETCkJjTBGxmM/qJ6aVtmDBC6x27ZslSHBk/gmuWLEUjaS5PgJZ6ElpFxjVLrsXR8SNYtGRp2lteiyPHuJZPXyXCYFWWWSPvykVLwBNHceWiJRioxhisSt6A3WaWMdpqlQiz+yvpZ6AW46IrFyFqTOC8yxairxLhlP5K6c8lC69BJZnERVddk9mv+zltsBr8fsnCa0CNCVx+zRLM7qtgVq2CWaa+s2sVnFLLnm+faWd9RiBctnAx6hNHcdnCxajGzeuR97HGZZ+9XpNHcfU11xpD1BibxtC01z8moGbFgZlRecnSazE+Po4lS5Yag15yKKzQsIamNUgJzTj7xUuvxcT4ESxeem1bQWF/i7HZfxwBS65diqNHj2DJtUvTZb6XBsgavPa3unjptThy5DAWLrk2+NsrEhhXLVqKyYlxLLh6cSrU+kzbtIKtL45Sw16MdhEZCxYuBtePYsHCazL3Qq43BT+zTJu97OrFoMYELlu0uHkPK812IUJBREpfnP2dDFZjLFy8NL3PvqgQgdMUFTUjKqzAuGbxUoyPH8E1i5e23JO8j8U+C5YsDV/rDNmXCa5bvAiHx8dx3eJFmeUtZQ1piBNFuO7aJTh8eBzXXbuk/XED+7l26VIcPjqB65Y62/sCwKuDPf51SxbjyPg4rlu6OH9btCaNKycu5IaNtC1MxJe/5X8AZHuCXYPYzQtwJ83r9bwWZYWFHdLVz63wR65y6xZKQJ/K0K/Wm9BuZKiQ90KO2bzGft6FW097nRMvudufN8PP8XCxdbBUqjEoIlSqMaKIUKlG6Xdb17gi4Vyx6YkMjeKR7i9ggEq57L3rVFhkRa3vnfA9AJ3nXFimM7HbP7Z/rLwci6IcCn+du4/QvBZ+AnfRZHkhMZF374uGjHVHjGrntXD/+r3dlfT/Zk+49WDY8qHcC/u95iXtRlE2BtsaSXHUHHbU92DItcr3YviiogxFsft2uRU38l3yLyaTJJOLkQooLydjssGZCfTGvQ6AkOArSqot+92fjyKUKxGKk2+dDZlQIeCeL38CT331G1v30+Y3HZrduihhO/0LpKICsGE/8r97a917DjRHiipqC26d3f3Lumxd8x5J/l3zhy723/22HjacLiyew20rNF+He05umVAOUCc0nOKhEb3cduEus9fUXVaUUxGbMCq7nX8fpkLh6FCZUCjzv825MHNdpKIhJCzM/66wyNBh/UNJ38Hhb31bMu/FZ+tD1FJHdsLhGsw4ddYg2E1KOk65/JRT+DNLOxdtveSZP/zRfcx83YxWwmFKQ9G6szkD4RAQa8TPBK6wsH/TPIs4Bjca6TpOGpkkb7vMbmMTpjuZ3TtEaEhYu8wdtSlGVGg05p6zEQ3u8LVlhUWIohGjKtUYDSQwqacAgAlkDc0jZqQZu2wCTcPETfI8MlFPy3UrKspfI0lUt3NhUCTPwSIPRRGuwR6aB8Pf3j5zyx6vU1ERWu7vIy8MyhcV2XWdC4siUdEJ7WZ/njADDMj/DdQqcSaeP2PIOsnE1ngeqEn5iYjQz8AkAX2VGEnSQF8lQiNpTigmszA3ECVimCQRZ0UGYJKyxWhoSJJB+vLtNEHaXkF7KSVuXVY0uDmErU0Szk/GjR1BkciQocSomgRdGw8vw0M2Z+kOhVicsjsAACAASURBVJcBxWKhXVK1P6JTXnnfaAwZiG5d+mNCFOXXo/UcwsuteKxGkck5yBqbNpHbDX1zL4crMtL1aSK//GkkzeVRRBkx0ImgCBm7zJwpkwT2YY+f7pM5HWRA6k/p6GUJUG4kKYM7TK2tQJ+5qTYhHJAE9iTq/BmeqXdOu3CXRc51tP9bUWHvsRUVNjHfFRV592GqlJ4awb6kgFZh4ZfD9AoLd3lGZBBlBYZTZ79+mXo4wsJSNOKZcmLQlbjI6wk+VpQaGcoTFm45X2C4y925JeyyXgkMuy/3u1tXl0ZDBIb9v8hr4Z6nK+a6FRb+iEKdCgxr5Lk9zO7/ZQRHt8KindeieW3CAqO5vvAS5Rr8oeW+4HD3HRoNqmj/nXgpQvvpxlsh62Q/eb3R3QqLMl4L//+GHefeiAPLkYlG6o3wh6edQIKa38drhlC2bczG/gNiKDcmG+ivRGhMJtLDmelAi1BN5yiIjMFlDHzkCIwpYOuV/o6oOZhCvtAgcARUmRzPRTNW3vVgjNeTVGTYdZONBFGtkvYydyIY2pV1hbXvOcgMwZrTI+1u55aXpFtqKypk+/wfed5IUO4oP0DWW9HOUGxOGGaM/8g+MUmGoDXLM787cxy/pr6gyNjxnF3vCw2pS9ZQbiTmXKYgMFx8sWHbFMw+7FC8rtAoS157CbeVVjFh17sex9RjgaanEWgVFZ1qi6Jxlkr1uxA1XZdk1GySZIVFarB7wiK0rw5oOwkfAiLDHsOKA1u3zMuVWvZvhUXWA9tRdZXjjI7FRbuZjUOhRdNNO2HhGtMtnom4aZQXDVU7VYHhTqbney+sIHC9F9bA62RGaPc6tOSRdOix8OlEYFh3u30wN9A0TtsJDku3oqITrMDILssv3+0kdv527j0tIyraebB6JSrccmW9Fe7/ZcOgusVtDwBSkQEvRCfkxQCaAsMdnag+0UhDpaw4aSSMRkXK2KE2E46QtJxTZAyEcgKj2yviGjt+D3cj4WYvv7lnbvhUZmjRKmXCWqIGp8ad9VqkosKIDOvBSM+4QDTkCYZ2YUp5ZfO9FAiWB4A+IkTeTNkhisSHNTrbeSt8URHyIOSN1W+FRsibETJki8RE67k5x+HWbYu8Go1kCgIjc4KtFeyLm8PRWrHhCg2XdqFslqynAun/sq5VTADIhDCGREWeoMiMnmf+9V87fqhZXjNsG1pFETiqiNFu/7cT6JUVFlOYCTYoLEJCwSnf4sUAWkWGv39nuXvpxAN74qgLIoB0hu4MUwqLahcSNR20M46LhIX9Hpqhu12YVEhg9ALfmwGY2H/AGOxo67Vwycs7KSssbN5BaD6E8gKDEVcIbAeujUgm3kNWcADZ3mf3heILi/pk0jNR4eN6L/LW59HO8A/VLyQ2isRAJ8dtJ0566a1w/58uYeHnWbjYXt6GIyYsRQIDQKHIKAqVajBQdeoi20dIOD9Miokzvd+d4ho8gPRw2/O397MZz8+tXg0YrwaTGI8mZEomO0tQdRLZJUyq6dU42khMR2l74RAaYasTYdG6v+yy0IzVLduYEYGKaGfX+eExed4KX1SEmr07Vn9QaJCdmbjpzWiuajVmXdrZMg1u3S4kNiLXiIuyAqOe83xNR/JxBQaaQjTvkRkbLw2QDZNKD1+id70lRIwobRuupyIkJmwuhWzXKiryBIV7HfOue+jaAvlGsjtKVCny3OtlhEUHxykUFu7/nsgoFyrl1CMnHEo9FicHUw6LOpYhUe3CofKERfoCtnGensAAml6MUJhUkcDo1EPjignrvfCTyrP5GOWFRXodAqFg3Xgs7L3tNEQqigj1Sde9b144nuCw+/MFB4BSCdt5tAuJcvHDoyxTERTtyvr1ao5clb/fMscs460A2guLTrwVQO+FRe5M3I7YTIma6/wwqbw8jDgiHEnES4EGMknfvsjwQ6VQbwCIcRgNJ/8C6DOei6IwqYQ7iLE22CFOnaBDh6ahZn/xrnHqCg4rNIhEZNiQqTiRkJiIRGRkkr+j5szLQHvx4Hsa/PVSBrnrSokHbxvfZqpFXOi1aGdjuYann7Tteyt8wzM8dGazPbYTGu56/2cUajdFhikzt2zTTmyEjGBK65L1XuR1KpcRB+7rKWFOPSFF24ZC2HzxGZo5OyQmZNuwoGgnJvxrbu+jf20Tzt+G03k+snUthRUYnrBoKZP53kNhEVreTmT4598mHEq+cyZxXznx6Dosaia8Fj5F8zf4wsL9P0k4k1th95UXJjVVgRHyTthl7ZK7u8Wta7ehUM06dZiDkZY3Yi4VEm64VL7g6FZUdIsrMIrKlF3Xrp5lhEInAqad12Oq3ooiz0WvErdDIxK5Xgs/PM6eh22bzBwMkyrKw0iPjSRXZDQSbuZlVBioxqnA8M39KlNhHkZdEh5KC4w4ag5fSkQZj4WlVUw4vYBJtozUITsSEFGU5mVMNjiY/B2aOTkkIIo8De56t0y6rkA0+E2ryFayI/6E1+VvB2TD1twwKNc4LRIVoXrFmb1me3DtZbUGqk2k70RIBL0lOaFQ7cRGAuux6C48airkPXrLthPrbbJlUnGR7j+bR1EkKPLC3Io8U65YLBIaof22hQiZ6xsQFrkJ3B3QkbAIlQmIDH9UqbLhUBKOWaraxwdEiGvF84n9vDHl0aJcpivfooxxnJfAna6PmvH1UUS5XoxQmFSRwPC3K8LNu/AJJXfbOnY7fG8vhIUlJDDiOEIdzRdA85lHqRsijpu9yc3tm/chJDgAZIRFJ6KiE69FGbrxJpQVBqH5N9rRLu/jWHkrgN6PCAWEh5918ywy61KRYRY4XgxUsmFPrhfjyETdCedq9Wa4IsOOLGVDpVKxwUA/+/dCvsumYYHRYPEilLliEQA7V0HmEjvGiXu53CdfNsTGHNvkgdr/2WxfTxjEZtI2buZlHG00xONhwryAsEBwQ1Lc5a4h6NtT7vn463wDsqh5+atiSoLGebsYfv9O+t6KMqKCQt35zrlUiLwef07LuEIjZHy2+4nZujS8XnGgvNgApiowisnzTIQ8PqGieW3GFxOhoWPzxERISLR6jfIvvghCTkWGe11tz3sZj0aZCeNSY931XKCNsCgpZMoKCyYKt3O3vCMywqFSzXAod9hZX1icSDkXSitdiYtOkoy7oZSY6CAcipy/eQIDCCd7txMY3SR4u+LE9164yd1TFQbdbp8334MfJpW2g0okPb21OBUdadhTKsCyggOA4+EAXMFRRlT0ug26bWOq4UmdHDOPTpPHy3or3LK+sOhUVADTk7gN5ORYOB4ti+RccCkvxkQgN8MXGgAyIqMRSdy5DZUKkSQy4lI1YTP5FzDZQEseRjWK0nkD3BCNEDbOP0LWCPLJW97whoaPTVlmYDIjMhhRTKk3I5uXEafJ36GQpVBsO5ANSWnWM994c7/6ba3TftgKKONVKdNLHPqpWYPVFxVBQWGbY2DYzRZDzDUoQ16NQH07manYL9uN2OhaYJSsE9CZZyqv7dh/84aMDeVN5OXJtAu3a6k/cxrSE4NKiYzs8Yr3X3zwmRMW7t9uRIa/L0DzLE5WOhYXfs9wUUhUmTkuujGAuxEWzW3ND8QxoIu8GK4nISQwAPR0Dgz33Lr1WPTKW5GH68UICYyGCTMBmkaya7i3ExyW6RaxPt2Iim5HkOoVeaIC6M5bUVZUANMvLNqNFhYZIWEFBpD1YoSSvW34lT/8sZ1rJeTRACRkys690kIlSj0ch4F0dmIklMnDiIjNKDpyvFzBEDUTiGNTrtNQiprXLJu9gpTmWCYAGiTXsDliFDJ5GXViVM0zsJ2IiD2DzTf+LG7VQsOuhsplzqXgvONYvA5F27vkXVc7yRlQICqAFkHh9tAGJx9zakVoGlmtXg23jm1PIwhz52LDhvcUCYwQeQKojMeqyFOVJzx94eCLiVCIkysk3EPKvfTOyz/NwAhJxBBD2hEZcK4f0Ooh8vMI2j1CM6FFJUZc6pROhUXesrDXLhAu5YVDhfIs7LPq2L79lV4zpbAol7KGcC8N37LCIjTJWTdhUkCrwLDLuhUYvvfCn1m7E9xr6xqZ3eTEtJutukhgRJWomWeR2OttNmyUEBxT5FiERE23qOjmOvjeCqC9sOg0YRvovaiYcEKPLHl5Fi5NkSHffS+GHyZl92vPzeZjAE2x4QsN681oJIyJRoKBagyM19Nkb6lzJSMwLHFErYneMUBMheFRbjiUOwxqJ4SKszluIzEig4Eokt5WO3u4DZlqcDOEy3pa3P3mJcna+kvZpuHnnhu89ek652tIeFnDrOipGCM843awbEGxZjgUZQUFI2MstcxU7HrVArMY+8ZcnthIl7mekQ5gz4C2VWsnNhIQYhT3JIe8F8VlhXYiFAgLCNk2vy0VJdqHPU0NgMP3p1M4qmRERlMktooMW7+uMD0CVmy0FRYlw6xatysnLPLKFIoMp2xRnoX7HDpRIKDQXvp5ZEqjRc1EIrc7b4P7vYywsN/zBAbQmuztCgh7PFdguMuKBIYVETbvIpTknSnvjFrVjpCoCHloLGXvWxmBYY/lCgzUk/SFE1nDNE0upaDgAOTetAtN6mVYUh6deimORZ2KOFbeiunyVLgUTTZnvRZ+rko6fHKBF6NRTzLzrbjH88WGKzTckZL8RPAmdSQcp/NCDJqlfYhwFEkm0TuOIjBTbniUHw4lAqPVUEzPP6+7O8kawBxVQCThijGRE+NsElAhIsPmZcTI5mXkeSPKJskCrYZVXpx7SEg1mIOiwm8uFSrXTouKuAZpp4IC7qyYodGX2giOwJQPnRMIxyojNtxe5Ig6DI/i8DUlyhcTfhuS8sUiwt1PKMSp5d6B5Z5YMZHjccqljVfA3k+OKk2hmCMy/HDOPArzGlDCY3GMhUVe+dA5hMKh8oSF5lyc2HQ9WlT++umbPC80xCrQXli4hra7XOY2yK4r8mIACOZg9GoODNd7kcn9yBEYRaLCEhrJqBOxkXjiK4T1YqQhc05dEjO/RTrBV1r3KCM4AM/L4YVL+fcpRGhSvHZ0M8RrJ9t2Sze9IGWFxVRDoNolx3YzG3U7r4UrLGw7s2KU3N9sCS+GLzJcgeHPq+HO43G0nqAvHe428OhMR5KSuTCaQ9VG6WoZ9jUcHhUKhxKB4b2oC0JxgoYuAEoaYnQSiSEUxamwILaJqc28DBsylTE47b4KhETR3A95Cd4t5xZoPhGQDanIMXpiKvZclLGV0vokOYLCN3pChmqu8dr6LKHGZLmKlYCjSqncj5DYsGE91nsBdCYwgKx3ohNB6i9PlxUICXsce1xXTFDD3C9HTKT3kJPgNWohx3jPGObGa1FKZBgv4JSMZn8o2i7oVlgUpA+Fj5MjNGw4lC8slJOLeNmyZaUL33DDDcsGL3gKDu+4DyBCPHB6ui7t2Xd7bDIvDcbEgZ0Y370GACEeOK2jisq2wwBFqMw+o3ksON6M9EFjHkARgSLC+INb8cS2e0BRhOrsM9KXl+3tTLcxy8lx200c2InDO+4DUYTKrDnypGROz5OiWM7TWRZFseyXGfVH92Bi/3ogjhH3n2qOa+sbZf5mzyXCxMM75HoxEA+cminnCqr0vB1RNfHwdhzecS+iKM7cJyLKnKu7zJ7z0Ye24cjO+wAQKoNzADnl4rhvs378wa04tP0eABHigdNTY5/ZJOKaQyeJiZ1nIGkwkoY8fA/v34pHx+4GKEJ11hwxKMFp+bTugfoc2rsFj43dBaYINdNGXMhcK/fjbvvo2F0ARaidckZ6HUNGPkXetns24+CGn4GI0m19osCx7efQ3i14ZMNdoChC36lndhRf/8SezTi4/megSOrdibB47P5N2D9yJ+I4Rv9pZ6b7LCMsDuwcw+5VPwKiCAPOtoAISffjv5QO7hzD3tU/Bsz5NhIZFrXUrOws5/zo2F1ImFCZNSdtE7YNu9ePTcclid2Ex/dsxsOjP0HChNrsM8CpYJH2x7Y33837MJ8D28ewd/jHSEDp9bJ1jyOSiescD4o97YiALRtG8dPv3QYQYe5ZQ2IMEQGENDyqQjKnBZlrGEdk5lpgDK9ZjeUrlqOCBPPnnQXiBJQ0QK6RxAnsj4OSSSnDCUbWrMbyFbegQsDQ0BCIGcSN1Ctiw65SLwoRyMwqvm50BN+77RZUKzHOmT8/rVPFbFO1/9u6kiSwVyLC6NoR3Lp8OapxjHPmD0l9wPJhRtSYNOfQACX19HykzquwfPlyVKj1fKW8fAAy58O48yc/wVOvuw79fTWMDA9jxfLlqMQR5g8NgYDWDyfptu5neHiNudacHjttTC7p9RbxQZxgZHgYy2+Raz1/3tz0fCg1CLn1Y9rr8MgIbl5+C+I4wtC8eSiN3X54BMuXrzDHPssxGFuP5V4HEGF4eBgrVixHJY4xNDQk17V5AClLAKf/298asH7tWtxx2wpUKhWcPX8o05Zsm6g4z4NKTIgiQoWA0ZFh3H7rLajEMc6eP98MJSxiwm5rfwt2mGHbZteOjOCW5TfLPZ53lmnztl3ACIrJtH2J8GgASQNgxvCaNbj5ltsQRxGGzprbFB1krllGhDSvIYHT+xzHsblX0gtg26f9DWV/T3JFR4ZHcKtzrfNHHTNty/mND4+M4OYVt8pxh4batgmX4WHZtkLA0PyzC8uHxPuw+U1FzrHLvqqGR0awfMUKRFGMufPmZcREemU9r0UC4J8+eCOWLVt2Q7mjzBz/8oEbl73igvPENpihz01jW/cuW7bsppm+FpaO5e/EQ1tBcR+OPrglO4eE04vuhi654UuTB7YDcVX+dsjkge2gSg2TB3dkjlEmHGp8/2ZQrQ/j+ze37NctFxrGc+KhLYhrgzj60Nb0uPa83DpQFKcfQJK8KYrReGwvqNKHxiO7EVdq6fL0Gjn7iLx1Ew9vA1Vq8tfxXoTm8PDPe/yBTYgqfRh/YFPbWZtD50xxHyYe2tJSph1HH9gCRDWMP7ApXVY06WLivLCTeoLDu8dAlRoO7xlzRo1qPuMbjST9WMPQ7vPInjFQpQ9H9owF6+aW97c9vGcMUbUPh51t7XGK9gMAT+weQ1ztwxO7w8cFmmIqFVUOh3aNIarWcGhX/vZ52G2f2LWx420f2bEeca0PB7atyyz3k5bdWXqt0X1g6zpUav04sDW7rS3jfnwObpPjPrR1XTq8a0hY+BTdK5fM3CimfdlQqcd3rAfFfXh8x/pU8NpPo55kP069JuoJDm5fj0ZUxQObR9McDLvuyERD/k42MJkwjtYbmGzIDNeTCWP98Cr09fVjdM0qTCYJEuZUyNjqFsUZ37dyJQYGBnDvylX/j713i7HjSNPEvojMcyUpUrwVRUpNSSSreL/V4WDHDwsbxmKxhr3w7pPHCwM2Fn4wYMAvftmXAWUYHmN2vGN4Daw9sI2FAWN8ATxYuKnu2enp6YvULYmniqxiFS9VLKopiRR1aalbIs89M/wQGZmRkRGRkXlO3dT1AYlzTmZERmRkZJ7/i/+mL2Ay22Eh2rduo1GvoT0/DxIMQEY9kFGfb8EAJAxAIy1K1aOoeiTelm7dQrPRxNKtW1EELb758XeKCk32VQg3sSJhgPn2TTRrFczd/IC3EwyTbdTnQp7Yooeclxtgbm6O152bS14ALIwXcuIFnXAUb/E4sBBzc200GnXMzbWV+mH6hWIY62atmh7rjHZFP958rOto37qdOa/cV12f23PzaDZqaM/Nm/us1ZLwsYjrR/3W+hRoHZMZ5ubm0Gg0MD8/x++jRBgTTRpJQiMj0rQBWL49h2azieXbczGh8KJzUAi/FV63Ejlei323b91Cs9nAwvw89y8iyWIXjTR3lahtn5KIlPM+z7fbaDQamJtrS2OZkAJd+FMAsXqzvbCERnMX2rcWMse09aTf8X2ev61d9Y9DxgoCG/XbIwSLt+bRbDZwe34+NnkU10SU/pNgGL0kgmSO1Cr2OSLNCXmT54dpDor6MtkWmJ+fQ6PJ54josyvi+TU3F++zmUOJSHY72L4oTC5qh08A4QD1qZP8BDkEA0BMMKoHTwBhgOrBEylh3GWrHjwBNhqgeuAN574KAbrxyilgOOCfyArWNoJRPXgCLOijPjUdX1+KPEX9k4+JzfOr8PYdAwFD9cDr6bpSPZVUiHPXDvFrrh06mRljG7EAgPrhUwhHfdQPn3IeLwFxzdWDJ1JjYYPoQzw/DidjTTR9BZIVbhnNY9NgI36v0teYbVMV/BtHp8FGfTSOTudcYRosZGi8cgrhoIfGK6cy5EEmNPIm6u46Oo1g0MOuo9OpejbIRKN59BRGgz6aR09lSEjetuvVaYTDAXa/OlPomgFg3/EzCAZ9/qmQgcEojDeAEwxBMoKQYd/rZzDs97Dv9TNWMiHqydtLx09j0O9h92unrcRC1VqIudM8Oo1w2Efz6LTRZE1n6heMGPa8dhrhsIc9r53O3KtYuxaXT4gGAOx+bQbBoI+XXz+DwSiI+y18MwRRGgRhKipMEDKcPHcJL7odnL5wJdkfmQYEjEE3Y/ifLw95OXv1KrrdLlpXr2hKWsBCtC5dQLfTQevShZQQwYlGP97oqA/KAlQIUPW4gNhqzWLU7+L3rs1myIQgEjRaLaaCrIz6IMEQrUvn0el00LpyEQiDmDhwQiMJ2dJ+0bfW5Yv8ei9fTJeXymTIBgAWlWtdvoTuixdoXb6kFeptW+vyJXS6PT7W0rnFeMpQBXi53y5kRm732uUL6HZe4NrlC1nhT7mnuq119RI6nS5aVy8b+6e7BgBoXb2KXqeD2dlZXo8kpk0isACN9lUoj8glNFeXr86i1+3g8tXZDKHwvTSpUInDtdmrGHS7aLVmIwJCUoRCJ3wLgXf26hV0ux20Ll+KroslwrHJWVv6I2lducTv1ZVLnFTIxILQ9J+O8rt15TI6/WEy1hpJO75/sdaNk4zZ1iz63R5mW7PJdUXkIZ7rglTIREPMkW43M0eMREGeH7NX0On0eJ+lee1KNFrRO0jMkSKYnZ1Ft9PF5atXjX4WO/hugRSx/yOEsOn//C9SQp3856xL+ib7YLiEps3tg8aR2+ZroVuhj0115BVZRVDVXVf8W0kWKK4rzq4tHwvTjtmqxkXeJ1+f7pgrsTDBtAqvQr1eV2Kh9sNEKgBkSAUgOX9DvUZz26b21hvjhKaddD9l07giZlGqn4EOtqhRrtCGbwUKEQsB2ecCyPrkyLA5upuQ8VlS5mm16qHqUzSrHhpVH1WfolHxUPMpdtd9NKLjdd9D3eeCeM2nqHg0DlFb8QhqnoeKJ0yKIkdu8M9EcEO8ekyk92hqlTYZmPQxsS9IC6gpe+vYQSX5ZF4VINwvA4Tq7abltpR96f4V8UXIgSroaa7nv/3Tf47/7B//J9i796Wo3JjPmcW3IuvUPSHxaAxbegFx7zKmLiVs7U328SbH27w8E0Dasd8l27mTv5ELsZDrm+6XQVOROoU8jppxNjYt7oumP5lnOrNfMX8s4COS6bOpvON8KerkHZ/PcS4JrQUDcOLQS2CMbdwfe0mc3fcS+z/+zb+1qX24+q/+ao4x1trUTkgoFS1KdYhWnaHVaEtq1uuyMEWI0vVNXSEXCBmL+yz3XY4ipUJ28hbtypGkAMSO3vK1y87YOpJgIxWmOmWJxXpBRyxsTuV5pCJ7fnv7QRBmQtuuB3SO8boyujmk3p+8fpYhH8LOf9KQHZtlkqASDROBUM+j7itCLFTYiAWgj3aWRJLS11GjlaV8sgzXkbmekCfVGwYhKPGiHBIMIRWaH2BIspGjtBmTowVGIhw5XSGbhsjCn+w8HAoBIuREQ/YNoIoDuKvwIz7DYsK2SSBMBJwwIUOScEWCQZpspLQEBd6L6rNTQFsxMWIxoXMloUrTgm8qhKncnvKSFcK8cPoWTsnC+T/Ol8IQhzIOwiTCUx6pmBihAMzz0QTTc1SUVBjKWJvWjH/h5wrgz1aRpiWHc4GM478a3YwQcx1SLEQ+UI5Y7FhFbW8UJhc6gTwvZ4Sa9dqEMsTDFCXJtE+9DhPBUCMP6QgGgAzJAPh1ypGm1DpFSIVcb1xiYSNQJti0FnnEIk9bYSIVRSMlyQRjveBCCNQQqQLqmOf11YUkmea2iJA0achCtUo0TOXyjpUlFkXmsRqmNm5byZuhjpl6L1PmUpEp1GDEQ9eqplEeJRhExIL7FCXnHoYMNQ2LiHNKIIooRbkA53QrTQJpKMyG1OOStk+QDYVoCJLBiUW0OJRDJKwRlUpCJkNM/rsyPUKSeYfrSj0vbOhvGWIxSbJRFJHwPC7BALIkwxZNSo7SBuQTCn4sTSpMhEJv2pWjtbOBZElq5pjclI1UFFzQMYYxLkDWSThKPwtAvDiQbVC/P6PNzCEacbvUT2UnL4IdsvC7hVKaCxPBAPifsktSOu15HYhHGa2FEGLDURglhUrP8iIEA4BRi6GSJ3HM5OyeuX5NyNmyxMIldKsop5aJNVCOQr467mVJhWg76ZtT86Uw6ezfniywacbURjaA4tqnlNkesoRMTnKYaUv1OaLmzLs6uJQ1lUmFnC1BLMTY5mktikImGyaiQSjP+B1E5MqPxm0QhDHh0oXpDUOutZA1GCFLwtISZs7WDXDiQSjJzYGg2kwn9t45ydwY+OpmhmgAhEp1daFZbWZRYn/Og6wlASkILYUD0RDO4Uo/4jZcVq3jSrYV8wmSioJaHitkuXcCBANALEzqtBijkMWJ4koTCjGvrWZnZvJXOhmewdQuPnWepmIcTXFBUqES94xWQSfKORKOIkQjJhhwN48SWgv+3V1rEUxogWIHm4PSmgtZeNUJ5Ln5Igrmw7ARD5PWQifUygRDFgJdCQZgN5MSBEM1kzJpK4rksJCv1YVY6FBGe2Frw0YsiphAqcJxUWJh015MmkjY2pATAQJ6kqe7P5MgHJsFFyIR75M0HmVMocrApL0wwaTVYCEDSaSAvgAAIABJREFUcUixO45pVBDyVeAQJDZBKSzEsDDWWsRRaxSo5kRxVUEqxB97GLXt6lshHw8kocUzC2okGBiPqf3KIxphGGavVzEL0QrWavtF/SuKEAsDmSgtJMvdgJ8SKgsTjLiA3VRKaDH86LkSOVIAnfYin1A4kYmcFfhCsOSLWFdSAaS0ic6kIqOpUe6PzoRJnWeyWWFc0T7Xs8SfJnOnoHmUS04LmVhsJ25BKAGtFjcX+y5jbM2FvJKoIxhANus1LyP5K5RMvCcLpCYnbupTpR+TIxjinLyd9PUBiAmGQB6p0GljxiUWur7r6piuz9ZGEWJRxASqrMaiLImYpC+mTDL4uZO5lbRnJxoCRQlHnvCsJs0TfhN5/hLG/mnMnDJlNOcWJkbjEouyvilxfUchQSYbhCZ+FUVMo8IQECmmTaZR9n7Dze8iIhZyKExjHbFfJ+jrHkINiZAJhNVPQWNmERdViYdGyNWbOmWJBg9tG8qH08gjGkr7ucQi737kaCWcV+gdEZvMOBIMIH8MUvND9I+QlJmUUPaVJhQW53n1+iYGZY5vCKkA0toWV1Jhm3eabPDOZMNCNLTPiuRz4WIeJftapPfbQ8+KxZYdbF+UIheAmWAAZkdvAFpfBJ3Pgr5NXaQlvY2/dtVcmPuUJBi8b/kkQ+eHYbpWHaFQzy23X1ZjIWMc7UVRYjEpv4pJw2ymXv6NRiHGApmIRiZCYTOf0qGo/4YryphGFSUT8e+UadT6aSxk6Mz88iLlmciHi2mUrL2I+8DsplEmvwuRQdvaV0lYEU7csVlUUE4gk4X+TMbjqK34eMrhVNNeJLgxQpGKu0soyGgo/TYQj2iVWda46IgGC4aJ0Cz+3mIPY0l4UkhL9nyq8OuorXA0cZoYqdD40xQhGOljOW2oJIMQyUyKlScUZTQSFi1LURQlFbF2rwjRUbUVJUhFftADqf9FyYYj0eAEgxU2jypjDrWdNBfbAYSQGQD/l7TrTQB/COAJgOsAzgD4PcZY21D/fwPw7wL4nDF2Pq+9wuRCCI5CKAcQm0kVcfQGkCEZ8UU4aDV0WgteV6+1EM+KC8GQoQriJsHQ5MiuhqJN+qYnFaaM0Op1msqYjpXRXuT1Qxv+M4dY2DUi1ubHgm2BsahgG5pW+qPrlUkGYNZm8DJ6+37dMR2CIIQHmvK7WC+n7rhNiVi4kAkgS6KENmCjNBZlYLoOF9MoGTrTKP6dxNoMp/4Qjd+Fqk2QnbgFsSjyL50SZtLvXiOBkMONm0x+qOY9GK2EMvnBZ0gLsSPJ/EnRcGiJhrh+oBDJkMtnMCFiYSUUk1KfRiYzKadf4WwtEwwgo8XI9X1RhU1Ji+ELYiEIhdZ8zkBMi4y7qVyJP4+ypKJ4Q0wi/cVIRS7BVcvo+pkTCaoI0ZDnEAlHPHS1BTqthQmyOdR21FrQgv8LGw3G2AMAlwGAEOKBk4q/ANAE8A8B/M85p/iXAP5HAP+7S3ulNReyY7Qt8pLJ0RtIC9guREOtY03O5suEI/l0IRgugrbcpkygAL0ZmNr3eF+OoDRJjYWMotoLWz/EMUEsVFKxFQkFoMtfUvwPPhUcQNR3JBm8j1mzKfWYwCSEap3DcdWnTqZRMaFQiEURMhEfj+qst8ZCRpEgBSYEIzaWaZTwuRAYhm5+FwFDLMClQsNCp7WQzaJY5kEguQ+GIuyZyIPyzs5E+4vNkyggTEJjHzTKz0u9JJaW5HSdIhyx+ZPZhyMmEoHsY6KYVDmSjPRFOZhBWUjFxCMdOSAl/AnBUSUYQuDUmEnpz6fulMiBOLkjoXARmHOPmVDmD6UoqZAIbb6GRSEWYgFAnKpofguHaykaCaoQ0YA8hzx+bQbthdyMi9ZC1OHldhy61xn/NoA1xthjsSPPTJgx9jNCyOuuDRTXXBgiLxVx9BYwhXbN7YOD1kItl5QpTjBkcy8dXEhGXr9059NdY15ZW7myeSBsYX5txGIzSIXL+7coqVCji9nKUUKS85UgGbycftycyih+Fzo/DB3BEPvznLNlYmEzd+Jl9IQC2FhSIWPcdj3D6lSeadQwCFGJFkpsplE2WP0uNE7cJBK0YzJhE4R0BELxH0uXV/qgaDmYZOpE/Ar/TT1AnMfzONEQK7cS2QDAnxiVbEhaDUE0UmZTvKMaU6cSJGMMbYV5JX4MQbsAMqvLBQiG6XwmyMJroQhiynEjXMzMhABscdLW9htIl3UkFc4wEAsn4qUZI5N5Y8ZnSe6yTatRlmjEzwhLEw0Fcl4LHWzmULzuDrlYR/wHAP58PRsor7mQhHIARt+FMqFdgXySUURrYSIHRTUYZUmG63XoMGmNhXpu1eTLtlpu8rNQicV21VS4vsxsJC2Mrk+QDOrTJFqRIr/oMk2r588jGvKck02j8lD1Kfyo7ChH4JaJhaqtKEsobKFytzJEhCvV78IFAUPGNKqikJVSfhfCBEp14maME4twlBH+k6ppTURMIsR+mXTIvhFxfc15VaIhmYYSv5K0G0jJVYGYbBAR1UYmG8JnIz5r9C6SzKYIoCTRU819LCRjAqRCPne6viOpmJRpFLIEA4iutyTBsLXDT+5ozpMyrRvveo1kEbD+0WSIRQlSwQjhK/Ym7YWNWLiMlThmCpggd8+k0XNx0E6VdSAaItmmYmKnOne7aC0EdOZQIWPYgCCPkwOZjGXBmDhICJH9Jf6MMfZnaiFCSBXA3wfwT9azM8U1F6lVeRoLaDbnaNXRG0gLJa4kQ9UCqFqLlL0/JZl3QmKqlX2PFzGRktvVEY0ykYF0GJdYqH0fR3sxDrFwIRS6a3U121pPUmEar7xxFCQjYyqlIRmAXpuhtmMynQowfhJBk2mUiVioTtmpPlkIRVwn8hWRsQVezilo77F4f7HJmEaZQtIa+yT7XcjCi0FrIYhFxhcieq+yIMgQCUEiYuKgIRBsmCUaJgLDx80DKhWw0YCbQgnS4FeSvgVBmmgACdmQTagyvhryg5QNvZuNiqQhGbIWI3WhY2grSpCKss73qWa9xOFYduJOHL2RPm4iGHmLLYZxTh0zkIlJmoGltTMafwG5yxZi4UoqrJCIg5FYOJg+5QVQSEOSg9aZaGTmj1c1OnerWgvRuqs51HCS+V9+N/AlY6zlUO7vAZhnjH22np0pTC46nz1C99kqGkdOoX7oDWeCAQDDrx6j+2wVtcMnUDv4BgB3ktH7bBXDrx+jfvgk6offjI9nTKEUe3/Po+h8tobup6tovHIKzakTKYKRdsTOEozuZ2voffYQtUMnUT/0RmY88ojG4Ktfof/5WuqaddAJh70vPkTv81XUD5+K23YlFb0vHqH37CFqh0+gfig9Xqo2RtVe9D5/hP4Xa6hPnUTt4BuFiIU8P3a9krTret2dz9bQebKC5rFpNKdOALCTDPl9KbfdnHqzEKnoffEI3U9XUZ86mRqvpJ3sH63oV//LD+N7LPoct+FAMrpR23x+Jm2biIY8B14843N7z2unsfvYyUx523z5+qMVfP3hPbx0/DT2fW86e30WYvH8yUP89vF97H51BruPnnQmFADw4tM1dJ48QPPYDHa9koyXK9l48fQhnj9Zwe5j09h19KS2jAmmui6k+5tPVtH77CFe+t5p7Hs9O14AjKZRj1eW8cn9O5i+cBlnzl3QmkZVZBlZ8btYXFjA7dvz+L1WC5fOn0sKyoKK0GBETtxcaxHg9vIDtBeXMXvmJC7NnHAiE4I8LK58iPbKI7Sm38TFk99L2rUQCXG+xbWPMbfyGLPTx3Fp5s3k/BHREG3qiMbC3RXM3XuI1vlpXDp3lh9X2slqM6I5Pxpi4d4Kv+bLF3Hp3OmUMKUlGWG0nwKLd5bRvr2A1uVLuHhBGmsHUrGwdJfXvXQRl86fLUQqFu7y+9S6eA6Xzs5oBtY+R+P6l87H/c6sMBsIxuLSMtpzt9CavYKLFy5k+me75sU7S2jP30LryiVcvHDejVBE17KwdBfthcVkvAogVTe63lSULMVMSiUWot+zrRYuXrwoXWA+qVhYWMT8/BxaV6/i4oXzKeKQcdxWiMXinTtoLyyhdfEsLp07k5SDnVQQFmLh7gpu3rmLaxfO4tLZ6chcUFqtkpzsVaKxsHyft3v5QtKuLtRzxkQwulfL99C+vYjW1Su4eOmS1Dflf0oiCAAnDXcWF3Dr1jwuXLqKs+cv5JpDBaG7JcEOCuMPsM4mUYA6KxzQfbYK6lfRfbaanEQTFUgnGPQ+XwXxq+h/vmYtp1v9Hn79GMSrof/FWuZYnq9F58kKiF9D99NVEErgeRSeR0Eof34oJXGdWFCOXib9z9d4n794CJFDQ90ExHnlbfDlGrxqjX9qjotNd039Lx6CVmqpttUypv70nj0EKnys1bq2fgPA4MtHoJWkz3L5PI2FmB+9z5L5oYPpujtPVkAqNXSerOSW5f1Jvuvmpg2ypqv37CFItYbeZw+d6sqI58jn2bnpgs5T/lx0P033OwhCLbFiYaI56D5dAa3U8OLJA24aFfLQrqo2QYevP7wHr1rD17+6lzkmhGJBMLyUqSHBtx/fB/VreP7JA2sbOrO6ztMV0GodnacrmWO6egLiOe08XYVfraHzdDXeJ282PH+yAq9Sw/NofsljaYK4D52nUd1PHiSmUZGGwhSaVxx7tLyAaq2OD5cXMJR9MWTyFdko6xwZb83Po9loYG5uju+Qy0gRkmIIrQWA9uIy6vUa2ssrUh27loJEwn975RGa1SraK4+sYxQ3K5lOza08RqNWwdzKY75fQ164VkXqS/S9vXQf9WoF7aUVrmUZDcDCkJOPMIi2ERCOQCS/EhYl0WsvLKFeq2Hu9mJai8NCkGAAEo54tKmIgAmtDxkN0J6/hUathvb8LZDRINnCUWZT0b69iGa9gfbCol44t6hZ+X2qo724rNRh+VoEuf7CUnLNGXO5SLslkg1Gx+faN9Fs1NCem0+Pke6aU6Z3IR+veg3tW7cTLVqYCNVJPSZtUd3bC2jWa2jfXsicN/d6F+SxZulrC8PM+dT+t+fm0WzUMNdup68xGMRbUjfgG2MgjOHWXBvNeg1zNz/geVaizPCp8Qn4fBLHxZi2F5bQqFfRXlhKLQhkiIU4Js3vm3fuolGv4eaduwCQDs6Q+p6dL+2FJTQafH6UAZ/bdbRvLTjXCaJu3L41j0a9gYVb8wC4fx9BrAgGwJVIHkksUHTpBLYqCCHwqt6mbo79bAL4OwD+X2nfPyCEfALg9wHcIIT8ZbT/KCHkbancnwP4JYAZQsgnhJB/bGurMLloHj2FcDRA48gp7R+5bkIIQaF++BTYaIDa4RPa46nzKPuqB0+ABX3UDvG6RcxAmsemwUZ9NI5Op9pLVuTTbcoEo3nkFBAM0XjllJZQiPOZtvrhUwhHfdQPn7KW0xGE+tRJsNEA9amTVlKjveYjp0BGQ9SPJKuzal0TQWocOQWEg7jPclkaPfzUp1pTqObRU2DBAI1XTmn7ZSMKQHSvhn00j2VXhs1EjG+NI8ncFP2S+yb3Od4XXU/9yElgOEjd53QbZjIpxqtx5FRmfEUbon3RLxmNI/y50I1Z3jxvHJ1GOOyjfiRdVxAMFpONMEUYBqMQLx0/jUG/h92vnU4JyCZB2fNp7By+5/gZIOxj7/HT/FoJiTdV0JfHxPMo9rx2GuGwjz2vnU7dU3WMVdIgzr/7tRmEowF2vzajjXChIxxi2/PaDIJhH7uPTWf6ZoLoX/PoNK/7arKqrJpGBSFDdxigPwrRHQTx8WPT59Hv9fD62YsZjZqL9d/V2Vn0uz3Mzs7G+1ThNrViGoGFIVrnp9HtdNE6N51aSc4QCw1ap0+iMxigNZ2vhVQxO30c3f4Qs9PHk/YcCUbr7DS63S5mz5xM/EBySAZ3uuCCWOvCWfS6XbQunOVC52jIBbiRIBRpoiGTjNbFc+h2XqB18ZwiEOdvrUsX0Ol10bqUrITrTaayplCti+fQ6/V4u4AzqRBI1WcsTTDk61QJRjhC6/JFdDsvcO3yhZRQ7bK1Ll9Et9dD69IFO6EQ1y1de+vSBXS6UV3dGJk2AK1LFzNjHZNEB5LRunoJnU4XrSsXjfeTBEO+KcSjdfkius+fo3X1cnLOYMDnlYFUiGtqXTyLbje5zylSIREvAJnIbtfOzaDb6eDaBQctjzR3SDBC69J53u4lKUWBA4kTaF2+iE6vh9bVK851hJ/Y5StX0e11cWX2Kv+PQEIwvCjrOyUJwfAoUKGFxdMd5IAx1mGMHWCM/Vba9xeMsVcZYzXG2BRj7O9G+58yxv4dqdwfMMZeYYxVovL/q60tkpdIKlWYEHbpn9xQtJ68vmxyItRZ8oqgzjxChW4FMWUiJQkrYkVd/JYFODm3hS0ng65P4trU6yqioivi1zCOnXlRZq+7Bl1fVfMbVyE5z7diUgnfBMzzSF/eJUqU6T67+F6Yxgso75Ni1tgQ7XfxXAhhXOS7IPFvCo+SeBNI5a7IW8mXIkXZHLpdTKXytI6ZSFdK/g6ThsblvaaLHOWS68XzKDyfkxK/4sXZzqs+Rc2naFR9NCoeqj5Fs8o/G1UPu2s+KpSgWfFQ8ykqHuXfPYqKx/f7lP+xVilBhRL4XvQZ/aaITC+CYSzMcIGZSb+jRHLhCGw0BOt3xQVHnwathXQMQEr4zw6ewUFc4/SdGUO/Ejtqg3qxlkT1xUjKKFotXVhbAP/1//kj/Md/5/fw6qGX40hTqZC2Ojt7z5f2681nSsFmDqV8z/hZTNIcRM4REq3CxH4WhCTXSqlkBpMjcLo4szv5CkwQunslhW4GkMwj5X4LOOexkMZpIn4VQJp8IUsqMpHelL5q5zmQnevaMsn3jO+Fch5uOkjTc4l68ZxiUlJF4XMRMP6fIq5I/G3LvhcBSzt1jyLN7pVXXwZjOWH0tgDOH9zH/p9/729vah/O/sv/b87R52JDUCpalM0hOl3OLTGdrbyaG2OSTp+yc7nq7K2LJJUHOSzvpDBJ1aB8Ll1fdTb9LsRiEqTCNGY2Yc8Uvcv0H5nNps4LyvNWN0Zq/2zCcRFH9zyUIWPppHrcv1UWyINRGPt9pOoZtBXafvk0SZ4nnYqFSfK+YJSEwGVMCUGtnK8ooUg9t6lrk+6LGgFGI7Cp7xZx7iKLA8EohFf1Ym2QLWP3IApHK6JGVbyIyEWyMp9vDj5VGg2F1pQkRRociMUGgY2GID44eQgDsGFkhhUGUbRZTykjXRelsSaDIHJKl/MlCW1GBCIJS0z+ogtpG9nnm7OAxyfNucAcc6iNIhbS+Ugw0jp6k4BH24r9MBycaIuE2i1yrtJJ6tT2FF8Ba1QpuS/BIF3fpU2ZVIg2WZglFcp4aE2gxLE8YiH2mcYrmsfx+UU0NWkOTAyOY0UIAY3IhEcTgkEBIH7nEgRgoAB8SqBZ+9vBNsLYM033By3nvzBhHIIxaYg2dQQDgFYYA7Ir3xtpI6jzc7HB1lcbKcrLX1Fm1V2FjYzJgmReOyaSwesn311IBpC9n6ZxUkmZK7EouzCaR171BANR0Jhs3SLEQkAQDJlA6IR+mWSIclrtjSOh0O2L89EYiIbu/IJsmAiGfF4Zur7HfimUWCNHVX0ahWWM/kgjYqEjFaJlMUWEyYDivZwRBjPCqiakt5FYFCEaETGwQj6uJEMtRDBSbQqpJEsy+DWlSZQMLdHQhLSVBbCsEzjsgrNLxm8T1tOBNTKTkgkGgIRkRI7eTn029dMyLi7nzc2n4QrRj5Ikw+n+JiYOWWdu+bgLkXTVVqiQCAZhauJJpZ1JEwyhtSgJTjBI/B4mEP4XCcHwtpHPBQhAJmyZsd1RenaYcjmZy+tDuhYhGHI9uWxcRpOVu0j/gCRiTYDETEoXxUptb6tD7avLav1maSvyypqIhi0PiU6bYSIZAi6ETO3beobmLQIbwVC1F0WJRdzH6BwmksHLSH1StBlFCIUpe6jangvREOeTCQaQfb5diK0Mk/aiMwji42LehCliIZmS5jUV2cyn97Gs+Y38W5ezwoFIkEqFm0a5EAnkmERJOSvk8i4EAwA3k5KjTWlIBj/nCHLYXdMbJiYaLBvSNpOgzxa2U8U4WotxoQrVmeMSwRBaGlWLUaQdAyYZZtblnMb7oWozTCSjEKT7V4ZUGLQ7KWJRcvxSBEPWXuiQd1xXZQLmghRpzbXQaCB6Z8oEYztxix1kMVEdWRHTKIEiBGMjYNJiAMVMW9ZT01LGxMZGjExEQy43SW3FuGZjeUKfLTywC8mI9xcgZC7+FZNIIFhk7IoQjDIQq/M6kgG4aTOKEApPZ86lJPXTzQ2Tn4ZMMACzhtT1XSRImtBeCDQqHgaRg3fVp6hQggr1YkKhS6YnwyPZVbw8J2H+M5SS4qXNoTYFJQmGKCdArLJ9kM4sLudGMiXoA5DKnRGZTWVWeXVhOw1YDwHbCJ2JHKB/4UTO7SBEYyblhg29Ngeo/dFeizwmCskoBIUcmEhFbvI7nbaiTH9KmEcVhlyvhJO1R6DN3SPMo0wEg5GNl/92MDlMhFyUNY0ScCUYJifWSUMmGECixbDBZN+/VaD2J51LJCtE68ygTMLxJMyfymAcbYbOZMo2RoCZbExKW6H2eRLIIxg6gd2pj0LTF33KJAMwazNUPwkgOy9kUqH2T3VC15lnqefMaEx9kiIYcj0bwdBBROJC5CgPIJWMUDWPSpwX+XHhe8GvJ53rItOHjMYizApIjGnMKzbfzyLVl4IEQ0AlGqo2g0AhVEibTAFpsqG7oyrRIJFQJmsx4rIGbYZTdmoVZU2irOfMIRkaM6mJtDsJjLESYyUbGpJhheE6U6TChVCoPhcT0FRo+2UzjxJlXEyjJrASRgkQgi/gUJK881TtRVw+qiQIhr/FZCg7SLJwsQMAJciFTAQmYRqlO69rHYH18HVQnb0BezK3SaxKrxd098iFbORpKzaLVNjamJQ2AyhONnR1JjkvbH4HeWBRtI5JEAxdpCmd0A9ktRlGZ0pHQuHprteiOQH0REPWooj288ykVJiSFJrMowS5CFmS40ImFnAIVV7ImVtewc8jFnmEw9E0yul8BQmGaF/uu2wyBUjajFDKOA5AvYMp/wwgmwlc6h+hflTfrMWIfxb0zRjbJKrIH6+JZCgEYyLtT+qF5+jX4gIt2SjrH2KL+uTg0F7YrwLQP0vy8zOu9sLBRKqof4VHSCZfT+odC6Scu8UxlWDsYPuilObCRASAcqZReeeV6086nGke1qNtG0lZD2gXrhw1LeOQCl6/nF+FjHFC+5qilQmks5Or7aZ/55KNAj4pJqzH/A6CMHVevtpejmDIxCI2izIQjVxthsXsSSURKsFQ2wWQIhlAVisBZEmoqsVwMZMyQXbsBpBx7ha5RHjUKB5aNnamtxALEsWBd3LmzggvG/uucYYjwQAUkiHKSt9lohGOAiuxYWGYNu0IunFo2yzZiLKHU1+vxeCNp85vjqQ0wftQ9lyGiEplCIaOHMW+HMZKG0A8HNpzJg+W/S6EIkMkZJj64ErgNc+P3K6Lc7eT34WOjIyjVVLesYCdYOxg+2JiPheTiuhkIxgu+9bDHKnsyrvLKvp6wIW8uBAOtcxGkwrbcVfCkWc65eIEnm43+T6u+VMRjKv9SZtHKWNSQoOhmkUBGmLhoM0oQih0x0Q7qU9HkjFJgqGOn057UQ1p7HchTKOEFoNrMkJUGIEXhXUXSQNjuDhzAzy/RcFkeSbETt3rAQeCAeql2o9zYsjO6XJ9wNk/I64jEw6ZbPjV2HRKq8UQqnuXl6mE0uFn14OgROZBcrQs93MoK9PSdWnJynprO1zbK1Deeq9s4WOB8lqJMlC0F3nO3aU0VlIulLHCBovTQW8eJaDVUm9REALQnWhRKYw9Q2ymUTq/Cxcthk0zIs6xkXBZDXepVwZlnNpdSICrMO16Pl6/2PWOMz5lCIfVDl9zjS5jpFsMLIuNIJ2mHBjCd8BGMOTke1WlnMjnABiIhUGbIc6b9x1Apk3RrvZaJX8MAZ1fholgyOV0ZlLBKOs7orteESkK8DHwkizoRaBOdbNpVPq8LEhW8SfiZ2ExjUo5ihc1n8ojGFL7KtFRtRqhlO0bAKCV74bcX8PQD0E2CAbuBIMX0F/jJEjBevk4FPVBMNUHINs85hIN4zkUTJJ4FDVTm1Rkp/XycVKfHVfzqIIwEgmTZojYp5Kr9mKL6lx34IjS5KKoaZSMSRCM9USZlfRxYBuLIm0VISI2QVY1oxm3X5OsW/S8pjEpaj4lYHMMXy+YxqvMOJocvMW5TARDJRays90oZLHgL5MMwK7NUM+v+y4TCtXBT21XC0WLAaT/3EzRrNRygFkrKpt46a5XmEcNfBqbRvVGAeo+xTBk8VbTXwHvi+bfWkcyCAuzJkRF8lFMGEz2ZbC1byIYQHJM7aeGbEBJomd6I7JBEDuIJ5BIRxhwkhEEgOcBftVuJiVrMbaCCdRmtDMJomE9pwJTIqMc5BIJ5XwxmUiFd97EoAgyyphHjRM5qiREMDz1b1YmEVrzqB1sW0w2FK3FhEAX+akowbAJvOPmnNAJauu1kpwVUCdDICZ1Ht11T4IQbLTGSdfmOGQDMM+JcYnwRvoS5SXZUwmGTCx0EEK/LOwD7toM0YaAqqHwDeUERLtyNuyi/hiuZlI2yOMm90E2jxqFSUK9YeR7IaCLridfhlZjAQAs1CfPm5C/RVnTKGGaNR7ByPpbGMkGADYKFDMqW/80bUaaJkK9mNwwoLgWI2kk9bOQSdSYAr/V5n8dwTLjoCcaQAmykarsYP5bkEgAdjLBNsGHqVAUoqLaC5tGwyUErQNJSTlyE04wdM7dpjo72J7wrl+/7lz4rbfeur739L+B3z54D6AUtT0HolU7xEtESdJJ6c85qt/7/BGef3gTIAT+rpf5H3zO/KGUT7L+lx/ixeM2QCgqu1+Ozy0iRQnhUAgNYs6o/yPCAAAgAElEQVRTStD5bA3frL4PRiiqu/fH5YVNc2z/7VFQSuINADrP1vD1g/dBKEX1pQOpOi5b51NeH4Siumd/3CeX7fnTh/jtSrpuXntiPF88W8M3K+lrlmHt82eP8M3q+wDl7ZoSmOmga1eMtVP9T9cy1+zctkNd1/HKG18Znc/W8O3qB6C+h9qeA873V7w8O589wrfReFeUe5WntSg7XowxdJ49wlf33wMIQWX3fv7MkOi5UnwqaPSsCa3Fbz9Zxae33wH1POzadxA8TDmJt5AlpIRH/kiO/fajVXyx9C4IoWi+fDB+hqtSOFefJuU96XvV9/Cbjx/i04V3AEqxa9/BKLsrvz8eJXFfdJ8vnj7Er5d/CUYoai+l57Z8fyklicVIVOb504f4+t578XNBpXktPqnUvtz2bz9exacL78D3fLx04BCqPkXV9+BTnvfCpwS1aGz9aNzE96pHcWdxEW+//TY8SnDk0AEgDLgQxBgIC0DCgJOMcMhfwsEICEOw4QCLK49w4905eJRg6sDLuslgnCeLq7/CjV/MwQMwtX+fYioifdck6ltc+xhvf3AHHqWY2rcn/x3AWCzoLK59jLffvwMKhql9uyMHay8pJ29RnXc/+g1OH2ziQMPH4upj3PjlPO/3vj28f5qNUJI53+LKh7jxzgegCDH18kucUDDGr42FAAgIC0HAErIRhQBeuPsAN370E3iU4sjhQ1BfGDaBf+HuA9z465/BIwRHDhV79xEWYvHuA3z/xz+Db6ovyKlmW1h+gO+Ltg++bCznUpcQEo2NWCFn0iazZYLF5Xt8vAhw5OD+QnkUFpbvS2N9ECQY8fsibeYcEywa75/E40XCIQiL7nHAnyNuWhidZ9iPAg0MsHD3Ab7/43dAWcDnVzCKNwKWaNA028K9B7jxN+/CIyGO7N9r1T7w/iZzc+HuCr7/N+/C8zz+HhDHZYIgh0uO7wGwcHcFN/76p7zu4YN8fCjlx8WzSRK/ChAiJc4jWFy6ixt/+VfwPA9TR45o6km/kdxxALizuIgf/uAH8DyKQ4enolOmywKcfMi37E//+I9w/fr1t8yDszXwL/7kj6//waVTIB7dtO1/eH/50+vXr//ZZo+FQOHl0u7TFdBqHZ0nKwCSFVcxH4VQksqTEE2i/udrIH4Vvc8exscIJdpNhudRDL5cA/Vr6H/xMC5jyi8g+uJ5FIQSdD9dBfFr6D5didtUYVqtf/5kBV6lhufR9RaFqP/i6Yr22mzoPVuFX6uj92zVuY5oo/t0JXXNRTDJukW1FZ2nK6CVGjol2h6nrus1666n82QFpFKLnwlXeB6F51H0n62Wqg+k54g4n23zK168vXi6Ar9awwtDu7IZlKoJ+OrRXfjVOr56dDe3j6om4jeP78Gr1vCbx/cKXy8A/PrRMvxqHd88vo+q76FR9eFJwnmz6qFZ9dCINi7I8+3FJw/g1/l9rlY9VKseajUftZoPv+KhUvPjrb6rgkrNQ6XmoVr30ftsFZVmA91nq9ExP67bqEdb1cPeZgW7o+976j6aVQ/ffnQflVodX6wtx+PpEaDiEdR9irpPUfM8VD2ZYCTXPDc3h2ajjvb87cLj1b63hkathva9teJ176+hUa2hff8R32ETghTMrT5Go1bF3Opj9wYjcjK38hiNWgVzK0ldNhrqkwBGQhsnAVG/Vx6hWa0m/S6A+JqLjFckyM7dXkSjXkP79p14RZwEo3jjZSUyI9VvLyyhXq+hvbhcuM8AcPPOXTTqNdy8k/9MrmtdacXfqj1hDO3FZdTr9fia5bGybQDQXlji8+v2ol4jpNNQSP1pLy4l/RZ9lszqYi3FaBCHdRY5VNrLK/w+L2ffnXKeFR3aSyv8Pi8Vf9+3l+6jXq/h5tL94nUXl1Fv1PXzy0EL1L61gEajgfYt6R2kJhWUfnuExJrXW/PzaDYbuDU3rw0xqxNEiyxq7mDroTC5aBydBhv10Xx1Jt7nSjDqR04CwRCNV05ZyQQ/V/p448gpsGCAxiun4vPJbVBKYtItBClx3rjPx2a0xEUlFnKfdh+bRjDsY/exaeOY2Fan97w2AzYapOrbrlvGrmMzCId97Do2o+2nDc1jM2DBAM1jM/mFFYjxahw1X7NL3TJmUM2j0wiHfTRLtF20rmz6NM41N49Ngw37aFrmSJn6eVoLz6PY/eoMwtEAu1+dMRJ1z6fxps7NcDTA3uOn4VcpaEQ+qpFAbjOF2vf6GYwGPex7/UzKQXkUmf4IDEZh7A8hnJn3HT+DYNDHvuNnSo3XgTfPYTTo4cCb5+J9Vd+LiYaObFR9ikbVw/43zoIEQxx482yKdIjjKhmJSUPdx6GT5+FhiKnp8ykSsa9ZwR7ps+ZT7KlXsKdewe5oOzpzAX44xJvnLqJR9bCr6qNZ8dCseKh4FLWIYHiU2ydT8M0jQMAYZmdn0en20Lp6mV+wboWX0LRJBKUgfgWtMyfQ7ffROnNCP6DUM5KG1ukT6A76aJ1+U1/Psm/21HF0+wPMnjqub9eEMMDs9HF0+0PMTmfrGkkGAMa4YNeafhOdwQCt6deLtY3omodDtM5Oc7Os2AwrStA3GnDBMwyAcJQSoFsXz6Hb7eHahTNOhEIWeFsXz6HX7aF1MZnXrmCE4tqFs+j2+rh24Wzh+hOvayIYihDbungOvV7xaybBCNcunMnWdSAVQqtx7cJZdDsdXDsX/UdKpCJFLMAJg0waWuem0e310TpX/J3fOj+NXq+P1vkydU+j1+vj2vnTxetePMfbzRtrA9FoXbmEbreL1pXLmXJqxDqVF1ydnUWv28WV2asAEnNPHYHYCbr03QApYtdGCGGzf/jD1D5ZQBN257HJYnRMdu52zdqtO78QqmRiodNWyGXV7wKufgWTDm1rC2tZNDJUWTv/MhGoimIz/CuKYNwx2KwxlIkFkcz3tPVzVn48PyG4hEQkhNr9KwBkHLoBpAgFkHawVqMjyf4ILs7b6TLuK+dJXxKhYBKx00V/RF+01yK9X8T+PXUfu+s+9jYq2F310axQ7K762FPzsLvqo+oRVL1Ia0H49wrl9SsEIMGAr9CHIy7UjtTfw/g7Gw3B+l0gEsQLRYsyRYQSvgzycSX7d2qfZJ9eKnuto5ZEOGH/0198hL8/fQAzB3el61vOE4e21bTN/S4q2fqU8nC1fpVfl+TkHZuHABaTnPVDqdwK40JKdJiCYvvPDKY7E3EudhhrYwI7OQCAQiqAfE2ECSKksROkzPFO51afJ3nsXcZd+JwJX6HoWGIGlcxjRv1kMUMym2LUT51Prssik1CAL46EDLEZsMjULb+KxTH5DgUh8Or+3WCMbW1hAsCFqQPsX/2Hf3dT+3Div//zOcZYa1M7IWECoWjTSeaCIIz92oSDtxw9ypRN20Q6VAGLEmI1g1Lr6DQVeW3I53aFiwqPMWbN/puXk0GFS+ZwHYq2U/bcWxUbQQzGhSuxMM07U5hU9dxFSIWMUcjgU2IlFUBamFe/q87XwtF50lAJiSAbLkTFlF9DRx7k7yr5krUjXFtBYs1Fs+LFplAEkcbCNAySoMCon44iRQiPYiR+el4kLA1BlAzXVlgcpouAUOrmzG1Cni16BJnYpGajqO94Hvd+hblO3ukOfoeDalozsRfIHD1JuJIKQO+orZhA7UBB6t4l30k4iglGHElN+LARIAT3M+Ta2MS5W8ZOCNrvDiYSLaoowdDBRDoy5XL8K+Q+ySgSAcmYrbrgCoss4AUjlo6QYCEZat9comrF7YxBNFza2g7kwYZJEQvXrPOTgolY6EiE0ZxKp4IuQSwECVDNn2TotBWTwrjJlRrV5LWnO1dVeVfoNBMyeZAJkS1Px+66j10VDxWaJhYVys2hKOF1CCFae1VGfZBApK1W/obl1Unqg9AgFrSJX+GRl4oQDMAaAlbdJ9pQUZpYCJhWxQ2YiEA4LhHZRDLBQ+Qa2qf+ZLUXBcmnNXP0JFCCVPBqBYmFXH7c+b2VIYesVTPbI00mTJm/CQE8EAQiKh/REwxT7osdbF9MLBStK8HQwUY6ZOiIxXprK1wJhW2lWBwXBAOAM8mQ+7qe2gy1re8itoPGAjDfAx2xUMuaNRlmgbmMsC4IRlFSof42hY4VmhEZZUyi5HYAM3HQ/RbtC/KQZ8qVd75dVR8130MjIhU1n6LiEfgeUJG0FgLyqRghICISH/W5iRQ0v+UwoH6V52kIg/IEY6tASaZnBEs0GXEY2xJkwWgSFffHor1wEKBt5kvrKoBPCro5pBvrgpmjS6EIqRD9jKsWMIMqGIaWBUEx06jtCov2gkn/RzYiAST7t6X2ghQ0g/sdwETzXLgQDB2K5KgQjtuiDdGu3AeB9SQVeWRCpxGwxc9fL5IBjJ+D4buA9SAWG6W9IJQYiYU6T00J8Ey/x9EC5PlV2H5vFFQ/CJVM5Wkg5GzkOiKWySKueecIrWzdp2hWaKSx4A7cVY/7V5BUmwUuUAqfyzwfZDTkq9fUS4ShSNOwLgRDl7Xbksl7IrAQDflNF+fJEHUmaRoFWAnGOBh3hd+qvZgEit7bSRAMx+tZF22FjVRoVvS3EorOo5Q2QrdPThSZyZmRr72QTaFs5lE72P6YKLkAyhMMGVYnVQOxyNNWjEsqipIJ+XyMsXhc5CzAqhZD7pMLyQA2Rpux3bFdNBZAdh7J81tHLNRkdypswnBudmsHFCUVcqZsKBoB0Zdx/S50Ar8gBqo2Qi7vKcdSWck9mjHd9DSPfMXADCghsZ+FGnZWdJcief+onzHkXCuUJtJ0/IefHCeUAsLvYgIEo2wyvXWFdA3GN3QRYjEuAYnNuDaXYKwb1oM0ToAIrYu2wlVTsdkEY9KkuQCsZISFIKCx9sIj7uZR21J7sYMUJk4ugHyCUf68iM8p2pE/5WNyX1S4kopxCIX2d7xYY9diyH3MI2PfRW0GC9nEzLPWm1isp/ZC9rMwEQubFiIjZBuiMUFj3uQCk7O29nfO+bVZtTUwlTH5TsikQs7XoSNZsmZCJhQ8H0VCLnSkQsD2ftOFnQWQ0Vo4iSmy+ZMU7SXpiC8JujQSgNZRg7FFwESegkjgKqO9IEWENVV7IYRMnW9DQcIxDsEwai/G8btwmSumMbZpL0pCe30upAKwaysmmIX7d840KtJe5Dp3W8yjBLYgtd5BAawLuQDsBENf3u28NsftjSAWNqHXZqISjEKtFkMmGAA2hGQAW5doiP6r11GGbGwnjQWgN+/zPJ6fwkQsdMIykPUF0IV2FT4Mg1EAnxJ0BsUFzTKkgrFEayfKlzHPsobLVYhFo+qlTJzk+vI4yoQCAGq+x/NOUIIKJU6BJ0z9qnmJWZTvpZNMyVoLIzQvSeHkrfW7oF7kd9G1EgwAdpLhaPpkcureFKyHGZSxLb15lNb/QIcxtRwbgkmQ0DEJRqEwuzmkAtAQi3FIxWZrL1xQhMzpzJ7ENSqmUTrthek8QnshEwwPLNe5e6uDEAKvsg2e4w3Euo6GiWCUwWZqK8oSCkByWPVphmDw8rycTYsh93/SJAPYOkTD1ueiZGOjIzlNsj01MpSNWKimPAJ5eSLUfYNRgGbVwyhkTloMkRBP/p06biAV8vdgFKYJ+JjaC8CsrfCU7/J5qopWoiIRjJoffacEtYLhS9R+cnLhxX4WlKS1Fpn6pstMaSrS45zyuxDFPY8LUgaCwU/13dBipEZDJhguYWml/VZnbm3DGg2GqxO6KhhPaIV/Yr4X6zgvbNfn3PdxicUENRXfOch+FLll3bQXKsEAsv4X25Fg7CCNdadaOoKhwjXzdBlisZmkQv4uCAaQCF5FtRjy9awHyQA2zz+jaD9tZGO7aSwAvc+Q8LOwEQtBKlySzpm0HKJcnGyugJlUUVJhO8e4+S6qHo0T/JlIhQuhEFqKikdTn67hsk3gxIJq/6sJIbFJFJE0Gk4QfhYGvwsGO8EAMJ6Z1GY4detgGLOUaVTeKSak7RBCbWImVSCkbtkVfptpQFmUuYc2AmfIfVGYBOm0QJtNKgzai++CaZRVO5EHxblbJhh8X9r/YgffDWyIHkclGEXqmfaV0VaMSypMeQLi76qAqDmPSYuhEgzRnkkwK0oygPLaDGB9ycYkyMBmE4pJkRtdZCgbsRCkwpVQ6JK/BSHDIAhjEizMpExaDKG1SGkulHK6eZsZF4qM9kKGHI7WFoY2T1shfusIBQCjliL55GXqhn66PhoVjxMIVWvh8kZkjJfPmEEJp26d8Cn8LvwqMBroCQZQyA9jI526WQnhj4VhWrDXaS/WC5L2AgDgV7NZyotoMyagwdBqL1z9LtaLHGquzbmedn+6n7m+FWVIhW4stL4l28A8ahIwmUaZtBeSc7cgGIBeUyHv204gO4k5UtgwIzGb6YiLPf042opxfSomQSrkeP5FzaQA8+qvK8kAymszgPUjG5tNCtYDZZ3RdcTCr1IrsVD9JwA3QpHx0QDFIDIqKaLFKEUqdOeRyrj6X7iaQNmcsyseyWgn6hHJ4Mc4uahQvcaBd1hcu72/KrFYF8gmU8LvIgz1BAPYko7eZUiF6TxCc5Dr2K2aRJWFIBiel1oxtxINx1V+K8FQ7/u42AomcgUJUGFtxbjXWICsfhe0FwDGJk9y7gsX86gdbF94169fdy781ltvXd878/v4ZuV9MEJR3b2/UGOdzx7hm9X3AUpR3bOfr8qqkZXEaq2yvfh0Dd8+/ADU81Ddsz9VVoaOWDx/+hBf3fslQHi7Jm2FLsrT86dr+PXyLwBK0dx/EDQS/IBo1VGqI/8W37/95CE+X3oXAEVj3wEwxldBGUN8LiaxdBKZNFDK64p+1146YGXyYpyEgPPi6UN8ff89EELi8VLLirZUvPh0Db958F48XjqIvifXwOK6v11531pXQCd0vni2Vnp+bce6cf3VD+D5Pmp7D6QiQ1FKrcTi2ydr+GzxXVCPYtfLB2PBue4nDsyUkEhY5t+FoP3bj1bwq7mfwqMedu8/lJgNEcCjFEHIQMDnixD+hcbiNx+t4POFdwFKUXtpv5lUKLuDEcO3nzzEr5d/CUIoqi/tT54FkmyCiIvfHk3G4MtfPcCTW+/A9zy8dOBQTCyqPkW94qHqU04WPIq6zyM0+ZSg5lM8XbuHO+/8CPWqjyNTR1DzaZzQru5TNCq83q4qN2HiG9c4rN5dws9/9AP4vo8jR6ZS98SjfEWOUv324O4d/OSvfgjqeTg8NZXSWgiTKADxeBPC/2DF96U7d/CDt9+GRymOTB0GGAMBiwRJwld/CQFhQbRiGK3eswCL91bx/b95F55fwZED+7hgK+6XWEaMVhtFfgwS/V5c/RA33p2D53mY2r+X1xECGpHOI0wcpPwai2sf4e0PluBRgqmX9zo9C0JAXHz0Cd7+4A48SjH18ktOdd971sEbe6uYalaS+h7F1L49fHWVesm1CjMNIfCJ4wAWHz7GjXdu8rE+WOx5Xniwhhs//wCUAFP790VjGhEJOZIVY/yYGH/GsHB3hd8n6uHIoQNxv2QQGGzgCcHC3Qe48dc/4/0W9aNjRH0QFQKycHcV3//xO7ztA/uKXfO9VXz/J79ItyvG2YRohXvh7gq+/+OfJ3XDET9mIkhhkB6vqN2pAy/z46NBTBpYECTzMwyl73z/wsoj3Pj5B7xtUd/1mkVdAhw5eCB90OCnIIjuwoOHuPHT9+B5JJlfjiRl4d4qbvzkF/A8wxxRTZekfizcW0nmx+GDUXmalIk/qfKbfy4u38ONv/wRfxdMHTbXk+co4e+mxTtLePsHb/O6R47EhynhM5MhkYGosPIkwB//0X+D69evv+U0OJuIf/Hf/fH1f3T19Kb24U9/fuvT69ev/9mmdkJCYQrafboC4tfQfbpSuLG8urYV396zVdBKDS+ePNCWlYV+IBGgAeD5Jw/g1+roPH2QIhaEknhL9UOq++1H9+HX63jxCW9Xtd02/Qa4k+3zj++jVqvjm4/vZ4SRuI6fRASKzWAoQedp0m+1b+qmjkPn6Sr8ag3Pn9jvk27MXzx5kBprFwjNRufpCmilhk7O/DCtZq/n/NqKdUV9dbx12bdVVH0Pv360DK9aw5drdzOaCtXvB0hnnX66ugS/VsenD5eM55e1AjK+eXwftFLDtx/dyxALFrLM/Q1GLNbGPf/kAahfw7cf38+0qZpb6fD1h/dQrdXxxdpyJsSsfL06bcVH9xaxq9nEo+WFKN8EjT8rHkHN82LNBSdwfMwqlGD59hwajSaWb8+BRsK/vHmEaDcAWLo9j0ajiTu35ozXZXsZz8/Nod5sYm5+3jo2MeJ/bx83l+6j0aijvXSfazDAhepYsBYrkZGAI1buCfXQvreGRq2G9r01t3YlzK1+hEa1grnVj5zKyyvPc6uP0ahVMbf6uFCbYiom9d3aFiB+Be27q/ya7xZ/ntt3V9CoVtBeTupmohLJq+qSGdfNpfto1Cq4eWc5WVUPR8km+sjCeJNOhPbCEur1GtqLy+ZyyrkE4bl5ZzlpuyB4v6u4uaQ8z3magXCEmwt30KjXcHPhjl1TIYiZrt3Fu5niLtoKfp+raN9dtfdTg7HqLq3w+7QkzS9Zy2Wtex/1ei071i51F5dRr9fj+cG8YoYr7VsLaDQaaN9e0B4nlvs3Nz+PRqOBubk57tytoKSyf+uAEBCPbuq21VC4R42j02CjPhpHpws3ZqtrE6Q8j2LXsRmEwz52vzqTKquSCiBrxrT3+GmEwx72vHY6bstEKOS6nk+x740zCAd97HvjTEZYMxEMsYoKAC+/fgbBsI9Db57NmGpkzDcUkrHn+BmwoI89x8/A84lxU/tPCMHu12YQjgbY89qMcVxNEGO961jxus2j0wiHfTQt88NmJrNe82ur1hX1w0EP9SOn4rEJRlxAF1GVZD8HYaY0GAU48OY5DPs9HDxxNhbKB0GIQRCmBHXxORJlRiEOvXkOvW4Xh948n5xbqjcYBQhCFvteyH3Y9Wr0PL6WXq3R3VvZjwgAdr86g3DUj59HGS4mUYdPnMNo0MPUyfOpemo0KBmCZExfuIxBv4ezF6+kTKA8CtQ8L/avEMntxCcBcPHKLLrdDi5emc3to4rzl6+i1+3gQom6AHB1dhbdbhezV6+6VZD+wK+dP41uf4DW+Wi8I4JhgyAYrbPT6Pb7aJ05kZCPSgWkEpkOiRVX6mXIyez0G+gOAsxOv5Ecl8pl2qQ03lozr6M3HKE183pqv22LTsLbPnUcveEIs6e+B1AvMXWS+1mpxL+JVKZ1boZf81nL82xQUbXOn0Z3METrXFJXaw4zGmRIhrhP18R9krUdYZAmGpEgJxOIaxfOoNft4tqFMwmhUOuo54yQabsArHU1pCBV98JZdDsdXLtwVl/AUv/a+dPodnvJvHYU0AVmp99Ap9NB6+ypQvUAoHX2FH+mzp7S909j2icIT+v8NHq9Plrni/9ftM6fRq/Xd7pPKRM6QtG6eA69Xg+tS+fNlWxtX7mEbreL1uVL+vaE1kTRfDDqY/bqVXS7PczOzsZmUQBip275b0M4de+YRW1vkCLhvgghbPYPf7g+HTEIFbKtf1HfCtX8ycWfIi/qk+kYYElSFmEkPS2yHbsqAMafUhnbfbIJ68GIC6g2n4xJ+T24+mF8F/0sJgXZ74LnuMh36Obf0yFmXfwtxBwdycQlCDEYhVpiAUjO3FLEMxku5CLuj2MULHF9sv+EF5k5mfwsGhUvo7XgmgkaEwodsRC+FSqxkMdNjIXuqnRTW/yBCi2GOKdqFiXulIgW5RH5OzePImHAVwjjzxE3YwqG3GkyGPDPkfRbmInk2aSL46K8krMi5YchysjO3fFqu2QHv4F5L/7ZzWf4t763B1emdqX2p8LKUi9FjIhKPICJOuQ62dkrZI+4tp/xG9E4alsEe51vi3PbZeHqUO/gDzGOj4U6L8fyswEs4Y2z42mdEw7EH1Duk9y2ZBalkovkeyT0e37aVwd2gsDPT5XjjvVEObE/ek8GjMXvTPFfErDkPXp47y4wxra8XuPi0UPs7f/039/UPrz2X/0vc4yx1qZ2QsKWyPpR1KF7XFKR56ANmEmFjVAA5pCggRT5ZhSyuN5gFJpXa5UkfDrIzuCZY3EEKhEgxuxQP67Av5US8W03iLEX9yFACA8UAUIAlDv5R5GV5DkxkH4LB2w1qlLspO3RVEABGarWwgQXk6VJwkYsTEET1GOTJhbi+0aOw4bBkgcDQNrRW5SJBHU2HCbhZ5UoVEVRhJDI5ydRv1JtWkhFXD8lnG0wsQASwTgSLE0O7RnBX7tirhfKXZ3kMyF0J41cJ/aCpEI9VtJ5u0i44nXFaOBMMEpBJhZF4UosDHAlFnH5bZTnghACupNEL4UtPRpq4jyXnBWqT4WtLC8/PqlQtRQmwUcLVVg0wRQGM4d0xIIrIVaCsYPyGCcKlwwWMi3BYIzAr9BcgsF/JyRDFoJjkoHEH0PWRriYQ21VyJoOIJtl2yNAJSId4xAL0UKIZPzUUaFkPHW+NWjDGH+2NoEsjiDlgFRGb5lEiBC1RcO+aoS+UkIe9QASrdamyIJiAhVdg01bUSaqjzp+pSID5QiWuaRDp6HStWGDRHDWVYuhkoxxSEVBcygTeR2LYJjmuya60oZHjlKE/phYFNU+2Oqk2tNrLYA0sUj2pYlFyLYXsdiBHptOLvLMoUzEooi2Is/0CXAjFa5aCl42+/IQgp9sXmHSZjgjj3RQHt5WmKZQSrQEYxztRRGtxXfNJCo1zyagAZLrC4IRAhgNwzg0rY5gDJCen4NRkDKVMpEMALnEYivD6AclmUOJSFSy5qIMsYijmTBmJRiZPhKS+jMdG3GEpmiV2SVkpwyNMOaSZC9VXiUZJi1GHiaVdyI+D0mHlc3TVoxJKiZRNwVH4V+GVuguIHALYhSHz1U0KBtCMmz9cyRLkwg5uyU0GBPQXmhDFohiquQAACAASURBVFsWLkxlM+ZQgF5D4WAOpRILk5+FIBY7thDbG5tOLnSwEYtJkgqbD4WJVORpKXT5BgBOJORjg1GQq83IIxnCzEW7X84GHhOMnRWBScGYaLEgwTCVjR27JYJBKTAahMmcV+azTYsBpHOtDCRCmEcsbL5AGw1BIOQIVnK0KDlRnmoOJTQXuvwVKrFQtRWZkNdI/vwI0v4X42ovykKQDBIkzr4TO7eFZOi0GADANs7dImqTgHmS+RNQnFTYhLqCK+TrgqKr9I4aKbmsnAQQ2AAthqk/eaZcJTJvu5jclSYYk9RelCEYRTJoFzFtUs2hIhT1swCyxIIxpnXgDuGenHQHWxObSi50Atp6EIv1JhWqliLPLMpGNGRthrPJlIQM4YiS9ckEY8c8ajyUTZJXFCaCwWXHaD74NHXP43liIRkCLpGZbJqLjSaqsnO6gO7ZFVoL1RyKJ8srTyxE80HI87pQAPgO+V+YtBepMhqSYTOV2kgQgAs4subCYgJlIhVx4j1VSNUJe+tIOIoQg8IwCeCUJoKvosXYKIJRhFTkomSivIlrMDbLPEoV/G2+FmXMoQo6cAPI+Fmo+7YlsSDYkuFgNxNbSnOhEgsZabJQTluRF+1JDiUr4Gr6lHduAZ22QSUaWmjMn5zNpxwJRhmznt81R24bIRZjMQnzKIE8gsFEIq4cLQbfx02ldA7deeZQmyFAq87cuuPiU85rYTKH0hELNWt2HrEQ3wXBEO2r5lGbpb3QYayM1wbzJieSMckszy7mUwQAkmR4cT9NpCInSpP82ziGEyQcpcnEhDKax+eyEAxg/cykypIKV3OoopHLNsJEykowLNqLscieg9+EzRxq0pGh4jYjYiH/3sH2xaaRC5fVX6G1MBELm8N2GVIBIBUCU3/cvvqbKqsw2UGQjQylkg0noiGgEShtplabrcHY7v4WNmIhvhchGK7jYSMYpkhSQFqL4UcCsKzFiP0wcsyhNhJyiF0TVJMoUQ/gWgvhzK2aQwlfi7LEQnboFseL+l+4YIMUY1pktBdAWrA3aDKARHjLmEpNqm8O52OU5msqNFqKGIZrdSIaY8BKLFzamxSRExnWDQQDmLwWYxxNhas5lL7dyAzMMq8KEwzbvNdoL9YDWn8LFNNaANCaQ+VGhrIQi/gcBgducfeCMEs0drD9sGU0FyZzqPgPfgLaChdSASTEwpVUZDQRBvVYHtkoQjRS5lNJxzNtprQbDgSjyKr775LWIo9YyPvWY1xcCMZoGCCIckbE/aHEqMUQyCMWqe/r6G+RZ6alajBkzYWstfAIUJN9LCJzqLpPxyYW8XfK/wRlggGk/S+2kvaiCLQEQ8CBaLDR0IkIlO6fUdgjabMoV1JhzFGgj2SUSzT8aimH6kLCsYZMpLRI40Y9ciAYQHEtRiFiNo7JWY7WQs7ZwsJgsgSjIMpqL3KhIwxFtBaa8tk2siZUJmKR58ANpInFdjM3pTtmUSlsCrlQBbUixKKMtmJSpKKIlsImKImHJkM2LFw9k7/AgWyIpH07Phjl4UoqTHXLEDXT+e0mUjyniarFiB24NVoMMS+2QmSoPGJher4E4RDaCtkcqkJJyhyKRonoyhILEv9pshTBiMtE4yoTjLi/RSK1lIFw3lY/J2mapMK0ym9w/s6DswBnEgRJJNiUJRU6h9hwZCdUJqLhSDCciIUtEZ4lrGoZEL/iTDAAuxajtIanyLgJjKlNmijBKKG9WDeCIc5fVmshHXc1hwLMxEJ14JYjQ+1oLL5b2HTNRR6xkDGutsKUq0JnAmUiFXlaClvZQCfsS8fWhWz4NBYs43YnQDB+F7QWrsRCzXPhYh6VCjmrjKWNaIh6ozCAX/GiGcJAKcmYSQXIPhc6LYYKk9ZiM6Dzt1CjRFWF87bQWsQ+FjRlDsWT8o1HLMT3xN/C7uCtai9cTZ48x3ITtbeXkNJeuLSlEcAnstpbJPMxABCaIRVFCQUjNIm0JY6LcL+WvAxGR3ADjMSiAJlgEyKPsb+MEKI1BANAJpIU78OE5mAZUgHkjp/rmG2YBqMMwSiKoloLmxM33ImFLeSszoEbSBMLgUmZmO5g87Cp5MIlSZ7QWrhEgiqqrcjzq3AlFa7O3EWcvIF0LgJ4SIUPzZS1kY2IYKTIjYVgTNIhWWC7+VsUJRbiu45gjANxDrntmGAMAxBK4HlZMykGfh/zfDHE7031szDkndHlipG1i7LWouJRVCjJmEN5FLE5FCXjEQtxq0Om+lvkO3hPGoVzW0wCuhVqnWCpE8DHMZMyrIxnBDFCwIgH+FUzoTCQCdO+siSDhaFVe6ElFiah1yYcFyEXNsFZ8j/QEgwgV4tRGmVJxTpgs02kjMgb72h+aueyRmuh1Tbk5bQYM+Qs36+PDJXWYPB353YSGQghmxKueSvDu379unPht9566/remd/HNyvvgxGK6u79hRp78WwN36x+ABCKxr6DAPSkQTWHIpTg2ycP8dXdX4JQD7WX9kfH3bQV337yEJ/deRdV38Oul3m7spAi4uLzyDQ0te/rj1bwyfzPAEqx78Dh1EqqXE52GhXnp4Tgyw8f4FH7p/Cphz37D8Vl0quZJLMxBvz6Vyv41dxP4Xkedu8/GK3A8o0p9eTzMAb85uOH+HThHYBSNPceiFZbeXuMRVsYRRqKTJUZ45/PnzzE1/ffAwhFdY/+HpsiObz4dA2/XXk/W9fxRfHi2dp482sCdWsvHcgctxGLF0/5eBFCUH3pQHytYowIIdnrl36/eLaGbx7y56Ky+2Vt/xhj8RaTcMbr/ubBeyCEorJnPwjhBFHcS0T3FURdUSf46vEKni68A8YIansPRO0kbWYiRkn+Ft8+eYhfL/8CIDR+HtXrincp8ufzpw/x1b1fglKK2t4DoJKGgRJOEPhcT/ZXJdLw5Yf38eHcz1DxPRyaOgKfcnLhR+ZPNY+iUfGiHBdepLHgGepX7i7hx3/5A/i+h8NTU4WIxdKdRfzVD38Az6M4dHiKH48umUWEQ/ym8vMG4O7SHfz4L38Az/Nw6PAUSFSGRG0IwkMi0y1xi8XvpTt38IO334YPhqmpwyAs4GdmIReAGYs+pd9gQBhg4e4KbvzkF/AoxZFDB5wFUkIpFu4/xI2fvc/rHtQ8U4Rkt+jCF1Y+xI13PoDnefq6ABdkNOdYWHmEGz9P6hLPA6E0tcGvcuE3Cjf7i3u/wvcO7cP3pvZj4f4jfP9v3oXn+TgyNcUFoFgIUtpMXzQW7q3gxo9/Do9STB0+GJcjYMl5xKSOf0fXfG8V3//JL+ARwsdaEzXLRCzia6YUU3t38+NhyAX/+KXN72n8HeBJC8MQiysf4sY7bXhgmNq3J66PMOSEQD6Hsi2ufIgbv5iHR8DvlagX/zHQ5A+CMT7+EflYuLeanl8uGA34Nd97gBs/fQ+eR7RzhAVB+qUkYeHBGm789JfpuVlAa7G4+iFuvDsHjxJMHZDeu4yBmHwMAD7WDx/H9+rIAc07W4yZqd8/e0//XIix1bYbYOHBo2SsD3NZRp7b8XyW53Z0voW793Hjr3/G59fUVLYcoVknbkJiErG4tIQbP/zX8CjF4VeOpcqpfhYyOWCM4c7iIn7wdvLu1IWc1RGLf/5P/wjXr19/Sz8gWwf/05/+yfX/6G+d39Q+/Mlfvf/p9evX/2xTOyGhMNXqPl0B8WvoPl0p3Fj36QpopYaOpm6eA/fzj++DVmr49qP70XF3M6jfPL6HWq2Or391D0A2ZwWgz6jtUYIv15bh1er4+sN7mWO67+r5v3i0jHqjgU8fLmXKqJt6/i/WllGtNfBZVFf18VC1JzLp+frDu/CrdXz16C48miQdk1d8dSvGAPD8Cb9PL5480B63rch3LPfYBePOr7HmZrWO7qerqf2eRzPEglCSIsXPn6zAr9bw/MlKpq5cx9j2p6sgfjXTtglBEMb3oPPJAxCvim8/vg8WMgSjMCIXDMGIgUXfR8OAm0pFCfOCkOGrD++C+FX85jGf20W0Ft9+dB+kUsfzj++n9ouxkcfI80lqe/7JA/i1Op4/eSAJ9SSOFAWkn0fVXPDZw2VUanV8fP9OvE/NaRHvl8ygPEJw59YcdjWbuHN7vrDGYmF+HvVGA7fm5lPH5bpyfQARiQDu3JpDvdHEnVtzMM+ENATpAID5+Tk0Gg2052851k7QXrqPer2G9tL9/MJq3eUVNOo1tJcLPFOUCyntew95n+89jPdlNgXE80A8D3P3HqLRbGDu3sO0mVO0kWo9TTSoBwKCMHLovrn8AI1mEzeXH4ARmtrSDdL0BqC9uIx6vY72nbvplV25PvXTWpCI5Nxcuo9GrYr2Xf142TQW7buraPgebt7hzyMLg6yWIvrNhsN4E8fa9x+iWfXRvv8wVVYtr24A0L6/hkalgvbd1VS7bDTkAro4nyA8QcCvZTSIxiuaX6OB2xahvbSCer2Gm4v343PKWwoSWUIYor10H41ajY+1er2i3+K3OpZivCsVtO+tZe9TVN5kQnXzzr3UvdJC6VPS7grvt+GZsmlpMs+yTstiyKDdXljiz/LCUqaczrFb1Vq0526h2aijfXshddwlMtTc3DzqzQbm5ua1IWdlYiEQGEjlDrYHCpOLxtFpsFEfjaPThRtrHJ1GOOyj6VA3GKUn1u7XTiMc9rHne6ed2xPC0r7jZ9Dv9/Dy62cK9TcIGQ6eOIeg38PhE+cK1RU4euo8Rv0evjdzAVWfxpsOKtmYOnkeo0EPUyfdGLEsHB48cRajQQ/73zybiQYUbyOeJ0E1Wdp9jN+nXcdmsm3kmPo0lXvMwuz5bRhnfjWPzYAFAzSPzWSE3LyteWwm1W8XUkEpdx7e89oMwuEAe16bicsJuBCMxiunwEYDNF45lTkm+qHb+DXz8VKfKZVgAJEznTQH9h0/g2DAn6m8vBZqlKjdr82ADXvY/Zr9edSN9d43zoAFfez53hlUq17iOxE5mzeq6T+6QZB2Nj9y8hx6nS6OzpznxxhXtw+j6woZi77zlTERXz1gDBeuzOJFp4MLl6/Gf3Cu8dSvXL2KXreLK7NXzddL9IsOF67Motft4MKV2fgYjcrnxQfwCMHs7Cy63S5aV6849VVG6/xp9Hp9tM67vzvjuuem0e310TpX/Hk01RUEQrclfZ7mfb54LiEVQEImgFigTwlYhALUx7ULZ9Ht9XHtwlkQoc3RQbO/dfEcer0eb1s5bs16Hga4dv40uv0BWmeja9ZlkTaYQs1Ov4FOv4/WmVNGUgEgIRTKOVqnjqMzGKA1/Wa2rm6Tzjd78jg6nQ5mTx6Pj7PRIBGyTSRjOMTsmZPoPn+O2Zk3tATBts2eOYlup8vniEIeMptyTa0zJ9Ht9dA6c5JfR9RHQSq0BEG6/tbpE+gO+mjNvGEcG/U8YmudOZXcK6Vd3byQz9s6O41uvx/3uwicnuU4qANL7WtdOs+fx0vnM+ViM0t5nKPjJBzx+rNX0On20Lp8ydi0LjIUAFyZvYpOp4vLV5L3lykylHhX73CL7Q1SJFEJIYTN/uEPx2tQI3jlRYkiyn5+zM3nIS8ylFxG58QdH3N03PYN7eXBlhCvLx1ThT7ZD0N1xNXlL1CJBYBoxZsLo6GFDBTxIdhoHwvhe+AK3bXk+VQIqL5BchQhIHGM1zlty/smNUZCaPc8miE/on+eHwn38bNFjQEH4t+aOenyvtAFY9ChWvVSGgsdsQD489WoJGWFFq7qUzQicrKr4qHmC1OoxKG7WaGoeXy/cOiuymaNSp/ztBceSeyGZTthIFHx6+yHAV5HmD+p5IIqbXkk0Vx4kWkUCQP+Rx9/jrjpirKPBNFvFgKjftbh1jHE5yTt3As5qmpsy635KKJV1z/5v/81fu/06/jbF+1EyJQHILPiayMWqs9LKrRpVK4AsVBX2XVlAIVYFPW9cPF7UcqksqxHx4RPQiafyCRQ0EE911lbF7JXJWcRrBnlLddo8tHI9c2gnrs/kYAapCAOu6z4XOgycztk2U75XUjlU2VFOY3mwiU6lIufhSAXZ47sBWPMVdm7abj8vSPsR//lP9rUPhz6L/7ZHGOstamdkLDhDt0schguVVdkIwYXfATBMDlEqxiMwljgH0mhW5NwnUFMMMS++FgQGvNXTAIqEZHJhuiH+j0PNmIh4EIstjKpAKAVrPP6kUdEipAK+bfwiTA5xsv7JuE4r2pTZIRh4p8RjFgcSUrtdx6pMBEKVxKhwlPM86o+Rc2nWtNEgUEQpgMcRAkjxZwehgwYBQA8CHGfEoJhwACI/QBAEJAkGlMILtjL7xYbghK3K/HDQMqRXAcq9c0ZsaHz5CJHTYpYOJMKi7NqoWhPDvdHkIQMyZD9KDaBWNgEY5O2Qv6uCtoZ4TZPcFf9Q6iXapdEpxMJEtlAOD9P1sm5cCbtMoRCE2xARzpiwqEbOzkjvSgvzU+nvCPrlViPhWk/mdQ+/knCEScJYj+Q7AvDaMWDl4/369pw7ZImzKzJHGpHa7H9semhaDcTMsEQkAnGJGAKO5uHqhTJx4Q8rYWNWAhzqO8SsRCCtBDsXSD32YVQAFmhWmjYghFLhSkV52QhM4andSUYeddjIkucYKT7LMyj1ChSrqRiHJQhFnEmcYRoSH/eQcjQHUh/+hUvJhgVytCP5y6FIBgeITz/CyVAtHAgCAY/J9deyPvGul7DYoCsqdBB9rcojO3yz5wTbchFW5EqDydukZTPIxlKOQBbi1gYSIV6bhtSQm8O+WDS6WKiIY4N7FGWyqBQmF2bhsdQxrhfJgjKeVLaDR1BcSAaALThfnNhel50/hIKSDDSRo1KEQy+8pQmEhIhifcTt/tsCj1rymchzKF0dXaw/bDu5MK0cksoQRCE8Dwa/xYrrWIVka+2JuUnAVl7ASQEQ9Z+CIKhai+KwGYS5ZJgTz7PaFDgJSudRyUWAt9lYgHoCQGQmCup59AhT0uhBhwQ+wTB0OUNcSUYZee6rR4nFDxMrShnyrY9SdMnGWWIhYD8LMaInuUUAY8IRnb1nxMMzsEogDTBAPTaC92+vKkea7AAbeZuGapJVOa4iKAnh3pbZ6S0FlIY0qLQai2KEgrAKTdFVLvU+JhIRsa/YiOIRZ6QbCIWJc2iTAQkFn4NSIjGMBa4M2Rgg82lnAiF7TyW8MIm7UZGsyETijAJ75vpa05IW6ecF3nj66C9ACwEAz5/7tWystYD/N3EHP4P1OhQgD7s7HZZG1GxE4o2jXUjF9strwGgN69KkY6CplFFCYmuTiCRHxfIWguVVMgO3P8/e28WJEeS3vn93SMyMrMANNDdAAr3fRUaBXQD1eSQwyWX1y7JpWlFLU22epDJRJmkF4l6Wpmkl+2xNb3IJJO4kslMFHdXtmaUHsiRUdzpIZecITmc4RzsKhwFoKpQhRtVBaBPTDeArMyMcNeDH+Hh4R5HZhaOGXxmWZUZ4R7hERkR+f38u0YFFs/re3aBhUtBMxXlKtBRFypy1eZD5ADDV//CBoxBpEq/Ku5R62GlMMUGizEZb1HHSpgwjh7y7lF6H5Sg009Ao1C6SWWvYUoCrMVMPvUEYNBA3lsyBoJzjoTlg6yVsWMQUVBUxSXKJcRFJiN0gcps1gUWw8ogQAHUgIpUhrmKTcgoBAsXVADrCxZFblBVZ/irtpO1Lkwpgg3uNZCIFYWxDENKobuTZ5kLqJzHV1CZ3YaNKpABOECjrvUCxUos4cwbU5SzXvjcmiSM5ABD7LzSGJUkek4kO7lpB3GLtq+sFj9KMlK4qKJoDmuFGDbuwiVl8RcuGWZ/dcQMLPcBhivTT88KAn+WYDGswlwmPrCwFX+l5OfGZynSdVyfzDHYbTkX13YdwKgrvuJ+Zefa5x71LCSQwddm4HZdsACy7lEKMMz7ttNL0I4CrKkCkiHVgNGgRLpJSXtCCBBC0WccDZoFDCVFrlGucyeK6WWXmdYLc5nfUlHPKlS7mF7FYO6c1PQNt6tkO9tUhQqgElgAo5n1fN5gUSu+Qn0eEgQz34UrZiF3mRkz70pB9gjv5hXukUqVmAuXhcYYtzM+ogpslEGG1S/znccFsRijkiLrhfE+F39htlf3vs4uxVLXqApxF0pNsKtwA/iRsVq8krwMDReDzlyXuUYNI2WKv+0aBRQDRqaydYG46mcMCyAJ45Vdo1xWi+cFFur9qAGjCCzsgG4TCMzUxi7XF9+6KlBhftZVmqWLFIDKAd6uYx21uNyj1ktcblCDgoVPYmmhiIxJhoyblAQMmvmuhMpPVZVBCMAAJFB4rBd1xI69cU0OKJcol7i+mvWuyj0qq0URWBS6DgwBFYDQhUaum7xMYFHF5ccjRXCiC+bZfTKXo1Sun0f1aqAaUFSwanitNp62pZBh9vO6R6G29WJQ0daLioCRDfD2u0aZ4vo5Y9b7KjUtXibQIISA1smI92MgA8NFXahQSmvVdKGjiruoY2GoEuBdxTVKzdKOQpRSUsU1SqWezcRa1ACLKlIFKlzLR6HIloGFbUEwx+CyaujtOmaKy9yfXGmRk1hWtKXpPpMYzgxStnvUoFIn/a7LPWq9AKMMLOpkPTPFZb0AoAFDWS9MwKCNwAjuluOjVGaSAgAiUsw6nhUKNgghA5vqlfXCTH1rii94O/BYMNYDMrxgYSpGQyg/6wkVWRmRRlIlvgJYP7DwzMYPBBZV1vuEBn7wYCz3vfJekRVjtFmlbPFaJ+x2juPRx+EK0i6DjbqQIdtxZgTBl1h/clKnrcsaYS43pBwwYMRs1Avs9tW0SNvll72Sl1dqP8EHUUrt2XBuKFmDKDdV00YWict6AbgDvJXUdYUaBDBcKWmrBIArmMhYLWqCRZnVoi5Y2G2GUWSrgIWp5Ov9OkADgNeqMQhUmJ+rAIZuP6B7lKu4X1Wx3aPWw4XNBxbtKMxVkrfjgqpIGWD0rEBvEdydpqgFgD4lMFPUUgId4A1KRmK98EmRS1S+rXxTEmOxLlaNARRS22rx7KACAMjws52u8/g8wcJVC4MlOajg/QHd3QqENKLSa4C7lGIHdOj262t8k/u3YixccJRT9NM2RaABOFyoKkAG4AANA15SYEkBvlJQ9wCSib0oC/C2AUP1KRFV38J0icqsBzI1LV7Jj56sa7Yol+Kk3KBcywZRQM24i1GL7R41ClgYpL9Kt1k029uTfubKagHguYGF6zs229b9jquChf5+jHNupt619+0CDXOfmc8VCziiCmCY+64AGHWsE1UldY9KIWMUgGGCRTsKctaKgJKM5a8nFf5BAQOO315lvYtC6qyBEVAiArt1BqkACZNR0xZgCLeprFSNVTFdo+zYC59LlAs8iG9/Iwq4ruQONUDgqVd8s64WWDgDq0tFTX+OSIstAYtSiw+GB4sya8V6gMUg2yWN1A3OCR1AIXg4pcoMfUXrRKVUtFVAwxiX+m7KIANwWzPqWi/y6ZkrqnCW9cKZmtYVP2FDB0IgoFnXqKA4YQMz/tvuULm2zy4p3miFANRRAPbHWdbtbFRRVsuKf9kWijIFqK5locx64dtmkWvUerhEqdlfM+7CrnHhtFpYYOGTou+qyCpRFLNR5AZXR5GtDRZIFf6Eca81Q23bPo5BoSKTstgBGGpb5r5957YOTAwCBLZ7FADtejjoNqu4QSmwUO8TxoXlIRDXc1Urhumq6Cqu56wRY9TA6FPzeqdYI+4MUpQSqBhwOgJraVWYKDz9I84SVUU5riqlVosaUGG/rwIZhFQHv0ryMoHFqDJ7DSG8u5YDTxM4dLuS7ZQFlzv3XREmioApZ6lxuITlYMNpfagKGb7+DoAvybiWGWNBxqhMuyrxF2qZTFFrttGuUZyBgIIXTMTY96VttXjpYOKVlMrI4aJYUXWBcTaw27nNOO8zPwrXqCJxxV/Ygd1FMKMUrCpSBCPmOjvuQruH2AXzpDuUDRZ1XdoGBQt72aBWjDpgUQp0dlwE3NYMve8aUGG+19eIBAx9HAUZpAaxTAxrZVDuUQB0bJMYd313xbpg0QzTTE8KiCNQbcUA/JaMNK7IAAyPe5Roz3SKWjQCNDhHN5eilgBIAaNPRIC3irdwWS8Glaow4Yu3eCbiUI7Lin4Vum8MABVio2mGmqqQwTmGt1r43GpcblDAiwMWg8ZVjFKs2feqwAEgVbSHAaVcOl8PTJj7UG5IRlsXaNhjywS6G4HgVSFDteFAvdiLQbNu+WIvzHXG+1zAtnaPiipNctguUWVWC2M3ov0r4nipZaRw4QML+zosAolRuWdUtWL4rBdANv6iLDWtK1OUKcNYM5R7h9qODRh2EDcgzmMVsPB/Z/XcoIpkECvGIGBhnmPz+89cCw6XKcAAjaKYCod1xHyf26cEjKopaotkPTM7ZdM781Irhn2OisAiCmnGWhHa0G18B20qMrMpq5wNGAosYgOqywDDvF86/USAREGKWtogIMpFCgroxWrX3W9f+XY6WjtrlGpj3wmF8RZKzO2MwIKxnjUt9AxvhbgKJ1SY741jLYOMgdURXw2HH0GwYBUqd9cRnjCQzLO9D2pX/s7M3OcV/irxHZXH4wIKn2VDwbKSAUCjEmTYBfpoAN63ChCaqWnXO3OUyz2qYoA3GMu4RrlE5cowXaKU+KwWNec+X8kAQgjZAuD3AJyCeFz+FoC/D+A/BfCRbPbfcc6/7uj7LwH8OoAPOeenyvZVGy6ePryBpyuLGNt9DGPjhwGUWyvSvjfRebCEsV1HsWnXkcLAbjsl7eOV6/ji3gI27T2BTXuPZtqWxV388N4SHt2Zx5b9E9hs9S2Tj29fw+d3FvDm4ZPYcWhCL3e5Rrkg5cHNeawsXMbuE5PYfeRk4b5sAFlZmsO9hcvYcfQUXt93TLtGBZSIWFSkVgsgW8/ih3eX8PndBWzcfQxjOw479+f73h6vXkdndRHtXcewwdPXJ08f3kTn/hLaO49ibPxQpT7mpPuVCwAAIABJREFU9//kwQ107i9h094T2Lj7SC2weLp6HZ/dnsfrByYwtutI+Y6N7+vRnUV8cXcBm/adwJb9x/TyMqAAstfXxt1H9Hql1JalqH1y/waerFzDht3HsWFner6rAMWT1et4vLKIjbuPYUOVYzbki+UlPF5ZxKa9x7FR9q1qxfhi5TqeLF/DloMTeH3fMa/FwjxfCiw+urWA1cUr2HXsFLYdPKEVfe0C6LBimGDx6O4iPrs9j62HTmJXyT1lxl8AwPX5y3iweBXHJs/g8IlTuRS1fZpmkII09IvfeILLs5dw8cIFvP3OOzg1ebrOqcbVy7O4dPE83n7nHE6fEX1dqYztU004BzjD5YsXMD1zHlNnz+DMyePZRsZDliT5WftL80uYvrKAqVMncObo/vzgChTkS4u3MD2/hKmJo3j75DGn9cLnDnVpfgkfXLmGdydP4szJo+VQITqLvnPXMD17FVOn30qP14IMGzDMU3dpbgkfXJ5L9507Zr8ie2l+CR/MzonzNXG0HCyMbV2cW9Tn6/SRfbn9FUHF7I27mL52G+cO78Hpw3udYOGDChb3MXvnPs7fXMXZQ7twev9O7/G5xO7LaySauHz3AWZuruDcod2Y3LdDjAfpcdKCAnyzt1dx/uYKzh7eg9MHdxfux7Z4zN5cxsz1ezh3ZC8m9253dypwl5q9s4rz11dw9shunD64N9veUOzVOdf7Z4nY941lnDu6H6cP7cm6S5W4Ss1ev4vpxZuYOnEEZyYcz2xzG0ZQN6E0f0/VkEtzi5i+PJe9p4DK8ReXLl/B9OwVTJ09i9OnJ7OxGEGUK/ZpukRdvTyLi+dnMPnOOZx4a7LWuF8OIfViiZ6f/A6AP+Wc/yYhJAIwBgEX/zPn/H8s6ft/AfjfAPzrKjuqfTaeriyCNJp4urKIJGGF1gp7cqnzYAk0jNC5v+R1ocltR16gP7yzANpo4Yt7C7l1mW048PfTW3MgYYRHd+adY+3FLOufbchnt+cRRE18enNOb79O8OnKwmWErRZWFi5X7qP7Ll5Bo9nC/cXLmZlfABmwMa0mCrIeL19DGDXxeGWx9n47q4sgYROd1XxfQknmBQiLhHp1HyyBhBG6D5Yyy5XVwu5vbodQgs79JYTNFp6sLtYCiyik4rtqNPHZ7XkxYy5f7SjIzK67Xk+WryFstdBZXSxta0PgozvzCBtNfX1llGoDYHw1Mp6sLoI2mniyci13Tsrk8coigsZg3/PT1SWEURNPlhdBSJrKNwjTgoT2mFWbL+4ugEZNfH5nIb9hhygw6MUMy9cuI2y2sHwtf0+oeysKKNoNw6VKwkpICT6/s4Co2cKj2/POWA4FMaY1Rb2/MzeLqNnCrblZAADjIuA7YRyMc3STBP2Eg3Mxo5ZwyPXAxQvn0Wq1cPHCedE3N3ZHVhT5jLp08TzG2mO4fOl8Zj0leatFQEjOajF9/gLG2k3MzMyIBYyJDFHqGeh64Er3oOkrC2i1mpi+suD23TZ/FI0ZZhI2MD2/hLFmEzOLt7LrS8ACAD64cg3tVhMfXL1WzVphLJuevYpWu43p2avZNkXbQKqIf3B5Tuz7snhugyXZl0c4Y/hgdk6cr9mrmfgKniRC+dSvdFs87oPHfUzPLaIdRZieW8zsj/f7KVjYY5HbmJ67gXZIxbmWGaG4sZ8isACA8zdX0Y4aOH9z1Xt8PjH71gELAJi5uYKxqIGZmyv193tjGe1mA+dvLJe25f1exqIwc/0e2lEDM9du1d4vAJy/viL2fb183DbYzFy/h3YzwszSneo7lPfO9OJNjEURphdulu/Xcjf84MpC9rquIdOzV9FqtbL3FJAHC1//S5cx1mpj+sKlvH+7JWYxUEIILl88j3Z7DJcvzIAS9dwj+llH5DIq3xPynF1DfwSFEPIagJ8F8C8AgHPe45w/qtqfc/7XAD6t2r42XDR3HEXS66K5I0/N6vfNZbFmjKM1fgQs7qE1LvomCdPuF+q/uUy79HCOjXuOI+6uYdPeE8Llx1gn4guYdnPJFJBjHFv2TyDpdfHa3hO5daYoyDBfrx+YQK+7hi0HJnRGJp+4AGX3iUnEa2vYfaKY1l2+/HtPTCLpd7Fv4rSeeY1ybihBToEihGDz/hNgcQ+b9h6v7VLT3nUMPO6ivetYaVsbEsb2HAdJehjbfawQIlyvIKDYtDcdN1AdLABg66GTQNwT/y1xgYZ5zt6UfV8/MOFcb38/JrxsO3QSSHrYsn/Ca93IuhKl7ykl2Lj7GFjcw8Y91ox0Bdm4+xiSfhcbd5d/V7Zs2CP3K8+1DRXqnJtQoWTLwQmwXhev7T+hl/VipmMolKXBdHNSsuvoKfTWOuK/0ccF7SY0RGGAdhTizcMnQVkfu45P1gILANh/8jR63TUcPHkalBLLcpFKwjkYN033HKffOYvOWgen3zmrwUIBhTpE9TxSLyVn3j6LTqeDM++cdVboVlYL8wdVWS0IizF19m087axh6u3T6QPWWK9FLTMewlOnTmBtrYupU/K7CiMgjECCQL9AqfEK9OvdyQl04gRTbx2Xy0Qb3U9tD5YrFA3w7uRJdHox3p1M70dOaBYKLKjQYz79FtbW1jB1+i3n9+MUEdENAGLfa2t499TxUncbpcQrMJk6eRhrT59i6tSxPFQATqjgLAFnCaaOH0RnrYOp4wc1UPB+3wsUun/cx7lj+9HpdnHu6L5iNyjZn8X9jIvT2QM78XSti7MH6lktAODsoV3o9PoD9T13aDee9vo4d0hYHkhZDJnxfZw9vAedbh9nD++pvD8FGeeO7BVjLurrmk2WSv7ZI7vFvo/uK+9jybljB9Dp9nDu6P7sjLUF567lUyeO4Gkvxrun0mc2Md0HC2Iq3j11Ap21buaeqipTZ06l95SKOzTBwr4vgUzMxdTbZ/B0bQ1T75zJrHMV0tOHIv+L599TnH7nnLYwVoGMVzJSOQTh+vSvCCEXCCG/RwjZINf9F4SQWULIvySEvD6KnZE62TUIIfzMf/t+brnP/deXoYhSoq9jc0Zb/beXUZpXbkwFTfd1+Mu7Yh3K4h9cimRRgKrq41NsysQXJKysE52+UNQ6vfR/V8ZYdPoJOr0YCeN42kuL6MX9BJxxxH1WGHfhtBaN0PnRBza+mJu6MRYKLMpiXgBo9zFTfBYrJXVSCfcsuNXvjXS4GqLjVPksyuS1XmLeUz4rhUvs4HYbvNT5aobUmyXK/K5i61z5xIzDUO5TdcFCtW9QgmYYoBEQNAOKVkhBCUErpGgEJH1PKQIKRIHYtm8mrcozlBCSibVIYSI91+qHlpAsWGQggjMgifVykvT0jA5J4ixcsFjPgJdKWQYkQ4EqhArdPq9wFMZWuMSAhXQjhguY9cPzO1/9Jo7v2Y5feXeiElDkZJgsUBXcnuy+znUVYytMqKhraVBiQ8Cg2ynbLnUVzrMV6PV2KSmKuSgZRy4A3QSImmCRadNo6M+EBmkfBfHI3msD32fpYOX/+mAhJgFkvzACaCjW00D8JxSciAQdjEPXuUiYKJwXJ/kCekA2RsoVizGxYzM45y88Zpw9uIt/6yv/2XMdw2v/0VfuAPjYWPS7nPPfVR8IIVMAvg/gy5zzHxBCfgfA5xCuTh9DfB3/DMBOzvlvufZBCDkA4GvrEnOhpCiesIqypFz67BoXnHEkyC6zM9sA+RSahBppPgnRcRjmxWwG29piBwOb0osZwkgGjjqCSKsARFUxwULNquplsuZFFFKtKCvgEeMS6wNKkBACjsGCh4cRF0wUgYQt6wUW3nYjrJGSKdxG/ZmjXKlpn6VQfU6rQUWdOjJmfYmigGszUxRQXudCgbaKxRgELDLHREQwty0JS3+7E84RQFTmTlhafHDY78wVW2GChbOPAgsLOEYmChRgxBfYY3hWUKE7+sHC2wW8PDjblmGK4bmCtF3rCoAiN7aKYDEsDIwKJkYi6x3ALH4ErWXlWZfWCywy+yhrUyMNrVdGBRYSJHL9pAQy8IKBIAAHkxMERP639Sz1icPMmif1tMHTM/y4ysec86mC9csAljnnP5Cf/xDAf8M5f6gaEEL+TwBfG8VgBqjQ7V5eZ/ZV17HwAAbgL6xnZ/VJIUOsNyFDKXS61kEBVPiUG7XeVOZHKS43GgUWARE+31FA0WFJRllSWayiQChyURhkshUFIQXnXGYoggaM3P4HrBLtEjMGw7XcJdSxblCwKPtuXN+xCzhcFo4fFTHBoggqhi1MWSmjk5Q6MUxRIIK9q4KFbQWkhKBhXJ++a0ZBhnKNUqA/CFjYVgu9b+KGOZfVQuzccM0xLRmW1WIoUYpM3Munlx0WKkTn4cbnE0/62UKrzYgqbFeGiiKgyGyvnrXChoRSt6R1lKH27bGUjUxcgGGvN6QSWFgwUBUsMtW67X7rLEOBhdqG6RJVcE9TaXxMkD7/1Ddg6l7E6iN3Xu2AXkkl4Zw/IITcI4Qc55xfA/CLAOYIITs55/dls98AcGUU+xs6FW1VqGBS0adSafEBBgBn7Qu1H6WMuiDDTqGpUmwmluuLqThVtWKY1otRiUuxMcECUMGehpLksV6YxfZM6wUosoCB0bo9KXG5s5niggjd1+HyNmqwqNomYfn6JkXiApGM1YJWzxq13mJbLNSYMmMfoSXHBIy2Vb20qsXCJcOAhfpfFG/BlLsa5+CciOyLXNw7w56dMqtFoTsUkA3i9u1DuUQNI47Z0hcJKjIuUcaxpjF81aACcIDFkFDhAwofTGTGUtNa4bI+qGXPEzJKpayegyNr00jEBxhDgkUODopcoVxtzM+2S5RP6t579vNuELCg1Lk9XhAgISZXOBImfv/METLk9S31acTzuOsrhLzY91sq/yWA35eZom4C+I8B/HNCyNsQBqTbAP5zACCE7ALwe5zzX5Of/x8AfxfAVkLIMoB/yjn/F74dDQQXVRQhVuLL7pIkYQhAteuIBgy5zNy3CzJc1YbNKzkFkfzYqgCHPRs7ancoGyzUDGsSs4GtF0nMSgFjWOuFDRY+kPD78WeXjxosiuqT2GIG7VdRfO34gbquUcNK1bowdtwSoWbMRflD0Re75Fruqh2jId1jvagjw4CFvrdKzlmfMQSUIuEchBvWTUpqjd60WmRiwogZd1Hww2xYJwqtFi4ZUd0Ap/tHlbSy6QaGH0SVCt2iYSX3J8ATW8GSDBwMBBU1gCJXk2FAa0WuuJts85IoPH5ZD2uGDRjPAyz09oL1tVr43KGGBovy74IQ6RrFxfMvQfYZWAQatjXjlYxGOOcXAdiuU/+hp+0qgF8zPv8HdfZVGy6KwKIKULCYea0XSlz1L+yiXnUgg1htlJgX+iDAkTCeUZbqzHjb7lBmjAUgwIISAsY5AiJmTpWyWsV6oSoTwwEYwGjiL0w3KDP4HqgOEva2VN9BwKIORNh9lbSjUMcLFMXhjEqUNWM9rRcm7NlWIVtG7fbndY8aUOmxwUK9zOukCCwaAXUWrHOJHX9BCRkIMEwRMJFf7rNaaDFSz5qWDC2jjsFQ47KVqapQsV7uT/BbLQCPUSfOF1XzWSuGslTYdSms/nrfPqCw2rusFUVQYS77kQIMJaMEDQUYZdvxxVioZT43KLuvDRaDVtkeQoYGC7WdguxQLqHSvVtdhuoSLgKNl8ts8UpcMpRb1CDWCdWvzD3KFeAN1IeMjBVDig82VD8lGjik8lLmGhUzjiqhV0VgoRQg04WjEVAknGkLhbkNn/WiZ+5HVYpGNTecKuBhg4UNFT6IMPvmlhsz6aMGC5/S7FtuQobdzgcaKkhZta/jGjWI1IFDXxzLeolpvXABhrPcdYkElMgsVOUZoQCHtUItr3HctmsUJYNbMOzPld2hrNSzWtYBJvT4CqDimcZSVBWWyORSxjkpggrACRaVoMLq44SKTKB3CUxY7QeBCtYTkEWl+6FZPfpZuUk9U4gZhdtUWWaokuDtQeMrzAxRuT5DHI83cYL57BkGLMy00YQUp6AlyFTcVgHdQAoZQEXQeCUvpdS3XAwAFMxQ4n1+zgBKA7wB1IIM04oBpAqvSykrAo4kZkjk+iI/crGcoV0xNqMMLJRSxDgqWy/0dg33nMQ4Vz73qDquUT43qJw/f4ESV5TqdBiwqBt7oRRR0xxrVofWs+2Gu1RZEoBBpY71oipY2AHcPovFsxZXhfsiUemghwYLA9oDStCgRL/3iXKNMgO7q4gdyO2zWuTEBguW1rKwrRY6kFt95sVKaKVxZ+pVFEDFcwCKIqsFYJyKGmBRK61skbWiDlB4XNZssKgKFfZnEzJeWCtGWdxFpW2MLjYj5w6llo8KLBzH6nOJKo23KJOi7FDG+lpgYW/bfu8RpbvYLlBAFjQAARs+3eCFFkLcKZd/jGXogG5TmNMm7WnrsF6Y4grwVsuBPGQA0GlrAaFU+TJLKTEVYZ91Q49HuhyZ1gutXFrPATPuwRaXIgS4wUKdE8rhtV6oAGRlveiwRFsvYAR3u9yjBgnwdoGFaa2wz1uVegn2+VkPsLDX2VBhrm/TQENGCnN+yACyoDFMStpRuke5wMIc+3paLoBy60UV96iRxFcYy30paF3SZzKEmwrrBTCc9UJJqdXCFOZxkyrMBT5YMLfPWpEreufdQMF5HSZ9b5mFxlbUK8ZWAA43KFlNO7ftMhcos4K2uR/fGJGNp0jH6rZWlEGF2EUCKpVS1ou9gAE8YyvDs5AhU9n64izWCyyqFs0bheTcoQYFC0Jru0Rpt1/pGqXE9U2JmItam38lL7AMFtA9xA8FM2b/yuIv7ABvADnIANzWDBdkKPHBBuCxbmhfQZ4J7FbSS6rVu/DNsPrAokEJ+syIuXBYL9R/l/UitiGnBDDKrBcKLFzFDV0KbHpO/SBReI6GAAvXtm2gMN+74mVULI1tyXBVajdBr8w1alixYdAV1O1LORs4lHIldcdXF07qAsZ6gEWR9BlHgwJgBKB5K4VIqcgBkFLAsAO5TatFIVi43KGA7HK1DzOQe0gXKaIqcwN5qHC6QdUEU9V+VHVdFEAZSrtrRJXdoKqmlXVAhejnzvKUHXIeJsQY/RmgqkKF+d4EDEBYMUw3KbWPUQLGCwErAwLG8wKLfCC4Y+wVa1w4JwBc7lBDgEXavtglyiUBgah54Rq7mlizlq+f0+creRZSGy6ORffBQMA5RcIBDgIGCgaAcfGeA2CcIuEEDNaLUVHBkQRgqcNAZh++AG/1HshaFopcpsxZYDsuQ0k2zsJt3UhihiAKMgqYzzUKKK+bAWTBQq83wAIQs6x9uK0XCnbKrBeZKtQDWDB8gdt2Ibai7EN1Yh4GBQvfPnxWCrVtM7NRBOSsDhEoEKRVou14jLriirsY1HphWviU+FLO2mChjts83tz2hwQiO3NU1RoiVcGiqhuUVuwHtNYo1yiK6oDhkkKTv88dqqiYXIFLVKXxOKwVOagYwE1BzZbmMlmZ26oJGkXHp5RnBQsZqACE4llgrQAkWPjiKuTnOlBRZpkoWl4XKlzLq1gxRgEFLwRYKKkJGHXAwtXOfl8WuE3W2UpR6A41JFiU1bQoE/PRm4vHsOSljLt4DkH6L7LUhouJ5ocgJE0TJi9L4312mbncJUacT6GYW+PGAg4CEPkxIdl2idFe/hcjN9+L/5ykyzJtekTefFTcHYSCUBnETCgoTV+EUtAgAKUUoBT9MACT6dtIQMEpRUwowjBEl1IQQtFoBOgR0S+gAYIgQBhQxDQUSiOl6HOx3xgEhAMMQUbZKrJeACgEDFhVMG3rRVHgtg0WCirqBk/nXJZGABZVrBSRZ7xRSAFHbFEEWhiPYVonhk1J6wOMMhc2H/QVWSzstLHimNYPOMT2/daL9QaLOnETSlRgt3SUKgQMn9WisjuUDRZlVosBpNQFygzctP21a4gXMuS2RaOa15NltTAV8dyW6rhBDeICVTF1rClFlbHNY6kKFDaIqO/2WbhJlfUr9UMfRdxFbpvVAKMo5axrmbY0jAAsnNtS64aNt5Diyg71LMAiICo+TUCEOXGmpGiOR/V5JS+31P7V+L+XNmDt4XW0xo+gte1Qrb5rH91E98MbaO0QfdMfeYYwFD/GFAwNKqiVUoYAHBQMTz++g8cr17F59yFsHt8nf7wFClDOQAAEVH4WthWxjHA8un8Pn6zewtad+7B15x7BCBoj0hdFfvknq8t4uHoXO3fvxfjOXUIpSMR2CdRNwqW9RigMRC5jAFZWVrC6soJdu3dh585dUEiT3mzc+EXkxj+O+/fvY3V1Fbt27cLOnTu951WMG3hNfn4dwIP79/Hh6n3s3rUL40ZfM3t0ClcpgjFQPLy/ivsrK9i5ezfG5ZiRAEiMmXB7EHLBw/urWF1dwe5dqm89Uf137dqNHXZ/4nyr5YHR903Z1/uIsrZ1//6q/J7EfkOHvuNTgR6srmLFMWZu9ijQnx7cv6/HPV7wPbvkoaev87itYzb3u6PmfkfRd7ejL3EMnkCcvq78fN/Y965d6nxzcwteMb/nnTt3Ze6AMlF9d8u+haI2J+/z+/fvY0X13SX3yzNXSG4E3Pgr+q9i927jWVCok6cr79+/j5XVVez2Pkf8x17e179n9/OrGkjovjur75dxjs+erOHK3Y9Gs2/fMRdsxrw2d+7c4WnlVtLu339g9a3385zvv959xZ1ZfL7ygfXZ/Vb7jTOlQYHfPtHG7O1VnL+xjLOH9+D0Aet+LAEM0ogwe3MZM9fv4dyRvTh9ZH+6rqiWhVw2e/0uphdvY+rEIZw+sr8QLGxrxezNe5ieW8LUyaM4c+KobF9Ncb80v4QPrizg3cm3cObUBAD3hICxc/3/0tV5fDA7h6kzkzgzeao2WMxevozp8xdxbmoKp0+frjReJZdnZ3Hh/Hm8c/YsJq2+iXU/DWhcfiUvmNSGi7WH10HCSABGXbhQfR+Ivmn8BUUcQ8df9JicZTTcoz5ZXgEJN+Pxyn10x9/OOORpFynXMg58tHIVtLELDx48xfY9R5xj82U2+ujhCmjrCO5+1MOuo1MIG4GeRY1CKlNjBuJzQHVWm3YUgFKCTz77Q2yYPIBPu11M/Pw/9maHMmdXVQabh1/9fRw6OIlup4Oj/84/RsKBbpwg4cDTXh9JnKAXx+j3YsT9Pnr9BP04BksSzN/+YwTbJ3DlSQe97efAGANhDIk07asXGAPhDDt7Kwg4w71gF5YeXEfQHMdHD57iyO7dchZBuUMBoOnMAiGGNQPAtY9vobFxN+Y/6YEdPZg5l4H1AOV6eXrur83fQWPzPiw+6iKcOIrQcJQ3ZzPM2WfV/9biChpvHsDtxz1s2XlSnuPU8qL7msci5cGtB2juPILVThfje06DydElCdMPP5GOVC5nXL9fWlgG3bIPi496oBNHdfuEcW1pSDjXE7SM8RQuOcfSg1sIWjvx4YM1HNpzIHOOzFlde/aHcY5bqzcRRjt0X6KvIwCE6O+HqBlzSvT3sDi/jMaWfbj2qAcycVxuE05JMrPDBNeu3kNj0z5c+bSL/rFj7k6WhIFA9mvzywg278fCoy7IWxMIKQWlQCMIZOVs8QMTUnFviDFDV9X+ePlPMbbvBD7tdXHsxE+IY4Q4XnUt6PMAdT7EgusP38e2I5N42lvDvrN/R+4rvYaVVSG97IQFhVKCj97/Yxyd3I5et4upn/slENVXXWPqNxnp/azafO3/+yOM79yFfncNv/arv6q+UBCeyKuRpa47cjm4hH7O8P/+8fvYM3kM3U4X//BnzkHdPRQ8vUa0Sw43ZtRj/OGfLGPf8X1Y68X4jS+9JeMrlDXWdk0l6b8gxB/+m69j37YJdLtd/Hu/8CX9XZZPLBL8wR9/HQe2TWCt28Vv/uJPiaVyjM7+OgEHxR/8mz/Boa3H0e118e//gqz5ZBQRzPyPxQx/nDBQIlwM/+D9ZRw6vgfdbg+/ee5g9vzIfjw2rEHarSrGH9ybw4E9r2Gt+xn+0eHjAE/0PtJAbTkZI5dzJs75VxeXse/NBta+WMY/PLXVeWa4J+PiV6/exu5NIbqf3savH9ucbreC8DjBH314E7s3NrD2yS3dHwCoPYNuWCqVIv3VxWXs2xph7fEK/t3xYriwfyu/emMV+7c1sPZ0Fb9hAQINi1WMP7z1EPvHW+iuPcQ/2ruvsC0AdBjwtRVhHTp/YxntKMT5G8t5uCgBCwCYuX4P7aiBmRvLGi6qgAUATC/exlgrwvTCTZyZsHSKArAgYQPTc0toNyNMz19P4aJE1Lg+uLKAdjPCB5fnNFxkG0pgcLhDfTA7h7F2C9OzVwRcAKWxE+b66ZkLGBtrY2Z6GmdOnRTrpA874RxcPjs5z1svLl44j/ZYGxcvnMfpM2cyv2VV6w692EIGivf5UZbacNEaP6ItF3WEM47mtiNY+3AJre1HU6VLzfhTAtaXvqJEuh+EVANDa/woOg+W0N5xFHFfuZXIjRuWYlcWqfbOo+isLqK96xhiuY8cTCTI+a6rvk9WF7Fp73FwxkX/RpB1M7JFZmlqRwG2Hn4Lq9euYP/J0+jFLBPgG8kYCtOdg3Jod5j9E6dx4+ol7Js4jT7jWIsZGOfo9BMkDOjEQMICdBgQkwA9ytALGHqc4bVjU/jk5lW8dnwST9rb8kHocizq9cYPP0PI+rjT2Ifuvp/Ck+VFbNh3DHej/d64CjuzEwC03mL47PY8Xj86gc+2HDZOSf4J4nK5ee00xyc3r+LNibfQ3X5Uz1bb6WNN5wAm1219h+GjG1cxfuoU+LhQeBWwcmMbWRcrsX7flziWr13G7jNvATvT6zOOmT536lwBIv5Cvd9w6ufwcOkytkxM4KON+zPn1+6XxEw/WNU++vu/hM+Wr2Hj/rNYDrM/kqZrlK1oJAlDZ9e7WHuwhI17jmM53FXJJUoD8Ft/B5/enMOWiQk8ek2M2xcTYV/v4bEv45Nbc9hy5Bwetvfo5VWCvMnAaqmHAAAgAElEQVSRn8and+ax7fgUPtu4V44pyLg7ma5R7SgAoQShPI79P/kLuLdwGXvfnkSwU1xjVV2kJr78y7g1P4vJL/0sNu87CpWOVrVRn01goISgQSm+/Et9zM9exJfePot9RyckABFpCRXHrlyhbLeoX+n3cfHiebx7bgoTJ09mXaJY4o61MJb3f/FnMHNxFlM/dQ4nD+zSSjHhzO8mJLMm/fpPv4Ppq4t49ydO4cTe7fLaoJVcov7Bz/8Mpi9dwdRPT+HY/nqWyH/w81/G9KUr+MWfnsKx3dv8DR0xJb/6d34S07NX8e5PvI3Du7aXHqNdFO9XfnIS03NL+LuTJ3Fo6yaPG1SY3WbcBxjB3588hJmlO/i5U/txoKX6yXPCLKgIeZo2ljH80pGdmLmxjJ/evwN7AytNrBqj9aurjuUXDmzDhXsP8eUD49gbxk63KK+EwM/v34pLDz7Glw+OY1+U3q/U0N6oESNoxhX8vYk9OH/7Pn725B4c3FRPSfrlE7tx/uYqfu7UfhzaXBCA7HAB+ntv7cf5G8v4uWP7cWBTuTryeS89rrOH92jLRVUxXaHOHdmLmRvLOHd0f/Xgbfl/6sQhTC/cxLunjuXbqH05wAIApk4exfT8dUydOqEV0owrlBHEbRfue/fUCW25AIthF7Uskqkzk5i+dBlTb5+pMjsg9s9iDRFT597B9MwFTJ07m1sHANoxVD07U/Mtzp07h5mZGbxz9pxs8iNBFK+kQIirroO3MSH8+G//UaW2rhkXOxORrczn0ph6fKSpw0cccAdr2m6CZft0LTPjDQghCCMKQgiiSChE7SiQSlAoPkvrhlnwC0gVL19+ftOCYWaPUtaKtTiRgcQs8+pKRVZAR3ree7J9kcKoFN8Tjy4gTHqY2XhOFC6UBQjVubBjKlzHBFSHCFfRO1d8BIBcNqGizFDm/u2YChdU2GKeE/XZhgsV2J1tl55rs75IBjDkchsugDSRQM464cgMpfsYiQzM69NV08IFF+p82DEUruvFBdOjyC5ljqUIMOzYC3t7ueuxADZEYcp8jQvzcxY4UsBoBERbNyiBtghp0IAbLgIivwMj3oIkvXxMRRLnYy1YnK1nwVka3Gwo3YUKt6nESOWlKmAAGDjuojA2pCBQ3XV8oolxHXrAom42qFzAdoWYCp6wDFQAIq7BF2TtqjdSCx4qigseqKG4+uCCBDQXPzFU3v51Cm79vMfwf1zv4p+cbBfs2/1sLw3edlkrzOXDxldktuWHClcl8Jz4EjDY96tR+C4TN2G7ROnt1oi5MPQyvR3VXm1fWfEHzBL32oYxcJUH/AWWs4f38u/8D//Vcx3Dht/8JzOc86nnOghDRlLnoorpNklYrl3MkqwiL5/Ldn2LxHByNS0cSnRqW3OZUh7lQgUesU7J596nud90WExbNoKQIu4xBCFBr4dcELP9P5aZnIAUKlTtCVNJMmtjmBaNRLriKHDo9NL/SpHtJSyj/FXNYmRmCyJEnNuwESCJGQhVLgrZas4ZIDIU9NBan+6jGCJ8y+wA36K2NtAMAhVlYivSPogbBCzWW1wZopQyb45/vcXeR0BF3RjIZATqHlCZztoN49oxsk6Z17paZmZOM/dlw0bCGVohhXqEiNSz6W7cnwlAOfqMaZey0DHzlrB8vR4luZk6O/ORnXoW0MChwaKGtSKvcAvA4EkCgh4QRiKwFxCKipwFJZwJZUWl7ONcuNcNGUCePVZXQFMNsKgAFaJ9AVj4MkEpsBgQKqpkeXK1E7sSy+igwdWUZgK3K/eTYFELJl7UzDijBIsBArd91opMO0pTqCiwUgwk8n4dfjssDxO5NJ7yPiakhhXjlfy4yEBwUVcxUmDhTK/p+EHOQIcDOJTomhfILzMBRLlZAcXQkbmXjP2mkJNm+RHzkuJzD0LJedpLMBYF6PRitKMQnX4iQMEDGhkXKQ9oAKhtragrUUhlfiypjMmMRjZU+KwUZZmcTHHOXhdYJlztnTUpwjyMjAIqisQ876MCC1dmjVGL6/zVFfMYq4gv65QGDDEwAGkmqU4/Sd0HKdH3j2kN7PSS3PbVvVUEG8KSEYAxjqb1TPABRgJRB4MGMv5GbycVBtg1NdNzYGaJUqKsE1JyBfM4S60Yda0Vsk1GBgUMYHilpSpUWMcomo0ALFzZoKwK2xosDKiwq2UXQYUJE0UAkTkF1rLEkSK2CnCYWaDKxG5Hw8b6A0PR2AaoJF9r+5l2brAYpbXCvz2asR5mxlFHjCxb+n6tKj6rBZAPhFcxFRY85CBDAobericWo84jhKzz7+BIhRBvhfcfV6kNF3XAItEPYwEWLHZnjhDxFdYXI/eTKv9GsSQLPIBq8GHHdaT7dgOH2K+AjkCSeAJR2C8BA+cEIVKlMat8x3oGNmORMEADgFaWfKABYKTWCp9QKuI91FgS222rAlCUWRjUOShqU9UqYYvXpWqEUOFSpu1Zf9/79QCGsqKHRaJckNR78zjMQoCjEte5M5V/04oBOFLVmhl2PJYLtR0bOOz7C5DXYZygGQboxkwmUkAWMJD/rKwXgWH2T5AtuCe+a+N69P2gOtLPKslaLZjfWlEBKpTCTdTTfhDAsMfrE5f2UAIVwADWCsexZsCipCieAotRQkUmjWwFiAAA1ndbNqj8aVaQ4dpeXQuHy6Kh3aFo8HwDUu19e2BjkKdSRukrA4tRppm12xpgMYyVog5E6j41i97JHcnJBQsw1Dog/2yoYMVQUgoPQxYGfSXPV0biFuUSF1hwexbNbN/r6PfmjWpfXjSMYKe0oZRk4ENsg+Tgwyyul4BnrBymcpABDgAUREMFkAIGAxD3WVrxW/03ZktNX/IOS/JuGoYi5wINAIXWimGhQok6o6o+Q5mVwgUURXES9nrX5yog4QsYXm8rhZKeR5mvEsAN1Lf61SmoVyZ2rMUoxAcNdfqakNGLmbYE+tykTGCPJUi4rh3bamGOLWEcaAQaMMA4+qjgJsU5EgZQwoWpX+6W8eKsJ/YpMa0VmR9Rh9VCg8UQs/iEBuBxf3DAAPJuEi6pqTCsu7XC+FwYXyHfDwMVzOpnig0RrjZmzQkGWV3b+Im2rRk2cNCAOq0lttixFkPFVqyXVIQNb3spZWAxrLVCbK9GfMUIwKKyDFrwzrReuNyjsgPK7qvEiuHtbw+djT4e6ZU8W1kXuPCBRa5qqkfsdmbQkwtCzMtTW0AMhcKEDwUdRbABWMAhs1ZxZcUwXKXMOIwwouj1EkRRoOMqlJuUrZTbWaMAN2iogGLbWjEqqHDJIEAxaotEFYjwjXu9xXZ7Mmf5M5YLCyyelVQpnGcvs60XRWJmGfOtryJ2QLnpEuiyYmTcpCwAtwGiCDrM/wowGgFFA9CAwZLUGmECRsKAPkmtFyZUVP6mDXjQP6IsfW9bLXJgUVfZxggAwxy3KXUUmIpgYUNFrWMtc4My9+EBi2Ggog5EKEmsPgFCXT1bQ0YjzPRzFa9jCQMNqsdd6G1Iq8V6uXXo4PhhRBX9c11uzwksqrpBARZYqHUFk62VpWbGKCW1LRmG9cK5DRMyCqwYLnGCxMvkEgWISaYXNQ7pOclI4cJ00XCBRZHlokjsfuqmNiFEAUgRfCirh4IN073KBAZ9PBI4NGiE1GnFEPsiQA+ZQG8VhwG43TfE8sDpspFQgq7hw6+sFesJFUrM2W0bKHzWibpxEq4YiaL+dp8XQczvwhdnYcp6B3GbaWiLxBVk/zzEBQi2FcPnJpVuJH2rId0EPOu6VNCRAaBGgISLfalU0D43KcY5GIe2XoSEwPKCktvP6zyZeAvbJUotU4HdGauFJ7aiwAXKVrYBAT+DAgYAt193FeB4ztYK3b4gvsIEi2GgwgQAF1jYIOGacIuTBCQIEBiuUWr7tBFmtj1oZW3VV8RaSLAYRjkq+G0vg5aB4KPO7H8RWDjcoOpCBTAAWCjFfBjAqFvdvM5EgMt6YVkxMtYJJQ43SrOd1yJRkDnulbycMjK4qAIWvpgLW3wQ4rqplaXCBSA2fCS9DggN0hgPI5hcw0YCZ70LRiF8vQ3AMNuWxWHkoSJVhFxWDVPBFm5RxQ8h32xxVd95Ij08VFFAc6wu60QRTNS1SlR1aRqlO08VKaxlIsUM5AbcAdzA6MCCUOLcli9LkRKXS5T6PpWyblovqsZduCCqjgSG+1JmuYQMn5uU2U5Jx3gG6OUO+ADy16hq3wopAOJ1k+ozYdHoE4ZGEGiwSGRBUDtjlOtrsS0UuWVA1moBDKxsA6nCTRqDAwZgQQE8sCEG4V5ub+MFBYthoEL9tyEiczz6NGXPkwoGV1aHBAD6QNAIdWwE68caMMz9ARJCkjSjmUuIVnhpNoibBk53ncpuOPZvcw2lWcFHFcioOqGtgaYgK1SptaLEBQqoEF8BZMHCVMSHAAxn3EWZCxNQL6LatW3HPnKQUeIqpZfZ23ds85W8vDI0XNgBpUVgYQNAXUuGCyBMS4VaZgsNo9QtQM4K5UADKLRqAClgiD4UlKYZpJTVI2wEzjgMO2WtCzZcVg0gP0M+SlEKJ4FQUNvyh80GCh9MDAMSdvsieBgELAY5V5EsgKhEpUhV9S30e8OFyOUm9CzdoXzV5YG8+5NvWVUxj3VYsABSOAksy54tthXDJ7bboRIV86TF+p7N81EEGAnjYFRYL/qJqAWjXKOK4i5UAHgmnkL9Z6zUalHHBcqpbNMAvN8fHDCUGMqRCQpl2WpsMCkCi9yxFh1vHTco9b4CWAwCFYlelr8+y1LUZuInDMggVBQM9blKZfYh17uAIFPfwqxpIa0WvjiAOvEBmf2av8MVf+frQEaV7ejPruDtmmBR2VoBlIKFea+QGoCRgW87Ac56iJ05Kh1I+r7IkuFylfJtB/DHob0EQkBGk0r4R0iGggvbWgGgECzMH8BkCCuG60YPHBYM1U4BCKFBIWgASG9aYwZSuUFxxsGpLCxnWTGUm1TcT3L1MAglujJ4FdiwXajWQ2zXp4BSEJaNAXG5Qq0XTIwaLGypmza1anvbuuGKs6hrtRhFOlozjbAprln/CNRpvRhUahbmBJC1gPisGWZNDCX29djx1BVwpsItuP4CgnygN4BuIpIdaOsFJznXKIZsOtp8jQvlGuWwWtixFkAae2BkM9KKMwpm8I1lQwOG3p4ck+WzXWTVeG7WCvnZV7+iCCyU8s8ZywVqs37shYoqdS5Y5nfT4TqlZqVl7ISCyzJXKVuKsgrZVovM/6qSm+yj7mOqadUogoyyJ4sdZ1EFLIaCCruPlWrWCRZGDBMnNAUMoBwyPHpTnXS0A2WOAtyWEQdo5OIyqgZt2xMvr+SlloHhwuUGBaAQLBRQlFksygK/XbEWsSfblJJAQoUCC6DYogFAWzWEwUJYMxREmG5SdrB3Og4CzolWLoKQgMvHo1LAXLBhZmsyYQMYvkaBWQ1ZbT+QAcCEQFcXd+1vGJCw1w+StraO9BKWATdz+6OANjOQ25zJHxYs6orLhS+nzCILkyZAFolyjbLrd4zSQmP3J4RkrBl2at+cy2DJ9tU1mHXxEj9q5nbaMgmD7mekqgXj6MrJBkp4xnrBOAfnRINF0dkws6WYgdyiIzN+XB1WCwdYVIYKUwYFDKO/2K7bmpEeq0NBeMHdoEYBFSZM2NmcbKU7F9itUihHyvrGdJB2masUYAR9e4K6CaV+q4Ud4GyJCbNaPNBgAo3TraqiVcMFGUWPm6HAYhCosPsVgIWrijakLiHuw1C6IAb13aSKgroHzRilt21ZL4pcrwpAQwFNJaBgzN32lbxUUhsuytygAHjBwlzvEzsuowhECA2UnqCFhpEz21RsQEMQRtqlqgg01HhMyDCtFIzCGeytzovKJqXcVswq9iZwiHXlsBFQov3PlVSBjTADKoFTyaSE6CJ6KlOVEpfi754VHwwmTEWXDuoTao/F2KYZAGwqp4NAhhlUn0k/OwIXIZ/USUdru0jZcOpNHVzTelEnE1YZYJljNreZOafGMbhcnnxiAkNW4lxge2Tvw8gkRYnwexJQwXXshQrsJpzouAvnMRIAPBtnAZUtinOn1UJnhlIKcoW4ChdU5OtcDAAYSsEwn8cVQSPTpgpYjMBaofdREyzqQoXaj4IK3bciSOj1xjUdr8XityMyEpJ4XKWUmPEYZXEXymphBnETu4iebZUoSVfL476zv9eaoQdTnjmptrvUEGBRGSqsfnXAggdS0U5kwUxCU8BQknMhz58/p2XxWYjHLaqojT/1tppIcADFy5QxiuDZfw8vuATvvfde5cZf+cpX3ttw8Cfw9PYMQAiC1pZ8qlnOvWDR/+weuqtXxE3RaOv1ur262ThPZ4Pk5/jRKvofL4IzDtrcKPfD9AuA7BfrlxpL/7Nl9D+8Bs4ZaGsTWBKLfSaxnpXT7ZMYxAhE6n58C53lCwAHgg1vQOoIYIynM3pqISEgEIog52Km8/H9G/hs/ntgDIg2vqF/RDjn8iW2JSYqOVjCQYj4kfp8eQkfzv4NEk7QeO0NxIlonzCu3/cTDiJTYqoXJQSf3V3E/YvfQdgIsGHLVrQaIaIwACUCUlphgCgUSlMjoGj+cBmE9RHuOopP71zD9b/9KwQBxevbtoMSknm1pHXDfKlt3b8xj2vf+0s0wgCbt6Z9lSsJJWLfql8joNJqIqBmZWkOs3/zTYSUYsvWbaAElV9m39fe3K63q/YfUAIO6HHAeL+8NIeF7/4FQCjGtmzVs+RMXH66xog6//2E68+f3VnER5e/C04Imq+9oe+XqlaLxyvX8cnc9wBCEW16w9km85w13j+5fwOfXfs+CKUYe2Nreszy3KpjbwRUf//q/H98axE3P/gWQCjaW95EIq9HdYxcXk+JvmbT1+f3lvDJ1e8ChKL5mryuOdwv5/F+F4RQRK+9kWnrsrrofTMRGPj5PXFfcELQ2PRGNg6k5PXo7iLuX/qOPteUEHnrymBs6eIUUAkLNL1O7izO4fxffwOUUry5bVxa/KCvbULEdtTngKTX19Url/EnX38fASEY375N/IiyRMzwS8ggSV9aLRJAvuf9HpDEuDi3iPe//bcICDD+5utWrIFUyNVFkpnBZ5i9fhtf/8EVUHDseHOLaEMowJgGO6I+EwKAQJXUnb22hPe/9X1QQjC+9Q0xPh0/YlwQZrpa+bo0fx1f+8ZfISBE7Fc+s8G5hKb0N0PHncixX5xbxPvf+QAB4fnjNY7RBxaXrt/F138wC5rEGN+8sRZYXFn+EH8+fwtIGLY2I/m7wJD0+qklSR4L64ptsoSBJQnmP36Ev7i1CsKBra0mwDmSbgyecP1ifaavdxZz4W7LgYXPPse3Vj4EAbC13dQTVJwZIM+N+kxxItrI72Puw0/xzaW7CCjF+JaNwkpBhC84NSwdJIy0MkyCEKABLt9+gPe/f0lcn29sloqw52UpfbM37uLrf3sFYRhifMum9Poy2qrnElGlmlXfm8v4+t9eRhAEGH9jS6FCSYIAHQZc+LiHL2+PMHtrBX8yMw9KCHZs3yoa+cBCjckAi9ml23j/excQUILxN1+vZa24tHgL73/7BwgoxY7tWzMZoQghhWBxae4a3v/Gt0CDEDu2vSlnHuR9CPNeMs6FfH9p/hre/9b3ERCGHdu3iX3p74akL5p+VlaDS1fn8f6f/4U419u3e89z/iSIsc1evor3/+wb4voaV/0zD2/PBjhmL1/G+3/6Z+Jcb98q2stnFkn6IKpQaMZllOOf/U//HO+9995Xqg/2+cjv/q//y3v/ya/+7HMdw3//+1+7/9577/3ucx2EIbVtZr2PbyCImuh+eCO3zqxH4ZL40Qpoo43k89V83xLqSx7fByEh2JOHjr5W9gIa6PgKGkZgjx+CRk2wxx+C0ABh1EYQRgijNqi0YgTyfRC1QRsRSBCANiIkX6wibG1C/OgugpAibAQIGwEazVD/j5ohwihAEBKEDYpGU7QhlODp6iJoo4m1B0tybOkNSPUPuzGbbKQSfXxvAaTRxBd3F/Qsrp3yFEj9/kNpdQgowaPb82iPjeHzOwtoRyGikKLdCPQrkj75zZBiLApAKbQi+mDpKpqtFh4sXdVjiWRqXXsW3A4OXr12BVGrjXsLlzNtAGFNMC0lSsEPSBoIe+/aZbTbbdyany26HJxya34WUbOFW/OzmW2a+zLHYI5fjfv+Yjpu81iL3Ig+v7MA2mji8b1rmeWEkkqvxyvXEDZbeLqa9tc/xFIoJen1IvsBwJOVawijJp6sLOq2dryFz7r18PoVhFELD69f8R6bT764uwDSaOGLO/OlEJXEPPP64Z0FgDbxwzsLSOK8G5l6ZZZLGI/7CR7dmgeCCI9uzSPuJ7Vej27NgwcRHl6/iphxdHoxejFDp5+gFzM87Yn/HfW/n6DPONZihptXL6ERtbB45aK2XjBZVC8xLS7W2CkBZmZm0G63MX3+QvWTbFhxp+eX0G42MT2ff+5mxDEDPLN0F+1mAzOLd6rvW07YTF9ZRKvVxPSVBb0qM6Fj7tfa9weXLqPdauKDy3PV9ytlen4JY1WO1x6DHN/M4m20Q4Lz1+/V3vellQ/RJASXVj8S28ukl7UsL5Zc+fgRWo0AVz5+5FxfdK9c+egzRJzg6qc/1MtsCwdLWCbInCcJEmlZubQsxn3x3oMMMBWNV8n04k2MtSJML94sbOfse+02xpoNTF+77Y5HUC8phFL9mz2zdAftZoSZpTvZ9iVCGhHO31hGu9nA+dsP0r7mfoFsylnLYjF97Va1e8oh03OLou/cYmZ5lexa0xcvo91uYfqSfO6WzNBrC2bcwwezC2hFDXwwuyCSH6iJBRbriQqhsMca8pU1YPrSLMZaLUyfvyAmM6q+4h5I3MP0zIw45vMX5ISG9Uri7MuYaJi+cBHtVhPTM+fFJEbcy0yo6IkFzkCSnt73K3l5pTZctLYfBYu7aO84Kky3IUUYNRFEbaHUB6lir5R8pcg3th4AeIxo60EEzTaCZlsDgFLs1YuGjcyr8fp+kY1py169LGxtQNjagCBqI2xvzL0a8tXeeQI0aKC1/SiaG99A2NqIxthmNDZsFu02bNavaMMmRGMb0N60Ca0NY9i45zgCGuO1vSfQ3thEa0OEZruBZjtEa4P432gGiNohGs3sK2wE2HxgApTHeG3/BMJGgCCgiJoBomaQgkhEEUbiPQ2ofm05eBIk6eGNwyfRbklAiAL9f1MrxJj83wwp2lEoQSLAruOTQNzFjqOnNFAohVkBxVgUoB0F6cwrhFK96/gpsLiH/SdPZ4DCtlYoMZftPTGJfncN+0+ergUVjYCiEVAceusM+t01HD11pvbFfHDiNHrdNRycOJ2OzQEZlBA9JjWu/SdPI+l3sW/itAYv5SKWt9IE2nUsoARbDk4ASQ+b9p3IzNBVfW3aNwGe9LBp/wSCkOgXUA4ZG/ccB+v3sHHPcajieeZ34krtq6qMjx85hbi3hvEjpwrPq2sbm/adAO+vYdPeE4V9bXgAIMYcd7Fxz3FvGwBOyACAjXuPg/XXsHHv8cJ9u2TTvhNA3MMbB08CUG6HSaZIpQswGOfYdWwSa2sd7J84jb6E/H7C0WcsAxkc4j9Davk5e/YcOp01TJ19J51pNCdFCNXuEgCEImRkhJmaOIpOr4epicOZ48m5dphKnFSszh07iE63j6mTnr62GJAwdeoY1p4+zfUFPIqU0ffdyZPorHXx7qnj2fYGNOkJKWu2eWriKJ52u7njdYkrHuDckb3odPs4e3hPLasFTxgmx99EJ05wesebenuu1LIuObV1C7qMY3I8tUAGUaBdnMyJAXG4BFQ+oE5tex09wjG5dUumLwlSZRzwA8bk+Bvo9GJMjr8pjsU4TtaL9fGz3hrAGHg/VU6nju7H06cdTB3dn4Ki72XJ1PEDePp0DecO73HHZqQHm4OMqeMHsNaPMXX8gLut9TKvuHPHD6ITc5w7sldbLMxaEtoVygEWADA1cRgd4xqzk84A4tpSL+MLwNTEEXTW1jB18pg4l0kC3u1kFf64KxRlU+mP+3h3cgJrT57g3ckJZZIVSrVK4hB303ir3prOoMaTBFNvHUNnrYupt44J0K0BGO9OTuBp5ymmzkxmrY4VX1NnJtF5+hhTp98S1oaKUELiHqYmT6Lz5DGmzpxKgcKECQUUSS+Fkldw8VILqZnZhR//7T8CkJ2BSRKWi71IZ3jcQd1FUiVFrRk/YS9TcKPeqx8wczk1HvIqLkJ9poToVLOiX76NGUthWyBM64P5Q5K1UPhjGlx+8WbVbDtVrbO9NTsfGttxZYHiC98G6T5BdO7XvGMpWuZaXhRLYUKFaz2T12XfUYhqWEmMS54Z17+ZajZhHJ2eKlzItFuUUkBVTMJT2aaoYnXlcRlxDJn7y57dN8bMGJfZycS1GVoua2Z9i8hwR4uCFBrLUu2qoG47Da1rrPljqndOfEUAi9LtVhWzankkATsTdyLPj7LsqfUa6BsBGpRgrBGgGQoYHmsEaAYUjUAsF+caiChBgxKEgfxPCaKAgLBE/riKH1UkYvZO/agS6S5Ekp5QaOKeTrM6SMyFqRRllC1IRct4ZubbyaBM2yLtSIPpzEpkBKe6wEKPvSCQuzDeYh1iLVSaWVfdCjOWzwQrsS2/haBOvIUSFXOhgq9d51cFehPje1KB3kErErUs1HtKEbabOqg7aDaFQt5slQZzr5tUDFw2z+lHnRj/au4R/utzWzNtameFMpYXycDZogB/Glqr4j0xFWmV3cyORTLFCrLOFelT7ljaJUvGechlA2eLqiJFAeRGrIW2SrjiL1SbJEZ44G1wM1j1BZVzxw7w7/7v//S5jqH1y781wzmfeq6DMGTgq0wHKUvlJoFM0UibuQBvGkY6UDuM2nobg1bsJtYPogkSADLWEyAFiUA/qMVn7XcvQULdFyZI2BBhA4QLHuqCg4mn9uQAACAASURBVCn2LHHdatn2OjM427Y4mPvrEf+Yfcu8x2C5EJngYNYBsMEiWyOAgHGORkBHDhhqPwlP9804RxTQTPC3CXYq21AEkcFIBT1HIa1UbK+ShDQNYjZOoZrQVoq6us5UXA+AylaLF0UUmNgxFknMnYChFLBBISMD9j6LjqwC3umnz6UxK4sUGgH6jAMxE+loE4YGJWndCxmzkXCRjjZhAAVHQERyuYbyjRYRnEJJYMIvmiSG4k1DEJpkQlZI2BCB1zQQz05XZhm1TP73KY2mouV1SfXluVeAYECGUgAzSrA9Nl8azUAWPKVU7jM9Ln2sFWXYIO7MtgoK4tlCZQE79/EZ2ZMSlmaD6qljTH9L1WfVRnx238csYTpdLZFB+AmAMIhEcDdCMABEtjEzSLG4DxoCvN8DaUTgsX8/laVuQGvFFLXmuIhDeR0ILCqKK7V9DthVGxoIK4a8bwh64GEkoinkPUloqO9pJ1QA2VovSnJuiOm9qZIvmPsimZgPCpLEaSD587YIeFLOksTOJPUSBXS/kpzUhgvXg1ABBiCyKVEAMIACAIKora0Y6bbqR9e7QEJ9dsGECRJUKhQKJGzYcIGEmhEG8vDgA4WylKwuH3g3aLhhoqiwnZ06NtfXk9FJ6Ttl8OODDFdMQl2oyFSZZhzrCRj2mFRAnQIMARBUz9iHjvMShYGY3R8xYABppiRuBHCaXjNJzHOg66ptUZRNzIzd6VU8v3r7EoRGkYrWBRiA24qhglwHEXV+XHCuxAUY9ndPCQFtBLrmxVrMAFBQwhAwoQAlnCOWv/8MBH0m7jFGCCgNQTgXQMGZ/M+1axRRrhKAUOCTdPbeBxik0Uhn9S3A0GL7sxc9f1V/IJM9LyOOYl4uyKhc5XkYGXCiyhTbagGgsDCeSwh1F7HT6wOlEPohw2xbpvDbgKG2DQAMAjB4wDIpcmkkUtYy9EFpkAKGdRzPXMr0gYyib43PtL4YYFEIFcY1XkW4Abx6mc7E5oAMAEg6gLIsqLEDwpIhkzrUggrXOiO7Gwey+9IwYwCGr47EsGlry8S0XFQBiVf1Ll5qGYnlwmXFoIAIonZYMdzbq3aTl8GEGpsCijAKvCChPtsgYbpPOK0EJbBQBApl7VzLi6wS9piKXKqK9kkJRPGvIYFCbKsYKsw2Jlg0jP30gWcCGPlx5mFMgQYkaJgAotr14D9PA0kBZHCWzu4nMXdaLTLHVnFcZW5dAXUXF1QTDIOKCzCAYitGHcAw72clRdCVqwBuVPPW9yABAhLoazKgBDThaFAgJuK6DQiElQNC34gZZGazAusFFxQiimsFWeXCsEbUBgzT7cnjDuUUOUOqlJ4cZDisGIADKErcYV3WCxIas8QuK41HqlgtSrfhCOL2ibIK6GOpAFYuyAAEaLjiLIrEBAwA2TS1DbGeQrhvieJ86RhZbw00amnAEAcUDASERPat3c+wrpXFbDBiKPCubVQFiyGkyJqRgQzVHtCWBai0zqYLn8sFqiSeCUB6rPY9aloxkAeM5y42SDggwlkn50UWlSHslWipDRem4sgshUfPsIICgYjFsK0YZRmllLh+9EyYEG1IYbxE2Mi7N5kgobZhw4Ttqw7k4aCOm5CSooxDZdurChK+9WVjE8IL2xWN35Xfv461okFJZhsN+uwBQ4npHmUCRJl71LCi6plkFPiKkGErz8/KJWqQauKu9kVuUoA/FqPK+Gw3xchh4XFJptq3BAz1fOgz7nSP6iYJAhqAc1GAkAYEDNCWi0ROwCjrRen4KQWCQNyZhstQJcBQ4gj2LhJR86LhnNmtCxmZdSWSA4yKY9XvjRoZpf08sRamVA3iVuJyjbIBwVbaTcgA3AHcVcQHGKZ7FJX7ZwCoOQ4dzyJ/oxvuCcBCkUAyKGAoKYv9IKFjcuMZgoUttjXDBxnKikGCQEAG4C8eaUrR9Wzeny4rhgcwnqvYrlA+iHjerluvZGipDxchBZOKjumvbkNGkRUjuz3/g4xaCkDVuIkgoKAhlYGu1GmVAOCFCTvwterMb52Z6yrF71wWB58COag7kxKV374oKNuUomJ3dawVQBYs9P7ZswMMc4xIGADxvXdYoq8N2z3KrhQ9aOX0wNieAgmzIraCjUC6IZnxFjl3vSKwdVjOqoxNgY4ZW2K7RgH1rReqKKB9j9e1YhSJHWfhsuqUiQ0YIpg/ff7Z7lGUBMJNKhTuUdpyQWWMjyy2R2gAwuJi1ygaWm5N1AkY6XoLMByz/bWsFgUyEGQ8S7GsFlXFbl/VHcq2XvjEBxukYOKmqtiAgYZyfxKAAaNytyv+Qo+pQrG6HIDUdDHS27GL99nbtIULC4k35S1qxlcM606noMKyZhRBhiiFWwAVJWPS8G+2dVgx/ICx/lJqeSiChxG4OL6S5y8DuUVRQ6llcuZOf7aekS4rhq1QKMlVF7YeuGVAodaHjUBbKMKI5jLoACiFiYCKDC/t6NmausqCvKvEeRRZGHzylIgiYMPChJIiqACyblCqvgYgQKOvFPdnABi2RaURUCBhYNxt+dHuUZToqtbKelFXTIW/FyepMu+L4TCsGCZkmFaLyq4/CUN7RGbcOtYLux1j3AkYarumDGLFsN0bgfog2LGURrW9tTjJuEcJy4Wojpww4R5FiQz2lsXOAmW9IAQ8iEB4t9w1KoyEolAl6NkFGMOKMStqSylk1JSM9QIA0EdpUHcma1bPOQNcJ5AbqG+1UFIU2O0SlwvVMPEOCjCCVoSkH2v3KIZYZI8C/PEXZdqAOVYHgKi4jWGtF+n+8tvQRensdUMGbg8sdkwTstaMFDLSZirgGw7rkS0+N7EMvJj9lSulCzCMQO+RSV0LQxk4PYv4rHWRV25RttS3XMgfZj3z6AENF2SojFKZ5Q6AcL0vAwrT7Um5Q4WNtCZEaChfRTBhFourMtM5bPrRKuILQK2S6hXIpl71CZEvoQzx2jChxAUVZp8ia4Va1qBYd8DwZ6pKgccV3K2PR0Fqzj2q2gPG/i7bUahTwALwWjHMdSZkmFLVJUoXYTQDWIe4nqtaLxjLAwZQ3YoBlMdduOIs6rhE2WICRpF7FAD0KQEg3KMSRkAkZCSca+tFn3FEAQGCBlSOe9N6kTkWSoXSVhCXUAgYajs1rBZO16hBIGMA0ccJ5K0zvvHWcInK9TUCuQexWthCSyZ3vFmlhoCKjFIWpEHlyj2KBFRCBPzxF+Ip69Y97fif3Ho5dpZUBgw7NfLA8ozBwnY71Pu1QCMDxPLxYUJGLjajwnWeG4sLMozvyhdUPpAMcH9VhoUBJyNeyYsrAyOsqQjYoOGDjJAG3pSSLpAwt1mWKlbl+qfSFcqEinYUFsKE6RqlPkcBFTPqJFVETWXWVtiZZ+a2ahYen/gAwlbwG9YPmumyph65PmVcHYs6hCJQscXer73/ImsFIBQ+e9l6AoarrobzXEr3KDVGQCjtnV6irReAHZORze7lkzL3pSIrhu0qpbbnA2HXMtulq47YMSHKXauKlFk3qloxylykXHEW2uo0hHR6sdhWTBBVdI+iDQLCCAAOAiAhRKem5ZyI1JpmUT0mLVK2a1QYAXFvaMAYiTwjyBhYStLPlkmZ1cK3jaquUUXwUcfqYY5HQRFRlhMr/oIEVLtHicQd1B1/gRQy9HgdQcryQIxOLBsUvk7CrbSzSp4FWPjuIyds+EBDXx7V7skii13VrFU+Nymx/RFaCioCwqDQ/kpeLhkgFW36nuvfmCxomNYMpYQpyLChwgUS5jaLgMIMzqYBRWQUvWqGFFGYFr/ywYSpmLXCQMOEAoumMaa+QUoKqMogozGgEmeLDx6U+AAgIESPsRkGufH1E4aAQFaCHgwkysZkWitUO9taAViKsAKKEQFGldgPGNtuBEJpLgzuljPYyj1KH3fJd+5zPVPbUJBSxYrhszQMGgNSVez91w3sNi0cxHp+APWsGKaUxVkMc15UQcUooHhqWC+K3KPM2hcconJ3AHFP+qwXoIl2jRInQyoJPsAA8gHe5jmxqngPE2uRkUwmKyuWYEjIIDqIvUaNC49LlC1lgdzA81OA6rhVpRW6mU5nG0jdngFpitog8KanteMvbCEBBYsdsAE4vxszrW2R9cK0WtQBAxKI7+p5WSkA+LM2efoQY6ij9HOonBrX2LdOVzuqMZTdJy+tm9MrGVaGcr6z0yJzllcKlGJEAR0IDrhBwtymWXPCropdBhXKUtFuqM+BEyaiDEQIsFCz642AasXXnK1lnOsgTVOx0xWlzWWMo1HwQ17FXUmJrfS74lZ8IKPGxKSvt7lfcyafyM9KWS+CiapuUz43qCILhpYRAUZRsT4bfNS2GVft3MHdgKWoJtXjXnzwoSBFXW+5WA6PFcOOJRpEhnGHMq0XZa5RtksU4HZxqmLF8LlGueIs7OxvVcWuUg6k359yjwLE9226R4kMUlzXvgAo+kRYL2KI52GmsB4NxAwMTS0ZPBBWCwKk9RNcgAFkArwLi+wNIg6/8nwbtzVjaEsGDWDO8pqWGB7LyuWWS5TLalEmqv2gsRZVxKfAm8J6cSXAcIEFZ1ymspXbgrjOVHE9X3raOuMrhA01thLAGKYa+LMKSK4EFWXLVQxGxjVxiEF57r1KkGHW3hiFFNbf+DG0TBDy7ON9XnCpDRd2jERiPARdNVioaYQzXJzsPnYWKHuZ6qeCtAkhiKJAuzIpqFBWCgUVJljYrk6mdUJBRB4ssi5G6nBdkGEDhkth87lPmdK3+tlKt0+x9ylOlMjx0ez4TNgwZ3xdUFEEE4Db4lEUtO1aZqeiFYMcHDDqQIUO6KZAlwkfeV9wt8s9ygUTVd2UTGlTUZivyIphA8Z6S0iJTsFriwneRdYLc7kLPqoChhKXa1RRnEVdi0XCuD5mlSkMQMZiodyjopCi009y7lEBTWtfUMIRcKIrdzOk6Wk5JcL9ybBYcBqKSrqEatcoL2AAqRuUDzAGsFZkstIosbPT2FICGUB90CBhA4iRtWTUVPTsQO4iGcZqUUVBL+tfBhimG1TSSzL3kwkYhNKMVSJBvnq3fswmCWQSo8wxcFWXwSEqw5WCDR2rYbd3XX+m1aLOtelxi9L7GUIqA0XRfjKuYg7LTtd9L1ZSTEtc04oho3zzlaTg2F0xI4WJGDBCK+oreeEkeO+99yo3/spXvvLe5uM/hR8u/gCgFI2Nb4BKS4L5MhUJQtLX2ke38PjmBwClaG95EzSQykAjSLM8yZgJGlCZD56AUoruRzfxaPH7iFoNbHxzG9rNEJtaIVqNAJtaDbzWamBDM0QzpNjUCvFaW3yOQopPby9i4Xt/iXYUYsf4DjQbAdoSSDY1QzTDAK1GgI1RiHZDgkoYYCwKcOfaHL73F3+GdtTAzh070AopooCgQUWbkBJEgYCZBhVKTEsqOCEluLs4h/N//Q00ggDbx8cFuBgvEJKZfQ4U3AQU9xbncPHb30QYBNi6fVyvbwZiP/ZL7T+kBHeuXcX0t/4cAaXYPj6eqb4dUgJKxH+1/IuVW0i6HWw5eBJ3l+Zw6dvfAA0CvL51e84dJSCQxcDSl5I7167i4ne+iSAIsG37uLCIOCCCGDAXkBQsbi5cwXf/4t+C0gBbt2/XMy2UCJZI4zKQzoxBHMfK9Tlc+PY3ETUCvLEt3bcaM5ACqtqv2BbBLXm+CKXYvHW73m4iAYYSoseSMJ6JT1lZWsCt6W8hCAJsfGOrBhM1g61ekWNZqxHg09vXcP2DvwIhATa9sVVv1/zOqFTclXWJSFebz+8t4eHlvwGlAVqb38y0N/8HlOaWP7wlxg1K0d78JoA07kYp0+qzAqxEgtcP7y7hw8t/A1CKaJN4DnADMtTJMjMSKqvFk9Ub+HT+e2CcoPnam2kDLl7m9ca5eJnLHq9ex2cL3welFE05bjPOQkGrGWehln2xcgP3L30HjBB9zEoSxtFPOBLGsdYXMRVxwvXr0d1FPJz9GxBKsfH1beL6M75LIu+FkCoXQ/EdUgLcmL+Cb/35vwUNKLZvHweR16S6LgNCQMAFXHAOwjkIF7BBOMOluSV87S+/gzAIML71jRQmlLL1/7P3ZjF2JGt+3z8iMs9SXJp7cetmN8kmm0uxyKqa8TIa2AIEAR4L9oMtQ4YMGJBH8oMe/GK9CLbMa8l+sA0bkoWxfCGNjIFgwwskWL693L739l3mrtPFImsvssjiWsW992ZVnXMyww8RX2RkZOR2qkh2X/ADEuecXCPj5PL94tsoEFynuUUcq3gOKTF1/Tbe/cUlCM6wf+8e1JGp67fx7p/+GQTn2L97p/VfyeSYPpESkwvX8e7Pfg0hBPbv2ZXZtiiAefLqdbz7sz8DB7B/9w4FLXRMslRY82Rn3fyWcYyppWV8cPkqOOPYt3VAvZOkVEq5lCmXKBPErbede/QUHy0tg3Ng75a299zyZO7xp/jo5go4Y/5tLWGca3dUNc0/+RQ/vrkCHnDsaTWVFTAF5XFyDkiDRRxJLHz6BX66/AiCMezb1oYZ19Npq5kQyX1kuRkyALMrj/H96RvgAPYMtACZWHMYZ0nfW/8ffZ++fR/vTSyAM4n9O7erPUqCEv0M1tdJKvUs45heuot3fzkBwRkG7esr01cCjHF8udbD5PIn+P23D2Bq8Tbe/cV4sq0dv1RhEG9q8Ra+97M/g4DE4I5t6YVxlN2HNW/qxh28++tJdexdryXrUN8UTFOLN/Hury9DgGFw53Y1P+qpyVzf6YmAfGrxFt795SUIzjG4e4f/PqT7y54Xx5hcuIF3f/4xBAP279pRqa2QUrkbRj1Mzi/iez/7NTig2h3HkL0uZNSDpLbTucRR0l9SYuraTfVfMaj+MvdylJ6cPvx7/+T/wsWLF79T+me+ZPnuP/wHF//w3/0LL7UNf++P/5/7Fy9e/O5LbYQltX0oVu8vgjdaWL2/aKwM7hSEwjt1Hl1H0Gyh8/gGeMARNgOzrNEMIAKdNlZwNJoCQcgRNgXCpsCz+4tobRlA98EidgyE2L21idcGGti7rYXX2iF2DKhp19YGXhsI8Vo7xPZmgB2tEPevTWP71i1YuTqDdigwoEFiWzPAQCiwrSmwtaHmD4QC2zRkNATD/NQEBgbamJuaQEMkSnwr4AiFAomBUKApBEKCDKEAYCAUuDk3iXa7jaW5SQMNtnLZFNxMIVlO9HRzbgoD7TZuzk2ZeU2PgkqTDSg35yaxbWDAHJeO0Qqo7Tw1X3MOQsFwZ34KrVYbt+cmtZWHpSYfUDY1rN1ZmMZAu43b81OmTa2Am7aHOqCe5ilFXFmIQsGwMH0FrXYb12Yu68BuPQLMkn6xf3PONOww3JqbQrvdxq25qZS1gtzduNW35gYgqJmdRKs1gKXZydT17rPiuMHBj5dm0Gi28fjGrNfHnyYSOyMZAKwszqDVbuPx0kz6GM6xKcuZLV/cXUCj2cJnt+dru0Q9uTEL0WzhyY3Z3HXyLC2f3Z5H0Gzii9sLqXV8cRGu1eLr5avgYRPPVq6lLJ/2Oq7Y7lRfL19D0Gzhy7sL5phuEUz7P7JTTj9dmkXQaOGTpTkACiiiWGK9F+NZJ0KnF2NVf1KMRacTIerF+OzmHBA08PD6LFY7PbOc1u/0YpM9ar0XY03voxtJXLk8gUarhanLE4hkYrnoxgrcYihrheQBIAI9IqNcoyTj+Hh6Du1mAx/PLPj/qIIR3fH5G2g3mxifv+HftkDG5xbRbjYwPrfoX6FgZHJ87po67syC141CRlGulWB85hparSbG568XHjPPJWri1gpaYYBLN+5VslqQS5SMIkw/+ARNwTF1/6myEjhTkUw//AStQGD64Sep+YzzzJRaLgSmH32GVhhg5tGnxnqQF/xNrlCqO9S9MfP4U7SEwMzTz1LLk3OMvG5fMo5x+e5DtEKBy7cf6H1a+7dcp+zzJ8i5tLSMgUaIiaUVb1u9oq0W41dvYqDVwvjCkgKInMkn4/OLGGg2U9va+y/LRPXxzDUMtBoYX1hKZtpKbsG88bkbaAcc43M3lILtTEUyfvUWBsIA4ws3ssp1ziS7XchuFx/PXEM7EPh45lra0uIq6FBWA5qov9qBwMfT89425056H+Nz19BuNDA+dy3Zb0Fb7cltt2/KnMe3yb2KIX3NvYzpGya14aJ98ARkbx3tgycqrW9Dx7Y3ToGhh+1vvJOCCRskggYBRYBWO8RAO8TWgRAHT55FEz28cepcAhQaKvZtbyqgGAixc6CB7c0AWxsKHJoBx5nzI0B3HWeGL2AgFHhNQ8WAtlIQVLS065TggOBKKTk/More+iqGL4yq0Ui9jEYmQ04uVdAKM08pzKfOjSDqrOPMuZGUcuxOADKwcHLoPDrrazg5dN7MI3G3txX4puA4e34E3c4azg6PFkIFzedMObA1Bcc75y4g7q7j5LkL2iLDUvv2TTRaf3LoPHqddZw+dwGtgBugCPWxEsiwYIURLHCcGx7B+toazgxfMC5p1GcEZnmAcfzMMHrrazh+ZthAUR5UkJCb2tEzw1hbe4ajZ4ZTy4tiOajvDxw/i15nDYPHz5plLlAASAGFLYdPDqG3voYD1vZVZfvr76CzvoYdR075a2PkSBRL7Dl2BtH6GnYdPW3mAcjU7CArnJ2qeddbpyF7Hex881SynnVuqZTS1nXLOMOWQycRd9cxcPBExs3S3ZbEJHhgDK8deQcyWsf2N08XgkWgoZfAAgD2HT+DuLuOwbeHzL5tl6/I+W5XRt966CR6a6qvexpKaHs7rS9dM7GU5vp6Z+g8VldXcWZ4JHOcjFjmHhb1wGSM3zl7EqvrHYyd1s/dXidRzs0Ip365a+WGlIqxk29hdW0VY6eO5R8zR8ZOv62P+3Z2YclLbez0Cayurydtpna6p+uBjLGzJ7C2to6xU8eTmVpxsX+nxPp94Y0DWOv2cOGN/ZnjuVYLt8je2X07sdaLMDS4K7NtmQwN7kpt6wMJW5gQZlT63P7dWItiDO1X25YBhiund2zHWhTh7O4dtds9vH8PVrs9XDiS7a8yGT16CKu9CGMn3tDXRI4blRvEzQXGTh3Ds/V1jJ3yXF8+0fcxC0L8ztCpzLZeEMm5RsfeOYpnax2MvXO02rG1yF4XoyeOYHVdfeatkzeNHjuMZ8/WMHrscBZE8pRr/XvsxJt4traGsRNvquNUVNBlHOnzXcPYO0dT4FE2mf6i58jJt9L7rtCGVLtz4CEXOF7Jt1JYnQwvjDE5+nc+8C/LGeG04yboO/lKU8VsNY97lQNSDChmohFwDFixFpQNKhUroRVJzphWnBMXHFL8Q64gIuTcuDMQMAD6N50DV+4gEmqUMZKJy0hsWYgjS5mIYqAbJ0oGzSPJZG3yKBukgPhGj32j7/QOIkVd7dffBjc+ZOEXH+LrT5/g3L/1V7xt8R03T/ICt+32JftLv4hMFljddopzsdsbxdLEvNB3Wmb76dfJ1GXH1az3YjW6LCW6UfK9E8VmpJtGre3vvVh6fft9QOH+p/Y+6HcUp49JSj/FA9ixAPY+7RH79Px0qlw341OqzoZHbGUaQOr8TZstZZwsEFFPQkpprA9FAd9lYCECZp4bvlS8PmuFfa72uXR6USZgO3L63z0fLjjarQDthnLH3KpdL7e1Amxtqe9b9GCFPXARCoaBUKhnmFAwTN9pYnEE1lsH662Bda3PuAfZWVUN7+VU9/VARV5Wmzp+zt7g280aJcv15deBsAacIsSdtQQu4giSfscx5Ppqsl6vm2SDKiia58IFWS02MzVnWd2KvNgT+m/tYPQ4SqwmbhC3Wp7cU1wwBC1V24Jx5WLMGwEY5whaTTVfcPBQrcNpPb2O2kfSNjsGwz4nu6q4aDaT64JzlZKWC7U+F16wUPsrv5bsa/Dep1/iT35xFX/7L42p86/q5+/NbFUhxsK3XR/1KOpKYdB7Xp/1G8tRQ3IV/iIrQ85zKFes5a0//x9BSlkvYO4lyOipY/JXf/zfvdQ2NP/1f/+SlHLspTbCkr7CfIqKV5HYI5KMMzSaolApALJVswko7ABtygrVCLhJHds0n+WB2QY2LB9pggoXKOgMGGMq6yNgfM5jCUQmX732SQfTAdIS4BJUqZcUfC4sqIjTfRg67yETwIzigG5XYSdocn3tjcLOCDaS7WKpAruZpED3YuAsC0quAxTuoBxnDOAm0kL1HdfpO+NsoDd9V/tVgd79pP/1ZfsCYMDCFVJkVy33A9f1ySd5fWfHw+QFT+dJqvYFZypdasAN7CTzVZE/e317H2VC21Ab7cxZBoQL6l5wzrzZokjqgoX97HAHJIB8mEq11+mHzG/P+djLO1Fs/us6wfW+64DFPRXE7Sq4VAXXBgsLKgDkgkUmU40O9O4rkHKzTe8Vgr8BR5nzjejSV+0SBcCAhU+KrBa0LYANBWdvpCCeHahv184wAf0AREN4XZ9ehtiQUQksaLuC6ylPuZabxH61skHZ2/WskfnnIZRhygMwmWrc7nYeJf65jP7XTKZQab2SQPhvvrBXwemO9FHnolhxc6GCKmbbKWOBrDKQVzV7wAGKdigMJNhWChskEmtFMopP3ymYuQgojDUl9X5Qyu1GIAPIAQ0gBRuxlJWAwp5vnyOBEwAQ9BMw2LDRjWPdDuhAZ+UWFfNyJakwFa0HeHxtz9uPmcclDGDQ75hlACPkquJxCjg2ILbVgsQuhmgroK6S2C9U+KqAe9tmZTEqkqqAQftU25Q/1H2AQYDlZo4CT0ZW7UxSvnS1/YJFVWuF2/+0nn3OVfq/qtjpnruxROhJp1bo7SLjZIoj4wYFwAsWuVBh+2B3E8CoJc/7pVlQlC/d/jRkpKwMbhyG9d2ta+GKbbWw4wuK6j9sVHxWCxEGpj1AGibq1L+oMvjXj/isFkxwlYpWu0MVgYWRnDiKKilqJWBe2BuxWlQS121ng2CRZxVLgWiB4l0LOPLSUG9WDotR3gAAIABJREFUlq2SbapYd1L/97cSKF5JkWzak9P1nXbBglwJAJQCRaBhwoaKhoYH10phuz1RYLILFLaVwsAFtdsDFLbFwhbOJeI+ISOBiaSfbJelVPfFxYqIq7SnLBUaqqykIOpcNGTYsGGDhtA9EgqGqgOwRYBhty1vfVGwfSSlZcVQgGF+O4Chjpf8rpLu1yfkVpW0oXh9W2Gt4vpUdVkV8bkk2dYLn/gAI9lf9Ye7vf+eB1Lc0X4RMES9zbFY5A1QJL/zrRV2gPyq8zLrx2K0GcLJempn4HFEpR61wKKqtcKe7ygVVawXG6lH0Je4kJEHD5biYhfOsy0RRdW4XXeozPLIUuj7AIx+3KEILOx18oLdmeBJRW4H1HlRFdRNktpgQdvlpJ194deZTzZBWTbr1nStK4WOvLZxkQ8cVa0brtRU8iv3C+3XkybXlm/EtfBKNkU2BBdFwZicMxWgHWqLg1U1Ow8oqMidXZuiFYiUlaJJblL6U1ktWCFQuFYKGyjMKDu1X68HpOsiRDqjC5cS4EAU0/dEscqDjICxJHVpymKRjosAPKBhiQ8qaL4PoNT+qP1JnAigYMMGDa63aQWJlaWKlLXVrOcBiQK2MLCjdpZAGblJpQADyLhJ9QsYQNpqUbYfGu32xT64UgYb/dascMEizz3KFgIM+t6PmPMpqL2RUX542jWqH7DIc6O025QHFW7byXrh6/uN/Cd9i4yNexQFc8ueVXnaBxYF1gpkwKNP68WLFEfZkr7zcb7bhd1c60OVaty+YntxFPcNGHWEwIKUdoEgBT15rlF1pZ9ChqXnXQQW1jp14yyep1RyFSpx/an9H1RV2lN1K/qAjrrAkSO140o2ySXqRcSzPBdh7BUYOdLXE9MHFUCiKAjBETS4AYttrQDtRmAsEEASbzFgKQwUoK2yHyVQ0aQsR5b7kwsUvsBs0i98QFEEE7bFwuxDqqDOSKrYBNuKITVkRLE0aVEzkAFHYQZSsQUkLmj4YhVcqFBt1pmsmAoWdUeTk4BlBRrULnVuFFhP2a+SIOmy4nkkeVaIvM3LBu6pF0yfeeIwEDM0BbPiWPoHDLJa1Kmabks/Vgrb2tGvO06e5aIs/uJ5C1kv0jVv0q5RPqkCFj5rhc8FyoaKjPsaeMZ6kWp/DljY56MALRtvkXWJyj1MsUiZxFsAKAra9lorkH5ZUyEtAgyJF6DoeawmdSQTb0HzS1yiiipzl1kt7MJxmw0YroLvgkVm/QLXKDvugguWCurebKH+yFgtgAxYGKkQwN2vQlZ7xLyObJY7VM76stsx31nYqLQNgMQ9ygMd/QBHZalrzagAXqWuYMA3ewDklZTKhit0A2lFgcCiqbOoDDSEAQuqnu2zUgjOvPEUqoZEUleCgCIU1a0TQOLuVAQTyfzkfGz3okgWQ0baVSoHMmQRZAA+0PBBBbXTPv+QM1VkjSdZuMwzR++TLCxA2qphIIqRpSXbB2VSprNW3Q+geiGW+n/1WDEMYADeOAz63o8Fw84QVSb9WCnqxmWUSdSLlTJfEzD6tVioc3CsHiXWCxGg0DUKqAcWRdaKIqgoipcJlNkvY4l6IWLHWEiZilxVAdx+sCiyVqSUopwXdal71EZe8HlZq6rutyDeIvnud4ky2/VptfBVpt4oYNQBCxEGiJANbk/2xb3xI7nH3kCAue/YtjuU2T8BxAYyQ5XJc7ktC5Rnf1xHTr8X7ccCiirzSVLwUeQeVRc4+pDNzKTWd/zJK/nWyIaHYlywCJsCDR0nMdAQ2NoK0Q6T37aSYKwVgmeggorQEVRQkbq8+ImqMJEHErbiy1KB1tq3lXFdMVWPTFIKQMdVSqAYMjgAsBzIAIzCrDIj5UMFtZmsFaY/AAQiyXQVg5n9wWobkLZqKLtF4pLl6tV1wKAolqKqmL5CYvXxxWEA8MZh1AUMslpUhRFbSbVdo6pYKfKWr3b0SHgF5dZNldovYPQjpNTTdwIM+zUptKLuWi+ArGsUzQPqgUVdqMh8j9Ln8MKBAtBFHhngHtoO5qZKuHWtFQ5wyF7WelFJyec846q0YakzWumLt4gjo5jFBrqs1K05BfPc1LPpw6SL5BFgkPViI1IFLOzvNjhQmtg8S8zzEgIp12rhi7Mwbc0BC59sthuJN5jbXafMJaqOO1RZnIYPHMruIzdzWgF8GPDIs1YUAMeGQGEzlf5MLNgmP2deyUuTvuHChgo3I5TtCmWDhV2bgmIu3PoUZKWg3PAEFQ3BSmMnbJiwrRJ5IKEggka/rYd57DzEpR5C5wEY09HSPM+KkcRjcM78kCH9kBHZblCWNcMHFa61QnBmgrlTLmEU68ETGLJBQ81LoIuyVPn0rBfgTWMJQ6T/Gw6PW1lZHEYNwPCln7WlU3GEsGrmKN/6bnrYPLccqsdgi5QSjLFcwDDnsQmA4VoL7Db6UtOmzjdgiHrwwgZQHyzKoMJrmdASxRINwdHBxq0UeSl9bZeoKpeQSUOrrRZMxqYCtRcsyqwVSL+sGeAFDJ97VEbxqwsYm5Whx3eOHgXPVsbt5W7BPFe8VgsKlhY8Axib4R5VBha2+AK73bgLimvKC+au217uic2w3aHUStVrWag2bo47VDJctklSxWpREyxKocIT3OxdzycWfPiOUxs4NsuqUWKBsaWqNebbJexb2ObnKxuuc+HLCKVqUiiwUG5RwmR9cqGCitolrk9cVc7WUBFwZopOlcGEbZWw07EaS4RUFzKLrJeJq3TmJdKWaj9ShOCOFYMgo2ssF5arVCboGwAUHRFkuPEFKcigZdb5+KwVjCnF2v5Up6ctIdrNiSAISFs1CNgCj9LoSt/uOzWUOOqnSEpiucpxGD7AKPNHdtPP1nGnqgMVG4l3cPvP/k2AkbddWQapMikMmLZTurrpXClzFIe3eN5GwKIfqLDXsUGOzqFqxqhOL0azBB5diRQhG7G3tgc0KJgbgKltUddaYZQIe9Qffbim2COpz8OCUSDeeIsclygAqdoWdsG81D5LrBYpSIni2oDhcz+yrRZuVii1XFsE9LIY6r/3BXaj08uNu/DJhi0uTvpZbmeA6hMsXphsIEaiMM7CMy9XuS4Ckj6CvAvvP85z28HCRn+WlucghW0keeUS9a2XDdW5yMsIRa5QVPiOJip6lwcV5ApFUCE40OAqIxS5+rgwQSABqJF8GyTMC9rMS9+YGQuFZ53UItEAi7opKwZBRjcGQi4zWaXgBH0DSqHTYa0GMijoG/C7S5VZK7j5ncwHklF4smCQpYXmSSnBeaLkmQrlJe+kPEU202eWkk7HKFNPoliCIQEMwO8mlezYicPwAgZP1a0gcdPP9isbBQqf0i44M647rpBi7FoB6rpHVZEisOgXlri1XR2woH6mTHN57SirlN7rRGqfTmD384i7iJR5MldSLpmx9cyKdf0FcvvpEyxkt5Ma0axqvTC+8vbo+QsGDNVGff5uClqkXaLo07ZEVLFauBBCyrpoiL4Aw5Y8sHAtAdwDHan9eLJElcVdbFacRa47FFAKFt79bcAdagNJACsXlCuMs0jFAVUACmebuCSwmvv6pkzRpv7Ouy8LoMMrL/L+LrHEvJJvr/Rt3y3KCEVgsVVbMuyUslWhIuQMDQ0VwhqNt60SKZCIexmISF7UcfrTJxXMkSzqAIxD8kAdW0MGuEDImTfgWzrxGG5mKYIMN7MUkHhjAekYE5+1wl1OfUMwSF1DbQTSoEFxF6GJyaimNBa9vtz90HuQXj2uYpzs1LX0qP1EUBDGWX+AEcUs1yJBVovNSrhSpnS7y6mI3mrOKKQdfG0yRPVIoZIacovdo/qJvygLmiaXsarWCxXYnfz3dcGiCCrKgMIW20JXFJRfBzCoXwGyfOVfA9SqFKS7zykDC1HaDaqOtUK/sAkwqFWVAYPaWQcwNnPU0WuxcPrBE8jtK5iXZ7UAkLFaAAoyNgMwgPpgkUpLC5S6RqWO1RC5blZVhTcCb9G8jDsUUAgWm221yAtwrxJvkZG8FMfOPG/sTpV4ihpQUXc9wAKRMteifmHheVgP3OvB17ZNTD7wwoTh29nu5yh9p6IlsGg3RCYj1LZWYCwZjYBjSyjQDBQ8hJxpkFBQEQr1uwgqBGcIGRJoiHJAIvNyjnOsE31okDGD5IF6uMo4gQy92A34ZlL5x8ewXaX8Qd9F6WvJWmGnmPVZKxRoaOiKo+S8eWDaB8C0EUiDBmcA9P5ZH93j08/s/ZCFBLAtF0n8R2pfMmkUWXmMm5QThyGlFUCuq6Gv9fyA0QrUMgKMvPSz/WSYqmOdyFtmB4j3ciEjHdMgrc/NBgwfWNippAGV0rWDLGBUGYPqFyz6AYoigCDrhc81SnCWZzwCUM/Vr1DM80yCgrlVvAUFdde3VqjflpuPDRh9KH2bbcEoS4/pxpmoecmzHUi7RNFnKubCKpiX3ne+1YLuJfrdL2D46koUgYWZh8Cb2Qrwu0al9t+nJTFPmODl7lCAAotMWyoWzKtS3E1L5butjmJc0x0qAxYFrk8uLNTJ8OWKC4x5IFIKHTWkKux4LS7eHVaIsXgV1P1bIeLixYuVV/7Od75zcffZP4fPF3+NIAywbddetDQoNAKBLY1AF8rjaIVCTYGyYgScYfn6PKZ//hEaYYAD+/dXAouG4AgYMH35Et579z0EHBjcuweABIu7yj9ZRjqeQgJxBBZ1tYKtLuTJ6Rm8++GPIBiwX29bdZqcmcW7P/gRBOfYv28PyJUJAJgeB2RSKuCAUpJoNJIxhtnpKXz//fcRBAKDg/sNLHCtzXPj3mVbENTv+dlp/PQHHyAMAhw8sB8Bo1S8MFXJSQELBQOHageLupiansa7732AgAP79+1VfaT3rfR09Y0U86Ub1/HFF19gZGQUc6bNHIODgwpYnCnglOkGGo7UNDs9hQ8/eB+B4NhnbWv3jeYYNVnbcgbMTE3hh9//AJxz7B0cBGcJDDEGMOr15G8w86/q/gq4wK69+8xxOUteSsYqBCCWWpcDcPvaLCZ+9iMwzrF9997UdR9ZsGFzB7Vt+focFn75EcA5tu9Kb0tSBBbLi3OY++VHkIxj6849iGKJbqSsNL1Yf0axcr/T86NYIo5ifHXvOh7P/BKcczS27UpdezJWSQWUtSf7+cnta3g0/QtIMAzs2GPmA/kWC/p8eusabo7/FEIIbN25x/Sv2r8016XpM/ofGfD1ynU8nfsVRCDQ2rkHQSgQBjwDFmrAQj9fLLB4tHQVSx//FKEQ2LJzT6ovy8DiwY15XPvNTxAIji26r+kaAFQ/M91/Pd3XYCq71Vf3ruOT+V+BBwIDO/agqZ9zoeDGBZQALND3Zqi/37o6h1//+EMEQmD//kHTPwFnCGhAIOro51YXPOoqE09nDbLXxdTCIt791RXwOMLgjq2qsRXBYurWCt6/NA/OgMHXtoBxrq4TO05HJgq1GigRAOOYvLaEd3/2GwjBMLjztXTHprLqRfpm0rDb62Jy4Qa+97NfgwMY3Lldg5I12buyt5cSU9eW8O7PPwaPYwzu3K4rcUdA1FPfox7iXheyp1LJRp2uAoauUrxn7j3CD6/eAgOwd0sbkDKJX9DHkJHKZGb6T0rISOLqJ1/gJ/ceQjCOPe2miVtI+oeuaw30GjwAYP7Jp/hoaRmcA/u2blHXny+Am/ZlwcbsyhP8YOEWOIC9A62knXGc/FdWu5PzUBfw1U+/wE9XHqln55a2etZypgCBMZV1SqhBMDNff59deYIPF25BcI7BHdvMNjwUGXcoJoKUO9TU0j289+vLEEGAwd0709eHnmhwy/7/GRfJ9cU59uttZa+bvVb09MnXHczd/xS/d3SvuUYEgzquew123f0419j1O3j3lxMQnGHf9oH0OnRfSWnmmWsQwNTNZbw/PqfuqR3bUtsBSilPZR6LYrN86uYK3r9yVd8X21BZpMT07ft4b2IBgjHs274l3cf0vI1j7zR99yHev7QALhgGd2wzbSyabJm6fR/vX74GztX2qaaV7Gfy5jLeuzQPhhj7dznPEedaUS4b6nr5b//vH+LixYvfqd5JL0e++0f/88W//u/9wUttw9/9R//s/sWLF7/7UhthSW07zlf3roKHLXx196p5OZJEsURPp8gkn2Xb3eTa9BWwRhNzk5cRS1omjQIVSzWarF7qakS5q0f/x69MYmCgjfGJK+rC05YD+m4mruarZUqzHZ+awUB7AOOT07U7aHxyGgPtFsYnp9ILZAzEPaUQRB11c2vrCYdSrkLOcOXKBLZsaWNyYsJYYZQVQkECgZTQlodAWyIEA+YnJ7BlYABzkxMQTEGXseRwoCGSbYxyEqmRhvFLExhoNzF+6bJ5qNnWHaYDpQFr5F+qF+fliQkMDKg22wBhT3lyeWICrXYblycmavd1FAOTlyfQbrcxeWVCz7Me2DLdXgIT+j43eRntdhvz05d1MUBt4dF9K3hS2Z3mcd3ft+amMDDQxu35qcLCgT5IWF6YRtBqYXkh//oqGuG+uzAN0Wzi3tVp73o0j0bU7XU+v70AHjTx+e0FAJYlgwL5HUuH/fnZ7XmIsIlPb83nti1PHl6fQdBo4eH1GQiuatS0TeyVcpGkejZmaqj4rK+WryFot/HV8jUIazlZQSkhhLtf6vuH12fQaLVw//pMqk1VLBYPFmfRbLXw4PqsWW5bZNwUtzQxxvDVsnr2fXlnQbdZpNazj2dfQ4IzLExfRrPVwuzkhHXNFrhEASaYW3a7GL96CwPNEJeu3VbLalgsJhbvoN0IMHHjHhDHkN2OSm3b60J21iA7ayoWQ7teyVjHecQRxmcW0GqE+HhyLq2o6eWII7UP2l+vi7izBhlHGJ+7hnYQYHx2AbLXKZyMdUZP43OLaAcC43OL6f13O0Cvi7jXNVaK3uq6Aoy1jhnRn1x+hFYYYHLlcer/z3OrsWXm6WdoBQIzn3zmXV6ULnP6wSdohQGmH3yi4mWiCFG3h6jbQ2+tY6woNMXdnrGuXLn7AC3BcfnOg0zKXFLSyNpCblxkaTHtFgIzT/ztLpIr9x6iHQa4cu+RcYlKXKH8aWdJxheW0G61MT5/I3f/kq4ra4o7a/h4ag4twfHx1Bzizpq5dszkXitRkuBgfG4RbcHw8dQC5PoaZLerPvVkrqdeR03W9SU7axifvYZ2wDE+t6jm2cq2vr7l+qq6X7qd1PU/cf2udU+l3Z/s0X7bakbfJ26toB2GmLi1krkefJMtl5aWMdAIcWlpOdvHJduOX7uDZsAxfu1OoUUirx2Xrt9DOxC4dP2ed/9FMrG0gnYjxMTSiumjQquIba39FggDAxPipU7fNKkNF68deQdxdx073zyVeuGvdnpY7Ubo9GI866jPTi/GajdCN5ZY70V449Q5PHv2DK+fGsKzboRn3Vh/RuhEUk2xniKJrv7sRDEujP4Ovu70MPK7/wpk0IQUatREikZqAg+UY7cIIIMGZNDA2MgInq2tYezC+SyMuJMjY8NDeLa6hrHhc/4O0S4MLOoYqwlkbJT33xkdw9raKsbGRsGYHs3kSIFGQ6RBg7JpnR8ZRWd9FecvjKr19br2qCeHBO+t6+MmLhVjI+dVu0eGdTuLAUMpOmqdkdFRrK2u4sLISO51YKwQzjQyOor1NbVtEYTkyfCFETxbfYah88mxycpgCwGZDRhnz4+gs7aGofMjoKrtPsCgTxswjp8ZRm99DUdPq//ZVg4bovg2OfTOEHprazj0zlDheqY2hTUBwOt6+8HjZwCkXZ98UAAoaJCxxNbDJxF317Hl0AlEPYmoJyFjPUkN6b1YTc6xt7/+DtbX17DzzVOVsySRDB4/i7i7jsHjZ808ggFSttvakjlgZYtrBBy7jp0GizrYdey0eYbYUOEW3XQBYfD4WfQ6azhgHdsn7naCMxw5fQ5xr4ODJ86mXK9oOblh2YU+AUAEHNveOAVEHew4cipx2RLpauFAAt+hdfwzwxfQWV/DmeH0PZVqYmy5fWohN42xk2/i2bM1jJ44Ug4WjowcP4TVtQ5Gjh4wx6FRWJPqtrMG9DqJcqaVrbFTx7H67BnGTh33wkRKGbRAQa6vYfTY63j27BlGjx9Ril/eZCmENI0efR3Pnq1i9NhhS9FbqwQWADB8aB+erXUwfNBvSbTFDXw+u3sH1noRzu7aUbotCbllnd23E2vdHob27zLLCDJs0PBBxtDgbjxb6+Dc/t0ZsIg7vUKwMO2OIpzdU73dypLBMfLWQax1I1x4Y78BC7sKt145W4UbwNg7R7G6toqxk29lILFsGjv5FlbXVjF67HXvdZC5RiiGiK6RtTWMvf16BiAImlNgas1DHGH07cN4trqKkWOvm2usCChsGTl2OHVPFUEF/TbbvnkQq90uRt48WOk/sq+TkSMH8Gy9g5EjByop+Klt3zyAZ2vrGHnzQC5AFO1v9OghPOt0MXr0kHf/RfsYOXoQq50uRo6mz7kUMl7Jt1ZYblCtb2XG5L/xP/4kFcTtvsDt2hbbrIDudqiCnps6Y1TTCuamQnkDoUDIOQSHlYI2Ga2ngOVMdigZp7OsAM68WFsaPOvV6i0GGTRylrnWFGa+S2bHOagv9E5IUsWm56l4jHTaWTvmgsM675xsWKm22eeg4zBovmQM77//Pu7cvoP/5G/8jU2rgkrWJxL3nAGkMkfRMyk5f5m4MxW0yWTbstzWI20Zi2JVB4O+x1KauIuuVrLpexyrT1+FbrvWRVFK2H6FrH00rWsYWO1GWO30EMUSzzqRWa/XVYpFrxsj1u5PQDIaLgL9OzPfiZnQCj+AjJKcV6jOlzXK7YcoVoMCBDJUpI7qdFCMh+0CZVsRfFBB0k+cBR2LpGPBFvUrtVn9B1FmGZ1fuyFMAoutzSCVvGJrMzBxZU1Tr0el16aioA2d0KIhGFoBQ4gYrLcO1nkG1lsHX/8KrLsKufY14q+/RPz1F0ohAqqBRVk+fuM7X61Wge0776s7oY6fU0E7rw0VhJRCAxZxhGh9XSkwBWBh4jCsLFFuMLcbc+Eq7HTfiIaVUjXl1pR8J7cpt+hckdBIoy/Q2wsWUeKm4gOLpF3MBHSTG1RiiRAQYQDeCMDDQMEDrdcIIMLQrMsbgbdYnhtrkbpWKspGrpXrj7/EP1/8FH/rdw9kF3q2LSzKVnbvVNg/gAxUpI7vifXJk82sop7a7waC+32gsJH9lW3rxm5s+St/G1LKPoYpX6yMnTkpf/N//tFLbUMw9BcuSSnHXmojLKmfipaxwhf/qh7BEZxlM9+EAuhFCAVH1I0RWspdGKuLrimAUDDLBUZCSoYASnlUSrZMp6FlAiwQBjQANUIvSak2oNGDRKC+p1wSKiiHtlLuE7JgULC3aKg28AAMXGVoYQyB8ddVmxFUBMwGjaQoX7p+RZIli1yxzLGLRLeJDkztovnM+F5LDW6yNmC4l0Pd7X1gUXVfgjGTqjaW6q9N18JIZ5GiwG43m1RXrx4KrhuUZJdqCG4Ao24Woariuj+Rcm7PS1flTtLo0ie9n2jwW9Ala+brjtaKNsFKWcE/V3z3P80jcGhzYRR26rNOL0LAmQkkJ0uBa/XIk6rpc/MyStlQRc+n1D6jdN0LtzAgQUqq3oYDbCEpm/peD3PabM+mQQ87AUXGhacgK1SyTgVXhTjSQbRx5SxS7vFyFURfcGxZW3LEWFUcsFAwESFa68CtZ7GRgFmSjQZFU9B34Tr6v7XPXujXcR5Y0LnlgYU6dv5zSWig8AkBRcodCvBnh+pDMmlg6VomaPaJ79rQ77rCa6vomqqZ5alIioK181IfF0nZ8n77fzPuiaL91YENu0ClT+w+rRwk/koqC2PsFoAvoR49PSnlGGNsGMA/ArAVwC0Af1VK+YVn2z8G8JcAPJJSFrsNoA+4EFQIL+CFgJGrIIQCkYy164BAHEcaLvToYAiEWgGUkiMQ2i0GNHKveoXcYbygwaCUaQc0VIsUYNB89aUmaBSJyWjVSaWsVd/1OiwNGzZoAEhS2OogaDo3DqmsLzquohQq3HaVAAYJAcbLFp87VJ7UBQzBGewie/b3blQOGJsppOAD5S5RbpYo+zvjzFgxkpgLtU4eZESWMu+rfdFPFe+qkOEWxMsDizKgcMEoDyZ8blJme23JoKrdqWNrEKH2UXvszFnUBpOYwRN7Qd/tVgjGzK3ms6pmKnMXpcWsoyTZELC+BtZsFQNGXZhwjl2mOOW1rypYbLYCVa+p2cxRmZoUOYqhDZCRNS8vvkLtu/6zOc8n21gpBNU08WeHMlIxy1hhTQlyPyKrVNm1YV9j9EArcQVMtq2+b+/iCoBc11pBLnR1K6fXvocceV6WkX5gowwygGp9/40RxoA8r5Zvnvx5KeUT6/c/BvCfSyl/yhj7awD+FoD/0rPd/wbgHwL4kyoH6S8VLWelL/xUnnvP9g3BjRUDvdi4qABAS3LEUqIpgBa4Gs2WAGcSgaQaD32CBgCgp0btuAMZwOaABlkxAH0MngABWS4s2LDTxNJhCTRMTY/YquVRABVu6t2UtaUQMBJXMym1sr4B0OJMnYNgyK0d4Z6Fzx2qjriAQfNUg9KA0QTHOmIvYCgrAPMChjnWJlkvXFcid55J7WoVdSNwUJluJKIohhDcKB3UrwQZKjWthAgYMilrY5mxXlQFCrJA5EnGZdKBjCKoqGqhKBIfWNjHIauEXakbQCY1rb3M/bRdydxgbvtYbpIA+52aumedGheZ7868DRee0lYMub6mzF5hA+DKYsAaLXWM9eowkVKAKowAF7ZfWy6eJ1hwwVGn4nW/kqcY2gqfz2UrL77ClVg/ZLkn0M1fNZxbWbB4qq6Fr1heoWIaR5BV9EALlG2XN5IqoCC7PUBq6PTtu6wJm6iw9gsVeb9tqQseVWSjcGJL0fVQx5XKXnejtVleSd9yEsDP9PcfAPg+PHAhpfwZY+zNqjutb7nI8bdB29W8AAAgAElEQVR2xS765dtHFEt0OENLAl0GNAMBUovITYr85QdCYVyi6DPggMquyiC49rlnDJypOhER0qBh+w3bgAFoRd9XD6Mga1AliXvGTYqOY0YppSGLpA0WbBhfeVlsrfC221leCTAsdd4GjH4l0sprlZge91lUJc4iT1KAAec8HMAIyZXTAQxOF5oGjKgX6zok0mu96Bc0aBtbwc1ziXIL55FLVESuEuSy5YUMfTyPFSPqxbnWC7IuFIkPAnzAkVLqwQGBDFRsJlCYYzlg4fuvjOXBBxqBwGqnZ0CE9ufLENUQ3BvMbYOFfUul9ED7vrbq9CC1SsU4C2udSpLjJoXOWsq/Ps8yUal6cR3FRu8n7nWTjEqdXt9g0S985MVbAFnXp34K69F+XKkDFnHNqp9M8FRtDbutZLVQCzbHHUo3MvVddtbSLm9l26Tm62dbkTsVXqwlq0pcRRFI+KQueNTdf9n+ysQ+xyrXRxWIqGLNeCWFsocxNm79/q6U0k1NKwF8yBiTAP5XvXwGwL8D4P8F8JcBvL4ZjekLLqr6Z/sAgyoR2y/9huCIupGyWJgYDKVQtaQ6FlX3diGDQUJ4rRkJaMSMgMQ27wYqbkFrXF4rhiv9PGQtpYFRGj0rwNoc14EN2O1xrBVlQOFKFcBgUETBpITU1hKz+gvwkHJjLfoBC7oufIChlrMUYIS23mwBRigZuqYRrND60q/YYEFS5BJlf6dMUCS2W5QLGXmuUsaKIfzWizIpAoEi4LAV/CoW0DKx21sUwO2DAdre/g9s60UHccqK0zHbJClo3XgLIA0NRbEpgDN+kfpPE4WdUmTSb6AELPoRBwzcOAwvTJS1Z4MuJzZYRN0kQ5Sv+vZmCBP8pblX2cphFbCoChVFiqOxVAhhYi1S7lCZndVMd+lCheUGJddXjWWqLC2qLWaMLZJ9/1d1FOMiRbcfqIhzUiHzGqlENwISG92f73qq6gJo1i+BiG8rZDwvt7Ma8qRCQPfvSSlXGGP7APyAMbYA4K8B+AeMsb8D4F+iWg3cUukLLuooBHkWDLticBQkL/CuVuTsYG9AWTM4U7EYIef6t1JkZCzBoMCiyJoBJIDB4h4kGsqKoTNJAflWjMJg7jwxN53+pIuPQIHxDHAkkBNl4kY2ImWAARmr0UoZg0FluDLb9qH/qXgHWeoa5ZN+wYI+fYAhoNy8XMDgzBd3obYiwHDdo8h6sRkWC/pdxyUq6lmQoSem7wPAgQwdZOG6SpEVg3FprBckNghslrjPjM2wUuSJq/SnYEK/sAgcbCHrBYCUBcMO7rZT0LrH4oyZYG4gbb0IOU9ZAlOvIZveZVZxd3+XgsVG8sNbx0gBRpl1wlnuUxjrWhnIPYjAgorgVdlPXoXrFym1R6tzMldl1yt+5kSdCEHb7wpFnxmXqJyaFqUKE1m93HnObwMWVKskjlUa44rB+HT9qV1nK5hv9sg9nXdVgCl1gSqpr7IZ0FHneP0exz6vPHCtCm9VIeOVbJ5IKVf05yPG2L8A8LtSyv8BwF8EAMbYCQD/9mYcq++YizrS6algyNWuuuDJ9aIRcDNi2m4of+x2KDJWjG4sdZpaZmIxqI5BFciINGSQw02gq88ydBRgRB2tTyaAAWxAofelvGUMdpCBOoYFHab2hLWSp+5GrSBuZx8ZwLBXs4O4NWCkDtuni1SZaxQ9PzYSa6EsWOnfsdXtRYABxCqA2wGMKGYmg5RyCvEDBklV0PCBBUkVlyjj8qRdokzMBZK4HRcyilylZCz1qSnAr2K98N3//WSb8llv6ojPauFaL+z5br0SOybDbYPgzFgvSNyaGL54C0ABXLqInrXfFLTb5kHrhUygDySBsS+yoJQLGD6g8FgvCCjs9K9FUuYD3i9YvCyxXaPqbgck/ZEHFnVdoGyhlLeuS1TGagHkFsurJD6wsN2grCKIZJnK7KKg/6J1AAjQW13vr32+Jq9GKeWaNwLvtelTlPuBCtqmykh3XUgokiKlv+g4eeCxWaDxKu7ixQhjbAsALqX8Un//iwD+a8bYPg0bHMB/AZU5asNSGy7qKhEkym9ZXaQNwRFxloEMAoxGoKAh5CxlxWgFHGHM0Y0kQsG8kMGYUgZtyAAACCj/KJ1mNeQMXDRyAQOoCRn0wMirO0HvBQrejmz/5UTJSCn/9s3oA40qYlso4ACGa72wl7vblfhGufBRlnDKfiSn6l7UeH+SPkdHtrMUqa9Mx35kAUOtDwAcsYwADRPUODubVFGK2jrWizywsLNFuVYMe74byJ3atwMRNmREyHeVinoSQYNlrBe+dvviGapKnvJv3/f9QkYm9sHJDGWDBSn9dlYo+/+zrRdqIc0XqQxX3uOwbOC2Lw2t3Wssz2rRs60CJdYCWzYLQiijTxwnzyGP9SIPKPrxO3cVnMRy0Z/FYiMgYsdbPA+JHQsNkLTXBYuNQEWeMM6zyp62WtjrpJYVia/GBFV+97hBGRc3HUvjE+81JHW63rVN8dwAoBTjyI6h6WSX57XHtKsGVOT9BjbPtaZu2tui4/rOxQWOKhmw6oDGtw4yGOsfyF+cDAL4F3pQKwDwv0spP2CM/WeMsb+p1/nnAP4pADDGDgL4x1LKP9C//w8A/yZUbMc9AP+VlPKf5B2sNlxsxJ2B3DxMvngHMggsyFWqo+HCjcUIOTMB34IntTEos5LUCqUwcRlaNGBwHTmdAQxdCyMTSFnkEuWzUrgF/Eg8gGAHeQOOsuFCh3tDVgUOBxRyl9Fovw0YFY/nwofUFbTJNQpIWxRcqWu18IGFAQh9LdmAYY6PJEVtbOYzk6LWjrtQK+VnkKqTmrYILNx11HpRaW0LslrQ3+RCBJADGZarlDKaZa0XVAfDDepOpW8tEZ/Sb/92+8WGwzLQyEs/6wvgtsHC56JHrk10zEbA0dMZg2wIIbCwCwma7T1WERc0bMm1Wniqc5vfmx1nUUWcVLhAOVCk4wdK6ljkHVbvI7IK4eWuu8kuUBsBC7Je5C0jsc/dhgq1TFsZNwgVxvXJSjNL80kJJJcoFWvBK1ktWFn9gRI3KLcIIlAMnqm+6kkA7VRQf955V5VorZPEnzSCxLqr+61ohL4fqCiSfoCjyv59/WufS93j0nnmQYa7f1fKrDffZAvlt1WklEsAhj3z/z6Av++ZvwLgD6zf/2Gd4/WdLaqq+IqAkR+zDzLIRcp2lYqlSFkxFFxIK25D1cYIOU9DBtOQwSytVqRdnAkwwGMgSmphZF7e9k1gWykA2AHXynKht3WVcw9omJgLZ77ZxA74pry7ND/v3s9zp6JjeuMv6LsEGPO7UPlcsioADmMMwoIMkiiGCeQ288giUKCY2cBo0n/SMuQABlQMjgsYvhoYdtwFoD58GaRIyqwXZWDR6cVelyhaxxfITS5RKlxIB2zrv9iXOYogw43HiIFK1osqUlZfwme9sK0i/YCGG5ztggUJgQVAAdcsU9PCFnsQxQ7utpf7klsI5rdWCJ6NXUqtlnIzshSBOgHcz8l1ys7MUwYUtnJV5jJii3eUOidwux+YiEq2YZzXUgIBZDJG+aQMKIDNhwqf2PEWvkBut6ZF3yPoTppZnxsUWSuounp68/z/QEYxoli1LypynaqhmBrgouNbI/C2NcMHGul2V4cKdx9l2Zr6SSFbxTWvrB1VgMM+735Ao46L2Cv5dsnmJ1OGUgh6OQoVvZCLIAOA11UqkoDoqbS1YSzRjWKl6MUSImJoCpkLGfawOXN8dkJenKrWSI7rU8pKYYroZQti6YPn9psUWWuBicFwA74t2DAQ4AaMW9uZ+TmAweyoBQswMm2sAhyAitmwCoSViUTaqhFJmQGMPDcojvRIMLeAhZnt6gNGZFkykroYCjBSCmrBy6wKWNjr+lyiAHgDue2XqA0YQD5kkBBkBFwkblbcaVdBoUySvAxNPiXfdU0ClPXIDo533aTc9LG+zE5FmaEagqeOZwKuozhjRXOtF3ZqWnu/bp+QlSL0jJhylrZgZLozJwucLFDS68pGc/v3AxS0rNA6kXPfuEDxTQjOriPuebluT0AWKNR2/UNFTLU5GiJ1fdpKmx1vYQdyp6wW8Ch6VQvnWW5QJs2sxw2qSuavvP9cRgIIZC23qEIXm67qlyiK1Xra8uRaM3ygAWwMKorm100Pm7fvKs8OOq8q0FMlbsMXo1HmNlU3te0r+eZLbbj45M41fLI0h11HT2PXGycAZK0TdnYb+/PLe4v46u5V7HzzFHYeOeGFjHYosK5HcslVSnCGT+9cw4PFGRw5fQ7HTw2hJTm6zLVgSD1fmirfnDEszs1gbmoCwxdGcXZoSHl8xGnA4CydqlbpjjGmpqYxPnEZYxeGMXz6ZLHrk4zTUCFjTM5dw/jULMbOncHw6RPqkDmj/cxWAhjD5NxVs+25oTMw2aWcuhnGJSlOQGNqdh7jVyYxdn4Y584N+Y+XE+A9NT2N8UuXMTZ6AefOnctsY4u7/dTUFC5NTGB0dAxDw8MZ1yhXYqTdgeampzEzOYGh8yM4dXbIAEYVsJifncLk5QkMDY/g9NkhwFJKXcAgof1fnZ/CzJXLODE0jGOnziKO0nEXkbaY+TJIPVxawPXpKzh48iwOHT8NOOdUBhYr1xdwf3Eae46ewdbDx70uUW4gN8nXD27g2fI1tAePY+DgcXWuFSHj6wc3sP7wOrYePontr58w1guhlXv3PAgOAs7w+OYCVq7N4PA7Qzhw7JQ3O5NPwRcMuHttDnevTuP1k0N4/cRpcCaUi5pILDc+qCDwWFmcw8riDA6fHMKht08n/yX3Z4ai44aC4861Wdycm8LrJ4dw8O3TubEX9j4BZb1YuTWPJzdmcfjkORw9dcYLGoDOGuUsuzo7jWszV3BhZBQXhodTkJEuope0wQ6knrq5jIkb9zBy9BDOvXkwc8wiq8XU7fuYWFrByNGDOHfkQGZ5kQvC1M0VTNxawcibB3H28D51KAcq8oBi+u4jXFl+hPOH9uHMwT2VjkdK5eyDp5hceYzhg3txZv/u3PXzZPbBU0zee4RzB/fg9J6dtbadf/o5Zp58hrN7duDU7tfqbfvkM8w8+RRn9+zEO7u2A6gOFVc/+wIzjz/F6R3bcfK17bWOCwBXP/8C819+hXN7d+LMoaTPhB3ELXgqkJtk6uYyJm4/xOjbRzB8/I3C48heN+UaNbV4E+NzNzD69mEMvXkoFV9BBRB9YBF1epi++9D8z6f35v9P1Ic91kDMOP4kOIyVBw+wvLyCQ4cO4uD+/bX7K7N93i30tbpZ7Tt95f4DLK8s49DBQzh4oPjY7lOl0rZfZ2cxa9uDudvmA6radgWHDh4saLN1ll+n59Y5Z/+xrW37N5B/Q4UB/WQU/S2W+nCxNIeg0cLTG3N47fDbXqAgcRWUz27OI2i18OmteWx//W3v6GgnilWRLRKdvebm7CQGtgzg1uwkDr992gR8xzoeo6lBJZZK8YslZZYSmLx8CVsGBjB5+RJOnx1S7XEAg6oNpwAj6mD8yhTa7TbGL08quKAKc4A3ba0UQQIYjGN8ahatdgvjU7MYPvNOeQdbo5zjU7NotVr4eHpewUXF7QBg/Mok2q0Wxq9M5cJFynJhbT5+6TIGBloYn7iSgYu87UkuTUyg3W7j0qVLGBpW7n2uzqaAAplA7khKzExOoNVqY/rKBE6dHTIWjFhbHJTdwGmHLth3+ZI69hX9P6eOKeGtOB5Jdc3MTl5Gs9XC3NQVvHnybGqdrq0IxGlQiqXE0uwkwmYLywvTOHT8dC1rRS+WeHh9BkGjhfuL0zh68Fhq/bxAbvpcvb8IFjSw+vC6gQuyYqj18j3X1h9eh2i08Oz+Ina+dRKMMTT0yGe7IRBwhnYjUHVpBDepWNsNgflrMwiaLaxcncGRk+raLLJyUCppALg5r+6pm/NTOGjBgW0B8sEZzV9Z1Me+NoP9x05l3KxMXYooNoARSQBRjJtzUwibLdycn8L+46cMzJS5tXWiGI+uzyJstfDw+gyOnsrej5wx0+8klHBifuoKtgy0MX35EsYuDEOQu6Z7WDubFBdm8cSNe2g3Q0wsLfvhgp5bHsiYWFpBuxFiYmnFCxdFMnFrBS0hMLG0jNP7dulDFFtVyMVo6v5jtMMAV5YfpeCiSj2JyZXHaAcCkyuP+4KLyZXHaAUCUytPcHrPTogwyLhG8UaQGa1lgmPmyWdohQIzTz7D6X35Cq9vhHXmyadoCoGZJ58auPCdrx0LRTL7yedocoG5z77oCy7mPvsC7UaImU8+S8EFtaFIJm7cQ3vLFlxavI1zRw9b7eTpa0pfZxQPxIIQ41dvod1Un0NvaKXTqV9hB27b8RKTK4/R4hyT9x554cLtN8EkICV+t/sJ3ru7iHeCAOt3F/G7uxuF55ecT3J/vXf3Ok6FATrL1/GvDrYslzB9qvT/2vekjj979+ltnN0SYP3pbfy5Y6rdvqhB6UnF/72HSzjbCrH2cAm/98bWzDGK5HuPbuJMO8Dao5v4vSPbrAP5n1+xdX++92AJp5sBOg+W8K8d3pKcnys5baFzXnt6G793bEd2sxxiYILh/5u9g7PbAqx/cge/f2KXtewbHwT9SvqU2nCx6+hpPL0xh51vnSoECyDxo6bPHW+dMpYLcmWoGiB+8MRZPF6awxunEqUxkiozVCSVAhhy9UkB25wxdFmMU0MXcHXmCobOj5hUpFEswTkQg0E9ryRiMO0RxI270diFYYxfvoKxkQtO9qjEelAEGGPDZ5X1Yfhs5QeI1CWUR8+fw/jkjN6WHnQ8UepZ+uFnu0eNnR/G+JUpjF0YTq9Lx7DBgHEAScrYsdERZa0ZuZBd1yfWvkdHx3Dp0iWMjI1BaoVeSp0OWPezHWtBgdxqPeD0uRHMTk7gzPCIeV5GSaotdXpMKeUMarBJcAYuJc6dv4DJK8rqQUBA7la0f7pMqW2xbs/bZ4cxO3kZJ85eMOmPu1GMbpzUW1nvxfo8kmWdKMahE2dxZ34KB04MYbWTvEzyoKLnzN/11mncX5zGrqOnjdVitROlrBZ2RW5bKWkfeBvPlq9h4NAJM89WcH1gwThDEApse+MdfL18Da+9dQpc8BRYNAOORiC8YAGo+/HB4iwOOiBmi63om3kSeOvUOdycn8JbpxS4xtaLMS/A3f6+9+gZ3L8+gwPHz5r5q50o43IpOMNqHFkB1wwHTwzh9vwUXj81lAKLyOpzioGh+bTezrdO4/NbczhwMgvcwrm1yXpBMnR+BAtTExgZHTXWNsaU+6TkgUoqwQNABGBRANZsA70uqNbA6Mm3cOn6XYyefAus2cpWwAbUaLHHhWXsxBsYv3YHI0c9UFIiF944gMu3VjB8SFstHGtF6pwdZX348D5M3nuEC28MZta1lV1bgSTXnQtv7Mfk8iNceGN/yp2nTMjyMXxwrxoRP7zPKPciDFKD0zKOlZsGWWL0/KHBXZh58hmGBpUSVOamYQcQnxvcjamHT3F2z05vHIdoCGO9SLZniCOJM7tew+wnn+Ps3p3gfQSVn927E3Offo5zB3ZXiAWJwOPY/A8jxw5j4tYDjB5/HXbtioy7igMastfF6LHDuHTtJkbfPmKCtwGkgrdpXy7Mndu/G1MrT3DOgk/a1icM6s17Mv4KvcGtmL7/BEMH9uBk/FXh+ZrrzVJTege3YerBUwwf3ItTYSe1nl0HxBbj1nNsHy7ffoALx/bjTLuXnx3NiX2XcYzoyC5M3nuE4SP7cCooTqmbcT06shtX7j3E+SODOCXyq5Qb1zzrMopf36Usia/vwymxXhj47rt+4sM7MfngCS68NYgzzXxXS++2R/fiyr1HuHB8P8627b5S3/upEv5KvtnCimoQZFZmTP4H//Q3APwuUHliK1n00qeRUXKJsjO70HdKU0sKSrshzG9ytRBMxWCoT54U2hNcBX4Lliq+J7iyUig3KBWXEXLtUsGS/PUsjsCirnJDcgO0q2SIcmIvCBhqiwUVALxgkYm5sDXKIqiwlv/wxz/F1cXr+Jv/6R/618vZn9mvA06J8q6uFQILslpEUhqwSK/jHI7CIljyu8xVyt4vWSsILKQ1j8CiG8fmexWwWOvFJlbAVkzp2PZnHlCk1tH7We30EMUSzzqRua963Qi9TpyqaWHHXEQ9ibgXg1sxBwQX9l8lzMtSgQXjDEJwBA1uLBaNQEGEDRbtUN2bA44vt93fvtSvmXWcjE2mD2QCF64VwY47sed3LLdJEp9bFrUrFZuh27HajRJ46MWp7zZY0Hr2cdqhwLaWsui0GwJbmwFCztAMBAZC9expCo6W7suWBrRWwNDgTPWvYGgIBt5bB+IIrLcG1l1PPjtfI/76S8RrX0N+/UVSK8AWX/rPHOiwg7Iz2xTEPtgKYRFYpA5XEm9RFrS7mRI7aWxNZqZuz8S12G5dRW2rk4WoKNUssPkxFyRcMAStADwMELQbYJwjaDWVK1QYQDQCiJae326ChzruotECa7bydpqZ5SqQeXUsZKSCtimA23aJij2ZwMr+/7u8jY/CffiP129X7pM8q40BCQ2vZWABJEqwvaxq2uWNxk6VSdG1myd513QpUJfAQNH2RQX73P3u+MP/BlJKlrP6N0bGhk7L3/zLf/ZS2xAcHb1UoUL3C5PaGm/PehhWAQsgv7BV0byifbiilBOWa73gQim0nEkwyXKtF4IlCqhtvcgENnNA8kYaMsAdy4YSAxX91qmwtpU8KLRWZI5jfc+DCleyFg3POjkWGBsMCCxslx7bHSoPAFzXJZM2Vv/mAHo61bCq/s0MZJisStZ+i6wVXVIqLLAgcCCwWI9i4wrlA4tOL04pp0DW7clumw0U7nxKhGC+dyOTIcoN4CbhipLTvx2xwYImAotAw4MNFu1GoAYAKoKFK7bFIs964aaEdYPi86wWdmYt+1lk16YgqLCDs+2AcdqnDRarnchrrajyfDN9Yp2mnYqW62uUQVksOPMEdtuic6azMATrCEgutAVDOCPH2ZFxCsq1RXY74EHYV2C3W4egjoKUl4HJVmhchYgUvM2CDB6qas6upaTMirHh4wruPTc6L7Jg2O5RZMGotv/+9a2404NoNRB3ekm2KCRgmrmGfG5Rniw/RVYLOm5eCtmq/zerkbC8yBWsH7AA1DlQkb286/tFg0U/UGFv6wOMskxoVQO0vVaMDQR+v5Jvj/T9D1YFC1uMdUK7WJDVgsRntXC3L5I4lqrgGZOIuQRiIOZKye3GMQTnkJIZhVPH6yrw4BKRTFKmMq4CdJiU+cX0OCDhd5Uy8zYCFVqquEGll5e5QFlCoMBYYgJwt68AEySJVQApdygbLOhR6AIAKf4+8UEGoFymCDLcdtS1VpCVwgcW673IAEYnSoDCHfUGyoHCuyzHHarXjU1dCyA90umKzx3KBYsgFF6wGDAuUdXBoo5Q/APFXpAOlecSpfok3V+2VcFtD/V54IEK22XK3leetYL+3ypCfWFniiJ3KIq3oKx16tkGE2+RKUzJmHJ7FAEQN4BAB85yYQXQhqn6F5n4I08bVZXtGDxALcBQimA1a4UttnsUKRd52+eBxmYU0SKFlRRIFzIEVBwGc6ozA/nZd/oRWwkti7/YCDTQvuxzrOLTLqNYu0KlIcPsw4YN1y3KLayYE2uRSUtsWS3qgGQSJVmyXkWwqAoVPnmZYFEHKHz9y5z7rh/AADYOGVWqf7+Sb6fUhgs3SLVf8blD5a1XJpSSFlCmh5hLx4rht14AWesFAB2DkVgvvNBAkbLGlTNIWTHs9TdF+nCDKrRWWMq45AEkU9BlrCQeNyefuJaGxEqQjrOgeb44CwIAUvZTwsstGYAdl4Ha1goXLMglqi5Y2IpvarTdY6UAkqKSNM/stxOZ1LNxnLVaFAEG4OHHHLAg5dsGC4KKprZk5Lk7Af6ieD4h64UdYG2LC12u1cL3rKF5dkapjNhpZZHEZdj77fRi5fLWp7XCFbJW2IBBrnwc2bTJrhhLKVP1CGQQqhgLwChwrGFbMIphA9DKmHm5V4MLGcWl7k1F4sZfeN1o3G30tbGRkVhbXCuIbcWQOvWo0K/ACICMIgMCdUZO8xQh23rhAww7/sIX4L0RKXPhknEMCAUHRtGk/8T9r/Jgw60cX2C1oGO6qWfrWqgyQO4uLznvzQALsl745ruSV7/leUo/Vr+NAAbQP2QUWTG+VcKwKQPJv03Sl/bb78u3LIjbtlq4831C7lDuYA+5RYVa8cizXkAna7GtF2DMKMbGeuGBhqquUrUlryp2DWtFHahIZmehosgyYYt7ORBMEFhQ/9pgkQBFAgC28p+Ibjt3D6IUtkjqU5KJq0k/1goApWCR56f/rBNlwSEHKIB0pXoApngk7Y/coOzsUGVS5g5VBBautaIKWGxEyHpRZrXwuUPZ1oWGrnFTKhZkuHEbddygVLVyjx82uT9xlv6ta1yQG5QK4q7QjzSoETTBxJpyhwpDACFkNwsHzK6H6eo3sVKYETZquUfZQbjPQ4p81utWWLbFp7jZ1gJjxYBdUyTrJpXXNp8UVW3OAwwSX4B3mbCCe7GsungcqXdgZn6vmwSRFxWQRRo2XKtGntVis0aii66MKmBR1w2qqrxMsOgHJgiubSmqLl9VqkBGXVepV/LtlNpwsRlgUcVq4So3vpe6t31ac/VZL8BlX9aLrFuUP75CL3JcpTxSNPriTe9jgUUda0WeC1TJem7shCu+S8BODEAuL3XiLGILBGxJYEO7tEDCvVxca4ZrraD9lLlB0fc4TiwYVcGCFFQgJ2jbAQogmxShyB0K8FsslPEs3x2KBzwFFowlheDywKJtKSh5UFHVamH3g229sIO47XXc50ue25K7LYBc2KBj9zqRGbggoCuDio4nlaQ5nh3rQnU8LMCwXaIYlBUjAQ2klTj9nGFSWq5RERA0wBotU/OCmewzOaDRSMdlGN7T67EAACAASURBVNjgNCot4FovXFcd+h5H0YZ8oO1tipTLsuDYWsf0KExAsRWDxHaTomDvftrmS3FLQoCRF3+xGUJtrpQxCkGiaNJ14wZw+87bdaEqsVqkducEckfdXqoWR12p4kL32wQWmxWP5AMM73oVrRe2FD03+o3HeCXfLnkhUTM+BaSfoG5bXBcLco2il3w6qFvBhgDLWC8i6FFUJNaLGGnrBfO5RXnnabFcpVxRLg/1XiK1rRV9QAWNqJJun+fuZPbjLE/XftCfqB5nQZaFPLeotEXDb80QYKXWCrWv6mCx1kvgoUoAMFAdKOxlee5QALyB3D4pAgsRsFRWKAKLvFSzgP++rQr5dSTPalE0kOFb1oHTT1GSpYoAI9XfBWBRBBV5krhC6dgKyyVKcPUUybjUlww0sCCE5Cqbj9SpaauCBmBZNeKolvWCgm/t3xsJsiwa3U+1N0eJ6Rc6XFcrGzJ8VgzbTUqtl1wH/UKQL7ib2uICxosWCu6WUZxoA76CjGXA4Vgt1Kx0hiifSxTVHqkKGLzELconzwMs6H54nmCx2ZnT8o6xWfEXPtkoZHx7hNXW637bpS/LRR0IsLPKuEHcPquFG8jdjzuGbb2goO486wVliLKtF1yq4G6yXtBFw8ABGTtuUeWQYYsPOCpJDlhUdYHKrOu4QUk92VBRByjc9evGWRAEZAK6Y30OFkgQaHRjFTBL1gzatl9rhV3DIg8saMpzqXHjKIAsUNjL7E8pJXqduJY7VJ4QWHDOIAJm6lhUAYvnBRWu9cJntXADqau4L9lxFK6kgMOCDTfFrDpW/RcapbAmCbmqb5G4RukJiVuUm3zAK+QaxQM1kh7HCSiYR48PNADp4wYuAB6b4O6i2AtbObIVgI0CRqo5FWGDpB/Fxj4PH2SUWTEAP2TY7ckNVHcUz7L4izpS5PpklOeC/8kXC8EEN3DAgzC7UQXgsK0W/bhBVQEM9855HhmhqspmgMXzAIi4W9z3bt2Y5w0YQP+Q8Uq+vfJcLRd5YOFaKfLS05KUKTaU2hJI/LkBNULdFMxYMapbL5J4gUiqEXHGlCLut2IAhfEYJDLO+K8WShznQoXdBne++l1urZCOtYJion2QQFIFKADUjrNIICN9gFA3N44S1xMfaNgkZ+9PtXHjYFFUYE0BRzaOAigGitQ87Q4lpUy5Q5HVomoQtxAcPODqkzMEIS8FCzsjVJ37biNxGD4XMhIbNKrERZRZOOx2rsbp/6kfoPCJYEmMBQm3XKIoBS1JbmAqpb+OlLuJZFy5RUU6m08cp12fqLSOvQsPaLAgBOLIBHfnWS98LlFAogDUdZMqU8JJ6sJGv8e2ISPPikHKFsViAOWQ4R4HqA8YZfESVWXDfvM5Vq0MdFjAUWQJs60W/toWkclqVQUwqgy7VAGLIve1fqQqWGwEKMrAoeo+NgIYwMYsPkA+ZLwCjN8e6TvmompdiqIAbp/VwrcP+l52zCRr1OZaLwBp/PpTVgz4IUOKBlJF9eqIHdBdxVpRFSrs7T1B21KfZ2x+Z2MoSPIsGvYjk9yh1F7L4yzIulCkKBaBxnoUmXllQdtFYNF1lNjVTpSr7NLod0eDSD9AYfeh6w5VVWywoBoWIuC5YEEWQxss+olv6kd8lk/X5ayKbBYU1JUq7bPjLcglilLQVuYxHXfBpAS40BW7OyrDj+2qQ1mqraxRPtCQuuoyA5R7VIH1wnaJspUjLrhRAOpaMXxKQxFw9Gsh8SmLPgAoggzbTYrmizAbj5F3nBTMVIi/eN7iG90ndygSW+HNswYUQYdrtSgL5CaXKFPI0AEMAF7I4NbVvZHieHR9VY0LKpPnBRabARN5+3UBI7NOQYB33nVbJ+MWkL3PX1kxfntkQ9mi8pR9H1hUtVpshmLjWi/swnoKNhi6rNh6AQ7tFqViMOiVXQsyHOW+EDYIKrwB3RWsFRVcoICstSJxg6L5fqgocpFyoYKWk9WCwKIozoKUfXUs9UmFDn1SBBr9ukH5qm77wCId3J2AhS+OIukXP1AAyioR9bLZoXyxFnngQWARhCIXLOhea4fZeUDxvbeZ2aLc+Aff8jLXs6oQ8rylIVRFbs6TQHk73oJcosgtCoDJbpYRNbKRva95AMYjyEApgwwWZGhrBoCs25R9GF0rQ3Yi7SLlt164tS1IGWJ61L0OYJQpCJsdXwGUW0BcAPBBBkc2FgMod5Wyj1FU16Ms/qJMCl2BatZpUK+67Ch2neP3U5zR2x4LMAC/FYOX2C2KwIL6xq2yba6FPmucbDZYPC+g8B3HBoyqAd5FUhc68p4hLwK6N1MkkBRMfiUA+rFc9GIIqxhVUeVeH1iQUME805CctJdlsGGDRKatesjcLqxHrlKk3JL1giNtvYAJ6laF9WLj7VkHMtJtz6t7UaXYXl9Q4aybBxaunpYHFWVAYa9TN87CVf6BBCC8B7XEBg0gca3qFyzcqttVwcJ12SkDCrNeL+sOZUuZJaMMLCjzGtWxILCgZal9bSJEFIkNYJHTf1XBolfSLz7p9OLUOedZVauIr68o3sKtyu1LQVtq2bQslYz3YCp0N1pJDEavk1G37NS0Rj8OQ6/1wi6sZ9e2UKPP6eBbFzBoPSCr1NvKBBeiVoBmFQW5TuYmkry6GzKOM5BhrBhOLAZQHTLsNlR1j3oZYit4lbIH5SjOPqtFmUtUdj/lgJHXzn7Awv7eD2RsFliUAUU/rlRV/ssywNiM9LRAup8ytS5eVeX+rRRx8eLFyit/5zvfubh76PfxePoXAOdovbYbUiYjx5RulmpVCP2iJbB4evsqli//KcIgwJade8BZMmqq1uPmu+0DLjjD8vU5zP/yx2Cc47U9+8wyQL28JdQooT0Pet6da3O49NMfAoxj995BvY568wueKAIS5CetljMGzE5P4/vvvw/BOfYNDgJg5mUu1VrQBwQYU7/1d3CB6akpvPvB9yGEwODgYLIsM/HMND01he99+COIINDb8jRMuC5QFkhMTc/gvfffhxAC+/bvV77cFlSYGAi9/p3bN/Hk8WMMj/4OZqan8P7774Prc3ahgn4p16c0dExPT+FHH74PyTj27BtU1bmdOIueE2fRsZT/q7PT+M1PPgQ4x449+1Lb039k+l/vs6chZnFuBr/46PuQ4Ni+ey86sUQ30kppLNGL1LEjDRLdWCKSqhL3zYUZTP/8R4gkQ3P77oyiaxdbc8Hi4Y0F3J/8OSRjCLbuUm3q6hiKWKaBQp9A1JOQMRBHEl+tXMfTuV8BYGhs26X6NkVs8H6XUuLZwyV8dePPIMIQ7Z17UmAhOEMrFDq9bBYsPrlzFVd/9WNwwfHa7n25kO6T5etzWPjlRwDn2L5rb2Z50b6WF+cw98uPwDjH1l171XURS/N/krVLWteMveyT29dw7/KfgjH1DCJJpfR1pk4vRi+S+PzOIpav/CmimKGxfRe6kbpGGGPWdeZv+6d3ruHB5C8QBgH2DA4aOGsGAq2AoxUoK0Y7EHrwhCwbDAuz0/jwg/cRBgH27x9U0CGNeqq/SzAiZMbUPMbA4hiT89fxvR//HCJoYP/e3QZaKKMUg0yUMi6gnm8q9fDkwg28+4tLEIxh/67Xko6NIwAMMuoBUkJGkVICo0gpglJi+s4D/GDhFpiU2LdtixmZkFKq1KlS9Z2rlDDGMHPvET6cuwnOGPbv2AbGuXdy47oAYObeI3x/+gYEZ9i3fUtmOQFb3jS7/Bjfn7kBwZLtmeD+Ctn0zNfnNPvgCX6wcFs987dvUdvEcXK++pMLda9JqRUmKTH3+BN8tLQMLhj2DrSSY7jpfq1zpmPPP/0cP7n7EJylt60qavsHqt3bBsAYQ9BsgIpoMj0IwbjuJ6GuD8Y5ZpYf44OpRXBA9ZeUlSbGGabvPMD7V66Cg2Hf1gF1blKq85Uy+R3HZj65RM0+fIqPlpbBAOzbOkCdkwt/HXDMB9txIf4Csw+f4keLd8E5w+BrWwHUA4vZlSf4cHYp1V/0XxRdLwAws/wYH84tgTOm7gstVcBi9v4TfDi3BCYl9g60ckFZJi/YZFvrnE1/5YnzX80+eIIfXr2j3uvWtqlCino7Oy0y3eszK4/xg/lbmXOuIqlttw6Y54Z7vu5z5L//4Fe4ePHid2od7CXId/+XP7r41//qX36pbfi7/9Mf3b948eJ3X2ojLKmNpF/fu4rGQAtf3b2agol2Q2CgIRBwZpSZRpAEj25tBvj6zlVs27oFn92ew46BEDsGQmxrBdgxEGLX1ga2tgK8NhBiayswU1srQk+uz2HLwAAeXZ9DKxDYEgqEnGEgVC/2gVCgGQiTrUUw7ePMGW7MTqLZauH67KT3nJSbjvpO1gt6+F+euIRmu41LlyYQaUVa6vXJxcdWfiRjykKgAWH8yiTaW/5/9t4sxpIj3e/7R0TmWaq7yd6rSTaXIdl7V1XXwrEEv1gWIPtBkvWqBxnXgGAbhn0NGPCDJdjmWDZgQ9KD/SDrDvxsGBBgP/jOcIYznDvbneu5rH3vjeydvbG599kyI/wQ+UVGxoncTlV3kzP9AVl1Tm4RuZzM7xfftgfzyytQIqwMFgDw4fIaxtotzC+uDFsrigK2GcfCwgLa7TbmFxf1OjnWCvt4yLqwsLCIdruNpcWFjCWCXMZoom3t5WvLi2g021hdWqgcZ0HfB1Lh0voyGs0WrqwvZ5RDIClyl0xk8aAplgpbq0sIGy1cXFseCgwvk5vbawhaLXxyaQ2NpNaDXZulEXC0Q2EUdALmgDM8vn0RzVYLX93YNgpnoyG0gp9kbQpCYZQRLpJidg1tZeh8cgmNdhudu5fNuo1mYKawYOo/uIqwPYbO3csImwJhM0C7pX9z+1oB9rVC7G2F2NsMMNYQ2Gf9rm4nx3x7e63WuQKAOxfX0Wi1c7ctclu6ub2GsNnCja3VkawWDz/aBEQDDz7aNFYm24XNhQp7/59d2wILG/js2lZmfqcfm3UfJ2mG7QkAPvt4C6LRxL0r67XP19LCIlrtNhYXFgrX81ooGcP82iZa7TY+XNsCeJC4NgmjoCNo6JoYQmjIIOWMC8xvXUa72cT89kfeNr3ZgRJZufMA7UBg7d6nlY+VlLflW/fRDgMs3bhbuD4XYmhavnUfY60Glm/dHynn/dL1u2g3QizfvD/cXiMwk9tvxjlWbj/AWCPE6icPjILJw8BUdbYnII0NYEJg7e4jtMIAa3cfDY3Q2u25o8GMc6w//Bwtof/nSR6gMc6x8ennaAqBtfufmfXjxFpQZjlYunYH7TDE4rU7uW37RMUSC1dvoSUEFq7eKrVauO2v3XuEViCwdu9RNkuZYw2iOAxbHV298xCtQGD1zsPiPuYo70s37qIdBlj8OP+YXeuFktpCs3zzLlpBgJVb9yFjaSb7vPiOVw4i3W4gsHLnwXBfc7YjqXrMRdv62i0TGUus3Lpvjrmu+LbNuy67GWT/1CRPj3ua07dMavfo0JtnoQZ9HHrzrFH8xxp6dNS4XlhAQdO+VoA3z00ikAOcmpw28EAw0W4ItBvCrL+noScCibfOTYHFfZycmDIgMRamMBEKPXGenQDgrXNT6Pe6OD1xwbKI6DSmgM5DT6DuejpcmJ5Bp9PB1MwMpNLpT2MaLVc04g4zCh4lI7ASGjJm5t5Bp9PF7OwcwHSwtxINKB6kkwiHwYMLzM3O4nG3j7nZGW15SNZLt9P7optLcWHgZmZuDo87XczMzKaZmSwoIjCIFblBpTEXF6an0el0cGF6Zuj6l1lIJy7MoNN5jMnp2cx8dzDYHR2m72+fv4Bet4u3z1+w2qw2on7y/AX0el2cOD+V2VYH2Or7gbL6hIKbzw3B8frZScS9Hl47M5nGJjSEuU/3JdNYQwPG3maglfZWiFdOTSJQA7x88jz2JfeyDcdmagVmajb11GqHOPDWOTA1wP43zyaAkJ0a1kTwQQDy4htnwFQf+988i2ZTt0d9Jaig3x/1ic7na2eGj7nq9OrpCQx6XbxyeiL3euRZEV4+dR79bgcvnZyoDRaRVNj76mlEgx72v37GtJMn7r3zwuunIft9vPD66aHYrzI58L0ziPs9jL99PtOm7coHJHFEynb7AqZmZtDtdHBhJv1N5blJ+mRu4iy6nS7emTgztMy8pKMkw5StmMkYc6ffRKfbwdzJN3TQt4yTKdmOi2RUWwe6krLKBcf0a8fQUwpTrxxNFe1kMuslinq6nQaE6deOoSclZt86nqvQ58n0a8fQGUSYfu1Y0sVhAPFNZvvXj6HbjzD9+rGMAu6Kr08Xjo+jG8eYOn40DQLOcbmxAUOEASZfPoJuLDFxTFsgywDDhoyJIwfQkxITRw7kAkSRnDu0H704xsTRA4XrScuFiWJspl45ik6vj+nXXjIKdNVp+rWX8Ljbx4XjRzP7zROyWigpMTF+EJ3uABPj+nyVAQb5DahYYvLlw+hGMSZfPpwBKFpOx0r7lf3I9E1JiQvHj+Jxt4/p149ljgeAWdf0xVoGAFPHj+Jxf4DJl7JW2zygoAkApl4+gk4UY+rlI5ltqrg+2cdcV2hbardIfH2ZOn4U3SjC1PGjtdvO2/YPCjCeS0aYzySduzJj6u/+2e+88RT0mTLRULXfhjOZmAx6WJNLlfVuD51lJLQOdxSBsIJiEAqeQAhHM3FVCLn+rzO6aAU45NrRKeQMgWCZQEyfUNPUNzvlpJvP3rcbb0pK5fnBuVW0XZOisxtfvQq61r6Yir/6za+wvbmOP/mP/zNzHHVjLNLlaTt2vEUks4HcgzgbE9GL/dmC8hQ/+7rb94qr7FGfqsRc2P3PHEvJCHtnMFzfAshmNbLnR5l1qmWXAvzxG0FiTWknkN8IhLG0UMVtssQAux+cPaoUZeIqirPwna9R+pkHF744L3reEbARrL3YDpPBDm091RPH3kaAhmB6Sp6FIae6GEwHpioJFg9gMsvJCJDWvLif/I9MQBFTUq8HmHk2XBiFTEpAxlDRAErGUL2uXt7vakWp10GmEJqMEfd62mWl20c8GCDu9oeyRQGpwuy6mdjK/U78p3dTsciL9SisIO1LwUtKqnU+XEWW/sdmfrZtt027nZ1Wb3Z92rngEC1tyRKWxYWsL9yBSS7Ejq9ZFatFJkOUk03KFw8BIBOD8TUE/u+9b+A/6l1PllWLvci7d91jsGUn8RRPIoZit8R3znyZo7zrPaG4oDxwHv+v/zcopZ5OIOAOZHbqvPr9j//NM+1DePzsglJq7pl2wpLaT5Mx4y7iBwpyFbHdpUjRIWXQBw82XFSFhzo+4rR+mGRzCTk3o/DMgYE6yperswhoxVX7cKuk3WShyrajZ1GMiLUTps8tUyofIqx23Wrabr9cqHBhw+1AEUzlCUduvHWuCJ4GYQP6OrtKYNVrURTYb/YjdfD3QG8AQMOmpqW0oONQpWdks5q5oPG4H+cWcutbimoeMBQV3tPLLWXaSqZA4qaZdWMr8orj1YWMPAV9FMAozBS1y2Dh62cdq0VR0Hc/lsZ6aot212POb01/F0wPDjAF/bsrOwzyAfcMOrhWC914FizIUkGpajNWC5LEeqFiqQOQ41grndYqdaCiaJS9bs0Ln1QFELtvNmhUrU9hjpH2Qds4Ad9ubQxKW6vXjTP7sgOHTTCrFVC+W0LtxEiD0CUicARJlqis7ATq6rpDFd0Dbr0DO8jbzRbly3Bkkg8kwcoqlua6cejrYAex+2Aye2wFMRHuugVQsRtAYWdve9KyG9mjKrf1h5CC9lvomvQspTZckAIDoBQqyGe9lQQ8kmsKSd7IM8lujrCGPA0wz0KNR7lPJJaoXPNOWoo7ZwCUMsBESj0p7XYV6lLwKICIPN0qr/CdFyoKxLVeVBVS5DjLWkmEBVy7ITrN8LBSlxdvUQUwAKf+ikgLvtFx0f1OkGF/tiWSKjMKngcXaAaFVpMy+KAYJwKLMmvFqL8r33ajgkWeFShP3MxQo7RrX7882Ukq7NT1K4lJ4kmcEZIU1woImJ4XkI8uUO+l5FgtAGTdoZKXtA0WapC6QikpoQZ9d68A0noFgFbKlZvlyAMOpLx7s/AIW0HMzxZj1qmRfnIUAKG+utaMvPoU9j4oqxNlevJllLKVMZNRKgcydpr+1Bba1yjKICnZElkQK93OY5VxwcIV2x2K2tb7Ss6rpfAXAYYrPoXbBxgm25l17Hb/s8dXPePTbgLFs7RoVJE80Noti8bzQnp/OFIbLqiyL4BSqGgkrkg6PoIbiwXgt0bkjTzbyoCrVFRVVm2rhd5n2p7dld3AmSHQIEn6altp8sDD3s6nR/mUfrfYnb1tGSSUHfcolokqoq9BdkSZrnFdJbjKvVAOGIB7NlqBSPedwAb1sxHwjJJsi3uvDlk1rPUbchhCDFx4AMW1XLRD/bvLs1a459ItYGn69IRfbqMEcPuKE44qO7XeVJWBlAgVQwB9n8RMx/sopfwjGUACGf5jLLRaYDjOwgULDRvSb7UgSawXAIz1wlbiR4GKvHk+JWq3617kKe51rBmuFSMPMACYuhg+KwaATAG+PCtGXh2MMtlNpbRO2uDC/TjuUJllFljQ/yqAQUqsL0WtC1cm7iK5LhyBN52y6dNTAordsmCMYlWou03Vdoru2brg8Rww/jCkvuUiTJUWGypssGiHApwxtAKOZqBjHMYS5acsPqLM1UkmhdJodFqg2C2DlEJbiQjtF+Eu6BZFirsLD7pP+n8RePhAoWh+VStGoVRcNaOH1xTOGOIKDVVV+nzWi0r7zgMMwHtwgjFz7luJSyDdW6SQ51kp8ublwUjsKNNF4EHtBsnvj36DdaGi6nIgCyB13aJGqWfhyk7iPGwZOjc1rBaUWaoRcJMUwc5eliZI0D8rlcQekWuUUnoNxQMdY2GL5SrFYkuJKbBa6PmpOxSAjMXCWC5yrBYkPAghMQCLtR9+7LgrVIUKn0JSVAW6SOGqqmjkFq4rqMJcZM3wWRdGdZMCqlkxdgIY1A/TL0tRL3KNsq0XldrwuQ5VcIeyrRbAsEJaBTDsOyEPMIACK4Y5BwXHVxMongZMfJfFvc5VYOM5YHz3pTZc+KDCDtZuBQKCIWOtGAuFCaLeqaSKeTrSH3LmdYXRrjlZ16vUWsGGAq7zdNRRXINMf9Od6Dbs/lUFD+TDw077Z2REyrJdp3zjroIxRCX988VaPGnJAwwAGQubLXbCzkEszf0TcjEEfT4rimsVcJXZPLjwu0pZVo/k95fnBuUDBh/EV7UC2vuzrThl4gbH1ymUtxtWi92SsmMdSIXQgEYad2G7RgFW3AUIMnIU/ypWi5w4C9tqoQb9fKsFCRcABjoINrFe6Nn1oYJS3FKRvjw3KXeZb3kV8SkjvngKoJo1oyhGoq6bVFUrhltwr0yeZCXjKvumvhYVy7ODuO1t7DboHJQBhi+DlK/IngsZeW5S7vqZY3vG1okyeVoxEbvdTtXCfN+tKt2sVva/PwYZOaDbrnFBLlBkrQgT6wXVnwgFS9LGOsrUCEqxyTbEdBE2bbmAqbpNMnB8q32B3La4oLFTkUgHwJVVMIYejZk+FIBHWRtl8m1kf8F1St/sPAYZj+YONXo/fIABVHGOawb5/sl5SrrPwpLN3FVuCfGBByVNMMeEYaCokvxgJ8BRJrY7FICRK3A/batF1QreFOszkAqJcXco7iKWMK5RGjKSfVcJ6s6xWpTFWXhTz5aIa70ARoMK3/cqoOEu90lV5c0XTwGUWzNcd6k8K8YoblJAsRWDNwLAqZBeJCZLVT+GaNSvCWL2UwMmqvbLdocqslr4Rqp9gME9bz1qIw8ybMAAEstNAhiuPGnrhH0+fP19VuJW6n7i7ZnYrm+jhvJcdkNGi7mwrBautYJAglyh6HtgxTukjaeuA0Vi6xNKMXCmIDjXkCElwGlo0IaJ7D7cQO50/u64RmX6i7TIXJ7lgmJ0bauFFzwcqfIMI0sCY8w0WPYTzjsFZZaJKuKEVQDQkNfbJd/eUVyjSIYAA/WBzG57YFlAbJFSIeTDL34fXND+qoAHxX0Aw+mdfZJnPMyD2d0ADl+cRR1XqN22WuwEXn39c88HBXVDZOcJwRKwYBBIXKNGyDCipMy6QwG5cRZlQdxe4QI8gMkcBfihoggo4N7rCRS51gx3P5WhocrIZ04QeRVrhusulWfFGMVNCkChFcO0UeIeZR9H3E+fpTtxjXKlCCZcWChyh/Ltz70OBBD2yLYLGLAsGG6Adx5k+KwYBH65x7YLMOHGmeQt3wlk1LEq7MT68KSsJM8h4w9XRsgWZVkuRFo7QgduE1BwjIUcTaGtF4FI6kYUBGa7r+y8AcpIKjDFvJDBhfWil1kFwg3kFow9FaiIpYKtbqYAQb4Rw1YLFzyquj25jzuuFGI6D7xcaVZVgy6ws7iLPHGDu5+W2IBRJkO1VxxFNcwZOKwSFwRoOGkGHJIsFSq7jgsebgreUT0P3e2KLGd2ew3BTerevDgTX5zF8DpZ0PS5Qz0p17mdZogikckxElRQULdQzMRdSGiwkMpzrRjXypPzuzLB3DJ7jlx3KDczFIDyIO4CYYKDxcMgkQsVLlCQQi9lusyBDCAfNPQxjv6QcUeszfwa1owiyKhqxShykwL8Voyq7lHuse3UelEVJsz6Sft57lC+bd1K1oB1rUoAgwNmNDAvg1SedcBuq4pbVJVlee3WkW+rNeNpyh8EZDxPRZuRkbNF8ST7SZm1oiH0ehpErPemYBnlNK9gG5B9gXOhfZhjpcCkHzL0irafuv7vumXtlrguUBIpVLj6EOmipDzlQofeWWnbhQoXZ4BS4ICGjAIrxii1LextywDITUur5w0Hd+fFz5TJTqwXdn/yxHWxs9evMhJephgTPNCx0/rufB9c7IYMnBdoHdgok7IAbns9wO8OtVvypAoIDmJpLFN2ULcdd0HPCds1inEG8MBfTNMjZLXwfANINAAAIABJREFUxVlkUs5a7lC1rBYklvWCpBJU+J6xBZBh78uGDF+bRVIYEF4hJW5RrQug3FVqVDcpYNiKYfenSnA3WS2UVPp+qimUntUHFnXqPphtcoK4C60WNngVAIbZF/R7rChFLeC3DrjnP6/vRTIKSLjxIgAqW1+K9/vdjL3wyR8EZDwXAKPARUVrheBAQzALMFhmZDhWeqSY3s/2u9X+eccSECIdwSfFneAmVgpCMcTSDxlSqUza2d0W11pBUKHbHo4riZU/viMPOlypo3YZ5Yez2laMUWVU16ndklHABCiugeCDCXte2XPQdZHxSVW4yJvvWjqK2vCJHcTuggbgT59cJnZ63lEyQ+221cJ3bXditSDpO2BBQp9V8hygZ5ntGlUqxhLrcSF0A7iteRl3qFEDI63UtEB1oGBhY/gwBn0/ZCR9dvfvA40iyVN68gLHq1gzXHepMivGTt2kgFS5pOrZedmjqga7yliWukYNWYty9j3UB+u76w6VF8Tts1rY3ytZMJznmHEpqwAZgD7XTwoifABRZf3dgIynIU8LZKoGfT+Xb6/UvnMJLOwUs5RytpVYNQQHGokC1hDkQpW6RdGzIVZqCC7i1KtAuw4IWp6MBAKIGUte1hoypAIY05AhFUPkgQwK5LZdoijeQjCmP0MrIPYtTSMkrhS5QBFUKJW1XBiAMDER6TJS2HY7sJyzRDErs2KYYoLMbEd9H7WYnis+ryfB/XrTKDIqWKR9GU6VrOHBDxO6doo/QQBJFbAg0W40BBF63m5AB91bRYBtK8Vutqxiq4Z2j+w4F9F1h6J5ZWBRxWpRtw7Kk0gQ4A02T2algd3aOkuDKj7XqMK4C+VRKC2rRVEA907coWyp5PaUyBBUWFYKWjYEGc563nYdqQMeuTBRYs2oCxm74SaV9i2NwShyj8pYCJL7UUmVuEZlj6eKVLFSuOeRAqDruEP5YkXIlcunvPoUzVhKcOfYbMW+rjWjDkTUBYg6+xwVMsqU/t0EgqKU0rspu1mt/okLewLBu99xEe+++27llX/wgx+8+/2//e9j63e/QCsM8OorL6MdCOxpBAYwQkEZoxIASSAkgMT60iJ+/KMfIWQKx46NQ0Ah4AwBA4TgiXVDK/pUTVsk3zfX1/D+T34CIQSOjY+D0/Ik0QpnTCvGBhY0zHAGXN5Yx28++CmE4DhydDxZN70fzHfaD1Ile3N9FT/76XvgnOPo+DgkgEhqpcC2VsgEJCILmKQCttbX8Mv3fwLOBQ4dGTcQpRUNmHz3JLQfBX3Mv3j/PYBzHDp6VG9TcaJtGRc4Oj6etpUcnwID1fNiAO7cuon7d+9i+p3vY31tFe+/9x640Mdsi80HPt7YWFvFB++/ByEEDh8dN/2hY6Zj0+BFVh5mYOzK1jp+/8ufgTGOA0eOVr43AeCjrXV8+Cv/tiHXUJk3XdvewPyvfg4hBI6OH9P3sNCw3AwSwBC62nzTWtYQHJc31/HbD36KQAQ4duxYeu8m92DZdGVLb98MA7z80ksIEotgwDkYg1kvFAwB120HSX+uXdzAh7/8GZpBgCNHxzUYML2MJ/9pWyS/K32fA9cubWD51z8HExwHDh/V90Yy2ZfWTt5AEHLz0iZWfvsBGON44dCRzD2RF2ehFNCLJO5/vI3rC7/GQAGNfQdNO7bCXmS1+OLmZTxY+x0UY2i/eKjwnnDB4oubl3Fv7S9Nv4vEzRT12Y1L+GTltwhEgBcOHUEzSWwRCg6RXJdQpPcKnX/GgEsb6/iL5Hdx9OixJMFEej10XAUDkxGYjAGlks8SLO5jZfMS/vyDX4ND4djB/Sk4xFE2zsIqlqcGfUAprH58E+/Nb4FzhfEX96YPHqVK/YRXr9/Fe4sXwYXA+P59GgysFykLG2BCpEoRF3qfjGP1o1v48V+vQQiB8YP79THRujJG5iFMfWFc9/n6Hby3sA0umG7XEsZF6bTy8W28t3QJnOvtGWdmch9c7vy1G3fxk9XLEJzj6At70vUcVxrGeSZ5BmMM6zfv4f3ta+AK5lwzrgdnqA0muFbK7HmcYePuQ/zFR7fBABwZa+l3kFJaceTpAI9RzpVKA7kVcPGzL/Gr2/cgGMeRvW19XCw5bsGTzxxccHPMSkowxrBx5yF+fvEaOGM4PNZO6rIk7cUyvV+QWCmkNP1Yv/MAH1y+CaYUju4d08tIAVcqTVdrXn7KnMftB1/gV7fvgcXAkb1ts9ycFyvukHEGFUus7T2K892H2L7/CH/x8R1wDhzZ087euNY9ngdYG3cf4ueXb4ApNbw9EoXf/q1Y52DzwSP84qPb/rbtfUg5tP3mfb0tA3B075i3326f6Xzre+QWGGND2xa5xOn761P8/NINcM+2QDkobHyS3iNH941l+muuWd62dx7iZ9vXIOxtK8i//OBDvPvuuz+ovMEzkh/+6//93X/8j/7hM+3DP/sX/+sn77777g+faScsqY2dt7fX0G6P4cb2aibGwucCRfcaAd38wiLG2k3MLyyCUWrFZHSOKWXeM6TwpdszLC0uYmysjZXFRa3oJG0EQo+cNrgGDQocFxyJaxbHpfVljI21sb26nFkWJCPSgqWfedKe4HrEcXVpEe32GJaXFjPWiljp0ckoGRl2rRWx1MrSytICwlYTK0sL2tqi9DakbKlk3VimYEHbry4tImy1sbq0aNahyffMs6f1Zd3vjeUFAy/COj79HeY7gVnIgbUlfa7XlhYRJueBLFA0ik9WKXdaX13C3rExrC8voUHrDK3LTZriNEZHf7++tYp9e/T9RcurTje29bbXtvS9aU+ULSxvurKxglarhSsby+mPw2OlyCxLzuPGyiKa7TY2VhbNcltvKps2VhbRarexubJk9k3Xh9q059nfr6wvo91u48rGsjkWuj50vWhdY31J/l/fXEGj1cbHGyuVf/9k1fh4axWNZgvXt1a96+XFWQDA/SsbgGjg06ubldu19/vl9W3wRgNfXt+u7S719c1tNJstfH1zGwAKoU8409c3L6LZbuPhRxsmJTfFoLUCDsFgzj/1iyyna8uLaLXHsLy4YBS3mJ4Z9ohXjrL/4eomWq0m5jcumXnKDfD2jejLGPOXbqAZcCxeue1dXiSLV2+h3Wpg8aPbxuLAwoaZAGigoAla6WacY/HqTYy1mli8ejO7nrUPI5ynFg0usPjRJ7pdX58ryPK1e9jTbmH52r2hZUa5z5m/eO0O2mGIxWt3zLGYbjaCTOA3FyJTI2P55n20wwArdx9mzgUXiVJvtU2xGPR97d4jtIIQGw8+M7BG7lG6reLX9fqnn6MVCKw/+ty7nJT+2JPRafn2fTSFwNINfb5ouev6ZKdqpeWrdx6ixQXWPnmYcYdSUmbcoUhBtlPnrj/6HC2h++zLeGVDjD2SHfUl1u49QlNwrH7yaaGbmIpj77R65wFagmP1zgPv8iJZ/eTTTNt5k0/0dRZYu/cod528Pqze/RQNzrH2yUPPNtnr5S5bufMA7UBg5c4D7zru9XVl5fZ9tMIAK7fv57aRJ8u39e9iOWfb5/KHJ7Xh4tTEBchBF+enZhEKGk1NXsYJGJAbgOvyNDc7jcedHuZmZ9KCI8nLlF6wfpcphemZGXQ7HUzPzuiOJ6N+VSBjcnoGg14Xk9MzuVAhGEv2ofcnEoV7emYWvU4HF6ZnRji9wLmpaXQ7XZybmh5OWen6jjp60sSFGfS7HUxcmAFP3Lho8gkpqwHX/Y77HVyYmU1AgGsATI5PHyfBQuLqovQ5/f47c4h6XXz/nbnEzS11bWs4IOlO35+dTbad1a5ygqEdcgMYTcHQChiaydQQHPsaAfY2AuxrCszMzAFRH9Mzs9jbENjbEAl4lE9T07OI+z1MTM1kqlRXkZPnL6DX6+LNs1OIE7eWXiwxiFUCfgq9OMZASu1uFyv9WSmcm5pB93EH56ZmCoGPoNKdzkxOo9Pp4PTkBV0vIWmzG0kMpDQBwtSu7ovEQCq8ff4COp0O3j53waxHbjmk0OfFZ7x+dgr9bgffOzdlzkMajJyVQSzNBADfOzOJfq+L189MpvezBRSu2O5Qh948h6jfxYHvnQGQnhcgrXxt78/9/MLrpyH7fbzw+unCa+qrZXH4zbNA1MfhN88ay4M7tRsB2o0AjUCgEQjz/diJ8+BRH6+emjBFC9uhMDBHrqF2gU+azk3NoNN5jInpWb0MlpVSQT8P6VloPxsZA3iAdybPotuP8M7k6UQR1yP04AIsDPX/IPlPy8MGwAXmTr6GXiQxc+K1LAhYyr5R7p1p5u1X0ekNMPPWcQ8QWNuDupy+UmZPvIZOP8bsideySrrV9jCoJO2+dRydfpTf57zjSGTm7Vd0v99+JdfFKm+kdvat4+gMBph542Xv8iKZfv0YOoMI06+mFl9XOc5TwiZfPoxuNMC5IweGltlAY59jOzPU+UP70Y1inD+4P7d/PsCQgwhTLx1Gp9fH1EuHvUBhuz/ZSqyKJSbGD+KbXg/njhwwAdw+sKD1435sQOL8wf3oxmmf7WVZt6/sOZQAzh98Ed0oxsT4wfTYSiZbJo4dRHcQYeLYwUw7VaaJ8YOZtuuIu20ZGNkyeewQOoMI544cyHXlyoOMyWOH0OlHmHq52GKbBxlTrxxFdxBh6pV6HgUAcOGVo+gMIlwYYdvviigePNPp2yasji89Y0z9ZPteaYyFLTRSzaFMBVofWNhQASADFiTFwaq2m1L6OZIppHArrgJAxkphj+jTuiSC6aJvvv3nxVkoRYCU7fRQKlPnu/21im7MMv1kpr9U88A9Ns708ux3hr/63e+wsDCP/+JP/7Qwc41i+Z2yNyM4pBFa9/pQzIx97sgiU1ZcsSxD0uNBnCj/DsxVGOW2910UwJ1aA4pjLqoKvQvsRAQ034UDPT97LPY6dYK+i86lL7B7qN+Je1tnEGfgIpYKnX7sDeLu9CPEFlAA+W5QVa5ZHkRmqpQH3Fgj9Pdhn2x3P25BQpEARLshsLcVoBFw7AkFmoEG4DCxktnbu0kubOuuGcjgDCEDWNwHi3qAjMAi6/Ogp5+dFEtBcRfRYDjuIupnA7p7ndLzVya+AO0iqPAtBzBkJckoVdaywuxWdWJIrH3mxWkUjfRmvjvtunEQdiYpNztSHlz44hXswnO2BcDen09Z1+tp1xTR0IH4xmLi1K9gnIMJAREGXkuKq1j6Aq9tsftr99WNsbD7WkVscDK1VTjH//XyJP7B3XWMeX72vlod3xUpio8piiEB8mMydiMOo25xvd2Mw3j5n/wrKKW+9cEMsxcm1V/9/MfPtA/NI68uKKXmnmknLKn9S2w5cRVFYAHAmP4p5aIRxr3WCmAYLKpkp+E6UAJMAZynFXEpbTxlAnKBAsgq2sBwGk7GdCaqnaTjrCtFYOHT7+2gdEr7y8iv23IvS48xrfPBlAKDhFIKPOrpmXRRXPgp6TeBIwcAzqEYN4CnwYFScQIyCXg1YMEJNJx9Dp33tBd5uudjpC8xUq5t5bEOaMhYZ9rS2yuEivzlgV4cg8vdefbVAQoXCkbJJjW0j6oZVJx99D3b5dW8cNPN1oWKvIxerrjrEFgQVOSBBJCtbk7zRWIJbTeEqYiu429EYsHNgkXaXwAieQYm78hYKnBOvwf9zFL0fOQxmJL6d5R81vUvEhcaACpogKGf1s+JoD+HMPNUlCxrtncvYwIwGlT4lsk4GzztCf4GPKBRFKBcAB48CGtnoMptpgZY1JG8wnMkdnC3nQpXNATiflw5DS1tZ2eOYoIPuTzl9Q0YDoAuAgvbDaqO2DU7THYtAhVwyDgachUb5bw/K3FByFel3CyrkHI3r0I54Ff4q2Z+ovviaVbwfi7ffamfLSqpYRHytDheyLW7TZ5k9ISKblAkdRX6IsjwWSl8QOHWfCAFXVLg4Q7ELXpmS4FRIHeZsI4jsNzEGoINWSdsmICKAQUT+8KU1MqIjNN4mBGEQcMJuXkwxhDywIAGWSY0VAyDBmXTAYYVzLwzP6yH6nvsMbQFw1c7YxTQkLG+dqTghip7D+1U8jJA2ctI8qwydaGiDCjq/v7IauH2zQaQ2AGLMqjYaRraRuL+1AjSAqCZ5TkwAaRB3bQPGyxooKWZCxYKkmv3OcE5KHEBZzrrnQTAzDMPOmsUTdz6zBgU42BVAUPGYEEKGLlnrw50eKChDCyY5Y40FA9iw4Rdb8Lpn9dqghzrhk8xczJQuYCRV+8g09YOMm5VdYmqI3ZqWrf/ZLWo2i8bMLzr5WSB0sv8ULUbYGHatLJJ2cqw9MRhuPJtT2Xqq4q+U8AA/FaMPMgogo+h/g6iSoDxtNLVPpdvt9SGi6YQxmJBcQ2BYLnBG+QOoxQzKRdtsBjVDapMXMig0e7s6D3MvMx2jgjGIBnAmXZ7AtfpXLlSqPLIjGUaiFtHimBDOH0msCBXC1KYGEtgAgqQ0gqkVzDB9DLSbhRKgUXd/EZrvGQZkpSTyQgsgYbiATjjCAJuuY7pTCgDAo30IAGkLkMkPle+4Z7p4+8yiV4kjVuTL12trWzKkpsu15oxAmH4+uJCQt66RW5RwOhQsdNiebaQS5S9nCpxuxDiA5KidoqsFz53KBssfDBhf7aBguab4O2Ao52k3w65BotWSa0Mu94FuU3q49DPJrLoUXYfxYPEYqE/Q+giewqoBhjNFlSvmwEMkoyiXGRlKJAq1grmxDnkgkYVa4a13Owvr5aGK1zsruXGEVkS+Ju7ncclCvCnRPUV7OOCQyJRRgWHaGQV+DyXKJ/EgwjCqndR1CfXouJz2aL5OwWLTB8SK4aJ9UCxIm735UnIboHLbgMGUA4ZeVYMoBwyqgLGH5+wYqvqH6GMZLkg32FSaItOKdWnMK5R2B03qKpCkEFixxuY5Zbk1ZnIs15Q8bXdlCI91e0fgYWdpYtiXKAkWJwDE5RD38xL8mxH/WrWGZX/4GYySgNUWT8BDJ4ABtfKUzIiy0UDiutK64KnoAGk94GbIADw193wAQZZiXrJKHlZBXBdN6Xa9XStGTsVnysUkK9o5wGIXdvCXc+Fit36rbl9tN2d3ErcNnTUgYoqkhdnYYNFVaCg/w0r8LsogNsnA0n3hx6ccF2jJJgGiwQ8FFXrpt9J8lk/w/jIgEGS19Mqo/OjQIV3P2Wg4Voz3HoYJA40uMBhCghagLGb7lGu7JZLVJkUuUfValOSQpm6HpFUsVKQlMWC7JbYblImG+8O67gAxbEOeVIXXIpg5EkABpAPGTt1lXoOGM+litS+Q/IyQxWJ/fJM56VgUWatsAOyRxE3gFnPc2IJSvYtMGy9iKxnJ2f+vu/m4EkZWFAGKK5isHhQCBN+K4byu0XlgYQz34AMAAiCC24sFzQSy3iULpNxChqO+xSJHeBdBBju+ecM0O83/SC2AQPYedG9tE9+KBhF8iwSPnHbc60VuwkVRf1wLRB5FgkqmOe6Q+02nJMQWLQbgQELuyJ34IAIkFopaJ79ncCiadU6KQILIDk2gVzXKCB9BsYK4O7vRDINGiJIfl8FgCElWAAvYACJIu+pjA3kK1hGAa3hApW3jtumbztfH305/6vuXxNc8UO4imuU2X0NcBjVJapqkTafe1RRIHdRH30t5lkpAF/cyWhgQcX/qsaLmOB1Bqhod9xvRgLrmuKDERs4RgEMADuGjFGtGGWA8dw16rnUhgvBYVK9VgELYNgn3hdfUQQVowpBhe2y4uoCJjNSWVtWcDRZLxjLukYJxkz1bd1/W8mq5xrlywJlC2c6kD7IAQvj3qSkebnmukTRfwWzXQYUSFwF04UL6zuLB1CMrBUMSlAMBresGhTEOuw+ZZrggbaMUf5/BitjFRvqkg0i2dOtH8KUyhXYPcigDE1VLR519lsm0lbkR4CKnfbZjqWwrRWudcIN5HYhZFTxWSGA4TgLsljkAYX934UKwRlagYBgKA3g9onMPO/8rlGx0lW7VfKbsK0X4LGJnSgGDEAN4AUMAAYyAI8SD3jdh0ayVlQN6va0OWTV8MCQ16rh7j+J18hWBN9d64UvkLvSdjkuUXXEZ70YVZkbtmCUWymArMJcFyyU89u3v1cBjbgvAb6zc+hK0fkrur6jgodbebwuYADZa1XFXaquFSNvGfDcgpERhlRHeS4ARnGL4vmZoYqERuaAcjeo3RjIpOrcAWfZ1KojmlEZ+FDshYEKzjJpNV0ZSJkpwObdf3I6eQWoAFKwoLiXhmBg0gKLOEqAgU52gUtUHIGpGIACi1KLh+mb/d22asjsS0gBQJT4PQcNk28fPNDrElB4rRpZ9yndMAdDbyh1MbNPGJDJ8cyZpl/BANcDW7AA3Uji8SDOKNVlrlJFMpBK13/YDbeoEffhc4GyoWK3gcLbh5y0sr5A7iKwiD01MlwRJTEObpxFplaLta3r+kSfM/MT6wS5PxUFcOfJQCqEIusaRUkNyDWKKbJgwFjy7MBuisMot2DkAMbAUqZlbJT4oviHjFR1gaobx1FgfRjqYwloAI5VwwYMax7w5NyjduISlVe3oEhs6wWwsxH2PKjwWSnc9arEV7hAUXU9H2xIzjJuUnXE7qO9fR6olEGbDzyqXofdAAyzXgVrRl0rRtmy4v48t178MUttuCClto5osGAmMwrNA1zFqG5vhkWwtLgeYzqWIKNkl/k/5Yh2UxAZ64XgOqgXShlfZlaYnkVLUcaoIuFMKxFhHlhEOh8+G3Sz7k0WTGRiMKxlTGq3qExAt8wZwYpStd28kGg5bdPrQnEBJDnVbdhgcVDNqoHkvMMafbRHB+gzjzPzwqAJITjcKIwBU2hRJikPYADVXXRsa4UGjCfj2lNVRoUKW/lvjPgiyHODsmGiH+maF3YgdxWQqCq21SGwXKHsKXDAgda3v9uxGboKu65KHnIGXjGA2yexBAYsdY0C9GNCJsuESAdgGGcaEqzAbiCF7pEAIwSAMBcygALQcKQyVFQFjSKQyetjiXuXCQi3AcOJv3iS8iSyRLmSF3tR1SXKFp+CnGelcNcvAouqQFHct3yrxk7jOnzbu8AyCnTUAY7dBAygmjUjz4pRBBh6f9nlz60XzyVP6sdcFGSGqiJ1rRUZv/oChZxcoGxrBQUnU/E+APUrGdJoudRxAj7rBYffZxVIi6IB1V2jfIdpg0VDpBWzA54DFq57k+0KZeIukmUWiJiXdxFAJNvQ+ope1jRvMEirBnMBBCEwGEB5QCPXqgHkWi5s8ADghQ8uQjSEgA0YpNLlAQaglcuyjFEEFr1YmuDpXrR7Cks4gpKfBxVlQFFlflXJAwvv/10EC1vyAripRkVdqKDPzSBrwagjlJLW3IGWa1QsFYRgmQEYb2C3jKBEIy1EOgJgAPmQAXhckhzZdaiou34N0DDKtg0TTvyFbb2oEneRVbafjEtUXryFDQ+28EYAJOlfdxoXAFSzUuh+Ou6Wfft8PLmBFmWeI9XXrSI2tLjAkWcdsc9BnfS/aZsWUOwyYKR9zAcNnxWjzBXKByDPAQMA2HO3KEdq3xGjnj47cLuKtcKbDUj5g7rJBUpnrlL6JZQENOs0q+kDk/mCk0tuCq3Ecr0/j/WC9Mq8oG6gmmtUnktUEVjwqGdggkV963Ny/B6QAKwHHUFEHOmUwb3OsBUC6YvcBxKw5pn1uloZ0dYLkYGNdH6xVQMAwJJRXOECRgF4KAmoFnjQNIDBGAOLaaxYA4bgaTXv7HXIzxjVjWTGWiGVdouiStVVpDQI2FG8qxoKi6AiDxyqFqXLbdOpWdGPZFogL6Z5cWadWCrv79utL5PbZiQzL3zq/1gCD744izQGox5U8MQN1FgvRrR8AvqauK5RgjFT24WZZyQzsE2B3QqBycJmBgJqAAZDqAcC6FyHelm2g5Yi4rgkVYqr8LlOheXZo2zJQI+9TxlnP3v66K5vK+R58Rel/akDDk/ZJcoWco8axWoBjAYVrhL+JKFiSBjbUXs0gMSTh2uRK1YV2HBhqypsPA3ASPvod5saxYpRFTCeu0b98coIAd1sCAh8ioIrNDJH4nsuVNlPpi9WwHbGBcq4Qsk09sBux7ZecJ66DeVARual7rFeUHG+oriLUYXAgqpuE1z4wIJFPUBGYANtxcgDCa8lItbDm6r7ONnGeqCWgARkWp0VMoYa9PXLPBqkFopIw4WyQANAKWzokxCkAeJ6o9S8I6xrSVBiB3UngMGMTx65SylTd4WK7RWJ7QbVi1KYINjY6ag/ic81SUN1uVJbBSiqFqnbCXDY+7QDuSnWguBJSZV5idu//6qgQZIXwN1MalPYKWXp+KpABWd6vaaTwrZuMDqlpC1yjaJ6PCZtt52KlkMDRrJNVcCAPXKZWDGoXdYUye/V6awHMow8Iago2k4NBpUgA3CsGQQYybq++Iudxl744ONpuETZYte+KJMiAKri+gQ8PStFkaSOyFkpszqXre+DjSJXrJ1aNUYFjLRvo8RCDENGXSvGcwvGcykT8e6771Ze+Qc/+MG7f+/v/X38/KfvIRAcLx0b16OqTL+EaQJ0MSiaSNbX1vCT994D5xxHx8cBVAeK9bVVvP+Tn6TtJspBKLS1gsd9XatBSa1Yq8RVSMZYXV3Bj97/OThjOHbksIYQpXRVahmb/7pDUk8MABRW19bxo5/+DAFnGD/2EijIknotobX/NAMMy2Tt2VpfxW9+/lMIwXHk6DGoxPqSpsa1KmezVGfmjGF7Yw2/+tlP0AgCvPLSuAGLkEEfr3GFIphIwWJ5ZQV//ovfgsUDjO/fB5DPcTTQ/6XUL9o4ghr0cPPRV7j5+Tf4m68dwOrFq/jzX/0eQkmM72sDg56GjmigP/d7+iUeDaC6j/XnQR/od7F88Sp+/OEGhIoxPqYBQyUWFb1N37SLOIKKI0DF+n8cY+XiVfz5X/wWPBpg/MW92uIy6OkTHA/AKBuW0hl0WBxBp9WNsbq+hR/97BcQTOHIQBp2AAAgAElEQVTYkSPJNWRgnCcxGCTpuQf0PXtxYw2//eCnYJxj/+GjmbAZCtruS4Uo1laLfhLELZXClc01rP32A8Rg2LP/cKpEV5xuXNrA5l/+AmAM7f2HEUldMC1WykycMV04ypluXN7E2m8+ADjHi4eO6JoSyTYk2lKQYS4AMO1yzvHCoSOZZbQ+TS7c3Lq8iY3fpX2Ok3MTJxYdpTTc9AY6/Wx3IKEUEMUKX968jIdrfwnGOBr7DmYOKA8q7Plf3b6Ch+u/QxAIjB04bOIsWmEaZ0Eg0QpFZt7dq1u4+PtfotkIcPjIOIIEQELBTUFQDfIcQRK43QoEmoLj2vYmfv/L9xGKAEfHx01a7oDra2M/A91zfWVzHb//i/cRBgLj48fM795OkS30gyFx70yen4n1cXVtHT96/+cQQuDYkcOJRU+ZBwcji4d1rhgAiACrl67o3zPnODZ+VC9XKVyzINAKFIEMYCB99eoN/Oj/W4HgDOOHDw5fmAKwWL18DT/63QIE5xg/tN97XcFFOihgTatXruNHv1uEYAzHjhzSipCU2fWon9aAAkuso6uXr+PHf70OwYHx/S+YdZgQyTNepfO4SJQ8fQ7WbtzFe8sXIRjD0Rf2mK6SspUpnEcp1ROlff32A/xs62NwxnBk71h2HZ9LVLJMSYnN+4/wi6u3wDlwZE97+FwVvCtVLLH18HP88tY9cMZwKAyhYjk02SJjmRS4Vdh88Bl+eeMTMAUcbjcBpfT61oMj7sdQMfVXgW6/rU+/wK9u3wcDcKjZrJxWFgAufvYlfnX7HgRjut0SkbHCxSPH8epn93Hj/sNMu0WqhEz6bk/bj77Ar+/cB5PKnG/7mWeOw/N8uvhI95vFwMFGw+zTC3jWThln2Pr0C/zypr5OR8ZaoMyT6erOoIulyG8++Ay/+PiO3nZPe+hBXTQos/ngEX7x0e30/lLKmxBh6BiS/mzc+xQfXL4JzhmO7h3zXmcvSCmFzbuf4mfb1/Rvat9Ybh9d+ZcffIh33333B5U3eEbywz/71+/+4z/5R8+0D//j//IvPnn33Xd/+Ew7YUlt7F1aWsDYWBvLS4sGHtK6F5SmVr8saaL1lhYX0W63sbS4aPbnAkieLC/pbVcWF421wsRWxGlsBYu14mrHW8wvr6LdDLGwtGTWMesqqUfAKNNSPACTUWIJ6GN+cQntZgPzi4vJNgMwGRvf7pBrFyYKsNZKgoYEzhgura1g79gYLq2t6KrmgukK53TeOMw2AblgJOdzc2URY+0xrK8soUFKD4OGiqgHRClYsEFXfx50oLrf4MOVTbQCgfn17QQoYqPgm0nG2kIh46Tonh4l/HD9EsYaAeY3L0P1uxoKaFupz5fqddIgyWgA2e9CRgMsXLmFdiDw4fY1PSIo4xRkyMJBoEF96nX1FPXx4eom2oJjfuOihpfBACrW7SHq6/4k+wBZauI+mJKYX1lDq9nA/PIaKAWvuWZKmfsx5DDXiifX6cr6ClrtNi6uLZl7biC1ZWIQ6yrfg1hlskN1oxidQYwbW6tQooGP11fR6ce1pxtba2BhEx9vrpqA534kzedYKnQGuq1+LDPTRxsrYGETH22sDGVm8mVlsuff3l5D0GrhxtZq7vq+7WKpcH1zFSJs4sbWqlkOIOMS5Us/CwBf3dgCeBNfXN9GHCnEUdqmkspMtpASpJTCN7cuImg18fn1LW+hvHYCFPZ8go3bl9bRbrVxc2stY60IhYaMptCg0bI+kwXj0voS2u0WLq0v6UENCyYogxT9fltJgT1q/8rGMlqtNjZWlhDLbDpuEonUfTRWCipxi1I80M+w9hjmV9ZAmaTS5Ac8SYqQzGc8ybwmwDjH/OZVtMfamN+6oi21XIA1WmBBaJRxcl00VsVkmr98HWOtJuYvX892ltaxxGyfyPz2VbRbbcxf/Dizz8zkEcYF5rc/wlirldmW9m/asPfh7G/h6i39zL98K1Wg7PYKRnwXrt5COwyxeO1Oem08I/4+q8XyzbtoBQFWbt3P3b/Z3nGJWr37KVphgLW7j0q3dYU3Aqzd/wxNAKu3H+auJ2NpJlvWH36GJudYf/h5pm8kedYKGStsPPoCLSGw8egLM8+d8mT908/RCgTWP/08p7/+/Sjw4Xb7ce7kk83Pv0STC2x+/qV3XW+7ybNp7eFnaAmB9UfZfsf92Ew+UbHE2r1HaHJmzrXe7zD42ddI9iPIfoS1e4/QCgTW7vnvESVlZrJl7e6jofvLF+Pjc9FTscTqnYdoBQKrdx6aeUPAOogMRNuyfPMu2mGA5dvlv4vvqtCz+llN3zapDRezM7N43OlgdnY2EyPgAoLtJ05K3PTMDDqdDqZnZob2a1s6fNP0zCwG3Q5mknYZwxBYkNWBskPRvHfOn0b38WO8c/50aplI3KYMaCRKqg0bUApzk+fQefw15ibOamU+6oJFPfCoh5BpNxaqMdEQDA2eTEJPF2ZmEfd7uDAza9YNBBAImHWawtrGbM8xMzuLqNfF9+dmdUApWWOibtIX/Zn1OzrGpPcNZOcbqMEAc2feRqfbxdyZt7PnOQiNGwGzX8w02hmGmDv9Jh73I8ydPZEqIUYZSZSTZltXxOUcCELwRgs8CDH79nF0ohjvnH4DvNFKXvo8WVek2wepEsOaLT0FDcydPYnHvR7mzp6oe2tibvI8ut0e5qbOWwdsuVAlIpPJlpMTU+h2Ojg1MQ0g3w2KwIKU51gqvHRyAr1uF8dOnPNaJoqkEXAcPzWBQa+L185MDLntkLjfSV49PYFBv4tXT09UAgpbXjo5gV6ni5dOZrd1wcY3vXzqPPrdDl46OWHWfdyPDQhRhih3f9Egxt5XTkEOeth7/FTax2j4PPlcLhhj2P+9M1CDPg5+76y3UJ4vzoI+v3luClG/hzfPTmbAwnaB8n8GzkxOo9ft4szkdHJNshOQtV5wlg4WnJucQa/Xxbmp6aRWUAq36XUisHDcRhnH7Oys/j1PX0igojpgvDN5Ft1+hHcmT+uRe0vZzjwLyFXRAoS5k2/icb+PuZNvpv2p6AY1d/YEOr0e5s68NbQsPTQxNAHA3JkTyXPgpLfdMsiYO/UGOr0BZk++nrTDrW2tSt6eY5l542V0BgNMv/bS0DLpUcZs8Jg6fhTdKMLkS9oSaKwdHqsFjfKSK8rksUPoDiJMHPNYiCrIxNED6EYSE0cP5K6T5zp1/vAB9KTE+cP7M32rIucOvohuHOPcwRdz18kDjfOH9qMbxThvWbbKoURBRjHO7NuLTn+AM/v25gKEuz97OrPvBXQHEc7seyHTVhXQOH9oPzqDCOcOvOgdDAGyoGHDxvnD+9EdxDh34IXM/eADAhcCzx98EZ3uABPj1e4RGzTOHz3gvb+qAsbE+EF0+wNMvnzY2b4cMqZeOYpOr4+plw4/cTfB5/LtEFYnzoExpr553Mm4XADD8RNllZNHlaHaFUqmgdsJGJDFIjvP8am1TZCuz77ns50eVVlF35RoQAkdL0A+5QMJ9GM98hhJZeofUIA2xVAAWmHkSMFMaNfqjKtElcBtFmnrggnGtuIhvBleHFHRAH/98QP85upd/Ff/7lk90w7mHgyy83zxFiYuI80yVQgUdjYpj5h+81QZMj6iFJNhlutrSIHgKmxCBS2osKmvU9CEDJrox8pMsVLWd1374vFAGqCwA7elTC0WBBmkQJPyXAQRRfELbhxA1e1sKbI2FM3P63dZu3atiE4CFC5YdPoReglU2GChpEI0SHx53QGJIPvdNbszxiAsULADuBsBH4qzaDjxFr74iqpgAfjjXoorl7vnFWgKXYSPrJZkgaXffcj1f1MUEyoTP2USVMh0ECUdUEkGV2JrfjKQQi6JQKJM2DFSdrIGN77KZFqyR/0rxlgUWCbqii8GzCzzZL6ys9llYs/s55R1DijuwlaUTOyEJ0uUrw6EG2tB+wNyXKKs77FZXhxoXhRgXjeg3Fc1epSMUHXjHGyhGIeq+5D9GP/vhb+Jv3F5A0e++XJHfSgKNuZi+LfOPfEVvvWA4WeXT9x4DbcvrsuSDwxHCd737Tvtw/AxusHe6bp5+/D0syAWowhkX/4n/wpKqWovwmcos9MX1O9+9Ytn2ofWi4cWlFJzz7QTlox0Z5KiTJBBvyN63pDSQJAhWHXAyMuMQ2lmBcsHC0gJL1i4GaJ05KPeLynJLnAoma4T980oIVMKkAyKJy/uJINUKBoQgoMx7X4zkAko0HElJ4mUCKOwWMdGx2/DRcYNyoqpMCln4z5U95tMsLWdHpahHC600q87xBstUxnX7KNJ6RyT7CyDAVjQsBSe1M2JBWEapOYDCqAQKpSMi5WPwD/qmAZ7syEwVDxIXFKzcQixStIJS5rSuhU2WMQKGbCoE7xdBSzyqkyPKlWggr53LIWBoCFve+qbvY0LFhomYi9YRH1ZO2lDpv0gWwyvagB3XuD2TsGiaL5UaijtNO1P2M8ydzvoWvJ2zQsT2G0nnqAAb5kEc5dkkWI81gHelB3OSsvKgtCbenZH4rpM1QAKX4A2s55HQwHdoZVal1LPjlDPwh1FdqXMapG3vzoVuZkQpYCxW0LKqluEL63YXZ6ed6dSBypsUbw8ZThQfs7zAq/tfRsAsvpAoOFbDxi2uvpgwy0C6AZQm+vAs9fJDfjW/alf18QHGCqOK2WTsvtr9zlvPv0G8jJK+fbznRJH73guI8IFiWAsY8XwQYYNGICGjCqpNd1RTXoZ69gACyxoxE56rBhxlBm90ztKDjl5URul1AUOD2ywBDgIMhSg5/EAUMrUVuBJ7EnfOg6yStCxuTCRfmfG5YvgyFTcTqpvs0jHESDqQXa+yVgrhlLFRoNK1gv7fBtXCVipHpMXupKxhg27DRs2ZJwqTBWtFLsmGcsTM+4iGdgg331oDo2VytQiIXcoAAYspFIZsHBdiOpmDgKyYLEbqWDdz3nr2O5O/UjHklD7UY5rQVDQPyqM14+lFyz6/RhKqR2DBWMpVLgVuNtO0LZbPK8dil0Bi7xU0gOPIuqDjpBzK5A76xJli1vzwlTsdiCiHmCIFCZsBdZVwqso5XbGphKp+pvPe0bZ6WaZ9Qxy++oFDJKaoOGzSvjqWthgkZchyud/njm+RIEXYbCjdLSjpMElcat822IDhmgIY71gPE0Fy0U1Rb+u5Lo6qWEoGQWCpFTg1o+wDDRseKC+2daMPNAA8mGDzqcLGRllvQZk6D5VU+t2AzDsPgPDcODOL4IMe33fvp7Ld0tqw0WSaMSIa8UA9EuzyIrh36/HDGkp3NR26g4gPS4C1v84SUmrpA78JXFejAzwAwcdDuMGNsiFyqSmjQelVgxGDyaWHrtthaHjMiOTClm3BqcwHot0wLnqd4bcoMitIeMmwEUl68XwybfOUSOFCXtfQ0WsPJV2RwWKIijKPBDtQKbkGpkAJwsqYgIEwATO2s97qVRShyC1WthxFsDOi8yR7BZYkFSFCppng0VRXAj1rQie4iT+xAYLcpXaCVjYI32MMTSMC1R+BW5yk9IxGOnnJwkWZctIBlJ6rRZ5158Cu8n2mYLDCIChoK0fBdaLZyGFgx6edLO5VgwfYFQV18UqHgaLzPKC1LNFUkf5fZrWCxIbMPIK9rnypAAjDyoygdWMVTqnsmTgx15eBhpVrRnuuvb6Zv9Ju3mQ4VPWfZDhc5WqY81w92nmjwAYdr+H+l4TMtx9PZfvnoxkuSAOKIKMIisGffeJ/a7NQAXgr2NBYGGWRUNgMfSgdH9Qjrk9Dzh0znmtwNaxYkiFHJhIXooWTOjjtPynPfUrbDcoL1TYsRGAri1RYr1wL4frQ63iGJkMK1Ia6GBWm7vhXlHqGuWu70tNScIYFGOQUiUVkbPKMkHFQA67Q/kK5FUN1Ab8iqMLFnZdi92AF7dfBBW0zBcfkdv3HP3G7XM/kuj0I0SJmxWBhYwl4ihbMI9e5tw5N268BQnFWdD5qpMZyrhL7RJY1BlIcy9lVasFCYEF1bxgGXCoCRj0fMqzXtC5tpV2VwqsFUPxFiW/3UpQYX8fBTDoWR44z6QR3KWqukPlWS2+K0pSHmDkWS92U8oCsofmObPKIMIVn8XgSYFG3vrA6JBRZMUwbdaEjKqAYUtda4ZrlfmDqo2Ro9P+scqOrmoeZJRZMVxxX7RDUJEJWlTDBfKseaSom0BGKXUKU88PRQFZH34bOnKAIw8yoKSOU/BYMRRnBiaMQmAfE2BgwvSBjssO4B50dCrWPLDwBFwzLqCifrXAbvoQhNnzAv2SzkjUz3xVceJSFoSAlFD9bml7dWQo0MwK5NYrsGxwPudD8RaZmAtPvEUss3EWer2sO5Qto7pEuUJKbEPwWoBhQ46vH7a1gv77Aq9taQQid38m5sJSzmgfBBb9SCKOZCFYlIlttfDFWZRlhnLjLOzieE8DLPLWz4u1cFeVybxYIXWN0idmJMAglyqv9YLO+ROIu7AHCEqfP0VAMipg7EDqWi3y3IqqyG65Rj0t2U33qCKoAPzuT/TbqfI8KQOhvOrbo4CGz20KyAeNnUBGVSuG7ks1yMgDDN2u//dp3695oDHU9xGsGM/luyf13aISZUHZPvoOZJRZMex5tghnn9SWL72sb56pbZFYMNKibZQNJXkw2D+guKPbs348qZLdGAIOlii1XsiQHBAKlOaWrBhUtKoKTLjWCzboGTco2evo2g8VoCIzbzCA5F2dGrZMuAATaYanjNgjfs6+6MoRzIFz09cnKV6rRU68BQBvvAVZL6RSmTiLQTxcfbuq1cInPqsFKb3JAdQGDOqTLa61gv4/TpR/140JSOMqXNgAioPMbWDJAwufEiClgigJvqI4C4IGHawtvGBRlBnKrrq9E7CoUiW9+HiqWS1IyDWKArvNs7cmYJB7lGJ82HphGsvJy18j61ye1LJUmPlkVZbpejUAw9uPiu4+thRZLbywsUtWizquUTuJt3ClivXiaYgPUtL2FaSF56NYUpS1fyb8+6oKGkXWDKDcdcqFDHtwpQpkVAEM3Y9yyKgTh+FKmVXDBxmuFQN4Dhl/KDLyVcyDjCquUrYI54XttVYAqeJtuQv5wAIUvC1jY7EYeuF40iuWgYexckgJxoshQ4kGWNRPrRhk2ciBCRc4dCAmjOVCRQOozjeAjCH73UpQYY6HAiGTdQpf9EqP+rFGCwg81VIrFGphgLZ8RAPjilHLilEULGqnoHWErBa+YjJ58RauSxSlDbbdocw+HKiwFXhaXpT1qQgsQsFNXAdn1QCjyFLhrtPpx4WB14BOPuAKZY+KcmAq4MwLFpRqFigeXVRquKIsvVhtd6h2Q2QCuOtkhmoGwoBFyJ88WLjPs6LlZfE2bmC3rsqtnyW1AENJ4x5VZL0olSqB3GTpNW5JOc+bMqiwv48AGNp6geyzPgc8pDUAoqSsHMRttnfcoXYi3zbrRRX3qFGtFz6rRTFUpM8ThXKoUBX7sVPQqOo2BfhBw4UM14pBfckL+q7qJpX2oRgy6sRhFEmeVSPTd0864D8oV6lvmTDGrgH4CtrpOVJKzTHG/hmA/wBaPboP4E+UUnc82/4EwN8A8Ful1N8ta2vHV5ApVWjFAIZdpWheZj8OVACWAg4gL+VsOql0HRlr96E4zoz0D/vxpy8V8xJ0s4zAUtSTHxeBRh5kGKsFj2GyVNFJKYGJTHYrOo7BIKlMratZD0GFCxSZnPA8hZGC4G7Gkj+Brk2hPKP+lYUHSfpLnoKFDUA7FeucG0sFYPqbqUviibfIc4nKSzubl5GpyCXJljKwINcdWEBTFTDc9LJuf2ywsF2h7PgInwjOMiln3WWABhICC7eGBeAHC9+L09uGBQ5unEVRZig3gNsGCypqNypYlIGDK+7qPLFaFO0lln6XqlgpCLAMYKSNFANGatljxnrBYFlon6ZUhQpYo/e2FaOuBYOL4bgLj/gKgZllNd2hRrFa+CwDTzUtbSNIlc6C7FG25AFGFXHBIg9IjCXI3rfKFt2sChHZ/fqBYrdAoyzbFIChjFNlkFFkxajjJpW2H9W2YvjuxyrAQaBBkOECBh2H6du3CLCrCftWVsnOkb+llHpoff/nSqn/FgAYY38K4L8D8J96tvvnAMYA/CdVGql/Nuxc64nUcZVyJQMVyf6HoMJWxn0pZyPruw8sqHiUryAUHZZ5SNrLhuFDSalfdnEHEKIAMqLE0mH9OMtgAtD9t+JEEA2GrRUWVGRefHaBKBIuqlkvmACgEneoVDkfOk+i4JYxaX0lEAEIEzeMQBf4Yyh+yecGk5aIrkxsuUblxFuUuUT50s6SPAlXKAILABnAAFhhcTZXisCCMkL5wIKsDbaIgloXvuxRvuJ4LlRUVTroJRp4Usu6aWdt4LAzQ7kB3DZYtAL+RMCijDmIo+qwCcVdkGuUTHDABoxsXEU+YGTcoxLrhT7RDTD0LcjY5ZgL+zlTGFORVWBsZSWbNpfXA4wdHM+zcocqk1Fcu8rEp2DuxD2qbuxFVWsFYCn5rBwqdmq5GAU0qkAGMGzNKHKXqgIZO7FijOImlVknB4B90GFDRpmb1HN5OqKU+tL6ugc5405KqQ8YY/9O1f2OjlojQoY7fwgqaGVP5qTclLNGQdfKNlWgJYvFcHCfBQ1uViRPOlVAwwejrEuJe4CSEohjDRlA6rbDhXaNGvSyGkUJTABIq+dSwDbFjCTQlNkm+Qw4QOECRwXrhXZPYUDQ1Eo5KQZ51gs3lsGldsa1axgaWStGFTepqnn0HauFtljU94vPZIpy0s76LBWu+5ErRe4uLlhkB7OygJFnvciL+7AtKXaqWRssfG5MpnXOEA08I1Pk3ug5HqVULlhUhQo7U5QbZ0HuUHYF7sACCtcdKuT5Ady7ARZVQcIW2sYO5K6agphco+gUuRYMAxRK5QOGUsY9KrVeJO5Rdj+D0AyyDPWjSr0cxyXKnT+8fj5UuPO9gAFoFygHMAD9HGdhCNXb2cj/03KHssV2jXqS1gtXqbStF0VSxT2qSGyrRVWwcF2gYuWHgCoSO884EdruRqOBRhlk6O3yrRl5dTPKgr7LAEPvZ2exGFUAw7tdgZXDTmtb5ib1XCrLYcbYvPX9h0qpHzrrKADvM8YUgD+j5Yyx/wnAfwjgCwB/azc6s3M7Tg3IIK+hzHquC5QLFdRGxZSzVPvB60bk67778slxnWJhqPdn3KsGBjS81gxSkEnprggT+nCzwdqKLBcetycDFZ5lMhroTDRl1osgTC0zbkC0fa48AJF+ZmYdJiMo1tLLZaTbDmCsGDsK9rZdouCxWtD/ZKoSb6FPnz/trP3fliouUUVpZzOHlMl4UA0wqG03Y5UNFjZUuIHXtrUhjXvwWCsCBuWZTy84qmFRFyqUVBlNnHHmTTu7k8xQbgD3kwCLIpggoX341q3yGrWtF5yVAAYwBBiQ2nUKjA+npiXrhXGrsEb/fc9Neq5VHQDwrZPjApURylaXPCe9gEH7TwAD8FhGTfvVnjWyH3mtFiS77Q5lyyhB06MGc+cpknnuUXUtJnnWiyKwKLVWwFLyK1guXIiosl4eaAApVPhAIw8ygHouU2WuUgAyQd92u0/STSovDqOu2HEbLmCYvnvO03dCnn2F7odKqbmSdf5tpdQdxthRAD9jjG0rpX6tlPqnAP4pY+y/AfCfA/jvd9qZ+tmiKH+6q2hS4LK9rgMZleIqirIpVQQLJBAAa3JfOrmjcL4XKhcaQsjUnlScJmuGAY0cawaAWjBB/RhyfXKtFB6XKApONA9qGWuXJJ5jvbCzQwFGAVGiYb5nT5z1kKN7gGeVeyUCgFy/yMUq0sDCgEpWDCWzBfu8wdyu1YL6NEK8hTmNjjsUSVWrBUkVdyg7HmAgk2qxNQHD7aMv1aydKcp1Y9IvweGXNL0Qo4EHLFjqsW+DRRlUxNYxCM+LwwYLuyCeG2dhZ4Zyz619XpsJkAzHWyTHOAJY1IEJW8piLcokVoBAChgAMkHedoB3NuDbAn7LepEprAckCvvOR8jLA7lLrBVOCmxYgedlgEHtUjVv2wqt5+trkOd+6SrPRVYLs47jDrVbMor1oooCCeSDhXfdmrUvRg3uLgOLjKKvlBl3rAoQthQVuMsDDbcPLmi4kAGM5jJVFTJGsWLslpvUqEL9sNPbVonFeC67JxSorZS6zxj7fwB8H8CvrVX+TwA/wrOAi9XVNcwvLmFuZhqTkxNZyPBYMQCYoO/V1VUszs9jdmYak5OTfrBwrBWABouVtQ3ML6/gnYnTmDp7Kt2OYIQyn9hKeaKsr1z8CAuXPsbsidcw+fYbevcVR81Xr97EwtVbmDv1Bibfek0rxAMAGGhrBq0YJfOc2IzVi5v4cHUbc2fextSJN/xAkfTbDdBeuXIDC5evY/at45h887jf9SkHKtZu3MXCR7fxzuk3MPnW64m1xGO94Fxnh+KBjkcIQqxsXcaHa1uYuzCFqfNn9X5zQCITRA1gdX0D8wtLeOfCeUyeO21co4wVg3EwGaWKlmPFWL18DfPbVzF39gQunDvjvSZD6WeT/ysbW5hfWcfc7AwmpufAlDJBtIIDQjEIBUQeZfr6xQ1srS3jtdOTeOWEbrcPSxnmDLFUaDdEBjQEZ7h9eRN3Lq3j+OkJvH7qXC2o4Izh44sbuLy2jDfOTuLVE2cTVyk/YLhF/D65uoVb22s49vY57Hv15BBYUEYoGyzI2vDlzcv46uY2xl4+iT0vvaWPU+THXKRB2Arf3LmCr29fwh5rW5/EnhfEN59cRffuZew9fgovvHoytVpYAAGkNTdsq4XgDJ9c3cLDqxt47cwkXjt1Tvc7Ob9Aem6BYbeoj7bXsbW6hHNT0zhxdqJSdW1ihYsba1hfWcT5qRmcOT9RChU2iGyur2FtaQGT07M4e36itE0AJu5CKYXVtTWsLC5idnYGk1NTAJRpT+UAhu48x4RtXEAAACAASURBVOrGln5mT57DhTNvl1gvqABd8nu8cg0Ll29g9uT3MHXqzeFzE6aDFK6sXL6G+c1LmDt7ElNnTmS387lAWWCxsnU5u21NwFjevIT5zUuYfetVTL55vPA8u8Hc67fuY/H6J5h+dRxnjx5M13OsFj7lZ/3OA6zeeYjJlw/j3PihwnZd2bj3KVZv3cfES/nb2sqdCz1bDz/H+sPPMDl+CGcO7/dun6c4bn36OVY/+RQT4wdx9siBWhaRrU+/wNq9Rzh/cD9OHXwhdz2f1eLSF19h49HnOLv/Bby9d69Z7rVWJJ8ZAMUZLn7+Bba/+Qan9+zB23vSbTNtFsDNlW++wXbna5xu78Xbe/YMBVwXgcalL77C9tdf48yL+3Bi794hyKBj8BXpu/L119j8/Euc3f8CTr6wbwgyfNmlCDK2Pv0CG4++wMTh/Th14IUhK0YeYADA9qMvsf7wM5w/fABnDu+vXRdj88FnWLv3yNwjdcTelu7tIivGd85q8R0QxtgeAFwp9VXy+e8A+B8YYyeUUpeT1f4+gO3daK/2FZxfWMRYu4X5xSXdYVn9IbSwsIB2u42FxcXsAlVOqPMrq7rdlfVa/QWAhUvX0W42sXD5Vq3tWBBi4eottAOO+YvX9EyyhgDZAGuaF9nWB4kPV7fRboSY37ho9lsFLJSUWLh8He0wwMKVm6V95QnU0I9y4aPbGGuEWLxyu2AjYX7cdkrQ+ZV1jLXamF9ZT+IvGvpFTi5IiXVAiYZeLhJ44ALzy6to792LD5fXoYIWVNiCCpp6nSSWQ4kQKmyDtfaANdvaLavRAuMC8xc/RrvVxvz2R4kLFM/U3TBtMab7pU8WWNzH/PIKxpoNzC8sgvW+Bu99hYbsYyzkaAfpNBYy7G1yHGyHODzWwOGxBu5d2cDBF/bi06sbONAO8WIzwJGxBg62Gzg0pqcD7VBPYw0cGGvgyL4mjuxr4osb29j/wl58dX1bL2uHOJRs+2IzwIutAAfaIV5oBtjbEGiHAmOh0NmMOMNHGytot8dwbXM1k0ed3HxoRJ6UbJoA4M7FdQTNFu5c1r8Ln7uWmRdJM+IlpcI3ty+CiQYe307vzTiWmckWJZXZ/vGdywgaTXQ+uazhIJlcEYIPTd27l8HDJh7fuZyuF5D1gHn/23Ln4jqCVgs3t9fMeaoqW6tLaLXb2FxdrgQWtqyvLKLVamN9ZbF8ZUfWlhbQbo9hdWmh9rYAsLS4iNZYGwsLi9papGCscEBiHbbjjixr3vzyKtrtNuZX1jKWPQCJ9SL/PCxcvoF2I8TCpeveAZmiYnXzm5fQbjYxv3Wl/AAdi4XetoH59e2h5WXZaVQ00NuHoX6OeK3A2npsp6Ell6jF65+gHQZY/DjNxlgEFrY71Oqt+2hxgdVb9w20VJ1Wb91HKwixfOu+GdFVcWxgqggsAGD94WdohwHW7n/mPS95YME4x9rdR2gFAmv3HhWeW5+s3XuElhBYf/R5xnpJir3sx0ZJlrEy81UssfHoczSFwObnaUxpEVjY+97+5hs0Ocf2N98M9cluJ0+2O1+jxQS2O1/XOVy97ddfo8EZtr76qnA9X7rczc+/zByzC6lF7mQbj75ASwisPfzcLFMeSw/t19732oPP0BQC6w8/S9qRZvKJ7EeZae3eDu+RZFv7PrYtcnbq2u+a1UIlnhLPcqog4wB+yxhbAfDXAH6klPoJgP+ZMbbOGFuFBo7/EgAYY3OMsf+DNmaM/QbAvwHwtxljtxhj/15RY7XhYm52Go8fdzA3M52/kgcWmFKYnZ1Fp9PB7MxMZSih9eamJvG408Xc1PlqHaWRNC4we/J1dHoDzJ58vby9JP6ALBCzbx3X2751PFtLwgMIPsCYO/M2Ot0u5s6eGC5+Z+3LfnHTj2/2xOvo9AeYffvVrNUCSC0I1oihDRizb76Cx/0BZt5+pfSYlZSASkb94ghzk2fxuPMYc9NT+duQJcNKcwkAszMz6HS6mP3+v5XCgAigwqaGjKCVwIqAClpgjTZ4e4+pr/HO5Fl0Y4l3LkyAhaFe1tqjA82DVrJdmIJFehB4Z+IMHnc7mJs8p++bqA/W/Qqi+yVaqo+9DY69DY49IceegKMdMuxpcLzYCjA7O4sw7uPCzCwOtEIDEzYYEFy82NLA8GJTT+cvzKChBjg3NT0EEnubQQYkWgFHK0gCj5Pp9MQFxP0uTkxc0CPtPBvoXQQYr5+dhOz38PKJ82ZkH8gq5WZewA0AcM6w55VTUHEfY6+cGrq+BAIkBA8i4OCcYe+rpyCjPva+ekrHNiQT80yu7HlFb7vn+EmIgA3VuiiTl0+dR9Tt4tXTwxYA+7zZ54AsGWcmp9HrdnF28sLQtsaTkGJuyK0zeXefnZxBt9vB+amZzHyzvTPDNv5MTM+i03mMyenZ8gP0yPTMDLqPO5ie/f/Ze7MmO440S+y4e8RdEguxJ6pUXd3FJlkkAIIgAPaMzNQmaWSSXqZnHvQks5FsZkw/QWPSI/igmZHJ9KLF1NV60R+QtR7IQpFVrCarWEsXE0tmIrGDK8gqFgkQW+a9NyLcXQ/un4eHh8e9ETcTBMHGZ3aBm3Fj8dj9+Dnn+2jbdYBBEQKMk8dfxmgywcljR6szttAIn3j2++YZ5D87m7wYQZx84Rmz3ReembmdMF458jxGkwwnjzxf+y0qEfJ9aEri5A9/gI2NDZx87s/c75rkqPZZqoq87Nx7HZ6X/2QRG6MJjn1v0a4vDixUXlSAhZYKL35nH8ZFjhe/s69x32ReRD+H9+/G+mSCowf31kCFL9FqYhWOLu7FuFB48UB9VHkasACAFw/uwbiQeHFxT3S+aXFkzy6M8gKHdz9l2uh17Js8FnQMD+3aiYmUeH7nDgDtgAU0oBnw/LZtmCiF57dtq2yjrRTr+eF2jLXE88M46zF12e3bkSmNF3bs6Lws7fOhXSXLEwMY4X6oTOLwnqcwlub/yvH0Bn5kJmsgAwCO7NuFcSFxZF/9+vCBRhPYOLLnKYzGOY7seaoCOtrEi4vV6+vbCDC+6aG1fl9r/ZL9HNZa/092+n+ltT6itT6qtf4rrfWndvqS1vq/85b/S631fq31UGv9Pa31G9O2x3T4Zpo2M2N6fPeW/cMb/QLqHgyaJ7qXLTJDAXAmbm++xvSzU8zc07ITzcqAEhutc8t4AMaXB8R0xz6wAFBPKwtUR9bs32beKcWuGozcFLw3AOsPDGDqmc65+btn/+Zg/SHOffgHvHnmCv6Hf/FX0EnPMg3CnNeIFCoGLmiaYqKssK5N6mBzngpQKmH6mxV5raI6ACPVSNLSvM1F1bzdEDWvCLWLcwts+lBMmGJyUpuP0u670hpSwaWpBUynk77nniTJN4RTpLzKPDRFOCIvbbaqcaHcesNq4QBq9TfoM8pkY02LJiO3sjIp16YIFe2DA85LIJD0iHInVqT0YFBMK6BH2xMJAxe8UteC/Ba+mZsyRw3db6UnY2AL5aU2WxTJouhvN50xpKLqs4ifG7u/3vkjCRJjdd9FF3kUffXPP7WEjq1/GsLfaDHBqtMEY9V7zntulveaeVY63xrde8XE1dOBMoU69WRs0mH7z07Klme/u2mBNIpF5+vmtXD6bP956PvWgKjnrDKAQ89/Yi2K3DxLPdZCS2VAgmUt/CJ6FaYgAiwo/BHizRbA8ztas5iKtjFNQ++zVk3b8zubNI/b30w2shXhNH85P2Z5LPzvMpf4xX/+T/D0lev43scfR7cxb4SyKD9CWRQFC5YJ/wZQkUa5bcXMW24d1XslbBePrc+bx39m+9tukhrNMmm38fHMilngFqg+E0gi9af//v+B1rr5YH1D4viJE/pXv/rVI23DwnB4poWh+2uLuQzdmicWAJQAw02fM7rIqyrBk/hIGuBSEfqpCoHZgGJWOL+ClzlF51Z/rGTFh0HbbgIWLsJ9aGuujKRm5ElaARjV+b0Hk5LlS58e8F7nRMcyvcQ69xWQaT0J2nZ4aB2MASoBk15e/YjZG1b+1BVUuKbIrOoD0bbDpZgBNsUYLBlgkA5t51QjURoJNx8aCVaau8MhbWYpAA54mEOma6PdmwoFDBKOcaGQcqt69wzeufdi7gle84T0Eo6CsodYjwhgzOVUEI+xevanNqCClhUJcx4JwLxMtdag8idlCRdde4HGMqjQdqizTX6LzUYM2NFuzpJDSWXmpXPKmSkCKhgz1wbixm63vNYVgBEkxtqy8CucN2aQAsoq3TwpU3/Pu802KWkfRkyrJh4DFpYZniaHals4rwuw2Iq0sVsFKoD2wKJNTDPz+p37tsAiHHyISYhCYOGms/r6vwmhpY4CjG7rUDN9GCHA8Odp48OobM87r7FrwgeX8wKNJh+HbzgPPRiPVeg6k/0PPeZCA60BRiSDVEUy9ZDORixf+zwvxKkF3xoABgCwFKZTrCRQoJKdJAQW0Qrb/namsRYUEWMjdyOH1FmfolMushIf2NohmvHy/FCq3TC8c+uyNelS46+YHcnnwoKHDJoNwFgGzXnU7O0bUXWStgYV1Hb3P+M1oFEBGTJDLxkgTfrINUPKNXpCo6CRN5j90ACULjtwMeABVIFG7ncOZlzjtExfMEygZgKMsMieDyIAIOEMkjNAwo3sF0q77xLwwIGuAYsYqADqwKJnX1hSaVOIz64mBBnmOOna+sy8pVwrDDJz0z62iRig8IsUArOBBQWdFwIZPsAAqoAhTLEdixBgSHtO5g2pDXvhp6iliBq820QkY1SbFJQ6z+v1gkIQ0vQM6RjTOu+1rHvOD1eVQ5n1lHKokLV42MCiTcadzYKKWRE7n7F0szGJTMhaxIBFF7aC1lXOryv/19oJc41/04BFU4TG7jbRBmAAaKyLMQ1gUGwWaADdwUYMZIQAw7St2/F6Et+8mK9Ct83444BEm7fr1xBMiPqD28sistURAxgmm1ReBRhA/aWHKcBinvY2ZE7ptkOheLuF5jFgLXKpkSsr1YD3nTGwpG/qf8C+IFJueqHSsBY6MZ6PLkxFpSmy+kLWIqkBjRJkFIAsLMjoI0n7yKSGFiRFKjvFBmhQR85EE/CQChiA19gOP3zw4QgnrdEHdwBDcAYoTAUYlEGKWAsCGSQlGimJXmKYJOpWiYQ7KRT3gEnojfDZCrOcARZ+9WwXCS8rfXPzYiPgIItydN2XTDnmw5cebdHwfrpF6wGqLIYDGDASpGkAI2QvKMxZbLfNthFW8Habpetd5uZ+4hxQLFJQz2SMghyVK42k764EPfNmTXtYEabn9tsak5sGcqiZq/elQAGw0AHg8IHFVlTP3ipg0UaKslUxL1sBNPssKvP4KWd1SbQ/rqFUndkNYxbAAOosRggwAPNsD+tw0PopZgENs56tYzXClLdhoT6fxXgSj2fMp2MKAQaNcjPWjr34GiLMc9412qaqdZVh/SMZAIwKsPCXmwEsWrEWfjiJUymTYqlXH2Lai992/JhW0LpkEGJyt+jfjKNQ2lRspsJ1jIEzDcHqLIbpnUmbVpD+TgDWcZ9dI1QNHLEidz0+AhrMT5fMpQEZRQaRTDCwWa206wyTJAquUnKpHtMOdNDfudKQ3HYsNYPSRkaT8irDIbyHaIXt4CXA8IHGTIABVUnjWmSyZCo8aZSfwlYkDEWuG0EFUAUW5IsIa05Qiltpt+WzGE0gw63fk0TFDOjTos3Iv5+OFuiWVaq6ra0FGA8jQoABxkoJ1Fa1YR5A0fD7VnYe5pVDNbEWmwEWD5txaBtdalm0iSavhZI6Ciy6ggqzTLPPImjNN2Iwc7PxMAEGgJksRrgdiiZvxiwWsyurEQMY/vofVmX6J/H1xHzMBcWcAKPir6jIpPxOdl0+VVmOMTjpOBfeqL1H7VO+9ofIXrgm+iyG3TYBjKbieMAWAgs/fBZjVihVFvxzG/eBRUMHIKzezUzBulwBuZOUWBmRBRlAyWJw0QN4ySroBE4mxWT3fWeyKDXmftuofxV0tLSwkhHGAdEDZA6oAoyN3IgvGDc6ezKEN4IOAGDoWWN4rmBZjZLRYJqWLZkOwF6aFnCMCwMwUjtPCDAmSjfWwJBKOwCR2I4+TSdplDknDDLiu4iBCsAYt8PK2cOeQELzW4BRLmBYDK3LF1oIMoBmSVQSvGybqprPG7S6rolItgJgzPJe+B6KVm3S1exYlW0G/gtwWfou5ngWVqQLM3wXWlFx0SBaSqNmjqyHrEVMDmXbHMqhusS8wKIp2w6wNebYWbGVPotYxLwRW+mtmA4s7DyPGbZo6tSHBfZiEQMYQNXE3VUmRTELaAB1sDFLOlVufzarESvaF7IYj0foWrbAf+jRHVzQC8IbAW4FMB7naEn3NwGMJmDxUCNgK6Z2BqQEI7GGKgDRM/IkntSlUn5Qx9uyFoUiQzTJgRjAAW5HVQtVZTFCszeYlUkxDlY0Z/iq74CynQpb0dYdg0iBRxjwwZR0AIkVmQEbxdjV0WAeqGBe0b4m0EGAQ3DtgQzTESWQAcB6NoDELgMYsCW1Lr0W3qWWOueieQG5lxGrAoyQUSg8loKkUT6TQd6JetHzqgzKBxZUGTtx2xHIConEghefxcgo64sFGUTRE6jwt0Uxj5mbwIdfQA+I1cvovOpabBWDQdIoOicKrV0RUyP0X2gNy2CgOhjgF6GMRdvnk/dcjPkutjoqI5mz5FB+pr05WIu2wKKSIrYFYm0zD/BwQEhTh40YpFkjxX6n02ctNsNWmOXaAwsltR0weszQxYyYBTKaqnp3lUmFTHV4PrqyGm08WaYdZr7YdT3Lh/EkHs+Yr/fvj0D5rMQ0CdTXKY/yKsxSxqgu7EVUEuUvOwVo1ACGt3wILB4KaxGLsL3RUcWSFQqlUbNCgUEqZTrRCi49q+CAltYM3MhiCHARmL2pHS0BBityI3dqmXErNqrKpDWkW+YCjJXeD4/JiIEO+o2LFEkqkEntslAVAcgA82oTEG7QMCPNMIbjXPkAgwPW6ZFq5uRRs7yMZOyOSaN834Xbf9/7EACLngcuTDrYxMvuZACG3ahjMXq2knmMxTDnoPqSi0mctsqDQeGbuR0u6xghwABKMDGNmdgqiVTNGB6wFxV5FG0vrGZP84oW2aMqLDBaD7QAqHvS5g0/U5SfH3+WHMob1GkCFtF2TwEWleJ2EWCxFZ4LxvnUzti0eBg+C3+fYiZuoNoBbQsqzHIdgQXN+w3GFpvJGNUGZHRlMZp8GLFoy2o8LJARk0k9iccz5k9Fq6y22mb4iWWQisqjHlIwzitCj0rGKM9s3Zk1iM0fvnCDiGaSelTAomVE+z1+zZHIAponzsQt7ei81GXHVysNhgaQYb0IjsUIzd60GVvXpDGojapofhhNS2OJ6ogdE8bcyrg1utqUuMwDHCGoIMDBhKlW3k/66FmQUQQgQwM1NoPTTisGCDMlVwqcmWNUAgzzf8x/EUqjgNLYHUqjzOljpe8iAix84zYBi37C0UvK6b6h3NTRMMcxJpMCUAEZbnuhOdybvtkIM0X5340UbfMAA4BLUesDjKYcF/Okpe1aZDDqv6B1WFN3JXgCGoxpvQ1fGuWDh6/D1N1FDjWjgxKyFpsFFm0KfzVp2v02AZsDGW1jmu9lFstCrMU0YNEGVIR/zwIWzHou2vgEHteY5seIpZSdxWLEfBh+xMDGNKCxFSCjDcB4XIJk0E+ijM2lop0HYFD4mWPmrXExT2yl/2IKm+EbvUMmpDWw8H0kHYOlpihVlxEr7beHJEOqAJSA5mZ9Tv5m59HkO7AdaKl87aGRaEilIVEHGVCGxdDadH4TMnujPcDwWQs9GUXnAVDvZAS58fXEsCQsTQEuwG3BQXDeGnBo0QPjY+h04EBGmggkSiNjGok2cilp5WEhm8GYZTAswAAUctkOYEitamCg8F4OvjSKUtICdcYiZtymonYELIYWeABAD2W9DUofG5NJ+SwGbTeWgtZfz7zhg4lZZu62AMPP8JVyvimAAaBV1qi20eS9MC87bSR4nu8CQJkxqkNsiVTBY727mLpDyc5WyaGiTXyIwMJf77RggtdAxiyA0ZW16GKo11I1mriB+UFF07SZ7QlurKbO7jcpuqakncZizAMwmuYBqmCjC9DYDMj4tgGMJ1GNOQzdpbl60wAjuv5NsBtBOsVKxigfVEwBGLWXVttoABp+OkSgA9VXASDtjJBACSqaf4/rolnQ1WFaAbL5vGmeQDPmUs/mxndsGAzbdM1sh5mVIAOcgWuNQgKSEXthoIRhMxh40rdtgskkhQaA4bMW2bgRQLjZQxmFstXbvawyzNYF0UkKqg/C+gO4qsPTAAefQKd9s93EpLllyQBcpEhTgVxpCGbAlw8yNO0tN7UyBBgU1wgBhlSsAjR8gCEY4sbuQBpFIRJuO/o66q/wjdsELHoJR0/wCtvgZ6Ua5bJRJkV/y6L5+k94nMVoG/47M5aOtlL5mvm1QqYDDL9oImfMyNbmABgxadRm6100hW8O19oCGb/mS3BvhMwvgOr908RONPguGk3dmwliJDrIoWauMmAtNgssmjrVXUL0RKXTRqBuHhZjs8BiVuE8LVW0wnZtPQ0AIpw+i7UwC6GS1rq6vm8+yOgaTSCjyYcBzJZJUWwGaHQBGWZdESAxBWA8icc7NgUPq7UuSk9FrAYGTdtSlsIvutYUnv+iLcDYdMR0ytPmQ8BaxB7oMwBGDVTEXuxdX/Zaw6V4VarsnTEG38RN6WfLv81s0nasfJBRSqUMyMiVlUpJy2xok+WIJ31z3RSAtngoBBgV1kLK6vG0oM6xEt7opuuIeKObcjIx6xTcFCBMUnNMuQDbMICDJakBFJbdqAGO/hBcFRZkZMYcLgswkcwEGeYZXgIM4w/wmApZLa5HQIMARiN7EWSNiqWknWXcJo+FDywW7IvFBw/DVNRkUsRiUIXwGMCgbT6s8N9d1LmXWlcARlP4wIL+3wzAMOuoS6PoTM8bMfbCl0fx0HfBvHv564hZcqkiM4NDLaKLHKorawFsDliEcpNYNOndKfzOG41Qd2UxaN6tiBhrEcqhNgsqgJbAwixdYy5ibQb+4YCMeVgMmo9iFtAAqtduF5Bh1hVnPh+29O/riibA+w81xKlTp1rP/Oqrr576Z//lf4bXf/oWBOc4eGC/0T+C3qA0p3a6SCcAYAyry8t4/fQbEJxjcfGA6yiyirZfuxeDD0SWL1y022U4uH+fo/TdskafY7arvA6x1li98RFef/eM2e7uneUO+VWoKYIUuCvvf4If/+4CBGdY3P1U62Pllr/xsVv+wFM7vO3MBhYrH36G02cugXOGxV07GnUWFWBhpUUr79/Ej3+3CpGkOHhgn5vOhP2fimdZac8f749w7fe38ZeHf4DlSzfw2t/9CkIILB5cNPPwxJRf5gm0SKEsuJAalrkwnoK11VW89eZpgDHsPbDoGBEG06myZ63UKNpLR9lpq6ur+MmPfwyRJDj4ne/C5evnHACz592AHpN+NjfAIs9wfu0KXnvnN2CTEQ5s70NPNqBHD4BsDD3egNp4YKRT2Rhy/QHUeAw5HqN4MML565/g9aVLwCTHgR1D6CyDzsaG2ShyaFmUHRc3PYMucqxcuY7X3vkNhJY4uGen3RNz/TIzzAZAgylpQJYQ4NywDQzAxQur+Pmbp8G4wIEDi2WGZZsyloFB2fuIrg7BGaQGPrq6hqV3fgpwjm2797ssUSRRI3+LtA5ypcrpdz+5htsXfw3GBRb27EMv4UhFO2DxxQeXcf13byMRHNt27ysvP8aq7dclmKRpDz67ji8v/BoiEVjYtQ+cmfVyxux37n03sq/EAhDOGD5//zJu/O5tcM6xZ/+ia6tgpp2MMSScIREmq5dpv2Fhrl68gLd/+hMkQmDv/gNg1o/AWAkEKEJgcfnCBbz71hvgnGPfgUXj27BggjMj9SJPDQCXLZsx4PLaKt5+8yfgQmD/gUWDz73jRK9VIxm0071pFy+s4M3Tp5EkHAcWF10bhW132F+l/QKAC6srOP2T00gYw8H9e8tr0TLNDqAXOXQ2Mc+mfAKdZ1i+8j5O/+6CeRbs2mHuQTu4AKXKZ4jW5fPFfl+59hFe+8Vvzb28d7ebXnmOaV12OAh8aI2Vy9fx2tu/hmD22eexFtAaOsvqciitbfsVVj74BK+/twYO4MD2hUqdBm3fFTHWQkuFtc9v4a0rH0FLhf3bhp2AxZWv7uGdTz+HYAz7hn1EQ8c/V27fw9s3PwcHw76FAbTUpsNF7za6QF3muaqH6dLtu/j5B5+BM4b924aNXp0Ya3Hxj7fx8xs3wRiwN01Lv4XdnrZZmrQ2wMA80jSU0rh86y5+desWOBj29q181mV1CnY9mH7twQP8+vZtoJDY06uCyxiw0FLh5p//ANvv3cetjz7Gb+7eAQewp4mx949dENfX1/Hre1+Ba4Y9vd5U0Bd2fKndnDPs7dW33bQuLTWur6/j3S9ugQPY22+4Rhri6r37+OUfv4RgrLpsZB/N7VZOu3L3Hn7x2R/BlMb+bcN623T5ibX/ylfV69PfJ3etBiuj9Vy6dRdvf/I5GBDdtlmkvg//+9IlnDp16tXGA/INiR/96Een/uW/+tePtA3/87/7t78/derU3zzSRnjRGSqeOb+MhX6KM+fOgVKAMpmbl1SRmVSiVqrCZGamS/MiWDpzFguDHpbOnDG/2Q9VS4Y06zDL5JUH6dLyCoaDPpaWL1TaU6lp4PaKV0bJli7fMNu9/H7n0fsz1z7GsJfizLWPux6qyvJLVz4sJ05jTDxkf/bGTQx7Cc7euFn7DTCgogYs3LKfYGHQx5mrH3Vu83urF82xXlmzG/K2azsWjFn2gZmRW8EZUs5wceUshsMhLq2cN1W5GXW8jOwltcvQI0RaUCK16RAvLZ1BOhjid+8tGcAhetBJ34CaxH5vyH6zdOkahv0+zlyfvc/h+XsSxQAAIABJREFUyMq5j/6AYS/F+Zt/bH+g7PFeunwDw34fSxevtV/Wi+VzZ9HrD7F67kxl+rS82ZSR68aFZfT6Q3xwccX9RkyAL13ywQH9tn7zCng6wPrNK5XffHlSKKei+OzqBST9AT67Vr0fyZMxTI2MathLMOwl6CccCz2BYU9g/eYV9IZmu8OewEJPoO/N20t4ZR2JlWhRGz+7cgHJYIBPr5bb5oxV0tD6Zm7uddjXls9isDDE2vJZA0DsJ+UcKecYJOaTCoaFVGCQcCykAn0h8MHFZezctoAba8tueioYBlYulnCGnjDbSgTQE8x9Li2fxfaFBVxeOWum2XNiPqzySe190hMM/YRjkDCsnD+Lp7YvYO38OQwT7j49YYz2tQ+H+yyfXcK2lOPMe38Plm2AZSOwfANssg6Wj6A37kLdvwO1cR9q/R7U3VtQG/ehR+s4e/UjDBOOM5ffh84z6MnIsX8GjIw9EJ5BT8bus7R2GcMkwXsrF6GysZsfSgJFbj5KQedmgEBPRgb8FxneO7+KQcLx3vnV0juRjaHtNhywoPUWuVnWzrt09WMME4EzN246xqIYTSDzPGriJmChpcLKzT+ixzlW/nCrM2Ox+uUd9LnA6pd3zCh/h8/ql3cwSAQu3LoDrTS00ijGBWQmzTaIgbEsjFaGWVHS7MfKp1+iD2Dl0y/LNnofCi1l5QMAK3+4hUGaYPXz2+V8dh9jrIUfl+7fR59zXLp/v+Fp1RwX795DqoHL6+tuGh0PP2i/ASuXZQxXNtbR5xxXNtYxT1wePcCACVwePei+7IMH6HE21z5fumeP1735l714517nZS/euYc+F3MtCwAXbpXXZ+dlv7yDgeC48GX3ZZ/E4xmdwcXJo4cwGo1w8qUjBgR44MEBjSIrgYYqHNB45dgRjNYf4JWXDrcCFJXtvnQUG5McJ48dBRi3aUJZOarOhRkBS3pmZIZzsCQF4wInDz2LUSFx8vmn7V57ACMAG5V6EFzgxLPfxyjLceLZ73c9VADgLf+njfM0+SSO//n3MMoKHP/z781extsPxrnZrhZ45eUjYNt2gm/bCbFjF/jCTvCFHeDbdtjpO8C37QTrLwAAdDrEyWMvYTTOcPKlI47ZgM2ERHI3prXrmJkRY/P9pZdPIJ+M8eKx4xZ0lKCCRupjYzpSmYrXR4+9jI3RBl58+ThypUuAIXolwLDfjZm6Z85zmuKVo4cxyjKcPPRs6ZfwvRNpzwFPnqRggoNxDt5LcPwH38U4K/Dy9w8aH4XgpUTKLSucJ4OuE5am5vrKMpw8/EMj7bCjuVok1gBvrlOTXct4VQybALfPo9EGDh874RXno+NiRtClqkpzKP7s0FFkkxF+cOho7Zj6cqMSPJQ+il0/eAGQGXb94IUosPDPTSaVk1NlhcLBZw4jG4+w/+nDlZoa/rabQMbBZw5DqBwHnzk8FVT4gMT3efzpoaOQkwn+5PkXy3ofdBswVqnMLXiZglYwhhePHUc2HuHFY8fdiD8BZMbKD13bPVGCjmPHT0BmE7z08okKKEiEWb4CEnj1+4kTJ5FPxjh+4kQUTITThh5ISKHwj46/jPFoHa8cexFCTiofno+rn2wDLB+5zysvvoDR/bs4efg5sHwEPr4Pno2AyboBFev3Ie/fcaBCjdahJ2OobIxj3z+AB+sbOPb9/Q4QGPAwmgk0Tjz9J9jY2MCJP/8TyzBk0EUGlY1ngo0TLzyD0cYIJ59/GtrO76RQRckqVqRQRW7WXeQ4/mffwcYkw8vf/06tnoUcZ5B5AZkVNWABAIf378YoL/DigV2dgIWSGof3PIWxlDi8pyPLDeDwnqcwyiUO7X6q0sFuCzQO7dmJUV7g8N6nTHu9j2t3A9h48cAujLIcR/Y8ZQBXA7AolymXf2HHDkyUwgs7dtjf2kuhnt+2DROl8Py2bTNBhTcVAPBsb4hRLvHDhW0tj3Cw7eF2jLXE88PtU+cTaX1A8vnt25Ep7fa5bYiewAs77fHa2W1ZADi8aycypXBo187K9JgMKZQ5Hdq1ExnTOLJ/d+P6uWBReRQAHNm7C+NC4sV99eVjRnW/TUf27cJYKhzZtwvTJIlt68A8iW9+sC46McaYzj+xo4UhY+D97fwW1DGlaV7laCd56qJTszQ+fSdpDCzFb4CMHWkqstK0GzEAAqgbFmkzYZ2LTXozmrJD1eab5ruIsBblb1VgAQBsYSf4cBtYb+CW9U3I8LIeAcCFDz7Fa78+j//xX/xVec6SHnQygBbGa6CTvunYe6HAkCvjHTAf5VLRUh+1i6qb5C2pZUNoNJg54Do2gNR+Z4UBtiwfmc5Gbjs53vl3I5xhRySix+a9BDxNKsACnBuWiIBGk9k7ScGH24CkDy3S+vGzLIwCQyYVcgXjubB+ldzKlaSiCuAa40JBaW2N86YTX5mutK2MbqaNC+kAAGVrGmXSZW8a5RKjrMCkUBhlspJBirJCheGnn6VMUX4l7ckUkzZFHaDIWlpb+k4SqFiaWgJLBEQ4M8xBys0ofyrM91Rw9IVhIFJu/k94yWC0jdjjifxDACosnJN+AWUxQl6VN9HuCBb+bVg+Rj4n2Gek/bviVYslNvDDN1HadTCZgeVjd6+o0bq5B8br0KN104EfrZcsgXdvuHVZwA2gvDcAd3+Y76Iic3KDNW5eW9QzDaYDzgDuD/BUsrkFMiitVIWtCO9nADVgEWMrgLKzPK/Hwu8Uh5mU5olQG28OVfVeIAmJ37Gj8xNq20NZTywbD+1nbB9jBfPIAxD6Lbqat5vkT03x2//iP8Xem7/H0+cvummi18KDMivbVkOnOgYuzPqa32xNv3XJFhVGLGtUG1Dhps/YdtNyblsNUq9ZwCK+rubf/Wv1ub/+f6H1N7mqiYljx4/rt95595G2Yd/ObWe01icfaSO8mN/QPcVI7b8IXS0AmcPlV9+E8cWZwinziS0EpQEwGlWH6RjDUr4sAVBY/XOKEmA0GLxZksYL6c3T3q0oBDMNWESCgAXftiMKJjTgSYtIH06AwmNuGliLStOgkXJmTd1mSraJ0QeTUQr2WjHZlAoFk6YWMB0tAFCFAzosnwBJ35x3Kc35U9KeazgzqXMApT1opcATUM4l83cvcQ+9EFjEmRDLXhDoEGa6dsyaPX6cOwZDM5uWVcMZ4Q1ggPNHAIadILbCP5wEKNzf5HsJjrnfKae0tD574WcpCmVUYfhAoEkmNSsEZxhy4UBGF1ARmr0r2apYVRIFlOwFvaMELzOWdS5kx2idtUlGfkXTAq8E88AHvbOnggkNM1DigwmXDU3VE2H4z1AdgIlwulYm+UExhh6vQ+VVUKGzseu8xwA3Be8lYNI+dz0TKU/S8jnHOeCAhqo+X1ECBx1OT809Cy7K+kRAzbhdGyRokW7WH7mPyaCAKqigeYFHAyxi6+E9UeuE07VXjAsPaMDuh6oADX9EmAteO6+xaMNatI22wGLaumVW+kD0N7hC91YDi6Z6F22BxcMCFcB8wGJWtE1Y8CS+2dG9iJ6MZ3vSIiiWR5mjZFYCAb9GwlYF49BJClbkNYABIcpaCZsBGFuVWWrGOljaK9kLj+UJ56lEwFr4wIItPFUFEwQg/HPlQFpa/u2m9QxIo2Ubzh2HzURkloLWrNIB7hpSabP7YMiVWScApMyAJI2e7TBl7jsKc45Z31ifOQCVjc25VtLWG7HAU0kH2AhgUKfJjc4GwKJiOiVgYTNG0bwu241XZM9d8/S3BRBkbrf2dOev0NZ8HcqhiLWgCEFGLHoJd1maiGkIM0dlhXJyqGmRFQacZFDooZRadQUb5jrhgMBcoMKPJkmUP19qzeEkd5qxm9Eui7++kJUIpxGYqP5NAL4lmABKQKFkla2l8AGF/0yOgA6mFXQ2gpqMTGKD0TpQZFDjDetxiLN4flYlxjnUSIILAd5LTOYXae4VKScl00fMMd0vBMxtphidUdaoaqFRPSmnAyWz4WRQQarZGPtodrkOLGIF8h4lsIhnQIoHdfxmgY1pQMOPaUBjlhyqS7vbRKXidgOocIDCC+b+qc7Xhr14nKIJVABbAyxmgQrg6wcWT+LbE3PXuQgjBjpcJ9aCDQIaWwYyKBWt6zjzCsBA0gND9sgARls5VGWXQoAxLUJgMdhWBRYiLc9BgwkasKDPgouK7Im8AuR5mBIpA8AZhC4vqnkABi2hABRSAwLgmoFpQDEGLsw5Nf4Ly1rY78hVOTIKD2D0B9CTsQMY4Kp6nJGXo3zUSQLiPosAWJhpJkuOmS9xIK6e9tOCNnsP0fvUZy1IDpUrVfFWkBwqBBmzIuyQh+wFGnwWsaDt+gBjnqBt9W3KW59BAaqgoql6d897iQmGGqjwjdw+a9G0lzXg4n1vK3Ey242BCfs88cAEgDg7EQEbbjmgAhhc+GxFpJ4OmaDV2Hgp9HjdSaBUNnYdbTnOKoCCOuZAKWPQvQTKdsIJaJh945U0lNwxFAHQAAyj4bU1ZDUc2LDztJVBEaig7c6SQTWBCtr3eYDFw+yAU3DB6kDG6+jRNVqmCo2vOwQaMWCxFTGtlkUXUFFZZ4SB/LYAjIcNKpqWqWxnxvvgYQOLx4698FQHT8LEHOCi6aavXwisyMuOFi0uTGVYLXpzA4xKvQwLMLRILMApAQbjEnorAcYjjmk+CzbYBm4N2mywzaSL7W+nGVqsnBmq2S8ASObpllKShLPKDabQnG2oKWh2KrgnFZ1REyln4DwBhCHGtSgziIAX0Oi5DqQGHKNV7lcOKhhGAIMnqZNH+XKoGLCAXZdf44K8LPNKonwTty+D8lmLzUYv4UZfhip7AcQ78LEgeZRZaP62xNiKNoCiNm2GJCrGWsTWE94dTczEVoOJcloEUBS5+d/zkgFlB1gDpjYEys4xgJLtpPk9z4IerzsJFIEKlRfRkX6zClUFDIJDjjOXBEEqBSUNmwHAyQqpw286G3kUaBhpopzOagCPRAZF+07THwawmEdaBJjzENuOGhVlh9F2/Oogo16cz623YSAr3LdZ7Z5VbXuaz8K0tcVxqaS9bx+xehBbHZuRRE0DFWbdD5+tmAUqgCeMxZNoF91lUQ3govGR4v/AeBVwbBWL4fsvfICR9MGKSXuA4UcMYMwrj+q4THVUvZwWnTcGLNIhVH87dM/LJz3D+0FsT8VXQXKeGayFm11r9IjG1+Ydl6E9wNAACqXt5cEATx7FbIdcasCv/Mu0kUFBK8NUWakUA0znqzcAsjHg2Iu0lEcBFf8FgKocyv4d+izC4nmlryWQQLWURFGCNJJGEWvhMxWx7ypyXHuCYzTjevPZC1dNu2UQwMikYS+6Vpf2jeNhNqtwvmnr4AHg9SVRYfpZn7VoAhJmvd76vN98qVMrMAFUwYL9uxU7EQCKymg9hQcczKrrFandM816FXwJlJxMGkFFTD4E2M5ompTfPUZDW/aiBjRq/oyOQIPmm5GEYRpb4e/HNLbC9yBsJbDoAiLC+znW2ZzqSZC2k0esRgPIAKpsBp3PLnKo2LMnFj7YCIFFeWznAVrx58PXxV5MM3PPE12BRVfT9mYlUEAzQHpYwOJJ5qjHO7ozF7EK2zxpBB2VsPNoxk0ncBMsRrTatx01rjIYwhm8ZwKMLazarYMRxM1Ek89iKrBI+tCJKXTDVFHvVYXni0auPD9GF9bCtVWXBm8ok34WvB3AoI43ByBhKyijlEeRyRswBm9mTd0MAJRhLQCYDFI6MZmyKLIxkKZU0jHqv6Dj4MuhagbusCq3KNkM7XtTGDfr9aZJrT3GAs7IXe5/3MQ9LaRlO/wIfQtURTvGXswbUmlkUBh2qBtDwKIXyKHCNofLNEUqeEUSFRq5gWpWJ8EZwsJiIaAA4ixFytn8YAKYH1AE2e6AADh4/zuGNZRGKQk9Wq+BCjnOpgIKvzMu0qQGNJjggO3k+7KpJn8GrTMKNAB37zmgAbSSQXVhK9qACvp9HmCxGTDR9fdYcKiZIINxFmUzmgzcFPOyLX5sBli460SbtOWhZI/icZJHzQIVQDtg8SjYiljb/iHHkwrd1Zg/W5QfxaTT7CzpG6uEX6l1syyG57/wAQaCDFKdAMZWshdddyfCXrg2oQWw6C2YgnMAoMrKty4CcFExdLtGtGctKk2Etpp4BYCZd9wMgEGshRnBN50+pc20hORRXENa/0WhNFJB5zNi8NbaGLxj2/IM3qH/IvRZmB2KG7irqX0Td+011rawkiiF8kFEkqhpJu6tkkb5sRXsBRm627AX5K8wNS9EK2DRFD0LKkJJlB+hJIpYixiYAKosBRAHFQa0BmDCfp8qdfLmmQYoYumzaylYgSh4AFA+L7zp1CEnUCHzfGoBOaAuGQKAQkowIRzI8CUmDmjYNk3zZ8SM4A5oKFkBGm5f7H64djvpUp11Me1WndiKEFTQOoCtBRbTwEKYznXucEBCQdEVnsmKAbwJZETbvAnfRYy18KMJWMzKsMjcP+X801KbVtvUTRrVlIa2S8SObRtQAWwOWDxMUBFrW5focs6exOMZczAXkRGNWelWi0DiAyttsalRN8tilCuuAwzNeC1F7bwAw8UMgLFVrEUbKRQbLMSBRTpErq0cJBEGyJnGmXXUGCjzoPHBhAMcXcKunzMambYpahWDbBbPOdaCpEFMM/uduexReYW5YKXBW5em7orBmzJIAdUUtVYiFfovTMNbGLiBWs2QkLXwJVFg3PVJXapZVCVRMRN3GNMkUTEGY1qQKVoqPTfAoOxRs9iLvgcohsRcbOGIV5MkyjdyE2sxC1AAZa0VxmDrq5S1IgCUYAKoSp3sb2Hmp5mAQpoicpV6PBZU+J4DIAAQdpoieZTXuY7VeTCG7TqgiNV2oGUrx7mXuA46AQ3aXlug4cumzLFpBhq0b13ZCncM7L51ARX+cdwMsGjDOrQFFLN8DH4Uo8JIdnrmHcU5gwJ3noxpIGMaa7GZaJJDUXRO1+4PSnrr8Durj4K92Gqp1Cxg8SgkUE1texJPIozO4CL6ICgiI+yojnwBMC9Ezo1EJemBcbkpFqNJGlUBGA01MOYBGI/c3E1SHQ9Y8G07G4FFJjUE01WtOBNgDNC8CjiYyyrlPXS6gDwddLIYQyp6gJeiFg01MDRgJUNlB1lrw1aAG3lUrjTSwH+RK2vwtiDIgFP7HSgBBi/A+sNKBikCD77/wuxyYOAmSVSjz0JUWAvfyO0fzyZJlM9aAIiyFk3RdVDReRwKhcIrngfAGbW7gAxiLaaxFzFgMUjmGw2kY0EpaJskUU3pZ00Vbt/8bae3ARWxrE5AFUzQ36GRuwlQ0Kh8WH268NgLz2sAVAGE2Vx1JD+c5ne85ThrBBOzOtxG6pSBC+4YCG3ZDORGNmVAQmbM32kCaUGHbwRv8mcAMaCBqcCiLVvRFVQA8wOLWaAiBii6gIe280tPEsVh9x+lVIpABhessp8+sOi6j7oyf3WeJjnUvHWgYtmiwvgmyKPmqW3Rxrj9qNgK4AmwiIUG8MQhUo3uzEUESNRABIAwawkA6CK3o8fKuM+EeHgsBlB29IIUtZvxYMySR21J0bxYTAEWOh3UgMW4MBWzzQgumVI1wkJegDn+mjTOXWRQTZWE7bljyJBYaZbQABpqYChdVqUeF8p2DjUEmDNBcwabfQoAN36OlAcGb1tgz51TAGCeLwMoAYb9XvVf2P2ZUiivmna2vG7tgaxUp58miSJAZfZ/OmsxDWiY6t2zr7lYTQpiLzLvsdiWxaAq29PYCwIWBC4IWAyC+hWx9sf6T6GJm6bNYi1IEsXdMnb/O4AKJ4lqkjoBUXbCzFYHFKHsSRPA8PwWfprYmHkZQGN2p5h3Qgcj/r5xmearnIOKAdg+H1SZvpSAhllWOv9RzJ/hvrcxgnNeA0+xFLlt2YquoML8vnXAoi2g6AIyYjIjCgEBLTWYMIyEhDl/U/0Yc466z2JfYmlnNwssWMNh+rqkNptlKLqkmm0rg3oCKp7ENy26MxcdgIT77hkPtZJuFFgDm2YxprIXQDRFLTADYPiggUBEV3nUVvoyZgAL1dvmPBYELCaFQq40hGbg0K6CcAk0AEWjur4VgwDHNImNz1JEqgmb5RV0MgAvJg5gZAAIuhDACFkL6mjDFlpjmnm+CyOPkorV/BeJZRcoU5T22+pnkLK/sSI3Bm/yX2TSAwzNhfL8tLMOWHgFCpskUZq8Faoc4XBZoixbEbIWsWjKEjUtfFM3/e2zFz3UAQbQzGJQ26RtZ8heUKpZAhZk3iZgkYY1JVj5UiMAlSIOOspl6n6LaelnYxWzO4MKmg60YicARAFFRfZk5VD+NDmZOEBRjCaVkXpgNoig7YYd65ifgEJHrqlKJ1pp20GRED1hGAbbwad89AQMGv0ZOToZwQF0YisAREEU7b/Zj+mgwj8W8wKLpg73PICiCUTEvBB0nJU0EqgQZDT5MQAAPdHIWnQN2qdpaWfLa7n9dlwHOiKL8tc7Sx71MFLSboUk6lEBizbsyhNg8SS6hjh16lTrmV999dVT//w//sd4/Re/hWAMB3fvBJQy1L0szPcih5aF/du+SDPz+8rVD/D6L9+D4MCB3TvBGDcPCiXNy5sx2GoLAAhkmBf38tplvP7Tn0NwjoMH9lfaFc1UxWwXkzEsX7yC1996B4ILLO7f5zoaZmSbg3lj3eY36wBVCivXP8LrvzkLwTgW9+42nQ+bMhEAfJN0ZSTGTl+++gFO/+4ChBBY3L2z9bEGgJX3b+LH761BcI7vfPe7YMNt4MPtzcAC3DEW51dW8OZPTkOBY8/+RTda7o+gK6Xdnt++fRtXr17BX/zj/xDLyys4ffo0eCJwcHHR2ycFpnIwOl8qt8DCnGcmc6ysrOL1N38KAeDg4gHXwebcq1ZBh1eXn0JpFApYW13FL996A5wzHFhcLEerrYGXWAzGmUMQzI5Yr15Yw49P/wQiSXBw8YBpJ+P2GtLmXDOYTiBde5yZ83ztI/z4dxeQ9FIs7t0N1utX5VAiqfosPBCxfOkqXvv5uxBJgsWD3wFEYhggbqRSUpt9UxZgFIr+N8DqwuoyfvGzN8AYx579Byo1L3ygoe0xI9M7AHx0dQ3nfvkWGOPYudfcFwTWzO4xC2B07e8/3LiCD5feAecC23fvg+DlnUAsQAhypNIolMbtj67i0/PvQjOG7bv3Q8Nmb/IyQhGwGKYCqeAOWHxy7SJW3n0LaSqw78AiwEqDOYf1SDAGzjkS++HWN6G0xu9vXMLKuz9DL02w/8AiUs7Rt9vuJ2Z+wY0vhzMgYQyJMPtz6cIK3nzjNPpJgu9+5yC4luAyt+AiA1M5oCVYMbEAQoHJCZjKsbJ6Aa//9O8gtMZ39u4y88vMZC0rciAbQ2cTwEqZIAvobAKdT7B88Qpee/s3ELLAgaEA8gm0rZiNyQhqvAGVZZDjCeQ4QzEao1gfoxiZv5c/+AxvrN6AzgvsFQnyjTGK9RHkJIecZMgfjMxy4wzFaGKWm+TINzKsfXYLP3//U6BQ2C0SqEKhmBjZj/toQE4kVKHcR0uNS1/cxTs3PweUxt7BoJxfmnkYs0wcZVdSCrqQAAPW/vAlfnb1Y0BpHNg2dIBJ0zwol4VdnpZd/egPOH3uKphSOLBjoc5WZLnbJoEqlecGzGmNtc++xN99+HtAaewb9ivPZy2Vez7LTLrOsFYa0MCVr+7h7ZufgzOGfYN+J2Bx+dZd/OrWLXAw7O33zLo1qgM4kWkAcOXOXfzq1m0wpbBbpM4DQfey82cVCuFEOZG4vv4Av713B0xr7El7gDbnit53qlDQ2oBEreg9a54HV+7cxS8//wKcAfsG/Wruj9AjEezLtfsP7D4De3s9QLdIO6vNvt2YbODvH9wFZ8CeZLrHj3b38+d+gGSS4aur1/Hbe3chOKssG2aE01b+5QfjDNfX1/Hre1+Ba4Y9vV60Ex4r5MY4w7UHdp8Zw96GZZuM3Ffv3ccvP//SLNs312YbfwUTHFfu3MMvPvsjOGM4sG0wFTiwIDveldv38M6nn0OAuXuiDVtB27h06y7e/sTcF/sXBlOXCyO2bHieYvF/nL2MU6dOvdppY48g/vpHPzr13/zLf/1I2/C//vt/+/tTp079zSNthBed4ejSxasY9lIsrV0B0MBQeOHXkFi6fB0Lgx6WLt+IrtsZF1VhAIPW7gV/5tw5LPRTnDm/DKaKyscuXP/QdlfWMFhYwNLqRdMpZDa7D5l3k57pOEaMvEuX38dCr4elq++3P0ie+fLsjZsY9lOcuf5J++VtnLlxE8NBH2c//twAi4UdBlgkg7LAnTD7oblwBdmk1jh/9gx6/SFWzp1FYQFFoWxnVWsUUrsid7kynVbYzu+Zs2cwHA5x5swZd2xNRyq3IMJ0qkCMhadDXzq/jIVBH0vnzoNlI7BiDJ6tgxcT9DnQEwwDwdATzGX9SexIt+DAtbXzWFgY4tqFZaTcgAEzIm3mSbnpKJJJN7EPvlxpLJ05i+G27Vg6t2LOMxW2Ez33HdykqGVpav5PemD9Ac7cuImFhQGWrn0U9VmEBu6ypgXDe6uXMFwY4r2Vi421LYC6JIoAxMWV8+gPBri8eq52DYSVpwHzgqJ3zwcXVzAcDvHx5RXjP2H2uPJ6kTqSJ9HfX324ht5ggC9urJXeC1EuQ9mkiMnwgcYX71+ESPu4/f7FynQ6H/46gGrBuw8vrqA/HOL9tWUna6IP9z7CsgxuWcbQT4RdfgHvry3XJFEx6ZQf58+dxcJwiLNnzlTZuUrFa89r4LGiS8sXMBj0sbSyVlmnz1RUphf+s+9G5dkXk4Q4NiLCDi9/9gUGicDKzT/Wt03NbpA1Xbh1B30usPrlHaOrtx0+lcnKx6xDu4/MJNZu30GPcazdulvOK0tQYjrnnnRL2k9WYOX3tzBIE6x89gWK8cR+MsNGZAXkOCs/WQGZ2884w5kbN9FjwNmczEI+AAAgAElEQVT3PzW/54WZx85P6yjGGYrxBCrP3fRilGHl81vocYbVL74qAQ0BkUy6jw+waL9Xv7yDnma48MVXbn/9TrI7Tx6LSOu7dP8++pzj4t17NVZCS12bJnPpPpfX182yDx5Utulvt8q2KPcBgCujDaSK4dL9ByhGBaRtez4uUIwLaKmhMuV+y8cFZG7O34UvzHm+8MUdd06pXbSf+bgwy9h9LUZmnRfv3kOqgEt376Ow66TrR0vanjJtUMr9rqXGlY119MBwZWPdHZ+Z8jB7314dbaDPOS6vrzfeE/6xqp4LhcujBxgwgcujB9O3Fwk6z5fu3++87MU799AXAhfv3APQDlhQrN2+i4EQuPjV3anbiIGOC7fvYCAELty+A9ETnWVQF768g4HguPDlnanLxSK2LN2X35YwXspH9/mmRWdwcfLQcxhNMpw89GzN3MxIQgLApUxNU6dbP/n8M9gYm2UrhdCoVkCRVQAGPIBx8uhhjEYjnDx6aCqQiLb5pSMYjcY4efRwq3309+vk809jI8tw8rmnS9AQMXU3ZYg6/uffw2iS48Qzf9Jq2y64wIln/xTjvMDJ558xx1Z4DwPab1mYUVYlncxDMIZjx08gm4xw9OXj6AnmOvGpncfvoKe89F+knOEvTp7EaDzCyePHMUsCxYoSdEArvHL0EEYbG3jFnieWT4AiA8tHYMUEKRR6gpvUpIJhmHILNBgGCcfx4yfA8gwvHz+BRACDhGGYcPS4madvR797ogQWFMeOH8fGaIzjf/GPDKOTLpR+lGRgmZ4hdG8b2GAb2HCbkZgNtuGVY4cx0gyvHD0EsWMX+MD8xvoDl+qX9YaGMUrsetI+dDrAyZdfwsakwMmXj6GptoWREFUlURSHjh7DZDzGC0ePu2lhoTjftOymMeDpwy8hn4zx7JGX3DTOjATJBwoENPz/v/fDF4Figv/guSNVQGFfKqHhm74nnGH/04eAIsOepw+5ZXxZlF/HwjdgA8CzLx5DMRnjuSPHasCgDdB45vBLkHZ538hNXo5p+OLYy8exvm7ui1wD2oHPvvlf9ICkZ8F76qaDJzhx/BjGkwwnXzpSDlAkfbDEANXKIEVC4NUUXTx56FmMCmmefUlaftIekKTgSepkRcmwD5Gav8ko/dJ392NcSBz93oHK/rTRmB/a/RTGUuLwnqdqYAKoAgoArmOplMZzw23YmOT44fbtVVDijfY7n4InvVJS4ciepzDKchw5sNvr4MtWQOPowX3YGGd4cXEv8vVxBVQQoMg3Rg5UFKPMARutFA7v3YVxIXF4984aqIgBCn/fXtixHRMl8cKOnTVQQR1tZfebPmYejee3bce4kHhhxw53fKeBCj+eG2zDSEo8P9zuLVsFFAAqgMKPHw4XMNEKPxwuuPkMAFAVMFGMC6jMMFPFyACG53fuwCgz/8dABAEJAihu+XGB53pDjHOJZ9KhAxVNgELa5eh4PMP7GOcFnusvVPbFBxrhB3aA5rnhAiZK4bnhQk1e1QZg/LC/gLEuj3cXidYLO3ZgolTlPLeNQ7t2YiIlDu1qp2Tw79XDe8y9fGTvrs7bPbJnl1l2T7tlw+vuyL5dGEuFI/vm2PaUZb9tIONJmGBdCn8wxnS+9BqAeAfbjwqL4RV/qqT17A1KHbsfNEKc9Cuadp10r7kQNMpo7bukhLR556N+kjDffGVf21XYbgwCZ0kKNtgGsWMXWH9g0s4KOyKf9GynuQ+dLkClA2TS+C3G0hq6reSEA853wUF6cziD94fv38D/97d/i//+3/wbWyhsBqiIFQezx7jcaauntiwRtRdcQCV9FMq0MVeGSclUWc+BmAoOOCCU8ulUqo81BLNeE5mVbEs+Lr8X5XQ9Xi8ZNr9+RZLWfBU66VX3y99PYeRTOhlAixSKCeR2H4ktyj0WSSpT12JcKOTUubH3Ix2HsDo3zUPeC3of+mZv8ir46WkzqZxHgtabFeW0zHowKr/Terzp5MMgj4VhNoz0KZRECc6MJIobxkEwY/JORdV34Rv8fRaksk+BPKtPMithJFGpBafEdnHruaDriK4fuu4p6PpPOCuve5mX17QqyutdSTctml4WqD9PvEEH46/wallknu8iz+CbuMO6FDSi35QNyXgTSl+BX225GNULn9Y6Y95oPFDKhagTyHvcjHampQGYe2ZgxpkbCTVSCuvD8EY/yUfhjr0HjPzUtkzwWrYoIO6nmMdLEe5/1wxJoaeirZeiq3+itvxclazLIO+ByeBlBwJS0egXmFanoun6kZkPMAmYBcCqQ6rb2Oj6yj/9T9B/sIEfvv07N432oS5/qoPv0IPhj9DH/AthrYvY8YpNa2IGQq/YPNmhvg6fRVPbHnb45+z5//tvobXevKHlIcdLLx/XP/75Lx9pG763Z/sZrfXJR9oIL+YqotcmHSvjogQYlMqVMu949QKiUWTGbK0KMJ5YaWqZYnZTwUqtfi1i6DlgItoAi1joPGsPMPxCeUnqABli4IpMpzwBEylSLlBwBqFMdqjU6i4JVDCvk27MrVZ5S/9TBwqYDix8M2tYmTgIpgpjos4n5hgnPXCtkSZ9wLIqmW0Dg3JgqC2ooKD3P2c2vSuAJOl73gtuOoGFKL8zDraQgBWT0gxoQa1uAhQuO1TZJgOguKtqTjI1UxiwZC1IEtXkyTa+EnPeqEPN7TEAys53yhlyu9NSl5mUlNZIhZsZgjFIDZcVys8a1bMj/c7sXZRgwhm9pQoqfguXJQpAhelIPJaEfvNZC+6xL5X2Nr0IvUspDW77MP3sIOFRSZSy/hLhvYz9vo6A9SBpc0wZN9cGk5ljJ5jMoDk31660jAXLLBApoLW5tsj7xQCgNzDzE8gATMIIwADtydgMrnjPSD0ZgfcGUNkYHIl7yTrTs1Qu1atA4gAG3GrLTE7Rw9nQIQTqoML8bqQwAJB6rwqqneAXZ+MoO41+wrlKa7I6yHHZpiyrAZRMtkiTCqAAUANRsX3ZDKBoOi619TaMcrcFFU2j5F1BxcyCc4G52W4doser5m/bgW4LImJtM7K4doBimvTJ76hHgYhCLeEIGdcpva7fpi4VvMPlY0HbmjVNZrJVJ34eg3mbdm5FPAzz+8xtehnlHpegpC1Poozu2aI61Hkg6ZOmbEthxFgLiiID3MvVAAwmi7KWwNcZoRwqBiJ8ZiNWWbtteMDCrxCN8EbzOv4asKOpOXjCrfxJA+AVUEEjtFVQYR7UjCqRz2IrpuT3B1Cm5QTMubJRYTZUAaRm/lSkEEKAMQ0mNYTdzy6gIgwfZBRKQzABnlipkkqcH4LJHGBjoGAleCBAIRJQdfcYoHCsBVCeG1fvoue8FkqXXouaObrFw8gHA64TrspOOQEMs77pIIMzAaV1BWSYInretVVUOw89q5zMoCpshV+lm9rpezycVIqVbfL9EcLbFz9CEOGiNl/VazErtNauRgqFAaHmu4BhmFxV7qRv7guZQbMByHekOS+zjylTpJMYUWK4GDfXOAPMIEkCCzK4AR4FgL4BFg5kZGOgPwSUNEfcZo0Sgx4wzkw2pbww6Vw7Cmzbggrzm2ErSMZSjAqIHkc+LpAigZYayTApMw4FAIMKsokeaqlno8AnVqjPGa/jrEy4D7WO60MCFHR8wngYLIXZ9vygomk+6rCZdZtOtpTdQERsvSGoaHPcwtTadB+H88ZYAa18MCvccvMAjEfRge4ayt5njyI2e3z8a6nLep5IpR7vmIu56BoVFgMoawbMCK1UmTmKJ9Cabw3A8FLVTt2+Z0af6rPYqgiAhTMTB34LppWpCWIrkAMw7IXtGKeiDy0YAL+AXpWtIFBBoIFR760CMuJsRc1EDw9UeC8MmqZF4linksUY2+UHEFyAJX1wZjIjUlvnCRo9YDazlJ1qcr2LPrjQph3MjkYzZupgUJrRWoXtAEz4L6ngGjTLMGibZSlkLQA0MhY2O6fZRMBeCM4qgMKsqHw5c27qaFTfwXGQARg/BoEMCp9tGGXSpak1i2nHfPgAI0w928RaUBv9mhSVfQPcdnyg0Ag0gChrIRquGW0OF6QCOPey51SYLnseQPVhbJpay3wZIDEwACNByWIQwE/oerdZ0UQPjJdyKj/tNePCZJYCXLV41htYSWY5TfT7rngeAKi0cOyFO8tefYiwojbgd/qCzmAEVND/MicvgU2HOy47Z+kgQTEqagADgC3YBrdeYjB8kBGGDEYp1cjsG8mpuqbQDTvJ8wCK2jYixuymeJQsRZsI11FeShZoBExEGPVj2I7ZmVYMNDaP/xyYma7XYwi2gsEIl5W5rEmjHna0YSamzVOmjv76Y9rgh1//5kl8u+NrARdAyWK4mMZaUJA8qlwJgC0CGEHUq4nL6v/B9CY51KZYi1jMkpD57IUsACHBhe0c6dmgwoEBesl3lEDVQEUFtFng44MMwPoguFkmkEmJhNf09V1C2n32KUrlVbiQAJJ0ACZSy1xwc9xizEQTkIiBCjudWAtXgRtlW6hFXdjTGMAA4P5OufEj+DreKtAIQIZ78Fs5kwBGtkNE9TCGPeF8GBQ+wKDwjdy+gdtnLQBEK2nTvk2NFrKokLVog0lD+rq8PvyJGhIEMgRYIqy8zrBfTFqgYNkLBpQshvVjGCBhGDCmCnM9EajoDcBsdW7WHxg/mtu2HVHNs0rGDVfvwcqhYtKo2m7YjD3u7wBUACVbAQD5mAzAymYSstdbD867QR0aH2BwwUxHvidc1Wfq9LVhWsJOh2wAFF3ARPh7E8CimDba3tTBnVbMbitYioc9euuvvxhXvRJunhaeCX+eJiCRtXiu93j5vPKjep+bQRvaJtXxmAdglO3/5rMXWxltJVsUs45PVzb12wgynvAs1fjawAVFW9bChQcwGFfOf9EJYNA8XseXOgSxCFPqTpVDzQql6pKmWDSxFqmXv9tfj1YAFR9z7EFuhqK4QJL0XU2IqaDCghOmCUyRMbXB0E3LNIAKv+aINw5l2xcBGb5MSivwpI+eEMg6ZO4Io6Kp94AGdSJrUikhzXHzPT3edVWRQFFErjstUmjGkEuj4yfWAii9EiSFir1/Y+xF9fcqoKD5/I63DzRiICPmxximAplUyApVKbhHxfb8CH0Yfjpg+tvPdEXpZ33WgqaHMY2pEKjW3JjltfCDfBec14EERxyI0r0TggwuuGUgbLFG8mIAJdD3QIbW9jsV77ReDD0Zme33Bu75QqyGzsbOn6EBcC6g5Qa4rQzP06TCXjSFKwY3wzfgy6C0NBl+KFVoaQZPwISZPxkmKKwXgwmGdJBUi7K5Ym3dzLu2hdF9AJolTn7Mkvd0kTx1kTs1bb+pHWb7mwcUmyl2V9tuR59EDETMAhDTpKCCscryPX/AZMpyfqHArgCjSR71MD0NKhgMar3cI5RGAXWA0RVQNK0T+HaBjCdhorvngmQzXQBCJGayFn40GLw7MxibYTp8dqIta9H2JdEALCqei1j4EiRVmE6wLMDYBIwnSLmIg4ppRuxp84XVib3lHKjw6gJQhwpWxmV7TyZjl/U1mEw7lsVISWLSR1/0kOtmGVH8cDQbpQEjeQFMB1JpbTwovuE7jK7SrKAat5NC0f+RtrV5PvvmbqBu8PaBSCULk78SuzwBir6VRpFUikzZ0wBGaPRuSj9L6yIjdxoBHOG7RKo64Jgli6qk6vW+x97bdPToeNP2w8PPA6DhgwyqaO9fM0xmAFMVFsP5M0Ri7hUmStM3MgNf+sOqDwOoGL0dwLBGb9HvmyxSMfYCMblLvfBbTAIFoOKv0IpqJxjWYmwP2MBKoSRI524OYDJIkI8LiJ5oNHq3iaZO8jQmIoxYZ6cLOxH7G+jmn5jVHtOG+UHFVoGJzciZQgDRxjvWFE6OyMr10L3cBDR8NhYwz4KtAhiN7QykUd8EUzfwcEFQLLYCUExb7xOQ8e2Jr5W5KDvNc1xAhZUhJNgcwJgRFW9FrChgy+xQXSMGLFyWKFvoL7oc7b/7OzemU2vubuOXgFLgSgLQhv2wv88FKhqOSQ1oIAAZ9FvSdwUUU5FCd2AxiC0AUNPV03fOAGhtX2Y0jZvMVZuMGGsRSqLCNoXRxF748qjQ4B16Fcw29EygAZgUsZNCwgcYZdrZ6QCjrIFRNXIb/0OdtaA2Cx5hLnjQYZkBNtqyFlJr11lRAOg13/iO9B8jHsskAZva1vyU2KxSRiYlHYvBigyAkceFLIabzpXJThbxYZDR2zRYOqO3BsB7ORLVBxWrK9bHrqnTMqs0sRUAKv4KkkHJTEIWCpnSrsM3lgqDURE11yaDxGyjJ6I+jGkRYyBmsQ/R9Uy5qbr6J+YFE+U6t46leBhgomxTCTZDENEGQGwhaRIFGebvOtAAUHmgmoGizQEMN/1rYi/axKPe/qOIJyDj2xNzgwutZCf2orMcKhaRDFJtAAbJWtxoYouMV2Tm1kUe91nU5p/CWkyTRlGV8AZgUSueNyWIvaDUtCbtblzWVPVYaPtBdN4uoMI/RpXHopcxjPGkwmYwrQFWmNoSlrkgszfjYm4WIxY12YsFGsr6UiiazMFAM6FRGrh1hbXw5Txbka0uavC2QdvyO92NQMPOGwKMDMoBhlFW+jFCiVRo5J7GWtD8ZbG88n7IlZoJNkx7fXaifhJmEU0kjZoWhawnE6CupuAaWgLCXospZ+CiV8qkrLGbAL0DFmFWKcAaxWf4MDyjN5QEL3IoXhhplFcLgk4o7yXOEA3AyZyAZrYiJoNS2tSc8cGF6eMoDMCjdTPcqK4HMJwPIxKz/AhNYKG7zGo2oOhiwi7X0W4ENwYqpr1HtgJMtDFA0zx0roF2ACI2TzPD0C2IVTXfq9vzn8fKfjKlKx6NzQCMediLRxExaVQTCHmUpu4wwsxes+JhMSQPKzSq7/knMQ+48POytwAYzozsJD4tjNyRcIbrMIOUWakBGLHR/YeVtnYrWIsWYGuqmbspqMK5SmoGbQA1zwUAcAsSGGm5Q19FB1CBwqyjdj7oYR5K62yhOpZPLCAyzAWZvYnFUFxMNXv7UqTGICod5YuTRqXpOSwYIFFlQABPbhM0QXgsidQEKOoAZx75QIy9AKoAo9KWCNhoZABofUo7mdS4UBXj9rAnagDDzyTlsxbl8aiyFrQfxFqknMOzflSABkUe64B5gMNnLaYBQQqlAf/9O/U6aThPUtK2iNEwx8HJpEjixFSVxSBDNwCdpOZZpUo2b6oPg4zeSkInaY29kOMMIk1QhAkpYDoiSulGYEEyKPfdjmCPpILUcP8DwFAApp9cBRjRjrLPYDQd4pbZq7Yi5gUT83ZwurIU8wKKrseIQIUrrOmBR39VswBEOL8fI0oA0LFP2+OsAiSaQEasXVsFMNy0bxB78bhHOBjQFWQ8icc3HqosKgYsukQlgxM9mIMMUpsqsseTKkgIM0S18FkAM1iLxm03+yx81mImANG6Io2qsBeUcjdSUZvmtTsH192aBio8P0UNVBTlMXDFsFA3nWqglHh5YMMHGm67emC2mRTwU9YWqu6t0LpM+9omIoI3AFaWhBJUcK8wQljZmYJe1tFaFspkDeoyqFFJ6hREDGA0eRPCVK9lg/31wauVYapcmwrfVYAhlcYokxWAMatonp921mctKrKoGENhfojsz+ZGszRmgApMH33SMKBTa4YEhu1y102lloqt/J706iwGsadAsw8jR1lwz26BAWBKgdvq2yJNXWpa0xkSjZ3XsNKyn2Y29FfICmtRdhaBKsDoaQZYHwaZu5XUZbE9CzCa6nLMSoU7LbqOHs8qDGe2O/vamqdC9ryAYqvAVUz6RKDCDa547EVl2UgTYtNoWZ+1kLodwKB5/HVUgQSrzQtoaG+EZ7MAw7X5a6x9ETN1x7b5uIKbWQzjE5Dx7Y/uhu48N51fK3NpYi+agMUs1iIKKICyMytttpYIwJjpv6DONmO10efGUHIqjb2ZmCmHmsVaTANTShpzd8ycTct6/zMCBIXnuYiYtNuACjpvjYdYjsrv/vWQ9ADk5rjooTmf6aDCYlDKWsWqJufYS29WxUw6q36HUmhmu7W6UtkcoM5kKacCqi/QXFVZi1lXTZjXvSkjyrTf6PfYememeoXJwsSZxsTQIACoNkUVYAAGZPjVvJvSz85iLXiFDaq3UWldM3zbue224su1iTbUtT+H8jpggGUuqGNsVYdCAwkPZFK2JgZQQIOYC8+LAUzxYdBzjnZbWClVDvQHEErWzN0iTaClBBccUilopaGsfwKoyqCa/BXU6TTfqyPbI3trC6bdeegVChgVtoNQOHN3CDAA1LI0xdgUoCrlCqMcTS6fR206Xm3BxDzgIRbzAIqtZGqAOqjwpU8hqKiyFvV1xYFHfVrJWlTPSUwqVTIS1WmhxCrGZmh7Z/i/bQZgzJJH+fP60qitNnW3jS7SqK87usoWv00g44koqhri1KlTrWd+9dVXT/2z/+gEXn93CUkisLjnKdth12BeJ7cJWKxc/wCvv/NbCMFwcN8eALZD6jT/thPpvpe/nb94Fa/94rcQnGFx3x4waDvqZ7fJmPlbawMeqF6BSLG8dhmv/+znEAw4uH+vMwwz2G3kk3LbSplpRQ5ojZVrH+DHf78KwTkWd+/szFqsfPgZTp+5BM4ZDu7d7Y5LG2CxfO1DvP7uexAJx8ED+90+mv329pMxe4ytlAfa7PObP4MAcPDAPpNpSxVmHl2at5lWYErizv11XHj/Jv7y6LNYWbuE137+CwhoHNy3u3IeNJ2fIjPAyz9/SmH58nW8/ovfmmO9d0/13MY+7pgroMixvHYZr/38XQhofOfAfjPdnmSToQfm3HEOIUzBMmIGlldW8OZPfgzOOPYfWCxPiZ1HA471kNpYCKQGCq2xurKKn715Ggoce/YvGl2vLlkHBQYQJtWELUw2oZWVFbxx+jQYZ9i/uFgqzoDqd2qPNi9G+v3K2grefetNcM6xd/8Bc4mwcll4ywLmZUrv4A8ur+E3f2eW3WOXZYxN/VB64g8vr2HpnZ+BcY69dp+ZvYKc5IjzaHGrz29cwo333gEXHHsPLCIVHKng6NsK8T3BwRhDX3AkgiPlNJ3h6sUL+OXP3kAiBA4cWHSMBmfMdKIb226Oy5W1VfzyZ2+Ac47FxYOubdSnCf+nNjMGXLqwirfeOA0mROUacdeKtteJZcGUvU60Bi6uruLnb54GOMe+A4t2jIKBgfCGhmYMTFi/E5i7T1fWLuH1N98yz5HFA+Y4c25kopSEgAvLiJXLMS4ApbBy/UO8/utz4AAWdy5AywK6UFCFNKydBRm6IMBRmrQv37qDd7+6DSY1dkoOVSjjrcgUlDIyqMJekyOpUWi4aR/kY1zIHwBg2M4S28kznTeptTHI23sB2nRwlJXiXb17H7+6fRs6U9idpGZ7hYIuDKhRhYLMzTTTJjNN5RLXHjzAr27dBlMauyDcdC21m59x05kr63Qw91i59mAdv7pzG0wBe3o9Ayb85w5MR7K6vOlo3hit4zf374Brjd0iaX52RT43Ruv47YO74AD22PegkjqqtNNSVx4MNyYb+PuN6rJd4sZkA7+99xV0rrCbJVBKY2JBo7mmzXWtATvdsnEauJGPsJw9gNLANpYgUxqF1m5+Wl7aD02bKI2Piwku5A/A7DVC8wDlvUTrod/oXv+4GGMlfwCtgafsIKEGXGFLw4AwbzrD3SPPQIwzfHX5Gs5k98E0sFukbl7aLrODiIwboEGFGWna9fEG/n79HjiA3SIp2WrqpOvSs+B7F7jguPbgAX59+zY4Z9jbq8p/Yz4H7o2WXL13H+9+cQuCMeztVxOJxJb1p125ew+//PwLCMGxb9BiWQ/oXbl9D+98+jkEGPYN+5U2tYlLt+7i7U8+B2cM+xcGld/8AYNYhNsOg+7BsE3/5/mrOHXq1KudGvoI4v/66x+d+q//23/1SNvwv/0v/+73p06d+ptH2ggvOvN+S5ffx8Kgh6XLN6K/T2Msli5cxWDQx9KFqwAClgKIMhUAoIscS5euYaHfx9LFa0afnOdGQkBggDrPSprRd2+kfun8MhYGfSydX7Er1E7mo5Uy7aDR9gA8nLn2MYb9Hs5c+6jroQIAnL1xE8NegrM3brrj0oqx4AJLl65juDB0x6tLLC2vmn1eXi3ZiinBrPyHaYX3Vi9i2Evw3urFyjwxtsKF/W1p7QqG/Z49T7LzZ2ntCoa9FEsra4YxsX6RMOOVqc1hMgFR6tflc2cxGAyxfP4sFIwsKFOmUnYmNUZ2hHYiNcaFmTYpzGf53FkkvQGWz55FZn+f2GXGUmMiFUa5QibNcrmyAEFrnDt7Br3BAOfOna2wFr4kyswbl0ddXDmP/mCASyvnOpxhE1dWz2E4HOL62vnWy1BH/tqFZfQHA1xfWwZgR94jLyg/5SzFH66vIekP8Pn1tbj0CnX/B8XF5XMYLAyxtny2go+ZBT2xj9/uS/Z4XVw2x8vha/vxxha8Zc3fK+fOYDBcwOq5M/j/2XuzGDuSdL/vHxF5NrKbzWZzujndMz29kWxuVSSrWjIgCBD8YkO6gO0HAxIgwTAsWH6yAUMWcOGXex8MG/CLH/Viw/IC+cGyIftezQzkka7upqvp4lJV3Nn7Pj09vZCsOudkZkT4IeKLjIiMzJN5qsie6eEHHp5zMjNyqzyZ8Yv/t9hwExRKm2tFVtdKKY0CVU1T2LxyCYPRGFtXLrvrIJfmmpDaXhO2vWICOhuZlxhi4+oWJgcOmOuaC68CPIe2v3fNOMAzsGxggruFyRTHhmNs3HkPBw5McPntj8FGY4jRCGI8NK9hBiaqWDajamjrMqVxa2cHI81w8/4DO7+6CP0Rbfrsjx5/pGbIwPCxmtZGvclIAVFSo6QifIXEzW/uY6CAG9/cg7Id+XJWOhVF2gJ/5bR0bloUA3JrZwdDMNza2YGS2r1oGVM5vJgDZU0AACAASURBVLRuXeZl4kaMm9itB/cx0gy3Htx3KoW/LKkU/vro/nZ7tosRGG7PdpPXL5m/X/S6tbODoQ73m85R/DL7JN3r9s4DDCRwZ96+3Sa7vfMAQ8ZxN58GaoX5e1V/M1+tkNp8f19OIcDwvqz+zvGL2vov/xp5r5wG0/125rsO9iFXGu+UUwwYwweyynwWW3gc1ee75RQjMLxVTpPLxhaPqt+Z7mKo63/nlIIVq063HjzAkDPcvH+/cXtNdvPefYw4x42v7/Vue+PrexhxgetfftO77bUvv8ZYCFz78uvebQHg2hdfYzwQuPZF2L6LWrHXbT+23zzrDRdvnD2BaSmxfvp41Rm2HeKgPgONygmb7SgbYn3lDGZ5ifWzJwAsdpHybf3UcezO52a71nRRQM+n0PnMZnUqrSphsrKwMgdUiTdWTmO68wDrK2cq8FClaVPmFdRQnIP9DABrx1/ErCixfvKlarr3YoNh8KLjptfF136IaSGxdvLlXmABzvHGyuuYzeZmv2072CBQbTsmlMrVnFDbWeEZ1s+vYnc2x/r5VWieBZ0ZcqWq2pnemLbrXV85i2le4o3Vc8G5YJyb/ciGLm7C/Q3t8a6fOYlpXmD9zMnaueryovZvnD9njtU7Ji0G1WeemdSvqkr9enblAmazKc6sXjSZm1B1HqlzT6PRWhsVQ2rjNnDy7Hnc29nFibPnkUsVdDJdR1L57xVonFm5gJ3dKc6uXLCdTG3XjeqzMtsulUahFAppgqfnUuL4mfPY3Z3i+JnzKKR2r7lU7jUrw5dUJr7jNdv2ldOrUPZY2l7+Ol8+vYLd6RSvnDFt56XZL6U1ChvMOyslpoVEbreZl6bY3jMvn0Y+m+K5187U40zonDc86E+vXsB8av5OscWwkYKOc+cvIp/NcPb8xVaoEFal4czGLABYubCG2XQXKxfWvAD+StkAqnX58zhjOLN6AfPZDGdWq+0C9m9sAYNgpFAaCgxaDAEusLa+juk8x/raRROLwYWp5i6GAM+qaTwz07KRAYzRBGwwwBsrZzCVGutnTph7RDYAH2bIJhVkZPadDzKIAYcYCmSTDKefOoQ50zj15BPmNyyYc0MY8uq8klsJTQOAH/AxSmi8KCZ2ufD8klGH2UCDAYQT4wlmpcTrB54wsR4WKgL3rAgqKGvV8eEEc61wfDgJOuN+Rx5ADQxonceHE0wLiePDyUKYiNd7fDjBTJp1pADC375v2rWVwX4797PoRUH09HotM9t9FculxT4+nCC356yL+YfwQ27aPs8mwfQUTJi22r2eZyMU0Pg+GwXtUtuhtm67YoypUnhRjBuDxJsyUL0iJpjDnLd4WadWJlyUAPO3OjE5gLlSODk+YKYl3NmCDGYEhIXE6088gVxpvH7gifROt9ipQ09irhROHz7Uu+3pw4cwVxJnjjzVu+3ZI4cxkxLnnjuylBvS2aOHMSskzh497KZ1dYOibZ89cnjxwr+hRoNV39br183YIr/0YGHG9PzP/0/zmTqci2IrqBNqO8eujkSLr775HLkf2XbJlLaUgSobVtsRw1rnm8CCydyBBaWc9ber8hn0fGbcfvJZbV9iS/rYxm16gkVwPLY9ZVWyJ7Q6Nm9aBRGsylLjfHOa4y4++PSX+N9+/Mf4r/+jfy9Yvk/cRU2JWmCNcJkNwbIBdDaGtu/gAjobus/KBnZLZUaMafSY1AKgUgwABKqB9qYr6/5SKOV8dcn8rEbcdqaY15Glziu1SKkUtC3aDlBtq5C61glviq1oy5IVW1tcQWr9hdI1qFBaY1pIBzG5BzS5F9A9GQpMhgLDjGMyEBhwUztjIIxLlODmfZxxO83Mo3O5F6M+RwwCwTxveV9JoXPUdK3QNP871cwQHCaYPdr/ATfuWwNepekdcAYOq7jJwlPhVC0miirWu9TPNM3eh3RRQM12oKc70LMdqOkO1GwXcpaj2Jmi2Jmh3Jm5z8XOHMVOgWJWonhg3v3Us20ZovzPgOm0mVf1eSLC+BmCFjE0gxDZJMNgnDmoABCoCHT/8Ef3u1rcaYz9zem+udcMTctkZOq6nqbaEkPOIDLeuwOYirPws0H56hT9jePgbn8/gnW39BPoDNNIpf879MEg/r2klqvgFbV51Ob9v/nvYPj1ffzgp38erGcRWLh1eOeVlvGvH7p2/NgLivfxl6PYi9R24mmpv2VKJY4DulNxFKkq3anlUm5S+xnb0Ce+ok9aXH8fT//P/y+01nt8Ujx8O3f+ov6///m/+lb34fizhy5prde/1Z3wrHdA97JQ4dKNAmGhOt84D1SEZKc+lT1J2Qq5XqA3Qx5sM35YJ8HCP8bBAHouTSe3zatIyXQBK87dg61z4HYKLKJ0ra5wF1CBBUGF2ZgDC3AOjSqLFJgAtDbg5YNGvE6gCjalLDe0flVWSoY9VEo5m8oOlbSmgoAeSGkxtO4imXUdMSO8bp6GAwtyT9orWEhlsgHR/X0uJbitrTDgHIWdR6AhmQ5Guf1txVDhb0PpCir8z23WFtDdZCkgSdUPMHBRQUUuVaBUxFABVJ1zmi44Qy4VODMpbZUCFNcQYbUTFEpBcN4pfWyTNUGF/+yijz5QBL9SO52uGfPVTqvyz0FpuHIxBES+ahEem712FIMfJTPgrLpv+pmjAGh7zzPTTRC4X3hPwwZ7cwFgBxwHa525PlbMbJ0MKIihgMwluJdid8iZ61z6aXeHFqZ8pSMOqqcReiYYOJRzj/KDtH0FoQkqmjotfqfDb0MBumRcsJoq0Wb7BRBt6+tTpC5XNlgeDyfQte6u1A8omsLeTQqICsKBMJOT1CE0+Msta77iBiwGCyAdYJ0KiF4U3E2WCuJexpbNTvWbABb0/utSd+OxPXzrDxdLQAVQufFoYbOhAG7EmwnRe9S7ZiRzSwkIYXLHAyaTlL0bxqOASeMCQFG56ihZy9oUwFFLqlg/i1YftcK07ecGFUOFUzOE6ahoPnTgFoCGDyXeexNkQAwrNYOOjc5LAzSE5yQFYt45JIjiwl0vWhjI0GIIzTMohO5QUoUPPF89oO/+6DM96FOdfsCwJz2kCDbmUoIzhkKlQYOsL1DQ57YKw6kRrpSl1hH3c+JOTgwVvutTE1Sk0u1K/3gsZBRKgzMNxbX9zNyfWmqNbImORdplyXxvUinoigtqlti4GL/iOWew9TBMsDJjVVvXoV+wy1JpSyUhYHDmVfXWIUxQXQw3sBIV3kNZAIyDDaU9nuUBQxbSpI+dlmBCO8AYaoZcwQJE1Skk93PB6MWccpEy5x4F0zmjVLQ+VABptaJr+koyPwMQWQwaqf3ral06UF1AAmiHifoq9L4CRtMh+8pGvE++Lcqh5Wdt+jYAA0BNQVtkBBjJjE8Lal+4deyhqF7Xe3qtXXQt/KaAxWP77bP+dS66QgVQG2131bF5BpY1AIb/kPWsczE5q2Ign9nRfwmWjcyIO4HFApBh2QA6l2CDgQnwjhSUpQrb9XGDSp0/oJMblAML5hXvcmBgQSOlZnBzTJQqk9pokVV1L1ySVtp8ePksvF3W3Nmq9s7di44rG1ZgITIXc6G5QCG1C+JWQKBa7AUswpH+qqq1qxvJaJ22k+epGlSboi9QUMe+kMqmgE2ctp735xRA+OZ3NnyooFoWi6Ait+sbgmM3l3hy3O02ouzfTCpzKWiNXq5RvjsafQfSUOGfSR8qquJ9DJzOkwUM5q0TqABD6wo8AKtgtOxnDBhKV7VIBLMqBv0mgcpVyiu+F1T3zizkZyO33WUAQ0mNwcEBip3CjchKVJ0sGqTNlQEMqXXgruKrF22pgF3HTahasb0uUNEGAH5HMAUb+w0PXfarjyphvqNxPnXEDeABY6sGdekcEiimrKmWBW3T34c2mGhzjyJQWAYwzDXXfjPwIYRBO9Dtola0WVv9i2XVi/1QM34dUsvGtlew+K6qFxq69bfx22hLwEVPqACCTrHOBkBpOgSMSzPanco+BDS7Ri2y2E2qnANABRaL6lbYzr+2tTz2bIugAgjBIqFWAN3coGi0v1IgIhcoIK1muJ4ad22qqsLDyhfcHJCZDmrS8TJqgQnzXh0nBcKCc/dZc2ECtXXlDuWrFnsFi9SIvDldTpsBAAx09d3UoJCAxFJAQZ8BoLDXetxxa3vGEJAsAgjfCA5kBA4EFougwn2HciP/ba5RpGD4dTfUkiOWFOcCtLs+pYDCnw9uAAMwKkZXN6kml6jYfMAQXFegYds7yEDkKqVK6AF38RiUQQosd8fsAEONOwOGtrUvUtMVTMeMywoqAGZrWhhrc4eqrTNyjwIWQ0VXKIiXa4IN6oz3BYgu+7NImegLE/FyuaLfhilsOAbft1oJqVgLqZtr8izqMKXqUiwDGKn97NK33gtYtLlHda3c3VW92I+/37etWjxWLB5bH+vvFtUFKsyMcKTdG0nXGQxgZHCFo1DmC9WLXua7SVHl2y5gQceZWdWCXKSWNDao3Mj2FLTtvodqBYAKLIKsUF5Ad+QClVIzIOx+uo4DD5fH3iAjCRPe9uJjTMVZ+DUqyB0qjrXYC1jMbec5Lj4Xu1lQp5RMeB3TPkDhKwbxuvwO8zChaDi3rbK6npsggvYt/uwgwbpBpaAiBSKmjcRkmAVg0dU1qmAm7sLUSegW2E2qhR9A31WlSHW8uf1PKtOmq5vUItXCNwIMLQEIAMoULBQMHmQIk9s9coViiOIxYF0OtTb3Te84FgGGlmFmpNjKWdkp/oJUiy7mu0fRd3deFkBFn4KRqfZUOK1pv/pa0/40AUUbTNTbpdtMpcJEcDwMwGjel+4g0TR/r4DRFSqAyjVvLwpBF/eorpW796JW9I23+DbcobraIrD4rqoXjy20/spFA1QAzXEBQeYmAEyrSsFoAgyyZdULMqWg51P3uY+5wG4vPsPBQhfzYy4WuUF1UCsALHSDqs7/0Lb3VIimgG7AKVI6i2IzLJT4tTLCeAygBhlahTBhToD3OQEU9p2OIYizEEMomCrVBBjkDhWrFvR5GbCIO9CxxQqGM+/yjKEiFSztxyhQbIO//mHGg+8p+GizNpAA4Kps+/N2qZJzAip8oPDXS8sNFW9VL5B4vkkFgHdTL3x3KIY6VCxUKaJl3Hyt3UJd3KQQfO9mUunq8rCuYIqFkOECvlviMViZV4BRwAGGltIAhnXfZEqBKxNMLQYDqEEJfXBc2y+qgaGkRja2oz1AMv4CqOIt+lRGjzvDfjaj2LomLGirYk+2H9WuuwAF0AwVi9SJ+HOsAAAhYCitweX+jIDH21fR/sb702UdQFVhez8VjEW2H4HUZMu6R+0l9qLJ4u37qsVewIJioPpaV9Xit1ax8Pocj83YEtmiWqACSKoVwUg6YDKgyNxMYxwsGwWAYda9D+oF2TLr8QK7WRNP9A7mbg7a7qRW+PNTYMGr4lyaMefTzsDrQBEHdMPbvhebYaAicpXy4jGABsiowUUEFN6xAR40AVWchY250Mx09ijOwg/ijlWLvYDFog5OW6AoxWu0qRRtGZgyDyyaYMOfFn9OAQVQgYQ/3VcsAGDuwUaegCyCCvpeetMFZ8hLZVKzRuqFO29aBwqG//zpEtjNXMfWHHMbVDQBRfzsVTpWLAxgaK2tqlF3k9rLc5OuD8aMm5QPGVprCOt21BSPoTNUgKGVG5jhE0BNd8DHB11HroHnnFGRPbJ8p4Cpf6GD+AtyjwLqWXm6GLlH+d9969qBjy21H8tkU+tqXWMolgUKP10sfZ/YC5oAg96XAQyKt4hdoirXqOZ4jHif27ezPGAA6biLKuaH3u39AHUVa1nbi3tUm+1XFqlF9puiWMTLPlYvvtu2XED3IqgAQrXCjweIRuFYmUMrO7IP0zHdl+xRvrmI3H4/OArs7goRfrvAlk0xazYQdLyTYCGG1XQLFtQBhK5SaIIJsJp7lB1OzaKAbsC4dNi4DAcZkauU219EkOGPJMZA4b0nj41iLhhzcRZSVdmhSLWwh5esUdAFLAqpai5MKWvL5BTHNnRRKaa5rI6JRv9tTQj6u2WcOaiox36EEOJbrEr4n2lem+vTIqDw15NRvEVCvQCQdI1yfw9muhyLAru5BxYMFPdArmPecl4bmh8/u1LPeQVfsQjjMFJuUnt5HOZKI7NuUjFkJOMxGHepaRlQAUZmlQhSfkcmxqwLYMiiRDYOs7oFLkuQLv6COrXA4iDuJusCFF1Hyfss3xeEuqx/kUqxDFD48/06F5VqUUGeDxhdLK5fEc4z7yoxravFkGXcB5cDjP6mg2KQy8TW+J3/vu5RZLF68TACuRepFl2NgKivetEpa9pvq2Lx2BptCbioj7IDaFUrQMHcPDMPS56ZTq7wAANDUyfBd48CjOqwjGsUFXoLamoU9VS6rcfqBXYjDRJAA0y4z/SDrrtBLVIrgAY3KCAZXwHGocBsZ9l0wJntuBBkGClDVOffpZVlbtsBQGhlIAP1+A0fMIAQMpJA4X1ujBuhY0/EWZA7lK9aAHBB3HR/WxYsVEPnwDe/c+QHUS8CCl+lkCouUCcxzIQZveYMQ8EhOcPcdtR9VQMwHd6pveHHrlMp1SJZm6IBKNpgIl7/bi7dPsexF02uUYXSGAlWpf3Vza5RcZyF4Mx2yu18b9kmlcJ/FgdKh+fapsjlqYOb1DIWA7A5lggypJkWxmMwcPqNMgZWVoBhqnrDAIatyLwIMLRSGEQuUiqXGDwxCJapx1/sbZR4UTYl35bJuJK6fvoCS5O1BWfHUNHF5SlWKVKwQSP41PmeSo2JAHzAKKclskn/x3dYWE970+rL9v1bEDg8LMAg1zwG1EYj2jJlpYygtw0GUu5RVftu6kUX28t6+rhDxd+XcY9KWRewIKXUP59N6sXDiC16FPaYr0LrfXdaRq0IfemrOhdMmvztJqMTAQaCFLW9LAIKggJfudC5tJDQDTSYjQ2pTYutCSiA5dUK+7lLfAW5QUnfdUibTpTUphNjKlCbG7RGqGbAgQ1LA4TgQYBpk4rhjoX23XuPj8lNa7hOKM4idoeKVQugcodqqoZNYDEr1cKg69iaMjHRsl2Bwnc7MgpGidIuM8wq16IUaAAIVA2grl60wQTtJ31vA4ommEgpJf5xl956/cDuARc11ygB5grqpQK7U3EWHKYDnnKL6gIU/jIKxgWKllX2N9LFTaqr+VBRwa/pWGkLKz5kGPWiHvRd1cfQTsEA4GDDKBgDt02WDYFJCBhaKmQJNXhwME4DqxDHXyxj/u+oixKwF3sUKSDbXJ9SQdltQBG2tZDtb0xrV18EQA0wTIccrYBRd+UK9zNX2sVaUMaoPpb6m/ogsQxgNA3Kp+CRwXSiCQy01L0BI7Zlg7vb1Iu9KhltqsWyYOFP3ytg9AGLx/bbZUvXuVhYyM1TK+LsRQFEAEbNEF48hp3HkIfqRcoWAEVYLK+oalf0AI2FMAEkgcK134Na4b4nO+AD+PEVJjUrdZKtC5F1KYHtSFGHnduTXKkZHiBqlY61AJyKASAI+K6+q4VQ4b43wRLPgjgL3x0KSKsW9HmvYNElpWscl0AQQd9Tbk++SkEdcb9YHY36G7gwoEHZmFzshXWdomllLpF5rlS0ff+9C1C0uVI1fScr7TFN7b7TMfmB3VLDgQUNpVOti7bA7jjOgjEWuEV1AYr6cvRFO8UiVjG6ukmljObEUKHddwbNq8xTMWRkqaBvbYK+eTYyxwcLFTFs+DsyQwAYWUL51VJiEF/vhVlOyaJ33Qhz3OFoPtC94/oo+iB9+nmLArRjqFiUPaoJKGIFhEbyY8AgqKDpiwAj3l9/WylXrtT3PhaDRB/AoH0i1Sb+O/kFHFMSIhPMAQbQ7soTX9NJmOgZ3L1f1tXtaa9g4c9vA4zW87gEWMTn83HsxaM1xpgAsAHgY6317zDG/gTAk3b2swB+rrX+9xPtfgLg3wLwp1rr3+myrf7KRTQq3UWt8EfXAZiRcsaNbz3tPCxQaA2/yB5DXk+j2BUoUsrFnGIoOoIGuWSl4GYRUNA6gOXVCtpOS3yFtp036og7sIDpFJFyYTZqOizVNG3/2X1iLAgA91UKF8zNFOKAbwD1rFJN6oubloBSwMVZKF25QwFwqgUF2caqBS0DLAcWszK8znyYMOvWUSdd1b77UEGuTzFQ+OuRpYKSCiW5/Fg1guIvfDWjCTRo3+J9pXc/fqKM9t1fNv4MIEh165vWGhgIF8wdqxf+efFdo+i8+65RAILA7tgdioBCcAsYPVWKoPgWM9cKpVslxYIUPs4qVcMoFuaaakpX684HQqAA0mqaiTvhZj9YHTLoOOKgb8AChk0ZzQBoyh4Ngg1VAwydFWBZAUwOBjd7JVUNLKjIHgCIXLn4C6DeIQvaJTve9ZHzR2GpOIC97EdbPEUbVCwCitS6gzacPlMHHaCnZAwYbW4k/v7QduqB5O0B3eH6muelQKIvYHQzBibMizqqKlILmlQM/zo2g2yhwrBscPeysRdtnf8+sRaP2o3osWIRmkbVB/k1t/8CwE0AhwBAa/1XaQZj7J8A+KcN7f57AAcA/L2uG+oNF5s3bmNj8xrWz69g5dy5ZrBIdII3N7dw+fIlrF84j9Uzp0zGKM4B5WWSIpkfAOPSwcfmrbvYuHEXaydexuqJlxcDhfd56+0PsHH7PayffAkrx192sKALAxjuuzKAoUsLGEpi8+572LhxB+unT2D15Ku9gWLzxh28uX0T6ytnsHrm9V5qxdb1m9i4uon1C+dx7vzF8Fwn4iuoIy61xtbmFjavXMbqhYtYWV0xCoPtSCnbifJdpvyA6M2tbfN3ungRK+fOulgLv9CXOT7UAr6v3riDjc1trK+ew+q5s92hwp6Hze1t/HxjAxcurOHsuXMBKKVSz/qqxc1rW7h29QpOnFvFq6fOQioEmaDawOLujWt478YmXjy9gh8eP12rQeG7O/nfS6Xx+Tu38endbRx95QyeevF4oFLMPXXCBwqtNbTSkKXG/Y/vYuejO3jihydx+KUTkKWCyHhSzYhB44v3buOLt6/j6Ktn8PSLJ7x9WwwUX39wB/fev4WDPziJJ194zV3HusNd8v6Hd/Hg4zs48uppPP/aKeSlRJ5VwEP77te8oPP+7q1tvHtjE2fPX8TJM+cQB3bH7lBA5Q7FGXBjewtXLl/GxbU1nFtZMZdiC0z4trW1hUuXLmFtbQ3nzq1Y0DYqRsa8Y6ffidbmFgVga3Mbm1cuY+X8BZw6txJAbkqlMNepgYob1zZxffMKzqxewOmzqxgI5hItxJCRCvq+tr2FrSuX8ZfeWMfq2TNmFwFoodxn8EoVNhtX4ACuvvU+NrZv4eLLx3Du+0/bgnohWKSK7OUPgLd2d3BnvovX+AivDA+YZaMOGpDuYL+Tz/COnOIVMcGPBvV0uG32fhG27eu28345w7vlDC9nY/woS2+7qVNL2/6RMG3bYirijvoH5RwfqymexRjPi1Ewr0mpoHV9rub4RM/xPBvh+xhBCEPCUwlMRB0wDDAAQzsA8J6e4/bOA7wixviBGNcgKFU0j+Z9oXN8jjmexQhPIwz4X2RfIMcvMccxPcJR1q/tp3KOT/UcL2UTvGiVuZTF1bgB4O35Lu7mU5wcH8Cr4wOuM+urGKlsZXTNvlNM8VYxw4nhBK8MJrVttgHCnXv3zbYPHMTxJ59MLtNkd+7dx61793H68CGcfPopN72LanH7q3u4/tU3OHvkME4eOdS6bAwuN3/1Da7/6muceeYwTj3zVLBcF/eo21/ew7Uvv8bZI4dx4nD7Mcdgcfvre7j+5Tc4c+QpnDx86LF68S0YY+wHAP4GgP8GwH8ZzXsSwL8N4D9OtdVa/4wx9tf6bK+3trdxdRuT8QgbVzbBZG4AQUkwWZhAQ1kCqgQrZ2Dl3LxkDqYkrlzawMFhhktv/ty2K00bJc0yxQysmJuOajk3FbWLAlASb27fxCQT2Lhxx4CFfemicMvEL10W0GWBjRtvY5JxbNx+r+/hYuPGHUxGI2zcfAtsMAATAmw0MVBhYykY51W62WwEU/jNKBVvbt/EeDLBxrWbFVgwbpaxnexY/THF4zg2rm5hMjmANzev1zri2gIBdb5j27xyGePxGJtXLnc7UHvTllrj8qVLmEwm2Lh8GdoGVpvtsnCfCQo4d/M3tq7jwOQANraumzSyPnR6dStMwPYgOB4Fhp9vbGA8nuDypUuBO1ScejbuzCmtce3qFYjRCNc3r3QGi3kpMSsV3ruxCTYY4a3tq5gW0rn3THPpXv733bwCh4/vbENlQ3x8Z9suU2KalwFY5KVCnkuUhTRKRa5QFgpSKtz/4BZYNsSDD2+jzK2SUUjkebgftE1af14qfP7WdbDBCJ/dvebiOKZ5Cak05qXCrrcOMgKMe+/fAsQQ9z+4FV0KbOHrwcd3kI3H2PnotnPhIjVF2ExXwnYGBoIHCsNb169iPJ7g5taV2mVIzxj3jtAdSjDg6tXLOHhwgitXLmHAGQY2jWtmg98JUDg0mA5flzc2cGA8xuWNDTOfmRgWtx5erWfA4Y5HMIZrm5dx8MAEW1ev2PgP5mphECj4sSK+3di6ivFkgjvbm2GWK2953+ODlBo67s3Ll3HgwASXNzYq90MCffsZWoNpZe5/NmZNK4mNW+9gMhrg0lsfmnXbexYXHEyYLHZikCEbZ8gmGQZj81kMOe7mU4yFwFtqDjEUzs+dOl3U2RtyVksb+q6cYgyGd+W0dy2Dd+QUQzC8I6f9Glp7t5xhyMx7k1EaVnr5287sOlIj+m3B2B+rKTJwfKxmwbxFYAEAn+g5BmD4DHO3bBwXQcHXuapSyebKFCy8vfMAmWK4NZ+6eVNplp/aLHZTqZJ1LT7HHBkYPsfcuiBVr0X2S8whbNu+9omeY8g4PlZTd8xx2lx/OoGBlhq3d3cwAsOtnZ2gAjylQPbrqmhp2voq21vFq/wJOQAAIABJREFUDEMw3M3Da6zdFcj8JW9PdzHiHLd3d3of86179zESAjfv3XfT/M42H4pG1eL6V99gLASuffm1+z36qgVzv+mwa8c4x/VffY2RELj+q6/dPWBRO3/917782m2bceZeKeNWVaJ9v/6l2e8bX30THE+8jvh4Htu+2v8A4B8gCvGy9h8A+JnW+t5+baw3XLxx7hRmu7t449wp80BTpQGDcpaGDJk7yFg/fw67u7t4Y/WMyQhVePDhQYbOp1DTHQcNuiyw/vor2J3uYv3ky9BzAx16PqtDBeCggmztxI8wnRdYP/lSp2P03aLWT5/ANC/wxsrrnYFCeyPz6+fPYZoXWDu/UlWcTkGFGDiooNH99YsXMJ3NsH7xfNIVCkiDBQdwYe0iZrMZLqxdrP2h/ftB7L8uGMPFtTVMp1Osra2ZbQRQYY85UB+si1s2xPrFC9id51i/eMEci8gqqEioFZoL64ZiHiAXLqxhujvF6sWLBgZgwILiSWik2AeLQilIBZw4t4rZdIrjZ853BgtSLr5/8izmsymeP3k2GZjtKxVxPMXTL5+CnM9w9NXTACq1IHabarKDL5yEzGc48Pxxo0CVRtUwn+v74NvRV0+jmM/wzCtnGmMpfKPOMgAcfvkUIHMcfvkURMZ7vQ6/bJTH771yGpNh5tZ7YFgFowvrO80ZAyfQ4Awnz13AbDbFqZULdp/oWqyuQdpXf77piDO8sbaO+WyGv7S+3goSVae7eq1dvIDpdBdrFy+YzrldNgYNivXI7DEMOLC2tobZbIa1tYsOeBYBhoErhvMXLkLO5zh7/gK4BSHB62BBIOODxYADF9fWMJ/N7H5rMzgjTcwTo0Eaez/WSkFLCZ2b++P6iZcwnc9x8aVjUGVRUy7EIAMfZmCCgwtmOxkmzefrBw8iZxqnnnjCQUUMGSLj5m9sR5eH9hiODw6gAHB8cMD+Xbu/jmcT5NB4RUyCa6KrvZyNkWvz3tUIMn4k6m1TQdv19sALfIKpUniBj3uBBQAcwxAFNI5h5JYjwCA48IGh6oSbKt6vZRPsKoVXsnENROIgbjLq5z2LEUpoPIu6erDob3UMI2jbNlWXAqjXqyB7no2Qa4UX+KTx3MZwRXZidAAzqXBicqAXVJC9Nhgjh8bxYV21iC0eiT85OYC5Ujh54ODCtrGdPnwIuVY4ffipoAPuQ0XcOadO+NkjhzGHxrnnjrj1pcDA9VE8iDh79GnMpcTZo083Lsc4Bx9kwTqZ4MgmA5x77ojbtg8BPmjELzqWc0cPY64kzj5zuDY/hqQm0HlsC+0oY2zDe/2nNIMx9jsAPtdaX2po+7cA/OP93BnWxQXCLcyYLt+94k8AUI/DqLlF+SlGtQJkaSDEqReFGYFTpQGD+RSwgKB9aGiKpQCilLMN+08wALh3V3Hbpp11y9EynIONJnWXJwBBvY/g+BPnZVGwdnT+3DzXvjkrlG+FCkf74+w6FURU0wDgi89/gf/9f/1f8Pf/q3/gH0L9HNpOGwVzmx2NRlDdws1xFXEgun8sUqMVLCgewwcLirEoZB0mYrBYVDUbaI6nABCABX2n90XxFb47lNZmf8gdhXHTCTexF/YGbOMw/A77MOOBi5TZv8VgQRYHo3ep+p2yYcbx5DjDZJhhMhA4MBSY2Ncw45gMBAacYZQJDATDSHCMM46B4BgJbq5Nxsw0buIQTDpW06GnjvaAV53soeDgfoV03XycAGqZzHyrCkjSwvZ3R79Nz52E+jTkfkjXZyl1oKgpr03sJkU+3pmFl65gwSyUcWg3WEOqb/W5cIqvmu4AZQGVz8wATJlDzXahpzuQ012UOzPIooCc5ZB5iXJnhnI2R7EzQ7EzR7FToJiVKB4UyHdySOvgT0Did7TI1SRVfbtLxiiyJrenpqDqR2F93KH6Bm2nOtK0jN8x9zvlA8ZcsPPEqoH+Z6pLEioVvoKhUUTnkBSQ/Urdm4ILP9WsS23staFpdGz173DAKhjw3t/6dzH+8hu89kdvJgO4Y/enRUbqm+8CVXV0PUXBdfS5XYZcpHkwn6p1+wofrY/z8DvQHFsRj+i76YlOdxwL8jCsFvsKNLpTLcraFasTTSBx6n/8p9B6yZR1j9DOrF7Q//jHf/St7sPqC4cvaa3XU/MYY/8tgL8DkwpwDBNz8X9prf82Y+wZAHcAvKC1bpR6rVvU339oAd3hw9z+uMqi1qFm5cy6wth4BtuJdgqFKmsPRd8NygcL5/ZElqxhsQdLBmvTDUKgsSo50A4U9r01BaubXv24gk5P3ClHM1gAVUAq5ez3wYIsBgu6h3W5FbcFfAMIMkYlA7p9qFD0EAhjRnw4igO49wIWhazSoy4DFgFEJMCC3pcBi+Acaw1Z2uzA3AZVe1W6c+97qthdG1gAVUDyIqhom0+QQ2lzzecQgnyXqIE3zbeB91BMuUT5qoXwOtidramDwVg9hTJdwxoAs4XrGEPmQTAYgwtaUhqZYJAKLi6DrlWAQUJ76WDNQS0LFozB3TuhVfhZlpVqkc8Apcy90b9P0r20xbea2xFKWSjwXNrOEYctRwQ67YJ7oGHb+p0F6lj4xd6akutQpzalTJhg36ojLhh7ZIDRxx1qP8CibT8oEJpW6tfAqNbPeoMFmYlnWHz8i6xJtfC308XqWaTM/kwoYJtA3yoVZH2hoou1paVts7Zgbgcje4CKRwETPOrwd01aq6Xq5Nr0WJl4dKa1/l0AvwsEkPC37ez/EMAftIHFMtYbLpgHF+FP2IKGrdKsRWbdDhSgLGRQQLDvBqVVN7DYb6CAp1r40/y0s5wbV6g4jSzQXaVw0yKoiOEkXt5tp7s7VONxehDRBBZx+s42c1m/alChm8HIGxVuUitSYFHsA1jMywomFlXQBlD77rtBAWEqWloeqDr6fU1KBWFvtEppN7oFmGC3JsDIhiLYjy5gQbYXwKBifiMLE5OBcErKxLpFDS1UkEuUb4Pouw8cvktUHGshGDORzst0HmoKR2L0L5HpzAcN/6FvEziZd67hiu7Z82oWDQEjY2mwGJBC1QYWSjoXqJo7FLmTlgW0tPfN6N6pi9y5RKmo3gXFXfBhBlmUgWsUFwzKnqtsUgV+Emhw6nLYtJ0AkqPJcVVp6gCmCqj5wPFtAgbQzR0KeDhg4a+bAIOjnqLWr4FRuRClA7i72rKVs7u4Q/XpUlK2KfPZQBQ9D5TWwXW1n1DRad8SKWlJtUgZ3Qe5YIH7E9leoSKGgf221Pr7XleP7dfS/iaA/86fwBhbB/Cfaa3/rv3+JwBeB/AEY+wjAP+J1vqnbSvtr1x4D2DmdSS1/4HxmprBqP6BN+rmHojzqRlty2dptcICx8O0oPp27A7lp5EFWlUKAEFnOlAdElBR64y7zyyYHnfKm4zuVUG+fqTjLHzjDL07bSYWw1b75mFaWjqGPmqF2e9vDyxSmaDoe5taAaCTO9TC86mqrBmVetH8kKdUtfS5K1iQ+SlV2yBjmIUPlaqIn8BkUCkXEy/eglQLslSFZ38axU4AcOln06pF0apc1FydGhdMnSvvIS6L4DeoeeZAg2qLVDVGWCfAoOPsDRYEEuRGqiqlohbE7asW3qAMlApUC5Wn3cUY58jGGcppCTEUULmCGKCqfwFyCanOGblNEWjQVrJJVnObcq0aYAPw6zzobwUw2kCgSbXwpzWBRV/zO9ZkhVsnXIpavwZGHMCdirPwjeBkPy0Giz7mH3MFVf5389nf4/2CikXpY9sqdrdZChT2AhUPGyJ848Pm+6nKy7q6IRPpehPuVN81M/2URwu3y5rW+o8A/JH3/a8lltkA8He97381XmaRLQEX6dFZBjiXIWhl05YiAA0tsk7xFcGIW5lIMbu0tRfD82MynDtUNqoyJWEBUATTO0JFA1CkOklt7lBNloqzIAuBw7uR9bx/plylFqkV9MCI1QqgHSxM/EVYxyIFFnOpasXxFoHFMm5QfdQKconqY7LUHd2jlruBtykTZJn/8PPAgkAi41V2KABOtQDgXKKAumJh1heNarK6auGyQJXzelxPZAF4sH4P4dpvTlfrYNLehxgDeIaMi1BFVAycaxQNgAFWuXv0VSzM/VJaoFBuYCZwh7JB3LFqoa1aQS5RPlSohIsUFxxacWSTDDKv6lwIqn4Ie70L4SkVdk4Ptym/E6elTsKnqefwaAFjL+5QQDtYtAeDtx+L7walADSlqI0DuAutHyqI+dbk9tTmDtU0L1X/go5JwzwMfNj4dbQgXoMzlzCBe4HQZH2ggg+zxsGB/bAUUKQUk3i5rrDx2H47rH8RPY9Ca7cFr9icgw3bEdCMuxG4pBtUmaddoJSske9+X6wsjrnw3KG0C6buABW+6xOtpyn2wm28BSiizjnQDSwEgysO5k8zm0t08PrSRMICVynb2/DVCuXtf+wCBVRqRRwcG4OFUSkqsIizQhVSJatudwGLLm5QsVrhT2tSLWrnKvE3bHONAtrdo/ZiMUiQZdH2faig76RaUAC3r1oAkbsTuUc0jGZyO6LvqxbU2eZ29D7IkuQa7t+9gMm8EUjcb1N79z1uAtYLBQwsWAy4tvVn0nEYS4GF5w7FZOElT2hXLfzPaoHyKwaZgRPAZo2pXKN8y0TmBW2Hakab25R/lS4CDXd6bSxAE2Dsp8VQsaw7VPw5Xt9+mIv90RpSG6gwSgYL0tPGKXabTBAA74Mtyg7V99fqqxf+pagB+BW9H7XFcReBEpEIDPeNizBTUtVuMVS4aQsUhT7Wti7aD1fXq8d6mmDjsf12WH/loqxGBjUQFJEDYEbWYC9KrzK2+7kp6cAi6QblPxQBN+rmm3+73C/QcKoF514Qt3XpodoULSqFm54I0m5aPpjnz/esqztUbDbeNBlnQfNTtlfO0P6xJdQKHzJ8FygA3zpYdHWD8tWKRWlm6VjjwG3V0C52jWKMWfVi/x+gPljEMAGEIOBDhQ8KfupZwKgWAJxLVAxJbRarFiY+oVItCCwClyVSu5LuUGrf4MNXRDSGBnZgFL+Bc93wlQsk3aQy7sWRcAIpE1PSCBYJdyhWFgtVC8DcP3WRQ8sq/WybmwIfZlDTHGIorFuTctdq7NpEakab21QNMjzXEyp0RtakaMSA4ba/T+pFF7ellGrRVn07bLP8vqXchNw2mQninggOwCgZXQK4H5btxR2qq0kNVw2ZfnNVtfL9225b1fO+llItloUKf37T77gJFgg62mAitR2qgxPbIs1+EWx8p0BDV54Xj81Yf+UiDgZE2v/Z3dayoQMOADU3KL9Whe8C5UOFLvJqHZyDDeyTi4tQSenakUhlh6J1CAE2HBt3KFIj/JSqZkP2PXJ9onkNsRduWrXDte3rRO9+GXcooDnOwp++H6pFbDEMdVUrADiwqI65G1hIVa+63RcsYjeorlARV8BuUi1il6hUpiiyPurFMqlkKZ1tbCmgoOmB2xMPU+P6qoXvEgWgQckwmaI4q4re+fMoiHvAmQlmpsxIbtTeLuy7LSWuZd37FtfwhPAftjKHFkMwWUCLATjdJ7jZotRE9iFgAFgOLMgdyn4ndyiKWVukWvj33ziYO3mo1jWKArtd0HYUqE2VkIFmtylSM9ogA2gGjRRgkPsPsDfAaHOB8j/vJc5iv1WWFGBU05YP4H4YttdnC7lGpdQLBe3m+8sB+w83fixG17iLVOwGH4pAtegSU0Ed9Lizr6V007rGNHSBCn9bpFYIW/ciNuHdW2VRBuqGv3+0j7R9BznfVdB4bACWirkILwLtdfqTFldYtfnXm9QKtz6b4cRt069pMZ+57bHB0MHCItDQZQFG/o4Do1QwLgLVInCH4sIUtmOVq0/S9clssA4V8bIRTKRAouk52RcsyH2ga/wZ34cRXgIBAJ3Uigoy6jUCzDLdwaIpxmLm1X9YBBZtblCxCxRQQUX7Odlb7yJWL/YDMGKwiNsuggqa3qZaEEik4ixii12iSLVwQdw0ai9LF28AoK4MatR+Y211LnqZd9vTPDNKrDdwwMWw8qEmyTAGDPQACwcYCkFdoIQ7lHMvje+pVrVYlIKWCQMATFSDNeQa5WeLIjDg46xRzWhym2qCDKCuZgBmZPdhAsYisKjPC2GhS5zFw3DfatovP0VtWwB3yiioe4lY5eS6gDRYdH3CtD23zDllbmyhOsfabfdhQUZfE0MRqBb+dOqs94WK+HOqE7+spdQKt5/CFNdTRfp+KqKupH9XiEEohgzgMWh8F23fArq7Bly7wk4LXKCcWmG/k89wLebSAoivZrh1oZ/bVJM7FBUEBDrGU/jLRoW53H5rhP5dnsUPhj7uUL4tcofal1gLDwgABApLKr2saaMjX/RKrdCuzf6BRZwFqgksfDeoNqgAQrCIU9jGy/oKRQwbch9upP72FkGGDxZtKoX/HkOF395XLYCwU+ArLz5kEHj4wdy+S1Qt9aySxhXIjzcAQPVU/FiJuntU9Pv3r/muHbAogJxpe92KzFMxckAM3bnxU9VSoDcdc2+w8ApUNgZxR6qFu5cqVaWg9R7mTZ0Q/34phgKyUEAeqhHmrIZqBtDsNtUGGVop1/GK1Yw+gNHHuoBFCiLi9qk4i0cBFr56QdvmMIHdywZw7ydYPAyLjxm6yh5l4NKbgW8HMlrT0MaqxRJQEbsm+WqBHy8F9IOMJhcov0o2Ve0WYugGKhTSoKGlCvY11TNsggzg0WbDemwPz/q7RfVICatj4KCRtTKvu0C5+Z4LlBeI6AIF5dxQdE/IAFAP3EYVa8EGA+MO5QVxO2hgrB5PYd/boCKo9JuQ0tvMf6btZfS7T/2KPuZDha9MmGkhZCxSK+h8LAIL874YLApVd4MCsBAs+qoVfjB1DBSpQG6ypngLCuqmuAtyjeqjXrTVrhgmlI5loIKAglLP0rK++5PfWRENkAHAuUSRakEB3LXUs0qF8QbUGHA1dRxoAN1hoy3zVKx6UHIKcokCjJsmSM3IEWeSKpUJ8DaB3iFYUOG8hWBB2aHKvKZakDtUrFoA6KRapIziLpyf+CSrqnLnUWyFqO7NTW5TKciIYzJiyKD2MWAA1Qi9Dxhd1IuuasUy7lDh8q270du6KNCFDvf127S9qBaxpbJG+aqFnzHqUUOG6VtESqmtyp1SLRhngWrRR6nwO/xumu2+tUFGtZ91awKYWK1wnynhCO2z133sAhqx6xTtWxNk/CaZhumrPLbKlsgW1aJQxIHXRVGf39EFyoeK1MORIAMowL3Cd02QUTPrEmU+e+5Qgt6rIO5U4btk9Wma50GFf7NfRoHYT7Bou7fGzwOmdavbVhtU0LRFAdu0Hh20awaLWamWAotUcbwUWOwVKmLVwv/b9U1Bu8h8wBAZd9ttAgwCCyp2Z6ZVQdr0Tq5NbVARzw/gIRp1SqUYpelOwWAsUC1SqWcJMiiVtUt1Dbjg6kbY8EEjViEaAKLxOxBmlVIMOoNNBIpaJikANrWycY1aCiz87FCUxjsK4m5VLaL7Z+ohzgQHvNs1F0aboJFW91el4l8AVAQaTW5TSciwKsgiyIgBg0vzW+8LGH3BovoeAkObO1TTOhfZMkBQG8n39udhWNeO+V7U8NQxLZrvB9Y/KsjoW++CVAsyxquOeipYexFUVG6M9l6Nukrgx8bGoBF7cyxSKwBzP6B21Nq/3gg0VFG6Nv4++vv5XYaMx1ZZb7jYuv02Nm69jfXXX8XK8ZdCgEgoFb5t3n4Hl+68i7XjL+LcSy/UXaBsmxgstFLY/uAXuPLeJ7jw0vNYeen7bp1McKiyaFUytt75CJfe/gjrr7+K1ZOvOOBwqkXKHYpn0GKIzes3sbF9A+sXzmNlZaUXVCgNbG9t4fKlS7hw8SLOraz0OtfbW1u4cvlyY9s2VcK0vYS1tbWgrX/z95vTupjW2NrawqVLtu3qqjsmoA4Vfr0Ks91NXLlyGasXLuLUmZXWgG3ttaVzdvPaFq5vXsHxs6t49dTZXmDxzu3reOf6Jl44cRbHXj3VCyw+f/c2fnF3G0deOY2nfnDcnZc4riIFFvc+vIuv3ruJQz96HQeffy1QLdqCtsl2Pn0bu5/cwYHnT+CQt+2UxZmj7n10Fw8+vI3DL5/Ck7ZtDBg+WJANM4FfvX8HX717A8++dgZHXzpZUyqoDbX3QeKL927j0zvbePHUCl48eaamVgB1lYLa3r1xDXevX8XFi+bapMWEVS04Q5h6llQL+9q8dhNvbt/AG6vnsHr6hCcK2oezTVXr0kdbYzLH5o3b2Ni8hvXVs1g9fbKaGUOHjKFDm7Zb17F2YRWrZ0/bNtzeu8pGwCgUcOvaJt68dBlvrF3EyupqBRYEDO7dd4Wqpm1tX8fG1W28ce4UVk/8yKkWbvdaVIvtDz7D5Xc+xuoLz+L0sSNoMjHIUEYB33fuP8C1L77GmacO4eSRQxCcVdc0uUQ1uE3duXcf17++h1OHnsSr4wO9IOOt3Qe4PdvF8eEEr44OtAIG4MeYGcB4v5zh3XKGl7Mxvs9HtWNtA4sPyxneKaf4oQjbdnGH+lzN8RnmOIYRnk1st81+qeb4DDmeZ/3bAsAncoaP9RwvsBGe69n+K+RLt/2Fmru2z4txr7afyDk+VjO8wMd4XnTfrob5O70vZ/iRGOOlwTioZA5UkGGujRAyhpzhnWKKt4oZTgwneGUwad9e5LL39mwXt2e7eP3AQZx8+qna8m2qxc0vvsaNb+7j3HNHcPp7T/eCiuuf/Qqbn/wSq89/D2eOPRN04AOVwO139Xu+8csvsf3Zlzh37AhOf+9IL7WCcY4bn3+JKx/+AqvHjuLsC9+D4Lxez6bBberaJ7/E1idfYOX5ozh99Gmzj48h4zttvdXKjVtvY5IJvHntTvhA86ppB6No3uvSnXcxGQ6wcfs9p1YEsRVNBfo4x5X3PsF4kOHKB5+aaT388i699SEmoyEu3Xk3zP1OgeWSslNRFpbKx3nj6iYmoxE2rlwFZWipquVKO6JqR1WVBNMaHKZ674AzbF25jIMHJ7h69XKQYafL6+pV03b76hUMBa+9BnYb9BqK6rV19TKeOHgAV69cxoDBvTg0uJbgWtoRU/MS9qnOZI5Lb/4cB0YDXHrz5+6YyH2FioBx6y9ufOOrTuHVK1cwGU+wdeWyy/pDriCAdX+x6yG44d66b25dxXgyxp3tzVqdBP/7gDNwHnZoP7y5jcl4go/vXAsyGVF7+p5555g61F+9ewPjyQHce/8WJsPMzR9lHCPbJuMmiHmY8aAi9b0Pb2E0HuP+B7dMu4xDZNyMxHPzIiBgzOw3p+mCY/bZXWSjMWaf3XXLu2XsaD4AiMysh5YBgAcf3gYfjHDv/Vudfw9kv3rnOsRwhM/fuu6mpVLrpoDqo9vbyMZjfHhrGwCS1UmL2FXMfr+1fQWj8RjXN69AeaqVb9r5S8UxExxvXr+NyYEDeHP7hlEw7HTz7qkX/nRrG1e3MBkPsXF1KwAWwAAFvWDhxr0AbGxdx3g8xqWrW2Z5q3o49cPFgli3HvvOGXDl8mUcODDBlcuXawoiDVDUkkR4097cvonxZII3t2+YGdmwnkSDi1Cp5aYzc9ndOz9bGIPmBlqsXf/qHibDDNe/ueeyOblrVDCXXpNSbLrOlOC48fU9jIXAzXv3o23UB0XcKKwdfr4zn2IEhjvTXbeMn02K7gVDqwABoevQu+UMQ2be+9oHcoYB4/hQ9m/7GeYYaI7PMO/chvb/M+QYgPVq69vHeo6BZvhY92+/17YjcHyq05kjm644wRg+VjMMGTfvPRQFBuB9OcOAMXyQ+DulFJR42lvFDEMw3M2ntWVr2/ML4gmG27NdjMBwe7pr0jVLDVlI57qnlHbTATPIJHMD+9e++AojAFsff2HnKadEEgzIooQsysBzQ0uFzY8+xyQT2Pzo82C6lsq1Me1kABZaKWx9+iuMBMfWp7+y7apt+euioG2z/8q1v/zuJxgxhqsf/cLts/KXsfuhijII/NZSYeuTLzDOBLY++rx2buMMpMBvHliYQVP9rb5+3aw3XKy99iPszmZYP/HSQqCI51189YfYnc2x9uoPGjNBAXBuTr5Ed+Gl5zErSlx86fmAsv3lgwcr5XQvcqy99kNM5zkuvvpDt09+AT8oZUcCZQUNZQ4mc6yvnMV0dwfrq+dMthrtQ0juXg40bD5+pkwHfn3tIvLpFH95bS3o5Hd5/eW1NeTTKdbXLhoo8F8WEPyXDwtvrJ7D7MF9vLF6rtrPcm73rwhf5H5iz836hRXs7u5i/cJKIzgJG4hK7iyZ7ei/sXYR+WyGCxfXgmJowfIwHa4Bub+wCjDOnb+IYjbH2fMXMODcjmZXbUcWBmgap8+C45XTKyjzOV45s+pAgiDADzyOAWMyEHjhxDmgnOPZ187YeIIMk2GGYSYwzEQNOHzY+N4rpwGZ48jLp0NAJMBgFWCIrAIGAownfnASqszxxA9OdoYKmv/ki68DMsehH71eq0FB5hcHrKZJPPPKGRTzGY6+eroxoD1Os0vzn3vtDObTGZ4/ebaaroFCWlc2p0pVaYIBAxwnz57HbDrFqZXzXtV14/5G29badKw1zwCR2Y6ziX9aXzmL6Sw3v0mb1Q2MQWcDaJG5DG+pVM/rK2cw3Z1ifeVMABM1oEjY+soZzGYzrK+c8UCCfjcWUCLgoP7MxbU1zHanuLi2FkzXFNslBqiSR3DobBhMWz9/DrP53BxzNjLZnIQAsgH4cAw2MvFiLBuY12gCcA6eDbD26g8wkxIXXjwGwLhikGtG0yANH2bgguPs0cOYSYWzRw8nl2uz04cPYSYlTh160hwrdbQSskFVfM+8nxhNMIfGickBt4wfywGELnci+vxyNkaugZezcbLTmvJqoWkvijEKrfDDnqPwAHAMIxRM4Rj6jf4LxvA8G0EyXWub2tfUMf2QjSGZeReMJTvYTfYCG6FgGi+wxfs2I/MiAAAgAElEQVRN66bXD9kYBcK23Hs1tQWAF/gYuVZ4KZvY+dXx+ssNOXPHTEf1IzFGqTVeysZuGWpXbQ+1abTcawOz38eHZttNxe9SMHxyfABzaJz0rk8yLQ1IOMDIJZTUDjDOPHMY06LEmWeegspL94ohQ0tZg4xzzx3BNC9x7rkj0FKhnOU1oKDOulufvTede+4IZqU0baNtyaJEOctrgECAoaTC6gvfwywvsHLsqJvmwGaWB1ChvXlu23mBc98/mgQgfz9/08DisaWN9fHpZ4zp2c/+UT22Ig7yViExx9NjN6gm8/2Ffb/hwC8wBRZkfrpau4xxfxIueJsNBmDZEGw4roK6s5Hp2GThAz9Z/K5jkPeebNHfqE9QakO7r775Bv/wH/0f+N3//O9FK+BBat1FsSV+IHcqW1TX+AutgUIpmyFKOvcov1heWEBPB5mizL70j78A4DrZZHFcBZlf94Lmpap0AyY2go5dK+1iMOLfnw8U1Z+A1eaTCU+ZofdUQHfsGmUgKx3M3SfuggCO2pF71CgTRtGyqhpnDOPMzreQOBAMBwbCqW2ZVd8IOoeCgVsgRplX4O4X8mxQKJrMb9s5WxQQ/sYoJovgh4sKglyMlrBwJOy1rF1gPmWHCvZLaxdb4up5qBJQ3jQ6diVNUHc5rxUk1fOZSZiRz8wD29YVkvO5efjnJZSUkLPcjTy6zkTuPfRtdiklqRPiqVc5dQjsb5lGaykGw0GEdV2k5aV2YOGK7nnLmnVXI6U037XxslG5EWLPLSmOj4hjGZYJ6E7FXKRqWzzMLFFd4KJvrEO3yt391tmmUKSsfgzpNhU0mO+//Dt/HYNffolnfvoXiWW6gQUQwmlbVe1YtQjmcQ4x9PojgkEMhAvsHoyzoICeGPCFqWibiualqmTHo/5tWaKC1K9RzQvfNWtR/IVze4rUifq+Rc/RYHkvQ2hi/8hO/MN/Aq31PnSiHq69vnJe/0//z8++1X34Ky8fvaS1Xv9Wd8KzpVPRBkARw0YCKNy8KMXsIqPgJf87WStYAGY7kRuACWgSHuiY9kxJaMmBfAYGgGUASkBnAxNAyjM4527Gq6JdNIDpwQajjkhjxproGPvk4m8BidZ5QOCjXTO6ScW+5nQ8ttPEtK6AyUIHg+kAa+ffagBBgB7CDAImJacCg1QICotVKWkZJExaRQV78+caIwjMIQHFMOAA3BLmbcBhA0iNguFy3sJ0eHOoIA7Bh4xhxoEos9PEXk8OJEQFHNQeACb2Bl0rspfxmiuRyHgVi8FNP5RON3U6gf5QQftE702ZovJSYZhxlEo7UMhL6QAjODf23A7Bg+PNOHPr8bfjjh/KuJkxZjt9DFAaBYCRYCiUNn8/BSiurUuUhtJmHgMgmckSJRigtYVZQRmSSkDx3kDhzAZFt87vtB4KOlL173GdDa2h4XdoGlbJGBiMgsFU6cVulNAY2IJ9ZpCElbndlB0kIctnwGBQtc1nwGBo7nmCg0luM0FJ856X4IBLh8wEh0A97oLmtWWd6gIWZH3AYpFxd63VA7r3o4L3flUBX3779Wn7kfVov4qntv0CU9tYpCI1gUBT/HS4zN7BIrY2sGgyWUgXV6SUBocySQ9yCS6Yrf5db+d+XS0QEFsTTCwa/Y+rdfvrKaU0kIHMxXQolEHCB6AOD8nEO1FdjNhVq21ff6PqXWiv2/HYAOwlFW1foHDzuoMFzwZQZVGT7k0q2gVgEW2fDYZmuxYsdGkBwn5X+Qwclh+UHTlkHKwsTDaYqOOQhA0AsPns/dS1ey7k1ZRKrmm9SzwMnRuHjFWoKg2vDxk+YBnoAJhVMzLGrJoBMKtcSG0gw0AFAAsZ2kKGVNrGbjAoDdcJLhUArsGVAQ0CDOlAA4ACRhnHvFRwgAHYXzvDOBNGxfDyWwwtAFCH3FcxyAKQ4CKADaAOHJNhhindKD3AcOuxgMEYc09lkRnASEFFG1D4+0jvfQrpEUw0AYbgDLlUrYABIPhM50ZqAFLZv4OJuVFau6cngQZn9hrg1hsJNvUkTCBmoTSGQrjfYgAaS5iLpdpHY6o0qWlVCc2HdeCwxpm5/oFmMdO4SNm4BqCCBKbMZ1mAEk6Y+UOT/jYbIl6lVjIADw5Ay12bjUkEmV5MFe4MkuKuvGJ6i6wLALS5Q3W1uIZGbKngbvO5ggN/GTJ/2bZp4fxHAxxdwWK/QKGr9QUKYDFU+G2boCJefhmwiLPXxWDR5A6VAosgC1OUGclMs3A9FA4wlDSDZwYwhOuQM1EPjgbQGTSWdSVKQQbj3LhK2WXiAnnV8S2GiWrZ7yhUPLZGW165iB8+i4CiYblFRoBBFvyAO4DFQlMSugDYwIATPdQB+4AXQzBZVuktAQT59O13IAQOprVJ2dDnxt/lgdXQOdorwHBlznFwXEClVjRBhkZSzQBjEPZsKjBkjCCDOeCg6sVG1ahcpTiDBYsKMMYZx6xUDjDouw8YnJuRcsoSsoyKMUQYwEz7AVQd+SbgyKXCZJjZdVbXub8+qkuRUjG6QkUMEV2hIqVemOnSHr93PHa9KcAAACQAwy1voQJSYZQJKKte+KoFFABhXN8GmoFpA5VS6bp6IYao6jsY0OgNCX5la6AKBF/SmCxNbIdvSgGCh8Ahhuan4XV2F+4q9wCD7jWcQ2NQTYdVRcSwumfJECj0fGbjMMz9WIxG0FLV1Av4HRz6zLmrd9HXYtXCTOvnDhW3a7OUetEECF0BI7Yuy+ynLQMW8RW9X120Rb+UvQBF3L4LWJixmTpYLFJA9hMsmozS1MpCQgxEHTDc5xCYU0oG0Awazdvv91d3tSs8yIh/gxIACiSL+KUsFaANtLtAPQaK754tUeciDQoBTAB7AoqUJd2huph1jXLqBSydA5V6AeseRdviwgR4cw6G3IwQUsc/ukH50BGMqC5widqzK1Qy//7ygMELkyWEFVXmDS2yuktUAjIAVGoGHRfPwBh37lJSa+seVZ1Hql5soMKoGpwzKPjKRTNgCDMc7ABjBI65c5cy474jq1p0UTHIJsPQLaorcAzBK5ciTw2I3aTsSmoqhg8Vi4Aint5HtSCL62HEKgatNwYMQccfuUj1cY8aCWZdooyqobXpFHLGbIyOr17Y4HYb6OxS1PYAjFi1WFb9ADwwoetfK6c4VAvZafZd+ITRZRtcuEEMAgigNL8/AooMpqAgz6r72HxqUmz768pnYKOJS/Oo8jJQL6imBQo01rvoU/E32HYPdyjfFikiflE9shQ4AHWloStgNK0vZX2WXWT7pVg0QUGXv2QX9H7UUFEtQzDR1KaugDwKsIjNd4+SuTT1X6Q2qZstYLhl+4LGPpnfqeeCt8ZlxL24Johw8xP3jMdQ8dtjSysXQD+g8NWHXnCAUL3o4w6VNHKNSkzXRX0yG47BuKq6Bf7zw7pNVd+rGxH5hS+jKDRCQkrZSEFGQ8epdbTWyxZVrccoEosgwy9WFrtM1SGjcpUCKlcpo1xU8RgMVQYpjuqBMeDcVMLkuoIJDzAGNvarAKpIcesqNYDJZtRFxQDi+IpuwEFtpoXpqDfFYdA0oFIxugBF12lNFqsXfQEjtU06b33coxTXgWsUZxpMmWDwQmmbwtiMQJcKGPjqBbniqY5uTr5qkfo9LoiJSq6vBhOJuAs7zY+76CVkMgaIYQAYBihyWxHcfEcJG/ckgdHEuVNpJU0WKcD8rkdjcFv7gg8zIAe0p17wgXGNStW76GJNQNDVHWpZgAEWqxfLAkbrNrH/Hb6ufdm4Y99Hh9ubZtc9lsIs2962Kai7zQUKCI/hYYHFsuYX2WuLv4CfWtlr3wU09st8164m0Ghzx+rsPvkdhwqNKrnEYzPWX7locncCWoHC989TUVXtLhYs3xcsEoHdZnoUe0H7atO5BgHeQf54GiasjsmvGAwATMkgRqPROnSOarCQ6iA1xMAE2SbiNt4xsZRbFM+MW4bWJnMWEAS31yCD2ruMWdwtz9DuKqU0XDwGxVOYAGAz0i04TDyLAIAKMAgmKsAw1aoHHIBtm3aVSqsYMUSQ1eInUsv66sdAIJcGXlJxGIElgrN9a4OHZRSL2HyIANKAAVSKRJt7FJ2TRe5RBiy0hQxlCjI1qBdMA5qH6gUrcxuHsNhth/kppP3fCV3/8e+pC2zEQd1APe6CplnXKFH/BS7ejA8YHlC449fK/DbtfYyVc0AYfZADppaPDfzWSgHZAAKo3KMsRHDBIa3fuPEf7xF3Ebg/VS5RfbJDBeuLYjQWxVv4FkNDG2B0tUVxG3u1Rf3ZRZmh9goLXWw/VYpUu8VqRXo9DxMs2lSLRfViYkvFX8C/rvcAGn1qftX2K/qN03FR538RZPSJ9fiuAcVja7cllItmoFBRSlofKOLgH4VIiehqe4izqLlG+TcIL3sUG6Ae4O2vKHbz4g3dhlQnpauSkXAlqz3syyg+IjHaGAgtiVR2AExBLqpq7Me3cGmgimdAoUApOJMxFz5kaJXOMNXDVaroCBgD/5A8BYN4YeB7eXgZpVIqhm9xjMFkKBYCx2QoMPUeBuQmRXEY07xENhQuXW2TLXKB2qs1xV74KkYch+FnkkoBRgrK2tyjKrDQGGjt1AthQdO4yqFRvXAdbQzbASNQLWTwGwrOZlAjx/uNdgANAgjTNoy7cPsQKx09zAEGfKAgwLLHz5gZCMhGLlOUcYMaW7cmadyl7DngwwxyloML4dQLcomKXaPccS7IGNVkTWARHOMeVAuypsxRywR4P+wYi64D5H3BYr+Dzdtcr9oAoan9fkEFq7X99sHCD+quqRep+Av/r9cAGvDWU87KIIMg7f8yv0kgDSXx73BRzMd+AsN+3AMe26+P7cktCugHFFUmAjuqLjhU2UPF2EsAt69e+K5RTr0YVN9TAd6pjnnmdSiSVpjj7fKjKZs7SDVoWBRMH9cdgTm+YLp/LosCyM08PfeqlQphMtFYyHCxJwlXqTpk2O2S0tGgYtBDPHaVGvQADM5CqBj490zvO7lKxSqGqTouXF0Md/hRLMEi4KCRe3ITmpcqiMOYDLOam1TsluTbIpjw3ZDaYKXN2gDDrFc2AoZvVTre7u5RhdIYCAMRBTPqhbLqRalQucpF6oUfxGyux+YAb1+10FQs0xoFZDPOq99QfI9pUTWCoG4fIBKxGEHSgyUsBAxPybBB3QCSKWp1YVXX0RiuoClg3KMG5pz56oUeeFmjbFA38hIyDrSOOuWxS5SvWjTZMrEWXYygYa+A8TCsj9fNopSzKbDw32PrAx2PEiri701ZoNLtqgnLgkVse4mzaLJU/EXozdEAGkAnVSO2tuMja4MSV9PC+93LeEC2ab2/hZCgAVco9rEZ6w8XaHZ3Sn6PMgQkpbUl3KSWtYXqhe1c6MIfwRfpUEw5TU0Nt9c0Y9EPMKVc+Oc9nl/L1mXdnAYD2zavdZx8Vy89t52uYBvK1L8gyFDSFBi0rlLdIKOhToZVMXTCVapUVtHg2mST4rbTy0wdDHIxUdw5f6CQIWBQwDBglk25SqEh4BuI/CejOhdA3ZVIKh0EhlMHm+IwpkWlBLTGYSRsmEhB27RMV8jwISAFGEDdTaoGGP6jrqN71EBwKGVAz4CFdjUv/LS0beoF03PTefczKKUCvKMMUUAI6gzmmvezPrmz0Fg7pwSz7oJuG1GMhZseT+tp1JQ6hRm3vxtYxQYIU9T6akaUolYr6b6TexQrC1P7wqoXcpa7wllx3EWXQZJUlqhlVYsucRqpoG5fvQCWVzDIuqS4XWTL9FX7ZobqkoWsC3TsBSq6xGLsF1Qw1g0sUjEUfYrkxdbHHcpXL8hc8cfoeuNoAA2gk/uU2TfvHr7AlXARfCyrhjy2x0bWGy78qtlkgVoRy2pxIE+D/95CN6n9SDsbbLBdvXCQYUc64wwsy1hKUQjmN2XVCoLom6uhp4HEQkMQM2KPDRV8oDR/F5VX2aIYF0bx8CCD2el+PEYSMkipQKhiAFjoKlVlY2IuM5Qd7nbTpDLB3aYLyqG0X2SPzkddxQAqVykOBMX3Klcp6jxUTWvQ4QEHUKkaLqA7l0GBvsnAKhq2jQ8Y5rvqBBG++UBA2auWVTOofRc3qSbA8F2CU+5RAMMApoPGUYEFBXYblUODWfVCeupFoczlojkDRJWS1WVQ4lnNPSpIjKCkUS28+xPtIUEGsmEVq0QL9bzvuLgL+uxqYGSdXaN8qKDTqB1g+EoIB0RWHYfMoxoYcClq+XAMpWTgHsWVgpa7LvaCcYpH2l9LqRFdVYs+8Ra+hVCwN8BYZKn17/fg917Bouu6U/YooSJeX+o8xptbJtVsapn9BIuU1dyjfAugIXZN6uA+hXTsDUtAKrD874pyRnVRRhbZXmJFHtuvv/UP6JaqVZ0AQqBQiTgALoRTMTq5SdEDPlAZlngINgV2W9NlERTWM+5RA9Ppt4fUCACt221uU4OFpjZtrk8+fCTOS3BTpM5JFioa2uas1vMKLmCP3YcMLSXYaBLEY7RBRjKz1AJXKaA/YNSreNO5sYfS0VXKKRkA6CosfIjwoCMGjjgwnIr0xXEYADwIqYK9ybKGB0KbURu/COAiNSNWWah9FzcpZ97HRcX1AHMuSb2owKIe2E1F9Zx6wTW0tuqFraNSD3BOxF94LlFayuRvsQYZ8FymaEIMGbEblG827iJejmlt3JsSFqsUynMTpOvNuA6G+9KlBobZDQXm3Dilvb+Z2hcAwPMS2ua41wOqzNse1K2khsqlg4I4kJtUC3eM+6hatBmpF30BI7Zl3aP2ChaL4g26zturPUr3p3hdC7el9+4GtR+ZoWKLi+nF6oUPGP5+yFZoSKsaalqGQBS3E6zmvtgEG0Dd1bHN4viPrub/HVL3g99Y4ND1JDC/7SZ+7/d+r/PCv//7v/97f+P8Cfxk8w64Bp49dBDQGiovHXRoqaCkhNbaPRy1Mu4J1z78BX567W1wAN978oBxoeEscifQAHTlsmPft97/FD++dBOcMTz39CEzfEGvBfL01nufmLbctlWmvL3xizZpL2FHAhkX7jMYx9add/HP/vVlCGg89/STZp596Tw3gdBNr2KOrVtv4w//7E0IpfDcUweDeSiLyg+aHvj5zEyXpdn2n18BVzmeO2Ta6iI3YKGUWw5KQc9nZrpd/9bd9/Djf7MFriSefWJs5jFm5msNXRZ2PRIoCxTzAj//xS7+yrERtt/+AH/455chtMZzh58EmP0bUmC7VrZDxcC0AnOJNoGt67fwh//fvwTnDMe+d8S6pDCwwD3FfK7PY9je3sZPfvJjCM5x7Ngxm1aT2V4e83p75rOGebBoaLx14zr+5Gc/wSATOPK951wxPro6Ms7AbRvhRrvM9PduX8eVP/7nEJzjyPeeNVtl5pVxjoxzcGZqa2T2pbUp+PfJ3ZvY/rN/gYHITFt7OZmsR3BtGOBqWdA+Cc7xq/dv47OrfwouOA4ePlq7fgVn4Cz9+vrDu/j06p+CC4HxoWdq85Xdvv+im+A3H97FL7b/DEozHHy62q7S4cOaLnmaJpXG1x++hY+u/AkUY3jCa+svNxDc7Qf9nQCGD25fx+af/gyMcxw5+iwEZ3ZZgDNuf9bMrYczc5/QMNOubW/jxz/5KQTneO6559x1VV1HGtAKTEkwLQFZmN+blLh6/Tb+4I//AhzAsaNH7L3Du4fYg2XQ5rdB9wgAmzfu4A/+5Z9BiAzPPXvUtOMCYMwsbz+bewfcPQRg2Lp2Hf/sxz8GFwLPPfdccL4AAxWSgMr7LLX5vr21hZ/++MdgnOP7x465zFnm16HdbwpMmO/M/q4AbN24jT/8V//a7PfTh8xGZemSL0CV9h4IqNLeu+1v/fpnX+BfvP0xGICjk5G5d9id09qAgHlX7rvdHdy9fx9/+tWX4JrhaVGNYwWqBcGU34vXwNvzXfyb3W/AlMbTokU1brj1v11M8eb8ATIGHLJxMnQd0jVFn91v0Q4cfFDOsFU8AAPwJM+M0sboLFfLaYTrkBr4XM3xltoFB3CQ9Ru7+wo53tam7RO2bVsAdzzvlzrHXfUAgnE8LTIIxtxrESR9Iue4JXfAwPBMNugU60C/z4/kDLflDjLG8BTP3PJ+39P/PuTMrf99e64FGA6Lqm3TtgDgq3OvYbg7xZd338ab8wcQjAXXyCKwYIKBcWausQffgDPg6Kg952usWrw928Ff3Ddtn7GAXi3LWr+/Pd3Fn/3qSzANHBlQzFb10vY3pqU2cVBVlwN3793Hn3z2S3AAz/z/7L1ZrB1Hmib2RUTmWS5JieIuiUVS3CQul9ulqgtuNOAZwzDQbo9fbIwNjF/sHngeGvbAMAYYewywvL20PTBq2jODgmG0gUE/GPNiTEm1dXVVdZWqq8R7uV2ul4tEiosoURLXe5bMiPBDLBkZGbmde0mKVfyBvPeczNgyTi7/F////X+nA4DYY3DqSXXR2mOEElz66iF+dvMuKAjW9rq5Pt37SJh72tsufvUQP7/1GQjUOUshIYXMkoSWbIQQXPryIX5+6y4IB9Z0OrlxUhdQeJ3+n6cWcOzYsW9X/jhfA/ln//xfHvvDv/ufPdcx/Ks/+9/uHDt27LvPdRCOtIaJJz6+jR5jOPnx7ayRijjIrpz85C76cYST1z+1+8Q4VeBECIgkAyl8NFLcDq10n7jyCfrdGCeufKIUa3fzxVPYT1y+gX7McOLqTVteJuNMoTdtCJ5ZBPSx2YtX0I8Yjp9dgEyS3BbqK7cBmL14FVNxhNmLV/MgQiv3/ubK3MJ19DsMc5dvqDE3TUwoBE5cvYl+J8rmS5+ze96mTX/1cPb8VfQjascsk0TPk56fVJ9/OtaggysFRQrMnj6LXreLuVNnLAix+QikVJ+FKD02NzeLqV4Pp06esIo/JeoFw6j5r4jgZh8hyoJxYf4kVk5N4crZ04gZQTei6j+jmIoZehFFrD93GUUvUp9jRnH9whmsWLECNy7OoxtRTMXZFjNi2zNbTAmmYoapmOH2wjxWTU3hzsI8pmKGFTHDK70Yr/ZjvDqVbWtWdrCqF2H1VIzVfX28H2N06zJWrlqB4a0FvDrVKWwre3HptvjJJaxYuQKLn1wKll891cHqqQ5W9WK7rV3ZxdqVXQxvXcLKqSkMb13KHV/Vi9HvRIWtEzG7fXHtHFini3tXz5VehoawbrYxFxBS4tr5M4i6PVw5e8pafRKhLFGJEDqpnlK4XeuFWbA4PjeL3tQUZk+dzhR4FkGyWJGbK0JAz164jKluF7MXLgfvGyOWm6HdCqUQOH72IvrdGMdPzytFXgqV58Z85uPCNW6u77njx9Hv93Bidla1p9+fXBPbjaUiFVIDCgXiVEhe4OTJE+j2+5idnVPlYUCMzmBOI2Vt0RYdxcGIIWmE4+evqPm6cAW00wOJY52/h4LEHbWPKfI27US5l/2ZO1+gF1GcvfdV6Zy64lotzj9+jB5huDh4bI+7wMI8d1xgYVZ0F0aLiDlweVzPawvJ1WSIDgiuJMNSX/4sp0K2r0MJPk6H6BCC63xo95WJf6XdkSNEoLgjR43G2aHEbrfkCLFU//1x+X2FLAa3xAARKG6J4py5/fgbANwSQ/QpxWcY5uqp52y+X3++7ogRYkJwgw8D5bPvbn+mretc/U7X+KBRX279q8kQPUJy10gTYGFkYbCILqW111jIHerSYBFdUl83JBcfP0aHElx8/Li+sCfn7z9ElzGcv/+w9Sr/2S/uoxcxnP3ifvC44LIyoMK5Lx+gxxjOffkgWK+svhQS8/e+QpdSzAeeI3zM7fZSfnukNbg4su0NDJMUh7e9kW/IARiUMVAnupK5OQ9/YyMGSYrDWzfljgN5kJGzgqQJRJrgyPbXMRiOcWT769UKfUDpPrLzTQxGiVNXgRKbsyMAMMyq/tHd27E4HOLo7m3VfZWMZWbHZiwuDjGzY3MpiCiTmV2bMRgnmNm1pbJcKPfIkR2bMRinOLJjc7a/AmRY/yHBVb+jBDM7NjsuFB7A0PvkaJADGO9O78FwMMDR6b1ZpJ4AiCCptvqIFISPlWImOI4eOoDBk8c4euQIIkoQ61X/WAOL7L8CGDHVoIMCBw/PIB2PsP/QYQUkKEWXMQsOYkYwFdMCsOgyiv0Hj0COR9h38LDdbzYDIgwo6TKKfszstufgEYhkhD0HD2tgkpVf3YvxSjfCK70Y/Q7LAY3VUzFWT8XYue8AOjLB9r0Hsboft9q27z2Yq7uyG1nQ8qr+7u4z31d2I7y19xAimWDzOwfQiajNtt1k27BzH2Qywuu7pu2+iJJCxm4DMFzZuucAktEQ2/ceBGCAhSwkIZKOkm2ES+Dw4RkMFgeYmTmaKdMN5eieXVgcjfDu9B61oxAdqhxgHN27G4PRGO/uf9uCaQUq0jDA0PuJSHH0yEEMnjzBzMxM47G6Mn3wCAaDRRyeOaJzwygXK3PuFlDo/9lG8O70XgzHCY7u250/5wZ8kumNazBMBfatXa0WfcYcUsicS1SIyA0A7/RXYig53u5OAWgOLABgd3cKYymwq9NvP1kAdnX6SCCxM1ZRs5oADLN/V6cPSYC3oh46VJXpUII+o3rVPfvOiIp+FhP1fQvrQVKJLaxXUOL7jBY217rwDdIDJ8A3SA+xbtdssVOOkSJAYATYwvrgRGAL61tFvWoz0qEE26I+UoTqVvcLqHnikHgr6tk5NZtf1m0LAHZF6nfaFfWDx/36RggIdnX6GEmJXZ2+skY4J8U6rBJYAMA7K1ZgTCTe7k0FryFCaSnPYs+qlUioxNtTK2wQBLNRRnIbi1lue2flSowhsefVVXZMZvyEETt2M35Kid32rn4FYymwb81qOxbTDwDQDrObf2z/2tUYphz71652T6UWVACAGHPsWbUSg3GCPatW5nLbFMoGwIbbt7F4hORFBRoS6v31PLevmxDZYlCEEPng//4fqv1wC4+GgS8AACAASURBVJkYwxeJDy5yxzRQIZRadE4YXd6IUg6Pw0SPsnwESvPcBIf4XSWVoGESrobbdonVojSpYShZmCtucr24g8VU4M/mH+AfzSgXF/tQ1XwLUKY+x+ozye2nIEyHv3R4GHYFWXMxjMKTKUB5LkbomKTMrvByvarLhVrNTbn+r1d+U7sCrLrN/NfVf+PimRjFRkq7z4RGLZMqf0r3xvYV5URIpXhp95aEC/t5zEVQ+Z5EfF6F32ZZjg5AzZs5niNiNyD3dpgCJT6wMMKc/WbrMGX56UYsYFkiFhBGlKDDMhAZMa3gMAUuKaQFpYQrsEp4ovelKhqSSIF0BDkeKjCsAxbYAA1lCrZ7f5hnlRu61tQ117rOAQNCM+uJub6Zo/hTBsk6ChjIIsfCvOPNd/MLcE3jMACbEG8OpHTOW8+J0OA9GSmy9/AJ5GgIMR5CDp6oORkPIUdD8MEiRJIieTJA8mQIPhwjeTJE+mQAwYVd9KkDF67lwhwzYsBFLoJgCbhQ5Zs9M5twNNx71PAwXK6F24TPwcjKZ+XGQlpXNvf7cklZJCR1rLp8nVSNs45DEerf/74kLkVJG65b1Nm/++9hxd0v8dbPjgNoZ62w7U2Qx0K1nekjZW2xuPhMCY3BB0O58flgyrNS+H3SAN+iTpqGfa4CEr744ygcLxlXGX9j+i/eh5Sy+cX9nGTX/oPyO//6R891DH+4Z9OclPLocx2EI+0J3TVEagMMbFQoxgoAowpY5OpqgqG52TkfBU2BE4EOExHKsWCQuKNe/k7SPJvB25FSELFEAFEmSwIW/ncLlHR5SlU7aWa5sHOg4//bORBcR5jSLprO3EgAGA9VuMtIUyNsyE6qcgJon9oCoduLKOUeAwCiFTVL6KYEEBIRI0h5Rv6OqCJnmncn0c8k82yiRB1g5noSAJhxxQFiRrL9vgQu2dBqQQhcmO8mX4cBFzF1soQvMUpPWWbx3Kp/CcAw0a2APNDo02LiQCADHR1WBBO+GOuFDzz895qZHxM1Kiun9hnXKMYyJZxQoqKNKadiHVpKE70rklU2ivzm3h9cc7TSsY0o5ebGIDRSvG1ABTTgY517wgQs0AqJSNX94JC82yY9MxntI6Ija5k5MIERTIJBexM4IB9obLUwoODrDiyaihui1s2DAah5NDqPivSU7TflAeg6qozaRyyocL8vVdpGZ6rLh+GKe96T99+kzvICioIQORFpe6mgQrVJC235gKIOTGTtOlGiagCF3yeQV+ab5ud4GqCiqo47Rrdvd7zGkjEJSfylfD1lojwXTYTqrK9ABiYE57XAwpWqtPO5iAwlyn4t6Mgp3TSfAwPIKdeVdR1pk0CmdUKaJuClroyfLKyMs4LiHJAo1jwLDtLtBQGGzSJsFCpqQmVS5Z9O6iNK5Y5BuXxQHa4WAIgFDwB0EjZQozwTGGRolINWYAMIAgkgs3hkUnwQmmzTQKYwl4MNmrNqLFXcqFYh5d2IAQcGkAzG3BK9DRgwUaf8xIFAPuJVyB2qTGyiPQgLqtyoUeb97EeNcrs3ynXtU8RYDkyQBrPbfSY0CTOrI8yVAgwANveFzEB0DiSn41yyPSLSbHze71QWoUhKlfOF0syqYeoTayGkYZBFFABB1AGSJJ+3x5kD3+pcSN5pyxXBQ5XUhZ1danSophICGEB1JCkjGYBoAjLqpWmgoknCvJZJNt66Pqu/h8fQDhCF2gDKAUVdZKelWCvq3sNlwMIFFJOACaC9hQKYzEphpAmwKAMVft3GYMZpLwQ0QiADeAk0XnR5auACCFsxJhEfZBCWD19bWi8AOoKAw7MGkLiTrdK72Xs9KQUSZQq+p8xUAZG6B16p1cLs8s69cN4eyCAu0R3IzQGgV2W17kEiqJC1JvNvCGA4CbyWZMUAspwYrKOjNOm+NCih1PyH1UQlsheVeV65K8RSQiXik2qEUmZgo0ziOotbwP0qdva5YMOUL+MbtJVESHR16Fc3QZP7PjB9TMUsB0Q6jOLxKLUWDDfLuC9uaNqmwCJkvTAuYrFzT/gJ9dzwwVxIm/OCwSjYmVWrzlqBqKNytUwUSroCYADOPaStB1xft4C9tlUbYeuFEUIIQm6qrg6vjW02azkjUOFtS6wXxi2L8ESF/XbdvaK4Qe6dotUiPzVhq4Udew3P4llL9kzwwUIeYAD5e8e1ZtSBjOWUZi5R9e20yb0xCZgI1VsKoGgaJnYp1oo2oEK1S21bLGaFfppmAV8OQFFWrkomBRZl9Zq054/RtF8HMgCU8jK+jiLxMkO3L08VXBhxrRhLET/Dd1OQkWsjlEcDKLhJ+cp1eYMlwMNV/pEp61bq3BJ8wNDCHSoEqtx9ufO37ZJce6WuYpRl+UCgQYZOxBcCGHBWeFtbMfwVYD5WK7CUIaYqsVpMJRJBnP/6NJxzN8q8+xLzAYcBG0sRYSwjegyxJDnAkQiBLjKuhw82JuszX9d9wLnt+rwQF4gYd6Qn+h41oMKADNQk46uzWLhix6Qvfy6Ry3WRKyuzhHr+b6eUcK9f9xpabikBGOqYAeqRAg0GQCMDGIQnKhcFcQIcaGBkM9RXDFsAoPqcM6uFsnoxkFLrhUI0VFlwnPZIHGcJNt1+dFhxIP8MCrlDVUlZLiRfIQlZLdq6RIUydddJnZsUUFSWXZcpVU/9L4KM5ZGmQKKuTzO+NvKswQTQ3DpBCEApfWrWihCocNsywKIJmPCBhN9m1TiXA1A0labWitbtllg72oCMl/JiyjMBF8DSAYblbZiE044VA8i/zOqAhlG0g6v5JTwMezwgPpBQZUWwjCWPtwAaSwUWheZCQMP04cxBzlWsgosidXNSqEzAgOZg8IFKxDWxFQN5Nymd7RhQK9aGvwAoVxlAhejkIu/ZRFsCjjbivjt8wMKkWs0UUgGOHqjOupwHHFVWizZUDNf1KqtfDjCMLCZc5fAgwBOauUgVQAZQABpNs4r71osxF6DEJCzMJtEAnYQI7a7m/D7IEuoBxOMcePcmodo9qZkVsZH4AAMI8y9UB+radpJGKoChrt0y60Wd2KzleiXa/C+1XvDEARxMjTsKAwtXLMDQVovwdFQnzQvxLPJ9PN+Vvio3KSOutdPVeVyg4YMMVyY9xTYgop5DMUn/zxdMtM0AvRzWCh9UqHaLblBuVCdfQmCiTB+pI2WHyjwNaQosliPpnQ8gXoKM3155ZuACmAxgCM5zLyduXuZjFKwYRppaM4Igo4KHAZQACaCSu+BKAWQU+vRDY5YoRzVcDP9BUDYXZg5cV5o2XBQXYJAYEONhLpJUIyuGARgmsZ4DJHJuUnycuXuwGDRA9CbSKJ/6VFRN+91MSy7Zuz0mW63Cl4npw4zCBR1lgMOOZcJVd9cVy6R08t20/PYNwIgpwWLCs3j0jGKgFUXfNcrPwD3JfPnzLITMZet2kaGU+ZC06ncjesXeEZ+47O5fTnEBBioI3gBcvoVV+kUKKaOc9UI2sJhxfX1TqQA09YjdESHZuYa4Fy2iCdlTHaelJO7SOt7xpgTu5yVlblJGfAU6bNVQX/qsHTnf78uVcJSmMnBR3r5vbWkjz8rNqS2QUIkqnx6vwtbxgIUbNpZ1WGOrRNW4mgIKn3+wHC5DbawVZfd8U96VETM3bUDGCyGyOqLk76I8U3DRVgyw8AEJ7URKISyxYhhZLpBRABQNgUTeQoCCRQDwQIbfjs/RCFpIsvKmv9ANX7fqYD7l5qIBFyUEMCSQ52EIAejV3jIrhuFVWCuGAyQgiCXEuqvAIASUdXJE71Soduw5evd7BjyIZ8kAWJ1ZvqGeynX/xn/eDScK5EEHlxIRXGJvSz9aU08nlu/pX9IPw+v2b4jpxkUroSajNwelBKNU6GzkRSuGkUmAhWu9sKR2bcHIn1PGu6BEWiK+Pa5ON8+7MGLdgRyhEQht4OLYVPQ9DKCa4K06zwMMQlXIXMd6QSizrlFlZG5XXOuF1GBDGYBKrBdS6ihWGanbhpamNDgvPKleBPKtFoX6Hom7qaLwvOLb+1YMV6rAhhL33NrdE/2m3IKKYtXgYfKr/mmAiSZAohnfonheYaV8clBh2qwCFm2ABDA5mMjGy8DHHISSVgDDvf/qclS40hY81Imvkwkuc+cvxrw2nO1LeTHkmYILQmlj64ULLKQQEPqipIxa7oW97CusGEBzl6kCyHBdhIoDLK3v900Y1VwP72DAMlLWR9AdKgAs2kh+hdF8Irn2XFAU4qIQFF2kXIABJDZCj7ViACpkbZUVAyhG3HGiSdlQn5qHEel8GIVz9BUzGQYeJsSpPVbxwq7Tqc2z0u1a6AMWYFjgoQo3XfWoKuVaSDLAQoIAxF1htW5RlIAlXOVP0G5ShuzdiSjGqbBgYzksPK64vItGIWmJx7vwSN1GuS7IJO5QRtwgCEKo67mM4O0BDHuDaYuFFNQCAdd6QQhB6EKWMJYbfX8iI3Y3sV5Y3kUITHgKmNDAQoWhbWa18Inc6lSb8yyWKpPwLnxxAYYr9ZyG7HNIr1yO/BdVAKJsfE3CztZJk/CwkwCJpoTtJrJcLlBAObAw4zXAIhSONjeminNvCyZC+yYBGMDSgYVYhtV5SkkOZDSxYryUF0+eCbhoEnLViOFW+MDCxl2H9oJxIkgZK0YVwDDSxF2obPW+rFxV++53AUdhd8uUWTG846qR6shQrq+0L038I30gZkFRTU6QIMAw4My3YlCajygluAoXGrBiECAYTYrwMdxwtYAaY5zLpZC3YgBFS0YefJS8pEpe0GU6R/b8zaL/mOd2TM1xkrdsVLxsmywe5a0kWfhY9+zC4ANgJMIwFWA0c5Ey4MInewP5/BhtxVgvfN6FMNqyI3UhaV3ehZ093w3KtWIx1ipUtJVQ3hgNUkoJ3h7AIGkCGcWZ9UKIXOQoQpn9sQyXQs0Xcha2MmK3DWtbZr1w3cYozYejdcTMT1kYWiBvtSjU9y7WZwEsllMqcyt4UmbpKEp2fJJoUnXtl425KdfCHdOkYKIMSDQBEZP41hNClhVUAO2Ahdt3mRJcnVOjHSDz391MP2qMpW8pblJN3KCWA1S4bZlFErP46o7DBxkvgkhM7tL82yqtwYUfsalOQjd6mfXCd4NygYVZTaPQYIKLghVDDFQejTI3qZBUWTV8S0ZbMFG2b1KQUUfgbhvBJXdMAAANgq+C1aWE6C3HSqkinR7kSH9uasUw/flWDKCY96IsXC3yLjKhB3jx/g/7SYdW/ELv8FBkIun06yYXzXMrVN+qTMCtxNkV11zGZWDFt5LYYx74SIhEn1AwCgyJsC5SzAMaTyi3bk1Ano/RFmiEymeJ9OpD0sLjXbhRovyIUX6kpEYS4jHpe83myqgjeJsQtVJbObgDJgLWC1aycm77dz6HiN1AufXC8i40qVsCtVYc9fwtJszLlSkhck8C4p6XS9Sk4iveriJdBqJ6rgtIA2WkDuxUKe+0SVokLzfHUsBE5VieATl3uUAFkI8IZc7VBxZNEtjV5WpoCiZCxyUXjawYRmlvEmZ2OawVdfcx6zDbpm/FMGN6SeZ+8WUiy0UTgOHf6DnCdWj1vcQNygCLzHKRguph11kxzIu+aUSDMqtGlQIfBBMNX6xNQEYdzyI0jkn8JEMz5FtdcpacKqL3eJiBiKVYMUzOANdNCigNV2t4GIBRMIvnRIDC6jYlUNF2TNv2jMzHPFmikE/BVRIIKSiyUv/AtldC7WKm6tcFI8Uxh8QHRD7A4DJsJQGK4INAgBOAEqoiNVEJRgGWkBzZO2YUiwnHICmCDN9NqgpsmGM+78JNpOefqx+SVkBZoSzvwhR2f9tJyNwVoML9TnwOVQXBG8aCIACSjq2LEoRQ3CLSs9YLSjJg6QYa0HxuS+xmyLtGMWTWC2Ptc60XNnoW1/eSAUgBgCGdrNwhhSRktQi5TL1oVgsjk7rslCmKZcqWCX1dNi9NxlHVZyOrgR9kbYlAoolS2MaToYlMCiqAsLVC7S8HFgZUuOc6KYjwx1A4VnJuUohWACMkdcCiDFQsdRGAj7mdD9+KAeRdpV7Kiyvs2LFjjQt/+9vfPvaHB3bhh2evgjGGja+uLJQhlBbcSMzNM3/jU3z/1CVQEGxa84p6eXEOKWXQDUqME2WxkBJnb3+OnyzcACEE63pdQErbDyGA8ZuwN7nUJjdKVL+nF8AoDY65VKTE/PU7eP/ERTBCsOGVFWo3F7BhbKCVZPNdShsrXnKBMx/fwQ9OXwYREhtfW2XrEKp8q9UDwbhFSKUQaTeHM1dv4PtzF0AJycZdQ+A2n898fAc/OLUACj1uZ3yhTQiJDx9RfGsVx/z1T23dja+utGMFZDZO6H1SqFVbvW/+o5t4/zdnQAFsWrtaDYqn9lzNvCpSq6NY8xSQAqcvXsX3fvYBGCHYtH6tmisplYJEKYhWogCiPusfm0iB+TNn8N4PfgzGKDatXweio0+FN57b5k+dwvvvvYeISGzasA5EpCCCq02vNNvvPMk+C4750yfx/ve/jwhC9escI4Krc8/tS3Wb6vP86ZN4/3uq79c3rAWVPLgRos6ZQILp7dyZ0/jh999HJ2J4c9NGMEYR6eR2MSVgFIicTNqMqO+EEFw8N48f//AH6MQMGzZuVEFYCCz/QlkwSLaaSYBI39+3rpzHhV/9FUAoVq/bYLN1G06GW5cSl7AOfHr1Ai7+zU9BGcW6DRvBCEFEqe2TUTUQqqPCmHYpURal82fn8Zc/+AGiiGHTxo1g+nzMnAJ6viUHCNRnSCBNcPrCZbz3i9+AUYpN69Zk95RzPwMaUAiRsxaeXvgI7/3iQzDK1LXp3a85i4V5PmlLxekLV/C9v/prMMqwccM6ZUEAlPnBfCYMRCdzE1Kb2jWwOHd2Hj/54ffVc3fjRhBohUf/MErPIcriRggIiDp/EH1f/AiMAJvWvqbAcjICpFoIkMkIMhkjHY4gkhR8lICPE/BRgnN3v8Rf3/4MREq8ZhYSuNTPV/P8k/rxIDMit5S4MlzEbx4/ACXAa6R+HctVsq+NF/Hh4CEogNdYIC9RsIHs47VkgA+Hj1TfJfUJI8qlztuq+mYdBspobmMdBhpTVTcZ4DdPHoIygjWxCjZBY2qP+3Upo/b41dETHB89QtRlWNfrhst6m3sObt9r405tXcmlrftROsDx0SNQAOv6vVy50FwBSrlW8zXAbxYfglGCNVFsdYCyzZWP0gF+8/gBiJRYE5VY7D25s2sbeoMh7n/0EX79+CEoQaEu6+Rdl4q/PcXVwSJ+9fArUEmwrt8NAgtqni0OsKCMYOHBI/z1nc/ACMW6qV7ptZGfQ3UNXPzqIX528zNQSrF+RT8bU2DeXKGM4uKXD/DT67dBCcW6fte+m+3vSUjexInssXbxywf4xd3PQQSwppOfrzpgwcccC/cf4Ref3QMFwdpu+W9lng/udvnRY/zy3hegEljb69pAEJRR++i15+voCt9duIZjx459u7Szr4l855//y2P/7n/0957rGP7ff/FP7xw7duy7z3UQjrReQjh541P04wgnP75dOBayVrio/MTHdzDV7eDkjTu5cnUr/ZILzN+5h14U48zNzwrHRciU5/gMn/j4NvpRhLlrtyr7CcnctVuY6sS2bllyKNuv5+5l5+vGp/l6HjfCWkdsvgmBE1dvot+NceLqzdbjPvnxbfRKfqel1A26hjnWldlLH6PfiTG38JFW0LL8GTJR36XZzHHHz3v2zDn0OjGOn54H0pECFVKBN5KOlR87HyvOhVH00zEgBWZPnMRUN8Lc7HFbJrilI91vts3OzWGq18Hs3BxIOvLKD3OfIdJsS8eYnTuBfreD2bkTyvdej9NsJB3m2zBt6n1zs8f1uD9UfQfGB8H1uJLcNnf8OKa6MeaOf6jdbTiIlKCQKqk5UQonJWrl27y0GAFOnziBqak+zpw8qRX8DJDElKIXUcSMoBdRTMUMXZZ9/3ThHHr9KdxZmC9cD6HcF65l4/bCWcTdLm5dnMeYC3AJzbuQ1jWqcI1Ju36AUyfm0O/3cfLEHAAv87oxA4bcSaIOZs8voN/tYvb8QvF4jdi6Fy4Hjwd5Cvr6Pz5/Hv1eF7NnzhWKVGYWh3o/nzk5h15/CmdOztn97qPI6OVcyiyDvZ6L2ZOnMNXrYfb0WdWfBjRN5Pz9h+hGDOfvPwwe912iXFkYLKJLKRYGi436cuXyeIAOobg8HjSu466mXx4P0CUEl8cDqyz6W1XfvTjCFTEC6zC7Rf0oV591qFVizXYlGaIfR7iSDMFiljtmyrMODY7nqhyj340rx+xvbvuXxwP0GG1UH0Du3K6IkT3nsvLU6w9Q19LCaIAeZVgYDQo6gHvOoe3S4hN0qRpzXVlfLg0W0SUUl5zrq6xsdo1kOsnFwWP0CMPC8EnODSoUEcoFFgBw7qsH6PdinHvw0M6h34e/GTn3xX30IoZzX9xXgEJvvoQAyvxnX6EfRzh776ssIIo+ZpMMOgDQlfP3H6JLGc7ff5Db39TT4cKjR+hSiguPHpWWKbPCNan7IouE4ic+z+3rJq3BxcyOzRgJgcPb3rD7/JvDv5nMviPb38Ag5ZjZsdlGjqKM2bq0E6n9uj6NI9vWgc0bMBQcBzZvyB2zKzi6PduW5l4QSjGzYzMGaYqZ7W82Pk/T78zOzVgcJ7auf27+udNOlHMZO7xlEwZJipkdm2150477n/puCpTiyI7NGIwSHNmxOYvo4igFpk5uPPrzke1vYsg5jrQ4ZzvmbW9gmKS537iRCI6ZXVsxGCeY2bVFAYkSgAEgCDBm9uzEcHERR/e/o4CbUfRFqhXspAgyNPA4enA/BoNFHD04nQcAgc0HHO8e3IfBk8d498DeAngAT+1G0nG2JUrZP3pgHwaLj3H0wL5M8U9G+bLpGCQZ5toCV+0fPThdGHclOHLHfWg/FhcHOHrkkLaupNaNi0hprREhkHFkZgbjwQAzM0cQU1iAETkAo8uYBRS9iCqAQQl2Tx8E0jG27DnQOnLUG7v3YzQc4vXd0znXKJOtmwv1fcQFEi4xTIVdzedSYvrwDBYHizhw+AgSoQCHgHaT0zwDqd3qMt6BehYc3f8OBuMER/fuzgYUULRJFGeuQ1qO7t2NwXiMo3t25Qvbe9pRMLz79d3pvRgM1TVq3LXM+AwIkKTI/zGv/f2HjmA4WMT04ZngnLq6sjU0adBy9NABLA4Hqm/kF0RIFIPEHRBGEfW71o3U/N+//jUkFNi/fjVYzMBihrgXIepHoB2KqBch6kWIe5FVwKO+2rdn1UokFNizamWt4kgYyer2I7zzyiqkEcE7r6xC1I9yinDVZuuvWokkJnhn1crGdc329oqVGEmB3d2pbJ4CYCTkuvF2f0rX7ZcumpW5fOzq9DHkHLs6/eDxsrZMe2/3pjDkolF9Hzjs7qpxvz21olDWBRO2vvPee7s/hYTK4O9c7DevcL+zchVGROKdlatKlXKz2Ta1QVBdX/l+69pw5Z3+SgwlxzsrjEeCd+95CpvhHgHA/jWrMUw49q9bXTvXvuxbuxojzrF/3WuV5QQXuQ0Apje8hkGSYv+615zgCzrARo270t7Vr2AkOPatfTW3v6nb+J5VqzASAntWrSotUwbcm9R9Kb9dQkJk0tLChMj7/9d/n99Xwa3wv9MozrnyGN9es9of4l24ZG7bjgMsisDEIXQ7fIu2mSTLZCmci0pg4YAKAAVSt7UOtCB1lya+CXFeBPCd2xH+4eZsrkPjDYGg3HgpK1wTcJLq2e9x9t1NuldQ1Ex+C7PaarJ7EwoZxTllEiapXkORPtkF3iqyf294oU3rVpzL+lCVA9ejN/Zg3ZAPbmAOshV8rcja3Btqd5YHA5BSWsU+5WoVhEuVM2TMJRIusZhwrewL9TkVSITMcTB88ff5PAxGCfodhk5E0YsYGAG6EcNUTBEzBWSM9cSAnIgSdFgWJjemUN8pQUzgWKZSDf7Guc9y+ETNA+cIRV5rwrko8BUoLb9egeI1SyNI1oFkseJo6M+SMjvnXEgkQv1OqV6ZMuAwogQUQMTUf0IIYmr+EwUotcudsu6NQcYDkGQRdDyAHA8gB08ghk8gnzyEGC5CPnmIdHGA8aMnGD9cxOj+Y4wfPsH40dCZmowYaj4bkrfLwzAk7zIlum6l1M+RAVRbt8v7Wb7VvOUgK1f5kS+Fd/E0pUnuCB9ENHnXTkLYNfP34d/6A7zy5Vd4R1vilipNuBamnLFeGMvApIRsW25C/klTYGE4GCFSd1vOxSRcC/+6dq9nd+78hIRm/o5+7y8hpXy+N0ED2b7voPxf/+L95zqG//TQ5jkp5dHnOghHJg5FWwcq/H1GKbWRl5C9sFlPkSAx1iRtHU2KQpMWWacQUcC1VpjxuNYKU7ZgGSiRpnkiTHuhBH12n+4/t0IYADq1irrbryF320RdQhNKeS6alSF5mX6CIWmd3y7/0q72UQ2KkxTQkrvdhGIAcsn29JgN0VtFm+I5ojeQuY0SnSkxy/CtCN+SdUBSReCWzCGtlinzoXNyFUntG58/7gINbx79sg7xvNBGGbE4sN8dfygSlZ8gTpXXfBQ3qpYJT6rbIza8ln4p2t9aJWGD1DHxzfNeSHCtyAJALAiMoTM2L51UqNC/+sUcAhh1wrWlQmjOjpASo0I7FAAHowxSEqRCRRPhUoKBIBHqtAQhoDQCmNS5UGK4Wd9BIxXJTIgsUhmQBxnmXnSuDRucwH1GePesK7lr370eNQdDgUBiozjZ/RKYxLpt3svmv71upMwsWVKA8AAYdgG/Y7GIeh2IRHHejFLBNGGU9qOcskK4BItZDmgYJaJKwS9zqbJkz1xG7+K1ZUCI/2iy+TVq+m8qdQp+k+g2kwIg9/izBBpNE9IZYFH2fqiaFxaK3lApzj1JsrafBvnXJR2HRGp+Z1k5N8RqlVSB5uUmvi9VDHG8jTR5ZUwqpQAAIABJREFUDhTrfL3Ou5Fot96XkklrcBG64OusFdmX7MVNozgHMAAFKnyAwShVVgzbBLXjcK0Vpn6lEl8hTcq4ACQIKnzg4bmKBcdUBSxcdw3BM+XdgAwDMPRxYxlyx+GPyRcLxErOedlu9DYAw0lcGAIZxHwP5cUIJU6bRALgITsWtmgQwSuARPlL1gUlhfF77fngyYZfRYxceF6TG0RH0KoGGTKX+I8Q7RalWwaUW5S+M60FIhES3YgBKcfYIXMbMYn3ysSNGjXmAh1GkXDVBw0k1RumQj+xKBKi0s5xQkCp4hlwqSJeGWUdlFqrDgjRSeT0GUed7JoyA2oIMnxxrRY5dyjr7qStFiyzJvkuXJNKFtTCDW7hAWOdU6MsFBmhFNKAin4XfDgGd4FGP79Iwce8MdBw6/hCO+4ztFr59oGI4BJRv/gM1i2DjwUosvfG045UVQYwJrFW1JV/2iBjUmAxCZBocy4Ri9Qc6OAJWZvlVrKmwhNeOsZcLoYxBxzuBVAORJoCjDJpwkU1/ZeJiSBFGVHXaIdlSer0PlvWW4yklBQUZnOek4IMvx3TjzuGl/LbIUtKotfUWqG+sPznBgDDWDSMFQPIQIX9HHCDKlXg66QiYZ5/PlVAo+x7Y2ARGq+eM1NuEiuGGU+VNF4tceL4h/YXrBf6WCsLRgnIkIBW5MLJ95Ysde5QPgDw3aMqlEUZAB8FUOKcQ84aQnRGcud7fhwkl8U8U1xpLnM1kAcZDASC6HCmVGungiBjZEnEkuqnhUBPqgMKHKiAqOYdNU5Fq5wX41Sg32EKYECFpAUXOkJV0YIRU4ASCSZVrLBS6wXleg70nEQdkGRkfxsDMJCOQRhTblLu/WS7LIKMoNUiCi8KSAfcqI6ptVq4v58kCphJzS0R0O5qOlqUL1UZ5N1s4Canht1neEQBoVEMQVWYceV6mrk4utbYENhQp52tJBugYcRV3KqeQWWuGH4OCRPEyYIOlrd2RH2KdJAqgMElliODd534AONpuWs9TWvGJMAiVKcpmGg7fsIIQABCpK3LVEDmZbNgSJ617YZK9X9fY70Anh7AKB9jM54F0A5gNJVJQUYbeZnr4sWWyd2iKqwVQLkC7YvRw1yQYQCG2p9ZMcyxEGm7qQIf9LO2HdeAEEfBqAMavlI/CbAouC85ik4bK4afKDD0cl8OC6zrGmXGPCnAAIBQ9MocyAi4SgFF96Y2UgscPAAaXl3SydZCVj7zIQggnZVuOx7nwe9zMlyLB1CeZJBG2gBRAjK0L78AAYOEIASMSkieuUUpbhYFp4Bg6nOWBCwDHEAeYLjWC9eywYW0RHCzj1Fi3aNGKQcjzLFcKCvGiHMADIwQa71I9XTmrBeUAYIqC0Uy8qwXFQADKAcZOYBh7uvw/eryLIxVzSeat3GJMtGfQ69b8w5mhJS4RJl9JfcFZWrBQj8vWByDdSLrGgUgi4LHKAQXBbAB5BWeJi4roRwa1ivPZOulmZJn2nZdLSJ9DxiF2wUdUT+C5ALpMLUAwy3bRNoqv3WKWqWbmHE/q3DHKWtvOUBGW36FCyzaWCbK/O6biopEnicOLzfAqBMDNJ4HwGgDLMrEBRiuNLFeuDIJyGhitXjRgIVa6Hreo/h6SXu3qEmsFZ4CXVCIA1aMEA8DKLdWmHHUgpoqLbou+Z3nphQ6ZwM0QvPUFFgElVLtHmbLtbFiIJ8Po8qKoSkUyyaTAgxCWc7H3QcaEgD4QCmFnqtU1k894doflz/2nHgrvsHQo94YXeWzIF5sdqIzWhHAuUay88lZPQhVnBNAKa+AzgTdAZEy7ybFxzkrBoAcyCCgOiO54l9QojVZBqRcKfCRtmjEjECnbkMssvEIIYEos2g0sV74ZYz1osMoAKLC6wX4F5QIxJKACAKuaSICqLdesEjPDUoBBoA8yAhZMcxP4JG4bZkSYGE3wH72XaK4NECuXty7yuVDWpcoKbLxVwCLbNxF91Jz77Jexqcy/YpxagkPLuAoe774CgiLDUAJn6/vbgUUwYZp1wcOVtmEimjFx8JaOZ6FFcOXuv7cuXE/N1W+lwoy2gAL3w3KBRZ1YEK1kz8nn8xbK5pv4Su2ywEwXKuFCxZ81yg3O/ezABh191Kd+NYLVya1XrjinvPTtGa8lBdHltUtqgmwMJ9zCjGQAxguenbdpFSzDUjbDQjSwczXbYBHC6BRNrYQvyK/+ulxLlyi+DJZMYAKPsakkbY8l6mJLRhmHA7QsCDDuF8BAB8otwjtKuVK02zpAKrBg99OjQudbcNcAyFLRWKO6d8BIYU1cVxTXNfCPOggUkJGsQUSaoyZmxTgWDFUA7l9hDLlHiWL/IuYAiZFdKbTsVyeBSE1EIgohMwTvOu4F262b920OnMnc3eOf8GlyiKuQ7dyUWO9MAR3GgEkBUDDAANoaMUIg3+XZ6F25oFFkMiNzCXKlYah5/OggqAAJoz1wnKGqq5bAyg4ta5RUa8L7kTrcwGYARwAQJ35sdH/aP4kaKytDCX3ZJkC5So/ZrXVgA3JBWgvCoINwoiyWoCC6aG6AEPVf/ogo4m1ou54G5DRFmCEwsz6Ugcsmrg7LZ+fvc7Vo7k9cIjGkwCMJoT8urLLDTCqXAcnVd6buke1tV74UmXN+G20WryUsCybW1QjYFGlENt2kCMlA8i5SYXcoFqRo50Vf1+CgMPW95XjkhXNEqDRZGylwMJ8N2OvABlVVowQwACKD5PW0sDc0RpguHXdz2NulWwSIcfxAOfW99qWr7Eu2PEX9nkgxYsmJn0lrYyD4gipOG4jEpmxuOMOrJC7IMrwTpBCKbRRR4VdLXGTApARio37DAm7R8VUIhGK4A0h9UK1evibCFJcSMT6fuTJ0iNIGXI3tHtUZptQElOCRAgwARBC660XTAAGWLFIK9oBgCGEmuMyK4YjBRJ3iGehfhwHWDhE7uzHy7yWZJ5fUTZz/p1GdA6TbAAyn+9Ek7nLgh2QKLbXN41iSC6saxQfUkTMcXU0z4k4e3XwJA26h5k9pfkevISjOoKAjelP4whSqHDkPtCg0ECDMQgu7S3igg0+5oh6UQFgqDDn2Ur/0woDuxRQUVV+EleiprIUYNEGUITaazdQlXtDgIJi6QCjSlzeRW7/MnIwmr5/l9sqUOYetRzyLHgZXycRDS3OvyuyZLeoNqCCOCu0AIogw7apD/s8DN1GwVrRNOJS6Lu7Qh4AHP7YsnZcq0u560RO6WzCr3D3+SEwfYAUcJWqdT2rABiAxFJvD8u7CCjbbQBGbmwlYCMDGomaK8HDikzFaq0PGtQ4A8DBPZ4klcfLQIY7tyTOn5RMx859YsBTGHAQxrK2DO8k0goyoSDpWEXO0n3m3KQ00TtnxSBMrW4H3KMEFP/CELxNBCkpswhSLt9ChallhQhSba0XrnuUyt4Na7kYporwHVNAUpMLQp0eZcqAopIFZq5IrvVC6rDDhKeQUh0nVNi8EMZNys51GUD13NqqeBYFIrfnEtUEVLgSWgAlXuhZCM23aMBBIpQCmncBFBdxbDnvu+QiBz7c/b7wQr4ifTV58+uCEjFOIWg+6l0p0AAKYMMADMklkmEK1gH4GJborc5pea0YbVygJpE6a0Yb64WrHE8KLNq4PYVWqGlbsKT5FrTDgDF/KgAjNIch16hJAUZbWS4FPeQeZQDGclovXAnNQROrRevr4qV8rWRJblGTAAvzuXbVHdqKgSKHoWkyN7c/V2QdGPCkNKGdbaOBVWNCYOF+DoGMRlaMBjwMK4wWghBNLEsAGFYoKyrzSKxyLo3lwgEavhTAgjs+v2wdcKixaBgpC1ua1TOmONfVSX92zw0VYAPIWTgI5SBRV+EHKSEjZDkeAMdNSpc3VgwHbBj3KHjhaUERJHgjMis22nJRE0HKD1fr7i8TE57W8C9iTfwecQ5GlfWCEc9yIbX1wuS6oKk9f3veVVYMD2AAmRJcWKWv4lmoQrC8D1J0iTJIMaQHVb3OlcUCOuO6V9iPEtVUKLOuUazXAUuKvKXcM6PiMi8kP+0Y8nVDt6gkVRw7AzI0r8NVfEKRqjKwkV85jXuRdYvyAQawdJCxHKCiDTCosmY0aWc5gUUdj6IKVLS1XBB9vVOVSfOpAQwgDBBCUcHaAow2/fvitj+JNOVfLNmj4aX8TstE4KKQE6IpsKhSiiusGIVwtVXWihql3e3b9h86F102JK3Bhl+vxg2qkAHYKJkhkFHmKlUC2Ex7VVaMZZVJAIYRH2i4beQuCQU2ykBEEZw4Y6v4HgQOjaJFZXUbh/Z1AIS1YjQBGwZcjRTvhOjjuSSDFW5SumHAhKs1K+yab2Hco6iUIOY/MoI3QNFlgEpwVR5BajDmOeuFy8fwxQAO13oBh39hLBeUKN5HSqS2VKhL3dA/ctYLGkFSoUBXG4ABFEAGgLw7lJsNPcSzADLui+8yhSxbOgBL5m5K6s6Jjgzl5rjIWzJSL7EnAyruG8oYaMhE0tBvnGkwIRqCCSAPSGhHRXuSXIDHKSTnOWuGHxbXzb9hlE6AgVKCZKjaZTCKcT5UrStt3KGaAJGmoCL0uS3QaKrI1in0kwKLSUDFRIoyUfUoMDHA8F2UqnJd1MlyAowyQBH6vhSQATjWvwbuUe5vu5SEcS+tFr8b0hpcLAVYWN9eD2TUWTFop7ia3Za7UOjb6d+VSquGruNLE/5GE2BBQpYg97MDMmpdpUybE7pJ2XFPEOHCD0nbHmDEWb0yMcd0u3LUoKzbvw8cQmVqSNyVHB1Txvlc5nanJMmDKfe69faFwAaJYtXXeKgUX8Cuple6SQG5pHt17lFc5AneaBFBqo5/YVyjfCuGG54WYIipxIgLMKq4IIwyCKnI5olQIMhYLyQlKj6pY70AaHOA4fAwqkSWAQvPHSoHNoAc32ISMXyLUpcooJCZO+jmRRlAFXfK8C5oJ8qRticVc+eXcSzc+8wHJJILiCS1z6gya4YUIiNta5ABwCqdseZhpIPUKpxRPyoFGFXSxrJRByyaZuhuAzKyCEfNrCDuc9gPNQvkgYXPrzB9tVEYQ6Ci1eo+ASilNmP0UgBGUzG8i6qoUUsFGE1ARdnxJiDD5UAY64UrTdyjbNllAhoheRGBhZTGwv5SjLQGF//jL6/j+q3b2Prmm9j8xusAycJhKhmqr6aCTR5FcPPWbdy4dSurCyCnfkm3otmnfrCbt+7gxs3b2PKNN/CNN14HIVQ3PQTRAeCJqU5gk0xRQnHj1m18/MlNbN+yGVvefEO7EEjdlakrbX07ZAncuHkbV27ews5vvIltm99UJlm/HIGNL6/2EzuOj27extXrN7Fr62bs2GLq06wdQtXD0qw6I3vYX/3kNi5+dB173tqC3Vs323aJFNo0TACeqhVlk6FXcBACLNy4jXPXbmD6rW/g7S2vKz2Qp6q+UL4jVCr3FaVkKUXx0yGwcOtTnL1+C/u3vom928zvpIQy5wbK5V1QS8Xnr9/G/Ec3cWDXNuzd+qZzPA1bdLzcDec/von5azcxvWMr9m7bXCxfIRc+uYMzV65j+q3N+brSe2gHFLnzH32C+aufYHrHN7B365sB8OHVcdo8f+M25j+6hem33sTeLW9UjHCUfSTZA1TVv4np7d/A3q1vKHBlgLWNFGVWEt1jDOeu3cCZazdw8O2dmN6zy4J4qtsgUQcSerU8jgEQpSwTinMXLuPkuXM4dOggpvftVwo3Y5AkUiRyCXAovgOXyu1IQEUyOn/2LE6fPoU904ewa89+SCGRphxUSBAOREIgAocQAh0QpERCQEBQgVuXzuPjC/N4fed+bN69BwABF9B+vQosFK0XegxSYuHcPD65NI/9B49g+sBBx5KhFBcpZc56ETvci9PnL2H2xEkcPTiNg/veaQUwTp87j9mzCzh6YB8O7XvbWi2qCNzGHerM/DnMnp7HzMwMDhw8pPrUFiJzaZn/5h1lc4JIiQtn53H+9AkcOjKDQwcPKn5JQJ+w0aEcoHH6/CXMnprHu/t248DubRXXp3t5Kteoc7fv4eT1T3F46ybs37whWJaWhFue/+QuTt74FIe3bML0NzaCaVAsAuDGB/IXbn6GEx/dxsE312PvxrVBkEHjuNSacf6zrzB/90vse+1V7OhNWaXTAAoXYLi5MADg6mgRC4NF7O5PYUd3So2voWJ6dbSIhdEidtIutnemKsv6bV5LBrg8HmBXp4/tcb+0bBlguDZexOXxAG+vWJkbt18+5A51dfhE1Z1agZ1TK1oBiyuPH+P8/YfYt2Y1dr+6KlfPVRR9UME6DBe+eICz9+5jeuMa7Fn7atlUFYUAF+8/Ur/xq69g9+pVrQHGlcUnuDRaxDv9ldj9ykq7vwkou/jlQ1x49BB7V7+CPetfs/ubAAxzzvvXrcaeta82BhWCS1y6/xDnvnyAfWtezc1XnauU3+/uVSsbu0cZWXj4COfvq3Pe/cqqrGwDoLHw8BEuPHyEfU7dlxGifruFtFkxI4TIv/8f/x10OzFGSYp/51tH1QGrNOoLxF5sjvYN4Ce/Oo5OJ8J4lOBv//43vRvIebkEVvN++qsPEccxRmmCv/WtdyEBGHhgqhj1XgI26RQA/PzXxxHHMcbjBH/we+9m5T0XBKn/GFqzBPDBb2YRRzHGaYJ/692ZvFuz6ccdtnThksTfHJ9DHMdIkgS/9+6Mc5wU/Kn9tj88Poc4jpAkCd49OmMP+OX0SeT2zc5l/c7MzAQ7Kev/xNysV7f5jT9X1u8zqP/86rrzdbRV3Un7Nr/Vizlfc4i8um1eLS/qOb9Y94VsXdf/DZ/qmGteW/n6RxrXkwDmTpxAHEVI0hQzR7K6pMGrcu7ECf3MNnWbv19VXT3mw0fqK/jjPnUSHabeF37fhfvLG9bcyeycjx4+XGjfr+9+P37ypK37zSOHoWNYI3vTIbdwmKt74hSiOEKapPjmkUMl/cnc90UWQ4Lg7PEPEUcMScrxzUMHc+em3sXm/e6fu3rDf3jqtPqt0hTf1IDfduQtenlf8eGpU4jiGGma4puHvLolZ2HrnszO+V3nnAuXSjaFkLqp4ydO2evL1FXFap6gBDh+4mRWN/AbF4bhjcf9nd89crhYvkKOnziJThxhnKR490jFte2dxj/5n/5nSCm/9shj254D8p/8P//muY7h7//etjkpZXsF5ClJa8vFf/7uWzhx9SaO7HwLB7b0avkVxOFHbO8cxOzCNRzdvQ8Hdm7KuZnYlWJ3n1nNEhw7sBtzVz7BzM63cGDn6nxffn/evulVErMXr+Ho7m04sNNZTa/zsRcc707txdzlG5jZtQsHtq8rzEddHoXfX7kXc5evY2bXLhzcuT43rtx4A25Q8292MXvxKmZ2bsWBnVvD4y45hzNrD2Ju4SPM7Hob09vW5cpadx5nfgHgTy+O8SdbJS7idZz4+DaObHsD01vyfql10cLOTG1X18eO7TiwrV/PP8k1xnDmtX16vnYH57tKgnXrXJn0HOTGvSU/NuGHofXMn/PsTcxdu4WZ7W9iekv1ozbkZnYmfhMnrt3G0d1bceAtvWLp5kGhrPS+OvM6w+zCx3h3/24c3LNb7Y9ixQ+IOrpcZEnEUlstJI1w+vy7mD19FkePHMaBg+rlnFtxZx1IQpTJV0hIKZEIBcbPzJ/Bibk5TB86gl17p5EKlW8iEQKLCUfCFTdiMeEYcYGESywmHMOUY/vmw7g6fxpv7N4PumtvzhWK6QhTInBfdRhACcHBbUdwe+Ec9hw4hD37pzEVU0wxhpgRREyV61CCiBB0mLJoRAQgyRBnTx/FyVNncGh6L6b37M7ciHi20k8EVxqJibQkUsg0wfyONTh54TIOT+/Fgb3vQILmSdxRDBAKAebtIzj7zcM4NX8OBw8ewr7pA5CU6ZwcEpwLa5UxliEhJVK9+CIksPPQN3Hp7DwOHDiAPfv2IqYEMVGrhowS0HSskk/yBOAjFUGMj0HSBOd2bcSpsxdwcOc27Nu+GTJNIXkCOR5DJiPINAUkhxyPIZIRRJJFXTu8fxPmb9zG9NtvYO+G8qSU/q9FCMWh6dcxf/02pt95A+94dV2Fz+VZGCVp39vrce6TO9j31ia8veoJxJgri5QOTQsCcC4AzckQXFnJpJSQCcfmKY6Ldz/D2+tew/ZPLqqfkkukYw4ICSEkRMohEgnBBYSQkFxCpBL9B/dx9fFD7Fj5Crbd/xs1Lk+9CfHkJSHoPH5o62598Gt1fq47IPHVZjMJEuzJI1x78gBvrXwVW79QdZVBjBSULl+ZfLxxDd54800kP/sA21etxtZfnbAr2ZIoa4EkxLZFiLLVSwLQmIINxrh2/y7eWrMGb126DICARKoOIaocKAFlVLWn25KUgHYZrn5+DzvWr8OWu7dVX+Z0IwoJkp22GRMUZ0O+NoWrn32O7Rs3YvPifTuP/vzYBTkCCH0ObN0ruHbnLvZs2IANTx7o21UA+hkFqX7T3IKalJBCbfs6XVz/4h52r12HdZ99rkZlFkZ1HUKJ8nKgjvWYAIem+vjo83vYvmEdXv/yc+spYX9mRnL9ukYF+WoPV+/ew/b167Dl/r3cMqMPhHJLkBIgK7u4+tnn2LFhPbZ9eRe+uOMgkLnrLXLrfvVpNrdCgpi5s/v0B5H9AiymuHrvc2xfuxZbb93I9+sMswhkJWIKXPnsLnauXYutn3ysx+qUN54XjGReIAE+3tdVJF5m6PalteXiyb/+U/W5CahwvtfyFxoCjcZchaqcA8tA5K2TPHGyIXHb+eyHKgVQHckodA4GTHggIgcu9D6RJvjfr0j8yVaJyPHRzkX5qghLWcrF8aUN2GgrAQJ4GZjI78vXqQMTdfuNtOGrFCKguZwi9x4L3V+UgcQxiAETDcEFKLO5H9wQYSGAkQqVg8EFGAIqg3ciJLgExlwpxAlXkZwWE4GECwxTgUHCLRn7yTi1/AsDJsznOukwCkoIpmKmQEXMMBUzdCOKXkTRYRQdRuwWU4KIapCRjkDSESBSpXzr/A++GxHhzn4+hglxLEcDNffdvvotoq4HLpy5JRTSuLAZVynWUfsIzc2p+W8SAkoLMtQKqznmngsj2flRSJB0pMeagiTZZzoeQC4+UDyLNIEYDyFHQyAdQ6aJ2kYDdSxNIMZp7YLJJFLgWzSp47g8qdwUGQ8DUKDEEr41QMm5SXGRy5MhNedCcKkAic6FIXT2brOfj0V5bo6GGsRyEb19KfPbv7f1DVz7/Rl88y/+Tc6lpywiVB23Qu3PFD6fW9Hk2dbUNWopYn5XwSXEmBd+W/93kFza39ofUxmZO+QOVpUE0HfxCZ2/K8uVj6NqDEA2567HiJ+c0nz3323LzatwJXRNmfEf+f9+/EJYLrbuOSD/uz9/vpaLf/CtF9xysSygwkjJMRMxSDrvI3t1NVTO1VhLFHSPBF0blanqPMoiSoWU6IZgKDRud78FGe64Q6TvqpdXTZZcowyY8JGFsThEL8JoMRt5aF4oC/dLaSNydJnYa1LwejARGNdygYm25d2HqeQCAkkGMNzEhP7vS1XG8tJwt0IUkgkWOy9XDkIE74hqZdgheJsIUoyqF5abYC8RBF19fomQ6EYUSAUSAvSdl3gTQOGKSbAnpAI1ZouNYk4zJZ3rUK2AxgomqZ407JGaKfKXpwvXUgoEcjyExA8/KzXXwiTOK1vk8WfH/Gpm2mxW7hyRW4OkNAHSEWSSQI6HkOlYPTvSsf6eqPslTcBHo0Lo2KVKGaAIcS6aSjg/D8AQFfNoMGp/ZZXfIiNxu375ksvMJ18n2+OBx5EUotI3PBTWtjj+rMxSFWu3D7sKbBT65wgqjBj+gc0C7eSFMByBpeZvaAMs7Dm1JHgbDob5z8dcmUcBS/LO2qcF4OKf/7OQEHgKgQrg+QILt31zt/pz+FKWTwghDMAsgFtSyj8ihPwJgH8IYAeA9VLKeyX1fgDgWwB+KaX8oyZ9tQ9FWxHqtQpYlCnMBUXZEeJEiTJAozWg8KNDuQr6JCDDl6agY4nAwpXGIKMilGtYzCpGmikATmZ013rkAovCw9Wbr0xhbgE4yiQA2nKAYpnARBUwmHRltxCZzJu3DGDA/o5u5K2yCFtKVFQpUpV4ICRlliST94InkCzORZBygQaj0ua/EBKQRIKRLMGekD7IYDbB3lIk4SoTOBdSbwCYAhZMGt6VtN5NXCILS6vPW0JHjAq9x3xgYaJFCa4+d3pqnqRQ1ovCBDrnF8jIzaVyMzPvUOMOFQIZlKjxW88SZz+ALPSsFCA8AREpSDoGESnE4EkGLEZDyPFQgfA0gRwNIcbDp2KtyD1DJhRjgZhEaCeCGKdBgOEnX/NJ3m42b1dCgMOME6gmpfoJ+4LtTBCC1gilylUoswzkr0k/tKw73uUGFa7YRG1ayfYBhhpr9blWRUwqAxZtpS4Erf/bGHK2q3i7QMNGlPLO35Z9hhGR3DG4331QAeTfSU8bVPjiRuQCJr/mnpe8IBm6/2sAFwC8or9/AOB7AH5WU+9PAUwB+C+bdjRRnovlABVlx3NKv1vOvxmbAgpAxf33FG8Sx2HlPPC9bIW4LeiYxNJSJfUgo2J8jrjKtnI/4FaR9UEG0MyaYb777btSaeEoHWyNErSMYKJO4apSfEJzVNde4WFaY7142mIBhv5PTVhVB2BICUSMIOU66Z4OT8slQUwpBJOAzn+hQIaAkBQ9CQzTyZTPsc55YXkKekuEAKPUhqW10a0klE8xVf7j0Bm6sxOtfokV3Ao5V25VTX4DJ4qUpBEkUYDIjRAltaWlSpjxSdb/GYENQQsptRuUa8HgkGPt7jR4or8Pn4kblAEWBhyUPS/KJBQevCxXhq3DqLJeOHUMwHDbZB3k8mAYgGFdXjTAMJm+7Ri4yK36AwAfB1x1vXEbKQMeTawdVfWzzoyiXm2lcNt6mqDCF9+KYVf+HZDRtJ3c93En/+yAAAAgAElEQVRZDotmbbaNUuS26ycxtCvwDa0ZkwKMUCSnJrJUa0XbXCqTSNkcvpSlCyFkM4B/H8D/AuC/AQAp5Ul9rLKulPInhJB/u01/7d2iyvy+3f+oV/hz4iiEbr0yoFFoPwAmiuPWK8HOin6lch767rfZAnS05VcUylaNo+Q8jGuUzX3hi8tpcdyhiKcUuCCDMpZzmSqzZrhtFsZbATpKAUdDCbXZBExUKVgT+YvX1PEVLrf/ptaLSteoZRIiUhvoxQcYFkyIvHsUIVkmb4CBC47YUVLc/BeTAAylnMtn4hplRHLuJEZ0QV7gEVoGVrTVQo1FWS0Mv8KVulERTbJVDTluUCLNrBZ8DDEaQIyHz9QNyudJmP0hKQMdbcFOXSJQyihMPgwAiHoR0mGaAxisELYUALJrU8ADPAGwAWSAA1ga6KiSULuucvB1AhWuVFkx3OO17YRCt9a4Q4WkjmtRJq6bFJBZMgBUWjNUWQdoLAFgTCru3IWARRWoKPvuynIBj2dtNfkdkf8DwD8CsKqu4HLIxG5RZcCiFaioKUOq9Kace1aFlcARmSalVgygAchwpUIBLlX4mgKLUjJ03sWr0K9/HhOI4BxEKwM+76ItyCiMrwHoKLNytJECcGholagDBJO6eYTyAPh9BRUte/0FrBeeyCQB6WouRsMHvEnkVrdy7wMMQhkYiPLPESqDt3GPIlAr6sY9SlCTZC/Mv+hFrDXAMPkflsM1ymjyygUs4PdifgMhsqSFQM41ClLAzVtixYBAQ6Z3rBZccy6MOxRQzrswYpIGunwLwhWgsMEZRGrdnpAmkNYtKnODMjkjllNCwMJaG7iAm+nbKMeh+829D8qI3GVSZb0wAMOU87M7m1R/udVouL9pXinzlW8zthDgUO3Wgw4z5qrjrrh9sYjk9vl8CiAMKlQd9lRBhS9lVoxcmRrXJt+q1AZYGN4FT5bC/cmARQhkANVAw4KMlgDDkuQnsF60dYOaxL3sWQCPl1Iq6wghs87370opvwsAhJA/AvCZlHKurQViUmlvuWhqrWhgTSiTQkbi0Dj89kMKfaGM/mBdlFuCjIq2rZSBjqYuY03nqQJo2PNowLsQaWIjrgDKwuEr3iFytylRBjLsWJwXZZVyULf62EaagImQYjMJeAiBFF85qGvXzGF+fvPk7rKs58p6gVZuUjK02l4jRKQq27fx79cAQxCAksw9So1NWvcogOqnTJh/MUo5Ooxi3PC3N0BiuVyjDK8kP0HGZ0mfazp2QAbXn+OsTBWpm2QAoymJu9AEUEiYRwmsS1TOasFTZbUYPIEYKmCh3KLEU+dX+MAip7iYcbO8FbVwr0zIsQg9P4zF1udfqER7MdJBkgMYkpNc4jUjkktvdduLLhcAG6peNp4y0AFUA4+qeq6Y0LBtQQWglN5n7d9exkUoKxcSa21vabFYTgmBDPPddyPyXX4mBRiTSJUb1HKAiibSpN0XFYBIKRu/w56i3KuIFvX7AP4OIeQPAfQAvEII+VdSyr/3tAazJEJ3cPW9xqLQRJrUK4CJutCnQmTuUFGct2KY+mZlsgxkuFIHImqOTWThadAugIncitQLn0LqEI5Z07Tg3uCCiNztFOBl1PIMzOruMt6YTa0SZUr/UpWvpudcGMfYB3B59yhdWGeQruEJcJ6B6erBNCiki/IxJOsogKHdoyhBpXsUIQAl5fwLQBG8gWYAgwuJcSrQiejyuUbpTNkFLgagQ5k6wALa7TGKK3kXOQCnrSVlJG41rnrFiOrN8C0geY5jYa0WGlTI0dBaMJ6GGxRQDSzc/qh+1bggAyjeK7nFiCXch4QxdQ9UAAzjCmUBBqCsGJ2iFcOOyQMaPOE5RT7PoaiwUDQEHvlzah7+FWgGKky7bV2TXAk9u5uClaZuUaE+jFK8FGDR1iUKQMHiwWJWABZNrBmK69MeYJjM2k1lOYDFUoINtJGnBWx+10VK+Y8B/GMA0JaL//ZpAgtgqdGiWoCKZfUNrwMSDY7VWTEA5EnfTcfQAHQsK7Co6ouy+pC00GblcQogAw12Vcg2WQ0yylymSofYEHxMKn7/ISDRpO9JV1KNNCV217pCVFgvSr/7/bKJ4jd4jSgQSvgYYJ2MW1HiHgVqHKqAEP+iDcDI3J/k8rhGEZpzjao87TTJLTaQJtetzXmhXKKEzgfSlMQdbFLzLaxLFB/byFAkTUCSAUSSqOhQ4yHk4MlzAxZ5y4V+ZnggA8iABhCwMDZ0iTJiXaNqztcleLsAQ3BpQ2JWgQw1pmqg4UtT4FEnoT4ohb3NfFDhfvZdoAq5KEoI0m2lzjXWFb+/srplivCzAhYuqHAtL+5+F2hUWTMAAB3WCmAU8mc0cI0qAxaTgIrQvqcJNF7K0xdCyH8FxcPYBOAMIeR9KeUfE0KOAvgHUso/1uV+AeAdACsJITcB/BdSyh9WtT1ZtKiGoKIWUEyqVJeFz6yJ7S8518pE2IoBlLtK5dqp4jRUuXK1BBUTuZKFxkMZjJOKWuFUK53WJUpHiLJtOauOoRXHpiCjOJTsfJaqtNdJUzCxHOMIJnhs2L4LsgQwufXCddVpIjXRIUqrOTkwDMBgpMI9CmH+BRcSjBLEUindJkRtFcAwVovlco0ykbDUiXmLD8YakKooTNK6Q2kxxygFoQJSVqxSa5coY50Ikbhts1Vzr38z6xIleM5qQUSqAIUGFXKsQ80+J2ARXG32QAZxuBB0ia45xWh1FdYLh+DtAgwTllaNsQgyjDJlSL3mM1BUVv0V7qbAo66sK6ZPZvJ9xKwUVAB5FyjKiFVmbX+WgzKZFaNO2liom5CLJwUWvuJfJSFQEfruAo0qa4b5bvJltAEYdWF7c2NrACzKrHNNxQVSyy3Pw81tUpHIuIBfd5FS/gw69KyU8jsAvhMoMwvgj53vf9C2nwmS6BWjHrlKcCMycxOpWMmtBBFRuf8z0X47/iWQJe0rd5XKla/L2RHquwWwmMSdLFgnjiFHzawWrsXCKAeE0YlBhhpTO+7BckpTILGclpO27lD+mGgnqgYYQNF6ARRJ3IJXW/GWKIUke5S1c4+SXOfByGSUCsSMgksR5GC4FotxKiZ2jVJWDAMsuLUuFHgXrrjAwvksOS8kubPJ8pzM3MYlCkCBxA00c4myOS4clyg3n4WbMM/mthgpjkXyZGCvPQPw24aHtVNRQdz2gQVPUjVHjAEJwOIoe65UgAw1zvz3NuJaLyYFGGLMbThaxrRi5txjTVZ661bGXaW1Ckw0WWG3EY9buEDRDrOfjdJKAdB+ZBVd4OmAjJBMAiZckPc0xPxGZSRoI24UqCprhipLcuMWQlqAAaBRmFrjGlVmvQgBi+UEFWV1l/pbvEiA4qVUy+TRoiYgVOePNfUzDbRRASBsvUCsdEQdIB3bF04rK4aRqihRTfJULDOoqO2rwjWqzGoBb9VxEpABTKa4L5fPdVMgMakCUyehVdiq82kaIcaKsV6oztrVNbIEAOLmwAChrd2jFCnW6z8VQEQxTIvz5Fot0iW4RgEEXMq8a1SJGL6FDS1tQEWSQEYqDLAUIgMYfuI9wLpEwQk9O6kwqgAcIVBgQqTK10tbLQyJG+kYMk0gxkMkTwbgQ7WoQihVs96Jci6MQDOw0dRaYUCFf72bpwxDNcgA8vdlm9Vu13rB4mYAw9TzXaQAZAo2aAYynONl1oyQ+IrTJP7+dcrbJKCCBUBTcA6WUfGrCjVaBSjq3HSMLFXJrQIVLgEfUJyZQhQoLb41wx+vm4yPQqi8K4E8GDkuTSDogCtVwGISUNFmftu6TDX9PV/KiycT5LmosVJMwocw7flAIgAiWithekzmMpe6zdZWDKetoDQhUT8lYFGab6PqAaRdoux3E36Wp6Alfs5tQUZTcRWb5cw30RRMTEomr/KbrgMtPvhwE45NYr3I2vGydPu5GHxlugWh2xcbQarEPYoQgliHq/Xdo6jQZHBK0HVBhgYYQJYDw7da5L4vh2sUTQHhuUnZ//peSJJcngspeMa7ECkK+S5M0jwnStSkVgtAzROF5lzoCFEQQnMuEpswz2ThloMn4MOx2kwiOY9ETSiF1NdYHdiYBFiEoswB7UDGpGJARhnAyJXV+woAAwiCDDXOcpDhShtlq83qr1/G9XJs4gJlLBWsw3JzbQKf8TEHM8ThJfIx6nIWNLFO5Mo3CCGbDyOspMm8hlyg3PeDARbuPWT2uSBD9dfMmtEUYPguUSFid1Ng0USBryrT5Louu56bAoqlhAp+1iLli+MW9ayEHTt2rHHhb3/728f+w7/9+3jvgzmwKMKmta+pA5SFVwEphfWJAHD60lW899e/AaMUr29cD0JpbkPUsavtoEzt1wTGMxev4Hs//zUYi7Bpw7qcy0Hddvr8ZXzvpx+AUaLqSplZKyiF1oT0f/WdUAYIgTOXr+O9D2ZVv+vWAGXKQEnfZ65cx3u/OgHGGDaa+cpVYyAlCt7phY/w3i+PI+p0sGn9OlU2sIXrXsN7v/gQEWPYuPoVzbMQ+i5IIblSCMQogeAcIkkxm07hQPoAFz69hx9fug4iJTa+skLPh54f/dm8jO13/f/s7c/x4/MfgRKKDa+saHRdGcVEcoH5G3fxw7NXQYTE+hX93LE6OXvrc/zo/DUQABtWTtn9ggu9cu2tQhmWL4Bzd+7hLy99DEoINqya8psuGbiqf+725/jxhY9AAaxf0c/NU3lVabeztz7XfVNsfG2VuuYpVfH4iVIE1GbuM6KAOKGY/+gm3v/NWTBGsPG11SBRBMIiDail/hypeu59SijOnLuI9370l2CUYuPGDYFBCij4XdzOzM/jvR/8CBEBNm56HYYcTR0thwAQIIAJxqSPXTp3Fr/8yQ/RjSKs37jB1lFl9O2pQ2tSQqylIuVq+/TqRXw893OAULy2fgM6jCJmFDEjiixOCCKqPqvcEGoDCM6fncePf/B9MMawadMmEKGiRqkwroly89JEaSQjpbCPh0Ca4MzCR3j/N6fBohibNq7X9x8BiTpqjikDaATJOurZx2KAxZAgOHXqNL7//fdBKMX6DRvLrwvnMyXEPm4unJ3HX/3oh+hGDK9vXA+ajkD0RtMxMFqEHA0UsBguQgwXwRdH4KMxTl+7hR9f+BhIOdb3e3aBQEqpPguHgE2MxUZApBzzN+7iB6cvg0iJ9Sv7rYDFubtf4qfXb4NKYF23kz1D9L2jMJJwEgKq+0YKgfOffmHvqdD9WMYjMc+Jc3e/wE8WboAQgnV9k48k69uAD/vs0hceoQQXv3qIn9+8C0Yo1k111biNom7va31P6uuaUALKKBbuP8IHX3wBCoK1+pyrNvcHv7L4BB989SUoIVjb0YtgrKSeFtZhoIxiONXHXCrxycVziCjBul7XWisIJdZaYeqbeirnB8XFLx7gZ598CsYY1q/o2fOxbo16DrLnfTbuhQcP8Yu799S4u131+wjpPl4LYiI8ufO1Jopz8yG5tN95wiGFtMq04BKXHz/BB/e/BBHAa1GcmxdTVrkO6fer8wgjlKj5/uJLUABrO52ctcJeKiXA4upwEb9+/ABUSqwxCU65hHSiX7nvADMXhBJcefIYH3zxJRglWV2pximlse+q30nqMMdEL4Zc+vIhfnbrM3VP9bv2XKSsBxaXHz3GB198ASJgr6+QuPPuyuXHj/GrL7P5yioUgU++QeDyo8f45b0vQGW+bqgv81sDwJ/fuoljx459u7zxr4f80z/7F8e+9R/8J891DD/+839259ixY999roNwpPXy0Oz5y+h3O5i9cCUDArkWabY5QhjD3IUr6E/1MXfhSnbg/2fvTWLsSLItsWNm/qYIznMyszKzciCD8xQUuoGGFi1BGwGtBrSRAEELNXohQBAkaKWNkLWQWkBDgrqhD3U3JEELCQI0NIRGZdWvP/ev6f9iMMgYGAOnTGaSTDKTmRwj3uRupoUNbmZuPr33gkM1L/AQ8dzd3M3Nh3ePnXvujZrpB3DBBmCOcWl5HZ12C5eWVtTyqPLn0rV1dKamcGl5PQUtGsxEzZQxsY8JyQjMrd7AVKuFudUbqn/ljr0zXqu30Gm1MLd6K7he8CRXjG2OvXKj9DjG1HjNrd6Ubde/MKFRIdaHNiN3vBnF0jePMN1q4dp3jwGks4hE/RjRRgTacGcY9Qt84d53aEcRrn79oHqfLbt69yHajQhX7z4crW2zgYV737nnyGiGKdDnom3h3rdoNyIs3Pu29nEXvnmETquJhW8emf1WSxsp+7X4jRqzGucshrL2wtz6l+g0GebWv3Q38Fkb5TTboTtz81fQabcxN38FsCo9m0/uwTnmrlxFp93C3PwVOXueDEF4AgqBBpXOPaOSuWDK2WdEVu5eWZzH9NQU1pevosUYWhHFVIOZT6chl21vyu/TzQidJsO2doRt7QhP76xg27ZpPP5yFdPNSLVL97FNtWsyiiYjzmfpyjy2TU3hyuVLss/JAGTYS0XRw75MuWs0Cz2ppeIJLl+/g06zgbnrtytfJ0CGZ12Zn0e73cHClXnYt4ZTbRsw6Wa1MfWjvXR1Hp1OB5fnL1vXodpM2eL9R2hHDIv3H6VAQLMaitlIBjGSYewu7w1w+Yt7aHCOyze/lsuGalu1ng9ixL0B4l4ffDhE0hsg7g7AE46l7x6jRSkWH34PIGUeU32XYqaszFL675WvHjjPIx/GzscMgTX5YDuC8pwbWPrmUe64aEZFvxv0O/Da42fotBu49vSZccYpI2b2XzvqlJH0naiu03p3A51mhPXuBliTOZ+QEUbMZ23jBdoRw9rGC7PMNn9/zj6FwP3799FmDKvPnhtgYffXByb2O+ra90/RYgzLjx5n1jljYO1P28qTZ2gxhpUnz9KxLREe676vPn+OFqVYff68ePtACNla9wXahGGt+6KwbWgGXCQCq8+fo0kJ1l68qKx/0bbe20QLBOu9TbefJWmFeSKwtrGBFqVYeZqOl0iExyxwhyXiiQRKyz88QQsEyz88cYBWFcZi9flzNEFKxzqPiVh78cKMV13T97Z/7NCxRgkXfGuvn9UGF7MnjqI7GGL2+BFrL2FAAUhQoZ332ZNH0Ov1MXtStfXCnjLOr+W8Xzx1HN1BjItnTmVDEErs4qnj6Pb6sq21X3O8AoBx8dQxdOMEs8c+De67DGTMHvsY3X4fs8c+LuyjBhk20Jg99ik2+33MHg8fO2NWP2aPH5H9Pn5EakGiJkizLUFGqw3abBtgQRkzP7Ss2cSZ9w+hxxOcef+Q3IZRsHYTtBGBtZsqfCACa0agjII1UoBy9r2D6MUxzrwXmAmvYGffO4jeMMbZ9/Jnd4va9oXA2fcOZlgxQmU/tUOvP0yd39kfHUIv4Tj7o0MOQKjyOfvuAXSHMc6+eyCz/6KPtjPvHUAvSXD+x4ed66HZiyK78OkH8nk8+qFcwC2NAJQjx61ZXjVLDyEwe+4Mut0uZs+dMesqfQDMnj2Dbq+H2bOnFXAZGGc9D2A0FMA4c+4CBv0uTp09jwYjaBtwkQKEna3IgIypBsN0g2FbS4KLj0+eBUkGOHryrAIgaTu9fTtygQVTIVqzsxfQ625i9uxpkLgHJLI2BIl7MpVrMpB1IoZSs2CHO144osb6yEfZC1EAxhghOHf+PHq9Ls6cOy+XUZSCDNOeEpw5ex79bhcXL8yq61cA/ihLCzBC3V9xgtOH97ldDgCN4UYvBRrDGKcP7sFmb4BTB/diuNFDrD7DDannGG52M6BCF+I8sXsHuoMYJ/buMmGCVQHGmcP7zXF9lqIKm3n68D704iFOvbMvd5u8MMuT+3ahN0xwct+u3LYho5Tg2I7t6HOOYzu2Z9aHwIENEI5tV223bw9uHzqe+RCCw4cPo58kOL5rp+Mg5znL9vid2LsT/STByX27M+ucYwb2e3zXDnXcHcH+5RlrMpzYs9Occ12dxExnG3oiwUxnW612pv3UNgy4wMy2/Pah9y+hFEfbU+hDYGYqZed9YJH37p6Znkafc8xMy7a+BsMOI7OBAwCc2L0TvSTBid07M+vLQqFmprc591eRha7FzLbseIVAcGhf+t4+vnNHNqQvBKQb7C3IeMON1BEYEkLEcP7n6YIRU8ICqAUs5PdiQCFKYseJ/WNs4qmVQFPP8sYDpAWzuLMNAMdpy+3HCAXs8qxSFi7bAiBHDHomjaaJx46H5ruu2pv0BvjH37bxH7W+B4vTH137BenP8IWsqCjWVlnVzDd5zsRW1drQVnUMfLBnQqMYTZ1FysxzRxrNlIlrtuX/rTaIApKgFKTVkfeOjv+3/gdlRoNUaGXjY2VGMvtlTXAQDC0BNgcQJzKjUyKgispJDUKitBK9mEvNRCL/7yccw4SjH3MMuVzWixNMWyyHBicaWGhAEVH5VwOdBiWgEEqn0JfJHZKhBBbDvkrl2jVpXIV6RnSGKP3ckPY0SGcatNmW492ehmBNiEYLIpLXQTTaEFEbImqBg2CQcAyS/BS0RToMDglQ2hFBJ6JgSR9k2AUZdEGGm6CDLsTmU/CN5+Abz8A3n0NsPMPwxQb6j59j8Hyztq7IMJKNqDD0yWSKsu6RvGw6acYqap5ZvUz/ZjCLETUakRE1UUaAq8PAEvd9b78P/PNIxbvW+9+aKZbtqxcnm4QVOerfb9+Jv545hX97/jdy2xyNhTYNVuzrArjnHxT/cuGcf9UaFdryxiVPD+A43h4D4Quny6zIWQ2xG1XE3GbfFYGFNr/YYSjLV0gz4xdsnKTGIs/y2lZNLlB33/ayv/XrX0EIsXXpwCZk7x09Jf6Tf/LPX2kf/su/feRyQYXul24jZIsaA1CYo5YAi8wxVfahMcSngtAUYNBIiTBT3YXOJkUwCGaSAlIHvwhkOJmmxjS9j7HF3rGKZ2+1033HkDHyUUMKH9vymrB2E2wgf2yrgInyc+BbBjB8UFEGevJAyFbX3KhiRcCiihWmo7VE3SSJs89RTXBFLCZE0Eg9J2pdMoCAfI4oa6Jhh2EIwOgsuQAlUmwNCBBBIAQBbRAMEwFKOCiRzMdQzczSRC5rRxQNStCxQqkajDjAoqmABcsDFkpjIRmLQQostG7Br2sxqgkOEOXIEQKaU+OC0RRgaAZDg4yth+dZM85UMqgEKtzY9Oy4aaGwrIPDAZW8QL8fdMraZBiblLWTsLJiemVWlpknz8rCgoByAFJlHyZkVcpAZLsSYAGkImIg+44uG3s7/amfCtV+X4X2Y59TXQDGGmwskW8yTIIAI2+foTSvrEmD2aJsGyUZgc40VpaiFgpgvCxgIc8nWxNkEsDC3i4kEH+bNerNtrFK9tYCFOaIFWZKbWd6AsBC21gAA3BARhmLMUmQASjncZQq55QBGDrfSdMCGVCJQft9AKnmhY0BCPyiWJMGGCGQ4Ofxd/uTFB5/1Jz/L8sc1qKCORmj4gGgr7ft6KpMT3nAwgYQRWZqXmiAobJHhQCGEALgxAAMmTlJCiCHSgBKhAxhYhwynIrCgAtGCRIm0E84WszVabQjCkZRCix8bQVR7AXivgQWvc2U6VNaCz/UTHbeK6jH7PEovk76TvRHXvskNsjQAMNOQ1vVCJUMAW1ESJJB9YaWxb1BJVARmuFP+0GUM5v2qyrAGDVrlO/YimT897BfW4A2mczoo777RfzKrAp4yPShcDxIpXAo2+wxttmnPEBlZyjyzz+vr7khVjR1om0QZzuzdYrdVbE8gJFnoWtrA4xRgQW3hN+6TzbAKMogBTXuej/A1gGL9Lxc4FO2rW+hdMehNm+rf//+WP1UtHUBRQmYKAyH8oHFOABDgYqRAAYwEoshuxxIZ1u768nk2IsGIIZqGU+ARhPphHIfUacFSuGkknwdrAgA2MAilEIzBDgcY+ylFfjLC8EahbXQKWkFLDA7HIK0tPfOAcak88ZjOX2s05iqZ6kqiCgSD+t9CES5DEaTEcjyFSnASLjC74CpIG9ABqGIiQCjDD2SMha9mMv0tRa4aEcUEQMa1AUWOjSKiBRYpIDCEnLHffDuhswMVfSs1n2OrVBMyUa4Y1gEMnwWw92vyNdcqDC5MoBTxeLeAHw4NKCiDqBwQlZQDDCAlLnbKgajyEJpo8uAwqQARplVSwzhgYqC9KW2+ewFUD0ELXT+AApBRp391+pDTSfUBhh1mBD/2k6CscgzG2DI7x7AwMsDFtpGZSt8vZD+XhVkvAkmhEyT/tZSm+yUbRVWwrKXBix0+1EBBhAMkwKqsRiTstrshe6zMkJZCjBgWHS5by5dPEIpok4Lcbdvik2NanZo1ajsRRmroJ1yva0+hv6xrMxKjDaxG7QioLKlGhSr6KMOkxJJYmq3EMHT50mLs4nnhJZpsHynVqVuBiFy1l6/UqgLMEAjROb5lgCDUgEOkgsyZNiUZC2GVNau0AyGBhcaWEhQQdFQ7IVmLQhPjNAcqqK1Zi802NCpZu1ieWI4uWe6jG0IgQyfxRjnrtFAtY5jp4FF3B2Y1LRA6hAIT3Tqmy1CRZOZ/ocABmXU1HgJAYxJ2ij6KmdWPVBbwLdJOpkhCzrTqktl4VAh8xmisjCwourQviYg0zbAZlBKRmYv6gKLUSwvPMq2Ua55EXuhLdGhUJQ4bV42sCizqsAib51/z71lLd58G/3NXRNI+DYSsMj7la4qSh8RYADI1WEA5SzGyOyFbqOLdtWZjbTHlzKQyO0faTQyAAPogjYZSIyRAYY/CzgKwKgKCPKAhV5XxyYRGmWKhtVk93iS5LIWdJRQuLzK8rbuQj+/Rc9OQUYiw1aYRAs0BRhWmJQBGOo4NsBIBAERyAUZWvRNicr2JCTIYBRSZ0FdYCHF2ygFFqHMUEKzFn64Uw0jSZyOR87Y2aFOvuWBjFwWwzuGP/Hgi3Wrmg0s+DDOAArf0eI5zqjZzooVF1zUBhja6gKNcfUWZZbHXmzFccqMWKxYHYfbnyFSt4gAACAASURBVB0fxagVpuMsr8FmhABGyMbVXWibRHiUtkmDSV9/YQCG0l+8qcBCX+OibUfRN72119Pqe1RjggpgwsCibB3gOlAjAAzEA+gKr3kAA5gwi5Hj2IysvVCm2QsbuMiPnulvgVKZv74uwLCpdfuFOwkGI3seWWAxzkt+3HCGIsG4trwxrAtGwjtPADTSv3oZpanugsfy/icMOiWt0F5eUWpT5IdPGTAhOLR77IdJkWTgMI8aYBAh6eQ8kMGgM0kBhAgQrvQYFGgypbGoCyxURWsSy6xpYjhMBdzKHNZizJBGW4NBCcAFMoJt3yjCLIYcs4qOg/WMUUYhKuguRMIR9/oQnBtgEfdiN9++9+NfxZnmiagNMGzTobg+WKgKNiaht3D6Y+sOPIBRxSYx2059xy2iTtBdVdZiVAvpT7T541DGZuQeY8J6C99GBSn2b8W4wCLEXtiWJ/B+HYBFHbZCMy9lgv43FWQIvK3Q7dtLV7IWOpYlwEIw70cnqTgzZVeA1fudFMAAKrEYtdgLfzs1E13IXjgAjbr/q7467AVlqf7CEniDpGlPNcDQTnEdBmMcMWaZ+bU5bGDxsgGG+ZHJua/tMIwqIV65rEXNGHoj6la6C3el0Bvlz7DnaTEC2zsAIxQmZekwtEWUyTS0IgUZAEEipHBZCGDogwwimQxCqFO/Qv9vhNtx3wAJCO4BC5UZKh66maGAsVgLd4yyPzIhX89mInyg4bMYDmtRAgTte6UqcNXAQhfKk99jxN041yGs86xw0NoAwxZ6AynI0DYOq1HXqmaN2oowHR9IhEwfddTjh3Q0pcfMCRHT/a3KZuj3bhF7sdVAo4rZzNRWh77ZoCKov3hDgEVR0gJb0F+2n7f25ll9QfekY8b1D2FNYJG3rBBwEDJ5gKHPIcBiAPmhUrnmzaCSRpalGIe9MOJuBVh8gEGaHSDpG+fGdiAIpUh61cUJNsCYFHtRBixGCiOyjKPa9SqbuSoCHaG477qpZ82+lKgblKY6C1vUbR2TUGZ0F3ZoVKGoO8+R1cvVc+SESQV1GBxgkQMwCKHSQRGABBbCZTPU48oBxHBBhg8u/IxQJBkASeyxF0PZTyszlDFd86am1kIkCSbhTuaxGfbdUHcy2qmyXKC78IFF3B0iGXLE3dhxZEY1SokRpBYBDEBe6xDAkP0MgwwgCzTKQqImmaxiFPYid181nCobSDiVt2veKLbjOorlhT9VARm6nQ8wtIVAxaRCo0axSYS++b8deexFnv7C+W72+WYBi7zttqI+zFt7NfZqc3DWARa+oDvH6SllNyYNMIDcMCnfStmLQGiGARhV2Av/eCEgFOgLaTQghno5BaEyAxGlDHzQA9W3yQBAu1kIMLIpICcDMEIZoYIz/WNmyaHN8uvI42E5qPDW+yDtZVhG1K11F1rIbYGCtFEJmAgt188RoSmLAcAOkxI0ktWwKU2dcUIAGoHozFUKaNhshgmZYtLxTIgEIXnF8aoAC50ZSna/3EkZNdRRh0RVDmVCPpthfn/1dfABatQE+r3wPqkl3PCsCFgkw2Qy4QlKkFoGMAiT79kQwLDPpQhkAC7QsEOi6oq5i5jMKsJubXUAQ+4+yjL1qKCoccKhRrnWfogYkA8ygHx9jm+vK3sxrlVh+4rCozQQfBXAokhkXQYsqmYMe1OBhiwG++b092XYCEX0yp2vyvsBRmIsnO2AwjAB3d4BGZMEGMBkdBh5Md9555XHXngVb9116lzsPulliiEhzTYIH0gg0++CNtsGYBBKgd4AaDeDqWq1mJsPY9CcMIVRAMZEgMUk62wUPDU+81HEcDiAw2MtRmZgtJjb+evpLnRKWqA4xCYUAhVgBp1n1AYYVpiUo8NALLNC0Ug63tqhVkDDZzO4gAEdjMi/owILOzOUHw5lnrtQmFSJEcEhUOxE+r/NZb9FZdoMIHs9SKMB0YNks3qb8nnZCLctAxZxV2ougHB146oZXeyMNz7AACQELQIYQBpSqAFCFZAxaSsKjQppD0a1OqFNGkzUqX8SsknGuBcJuUNshi+W9sOjXjdQMSp7UTzxFk6p64dHGYG3tf5l2KSAReh7WR2Ut/Zm2mjMRZ4TV/XH2GtfCiwILWYuKrAagkVbAjAAlAq9bQuyFyXjNg57UWSmL3afoyYIKDDoAa2OARjgCZJ+X1by7g3kj3+B0NsGGHX0F3lVt+1sSgDCwKIigCCN4qQEYlgQ+mVrbTLrEgcUhBgOH1BMynTYUx1zskbJnQS3yR7MTpBA5H5Y5LQvD5OK5XNGqGE6DNAoYTOosGpYFAq3BymwUcDCyQwFTGaixBkbi1koubz2b2cR0NAggxECjOBL6Nl/W9RdFVhoRyaYclRhsSpZdxIHTKQAgzaZdKwQBhjyWNVABvDygIY8tste1HU66+ojtlqkParpfvlMTl2QUelYCmi8ytAooPjcQlZXy5cXHuX/X9eqFsKzbZLAIrz/aqzGW3uzrDa4WFi5gUtLK7h46jjOHP/UXVkCOhZWb+DS8nralkaVgcXCtVXMLSxj9sxJnDlxrJi58NYtXFszbc/OfGJtVw4wFtZu49LCkuzzzEcuwABKM0ktXL+NuZUbuHDkxzhz5McFI6u6a7EWi9e/wNz125id+QRnjn2S3TaHvSCMYWH9JuaWr2P25BGc/uTHmb7lMSoCwOLte5hbu4ULH72DUx++C/AEot8Da7UMwKCcO5mk9I/9tW8e4cpXD3Dm8H6cOLQ3CDCK2Ivlu9/iytcPce5HB3Hq/UMAqgOLxS/uYf7LB7jwyY9w+qP3igfau1cXb9/F5Rt3cOHTD3D6w3dym4WAx+IX9zB/6y7Of/QuTn94OD2E93TlgY2lrx5g/stvcP6jwzj9wTtZ1qIANJhzPvJh5v7yRd2+7mJhZR2XllbVMzVj2pUCCgALK+uYW7yG2dMncOb4UdMmE5YYCJNaXFzE3NVFzJ4/h9OnT0nnXz3ngkYgPFHfU6BBCSAogRAEVxcWcPXKPGbPncWZE8fygYWuY6HE24iHuLpyHXMr1zF77GOc/vj99PRyWAv7GVm8/TUu3/gKsydmcObEkdxrEhq3a0tL+N2lOZw5fx4nT53ObBbyG21fbWVpEUtXr2D2/Fmcnfm40qFp1ECCAZbvfov52/dw6uBezOzeUQtYrD95hvXeJmampvFxexqAqlDsaN/DaVBvbrzA9V4XM9u24cjO7cGqw3kAY+3Jcyw/eoJT+3fj2L5dat/FIANIw6BWv3+Kxfvf4dShPTi+f0+l8dK2+v1TLD96gpP7dmFm1/ZabdefPMO1H57ixJ6dOLprR2ZMCts+fobl75/g5N5dmNm7s9ZxaYPhmwcP8JMnAu8dfgfvHjxYyHj5du/hQ9z75hu8+45sW8fGbntftj2s2/r9Fu4/evX9b7/F3W++wXvvvIPDBw7UOu647e227+wfva1/3DwGSi+///Bb3H3wDd479A4OH6x+XCHc475bqa3bmfsPH+Lugwd479AhHD5U4TpbJ3P/4cP0nOvcIz//s+rbvrXXymqDi0vX1tGZmsKla+tZcJFnyqG9tLyGTquJS0srpq0p7GVVDc6Y4JhbWEan3cLcwrIEF9a6XFPr5haW0em0Mbew7IIL3wIA49LSijxf3WebwQBKU9XOrdxAp9XE3OoN4/xVzRw1d/02ptptzK3dDoILYybELB2/ueXraE9NYW75Os4c/SQX/DjsBQA0GOauf4mpdguXb3+D0x/9SNbDaLUdgAEEamEkHAv3vkUnYli4/x1O/ajeDw0AXPn6ITqNCFe//han3j8Ev+p2UejQ/JcP0Gk2cPnm1xJc1JjJv3zjDjqtJi7fuJMPTHgSZD3mv3yATquB+dv30rY+w+GxGkAKNua//AadZgPzt+/jrOXwVrH5W3fR6XRw+cadQvAa0l3MLV5DZ2qq/LkAXCAOYG7xGtrtNuYWr+HM8aNmHdHOuDVJYMADABCKuStXMdVpY25+HmeOHXG2B43S+5hQEM1sEKXVIAQL83OYbjUw/7vf4uyRDwpBBVegQrMVc9fW0Gm2cGlxDafeVyAyD1B4z+jlG1+h02xg7vrt6uBC2aXLc2h3OrhyeT4ILkJmA46rV+axbXoKl+fmcPboj0F4LMdVCMmuxgOTWlcbV+dx5euHaEcRFu59i5ndO2Q2KM7BE1kcr0g7sN7bRAsEa5sb+KjZkUkdBuk7lzVdXQK36Jq1jQ20KMXaixf4dNs2ANm6CjbAAGA0GEsPf0CnGWHpu8cGXNiTEmUgY/H+d2g3Iiw9+AHH9u5K+2cxrX5NHr2P5UdP0GYUSw9/cMBFsKKwx16sPH6KToNh5fFTHKsIEPTM/7XHT9FpRLj2+GkhuAim+hQC9+/dw7tiiGd3buP8jk6lY2tb++oL7IsiPP/qCxzaOQWgukZl9cvb2NuI8OzL2zi/3co8mHNbOaD5i9vYQyme3r6FM+303WqAkRDWYyicP9eu38DuiOHx9Rs4OUKR3XHah9rmYTkf5F27fh27owiPr1/HCRBHZ+WDC2cyigDLt25iF2P44dZNnCzLkOb159rNm9jNGB7fvIlTpdnVsihn+dYt7GIMT27fwum2NwHmddyvybN6+xb2RgxPb9/C2Y59nUu68YaYwNsK3b7VBhcXTx2XzMWJo9UbqbfDxZMzuLS8hosn1Swpj+XMpA0wdDEuO9SCUMyePo65xRXMnjlZO0589sxJw1y42xbf2YLQ9HxPHXfWOQAjzyjD7PFPMbdyAxdPHSveNmCzM59gbu02Zmc+Cq4vyhg1e/oE5pbXMHv6hFsM0G6vxMsErgbj4ukZXFpcw+zMxwBlMj5ex+7zJK2yyjkoY0iscTjz7gFc+eoBzinWAchSo9T6brMWtBnh3I8O4srXD3H+gzB74DAg8TB12DnH+Q8PGeZCLvOcgQKwceHTDwxzkWseWDBtP/kRLt/8GheO/hik0ZTshh2iFQqlssDG7JH3MX/zHmaPWMDC3z4Q8kUaTVw4+mN57CMfBrusRd0AMrqL2VPHMbe0gounT+Sfs3PANKXz7OkThrkIHzgfbFw8eRRzi9dw8cxJJ3uUw1rYx/MAx8VTxzA3P4/ZU8dBBt1KoAKq6vaFTz7A3NpNzB75SI6HNU4ACsOkLnz6Pi7fuIvZE0fM9TGhkT4DS91zuHD+AubmLuPchfO5+y+yCxcuYGH+MmbPn5XvOCGsEKwkDQ0y5yrPjQ9inPvRQczfvocz7+bPVvJBApFwJIMEIhHgiUAy4Pi02cH17iaOdLIOZxnQONKexlr3BY4rYAHApNUsE3mf2LkD154+w6mDexzgoAFBEcgglOLUoT1YevADTh7YbZ1jGFj47/GT+3Zh6eEPOLkvBSVFmgQbYJzcu8uwD2Xmhzmd3LMLyz88wck9+W2LsjodfvddHL721zi5bxeOPb1benzbtk0DSw+/lW1/+Kpe2ymBpYcPcXLPLhz99o5ZngdabaZrig2x/N1jHN+1A59+dSttq/V7XspVHQokEoFoYwMrT59hZnoan1xbrdVnAGAbL7C2sTFS+6K2Zamb6eYG1jc3cHRqGp8up23zGC477LDR3cDq8+c4tn07Pl1f9/Zf7M9EL15g7cULHNuZbetbKBSqqY59Ys9OHPniZtrvklAoygg66GPl0TMc37UDR+/eLjz2W/v9MFKHOiWEiOTWJemcVDVbqOwLeEOi7qLwqJCV5Xy3zAn3qFiZ2Ogv7HPWM5z6Rym2qnibbbizLYBMGJLDXpQIuk1KWspMbL0BF5bewMQcR800VMAHQX5/1fr/+l/8Nf6Lf+ssWlRAxAOIfk86KoOejNnudwHOwQc9OeOZcCS9AXiSIOkNIDhH4mkwHKbBF3Z5wCK0LlSBO5h61h6DEk2F2X5SVuCQBvUb/vUIVdQGMoCi6LyICg8jUUNe+0bD3Cuk2QYolfdG1FTbRooRGCOOe5xpJzsrkicI9/83YVU6VAooDX/yQYVuEwp3qqW7oAykPQ3SaoO2p0EaDZD2NARrQjRaclyjFkTUhIjaAGXgUQsxF0i4wCj6S0ZkccAGOEjclxXGB135d9gHGXbBN56D9zYguhsQvQ3wjedIupuIN3oYbnSRDGP5rA7i0uxQfMAxVDUu8uLafUfIT8zAmtYEAqOgjIA1mHFaCCNgCmCYEEdGQBXA0I63dqbNM099x8X7HqglU4WtcJZ521QRO1fNHAWMpp0oSxX7tDWFXxyawb93f7H2vrX5Y1En/j1vjELjklfh3V5eBVyYY79C7UWRlYEM97ex+J6wAYbt+I+iu6iiuZikzkKf2yjJDs7+338IIcTrKTay7NCnJ8R/+N//X6+0D//w75y8LISYfaWdsKy+oHsMYKH/mh8IIya2GAzAFYB6DIbaSe1u17KQ/kKLu4ua2RmkQutHrOBtA4uMhZZ5VdTtH2RbL0IiSKDhZL5iIHoWcJiyGQQA1Kw8jRrgGMrMHs0IvJuANiMkvUFu9dI8tgIIOwQhS4tq5bMXoNRx6HMd8hqsRqkFWInQ8U2/8liNHHZibNOsk/PdSkn7KsweI5utMAut35MA+KjKVNghT1XYiTLTgN6I5/WzViGsYlRgQYis50ESFQrFZQphkkhRvLAnMniSvmsTDl6zOrVIBJJhosKleMZ5IQEhq2QbihgNHS6VgCEFGIbBgPU8m2XSCddhVPqZ98OfQkyG/T6pylbIc88uq5pFqUpq2lEF2WXAgjBq9h1ZISd1a3noszdjXDGrj+7jq6qqrB3v1w1k5An885zvIvMF3ltpdQXfbtvJAYs3yYQA4repaB3bujoXAWBhf88DGGqDfIAxolVmLUwDWv14Sncxltk6iEajNB1tnpDb/E9p6rTajpznwAobaKhjgxKQqGF0FiRqQAys2XXKAAydH3uz7y0CFiFzslDlzP5rh77USecpuBrbcsCG34dM+JSy2oCiSp+5BO76OjspacfNY1nTpINc4Ph4SniSDNOwI7OsAqgIAIpxCjiaUCgD9nUIVNpfh2Wxv49gGlhQoi6RCoUytUksvYUDmCyGBoACCYppDOgt8kKiuA5hAiydhFvgTB6uHGj4AEO3twEGh2Q4igCGbBcGGX6oVDocxWxFntNc11nOAxhbBSoADSxoyupa9zZTGobK9T0GMXhiFS30ayOVpNOelBXtU2eLyiuup+11ARplWaXqZAwL1b941TZKutitqGL/1l4/2xpwkQcs4oGZ6csDGERnkMoDGAVWWJ3bdGiE9G0+e+Gnpi2ygtS0VYXdfhtn34DroEYBxzTkfBpBt/eDETVBmpF0ROMh0GgYwbdhL/o9mYkm6avdp7oLyijsESnSV0zKQuyFb5XYjDEsww7ZVhFsvBSLBxBR08kaNTLA8ETelZrwGGLQdcF45p4NhAV64yvigUwrO+iZ/zNhT374ovmejFzh3gCMUPsCQFF3UssGFoyQtBCfr7eADG/UYm6bGRWcV3csS8x3tKWzn2U1QkAjzeTEgwADgJNBynbI9FW3QU4eyPBZDLmP+mxF6HxHsXFSx9YBFpRR0IarAXK3s1KmFxhtRoACZkUgw++D3DffUvai7r5fN6ARAhm/7062z1pUPd/XNeXyW6tnkwcXRcBC/w0BDNO+GGC8VKvDXlTdZVFoVBF7UTI7HWQtsrlQS/dnZsEYA5rtFFjY7IUl7CZJOBZaHmLywMIPjQqyF/Z9Vxdo5OkfCsw/99BYOM9CQRjV2MxJ1fZOaFT9mfxM3ZgKRuJeqouwx6NK0Uj/ewBUZACFo2PKMot1AYajcdLLPOF2UDMyLrAgkOMlePpXfwKMhRgOTKYouZiDD2PFXiQmdXQySMAVU8G5CIZE5YVF2Y5eHquhHSkKjmTg6jCSYQowijJI6eJigguHxdDb2skl/FAp2+roCcZxkMd1jKqACsADFs3IpPxmRVmAGpFTvTxkOvMfZSlYK5w4KetnjUrmW2WvU9jUuIBiXPaiLOSpbH3R/RnSkBQBi983EPG2QrdrkwUXZcDC/u4DDM+py6SonUT4xigCVNUHp7jeBK2IvTDhF/5y2ynyWIvCkI8qIRqUyU/UBJJEVujmSZa94Bw6NMrXXdQRblc1P5Y6s95mL5wV6prljMvEGI0iwIASwDGhUKzas/E6NAqo9XxpBlGwKM0GVWIOsIiHuQC7EpOn6q7YgCLDTujrar+H7PeT7lfVMXNCAuXfTKYo20YAbEAYWBBVCND52HoLzjPjJhIOPohrx93blgwScPXOpDrBRgBslLEaMgegBhhw2Am9XV4GKR9gmG1RzGKYcXhJoGJcqwoqgBCwaIAxV/ieZxFr5rM16q95z1oshjl2QcjUKOxF3SJ68lj5oVFF9rqxGaPa6xgeVWT6Wa8CJuo8B2/t9bYJxqaUAwtNyxLGigFGKEWtBhi2veRYcQD5oVF59S6AwtCo7P6Lw6ic7fRynwpXrEXQ6SkxwSII1pQgIpYZoDTg8NmLUGiUHyq2VaFQAIrZC99K2AxAOqSk0azFXuSCuQpV7EsZjkmadroBEHihUbIz9fZXg9XzgQUf9CwQkANO/GfAz7qmAYWVdjWUoQ2AM4uvjWJ0gJH3HGbS0NrLIEOjin5f84BFKBRK7tDSW9hi7oBDPYrewjmU9+6tCjY00AgBDMAVqdoAA1AhJHpf1gxoFRbDt9cRVIziSNnAgrWbIIxJtkKdO2s3wUvYCTvphtMfRLBHIsRimH1UCJmqY3Uqm0/CXic2YxTT/X6VIMPWWxSxFkWW9wxUqez91l5vm4y3VwNY6P9HBhi2lTERNvgYK23mZMOj/NCoOtqLUtZi1FlwO08/oXLsm22IEvbCDo3K7nLrgEXIDHtRFmZUwmZUNXN+OaxBcHa+BHSMAjiK2CrBEyDOcaB1aJTcEFA1ZopMsMi9V0osBCxEvxdMgJCXHlZ47IMDJtR2NoAIOU6hZXUAhskSZbOJllYkqAez0+1WeP/kAQtZLI+7ICNvfxpkqExRdZy/UEjUwKP6m9rxrwA2NNAoBRgqg5QDMFQGKc1a8IIwKSDLYtg2ThaorbBRQQWAILAgjMr1RG7HCtgJYw0EQUgRwACyIWc2yBiVvRjHCAuD3KrGGuyNBRjAZFmMcbJEacsLh/JTS4ePXx5e/NbeHBvf46sJLDJWF2AA1WdZJ1z+sU5a2rHMZy8yBdUKWAsgZS1GCc0gMjWNoBEIjUFaHXldoibEcBhkL0xK2iTsIE+csQhodRz2wraiLFABNqMqe2EDi9xtKsyI28ULnf6GjmW3q+I0VmFgbI0TUD08ygD+HFG34JnaE3zQk3UYLOYicy4hnYTFSGgQoZ2nIJCoMDam+BoqAAw/JArIZSdGZVP933UXWAiTgtbXW+SJuW2rqreoYnXAhh3ypJ0KKdLOBxh6+zyAIQ+qHBc9VjksxusEKsYJ96gCLAhjgLB0bgG2IdMnD4RwyGdCh07ZYVLmeamw30z/x9BdUEpMrQsbtPghUeOAjLcAo5rVZRmqAItQ2zcRVAjxVnPh23heX11gYc0YG/ZCb+9njMkDGPJg6XYjxjbXthB7MUbWqLrsBckAjDFYiwIHSIZFRSo7V1PWIGhINoC02tIRi4eZ0AvTLeuHSH/fSvNBhXY+M/qLslSzNdgMH1iEhL7BY4f2ZfVTxMNCkBHswxgmQZo6hwrhUYa1sJiLoO6iBFg4wmtbaO2FNdlAQs+oA8jVEdSp6RB1WiMDjLTWBUUwDa33f1IyyREUcGcU7LxYb+GJuXWmqDJHsCgFLRcit+9MvUN8sAFIwGGDDZqkAMM4gTwMMIDUUdQZpAC9DWqzGNpGKYQ3CcHpuDHkNrCIOvI97wML2ojAIgb03fcCq/K7ZIEFisgADMBlMfR7PI/F0L+Br4K9sG1UkPGyAMa4uo+8bFOvgw6jKBzKfg7ywEhaOPfNAxdvLWuje36jAgv9fw7AKCuyB3gCyq0GGt7MbKGw29ddjGMB7YXv+JSyFlVCXHxTIVGCUJBhH4ha8noliUlNC96WffNCo+yUtMBkgAVPEtDQeYbOxyuuB4wAMlCRvagKLMrWWf1ygUagzxMykSQgUIDejId1rQLshRMOBek8kxB7VwFYmGxRARDh/OVKlGyF9+iZd21lICvvHoy7/coAIxQS5Tx7hHjshTVOJel6i3QWmrUYNySzSG+R30aGRNk+ms2uhEBHHuBoUhdgcKSOSF4NDLMtF0bkXRYmBbgsxriVte191rFJiVIrA4tmBKLBV0mF8pDpu1WGrSkQoUCGBhj6N21cFuNl2SggYysBRsjxr3u8jA5K3fvaygBGUdhT3ZAorbfIFM3LCYcKbSvX21qNlxtG/da21kZM3TMGsLCXjQAwADjOfS7QAMYDG7ZzFXIQqoRG2aLuUa0gJAqAy1qUZIPKgIlQ2kzWTB1HQiTIiBry2tipaZttJfZ2Q6OS4XDLXgx2xig/f37ebEgpyADcMc2pk6HNfhlmgMUksj6pvul912Ezqu075/x0eBRQ/NwQamblhQX45YKKwCIeIun302YeK6HBhAYS3AIdOsQHSH+sdBrObHVYiqQXLm7J2s1aAMPbcdp3b6zy2AtA6i44iBF1VwUWqebC0lsUiLmrZIoqS0Ebsjw/TfsleYBjwEUYYMANb5TOUzHAAFIWo0zsnWd1Q3T0PqvYKwEWlILq38bAs83aTZQxGHwQy1FVgMFmMZhyE8rCpOqyF6NkiqprdUHGVgCMIoe/irC8SOxeF2CMamX3td2HSuFQJaDiTQuNEhAYvKZA+1UZ++yzzypv/JOf/OSzv/tv/C389C9+A0YpDu7dna4sAxY8wcL6LXz+l38NRikO7duTOvBCZMGEECDW+oXVW/jpn/4lGCE4dGC/2T2BcD7ujKsAILCwso7P/+wv5XH37ys+SUKcfSysrOPzP1VtD+wH9HEA2FmsiAYg2gFUYsudywAAIABJREFUP7QLazfx+S/VOe/f64AU4tVkIF5GrMWbd/D5ry+DsQiH9u6W2xMKqB8aHUpG9MwpoYa1WFi9js//9C9BowYOHjyQOpSa0aAs1VewBkAofnl5EX/z3ClcW7+Bn/7xn4MxhkP79oCoY4gkVn1MVPy3HF/5fwIRJ1i68wC/WL4FRggO7JguHuuALd/9Fr+4dhuMUtPecejt2hnWdSKUYOmrB/jZ/BoYITi4e7uzXx0mYocCpSsFFr+8h5/Pr4NSgoO7d0gHnzE1i5/+0ANwBdyUYfHmV/j8rxbkM7FnV+1zXrx5B5//9ioYY/LYmnkSQmZ00veJYaTS+2Tx9tf42e+W1TO126w3gJ1QEELlPvS5EAJCKRbWb+Onf/5rMEpw6MA+i+2SOaX0cxAKh1q4tobP//hPwQjksxwCFr0NiF43AyyurH2Bn8+vQQxi7G02kPQH4MMY8UYPSX+AuDdA0hsg7vaR9OS6pDfAcLOHpNfH0t2H+JP1OxDDIfZEEZKBXC/iBLw/lH+HMZL+EFz9D0hwcu3+I/zR6hegAji4axsICAgl6l4Sapw4wCK5TI8/a2Dp9tf4/LdXwKIIhw7sA2m01HNEAdaQ4F7XgWENs44L4OrCIn7xhz+X1/jgwdrAYnFxEZ//4o/AIHBo7y451oO+/NhpeVWaXz6MzWfpqwf4k/U7QJxgb6uBpB9L5iLm5i+POeJuAh5zJP0EnEvm4tawi/nBCwDADgU+KXEdbRH4UALcGfZwqf8cFAQ7aCQrjQsJsrTjQUj6GiWUmPj8mxsb+PX334NwYHfUkMsFzHvWfKc6LSk13yGA64+f41/eewgGgn2dlgQUunMltv74mWxLZFv7JIl37raxJsPq90/xF18/BCUE+6fa5QezTLdlEcP+qXZ1YNGM0APFH3/5PR7euQVKCA7t2g5ds0hqNRTTSkjwc+3+d/gj9d49qN+71qSafkb0zxOhxICItR+e4s/v3AeFPV5yQ+3Uy305qyASgfWnz/DLh9+BCoK9bbetNvurDRJubmzgV4++ByUEe5vFacT1vWVf/xsvXuA3P/wACjjtKaOlAPTmxgv85sljUAB7co7NGiwY4nOzu4Fff+8eN++YPrC48fw5fvvkMSgh5rjmvlcmuIDgInPsm5vymQqNVxl4pozi+rPn+NV334MC2KeuFaEkEw6VPtvEAIu1J8/lvU0p9k93zD4JJaBNSztEqbwnGQOhFP/ot4v47LPPflLYudfA/uE//oPPjv2b/+4r7cP8//NPv/nss8/+2SvthGW14eGl5TW0mw1cWlyRC+KBTFmaJOYDnQ5Rhz4oh3tu5QY6rSbmVq7LtlbaRAeQKKBiz7ZcWrqGTruFS0srctZOfzwjgpuPtrnFa2i3W5hbWK57uqptG3OL12q3BYC5levotFrpOddpu3pLtl29IZ3ZwMx4Hmsxt3gN7akpec5WBigZJy/ZCUFl2lm5TokhaYS5hWVMdaYwt7gCETUkYKEMpNVRjnUzdbC1M6X6cvXut+g0Ilz5+uEIowVc+fqhbH/nQe22l2/fw1Szgcu379VuO3/zHjrNCPO37gbXBwXc6v+5619iqt3E5Zt3QBqN2p/LN+9gamoKc2u3odP+mv1baYD1x153+cZX6LRauHz9TvjEVJYvNxOTFPfq5+LS8lp6nh7757NdQt1DcwuL5h6pa/Nf3ke7EeHKV+k1Lppl9+Pnlx7+gBajWHrwQ6Xtbbv69QN0GhGufi2PrXUapo2eHAgwW3PrX2Cq1cLc6s3iTFEB5mdhfh7tdgdX5ueD/SpmLDjm5ucx1Ypw+cqCAhY9BSTk+5f3NiG6G+CDngRWQ6m74MMYS988QrsRYenbx7njkmdfxD00ifyrrUxDou1m3EULBLeG3drHXXvxAi1Ksfr8eaXt9Sy4dsaWHj1GmzEsPXpci6ngicDSoydoUYbl759UbqedqOVHT9BuMCw/qt4WkJMm1x4/M221eDsPWBjWTgEMwiju37+HdiPCwr1vZf0L6wMAlLHcz9Wvv8VUp4WFB4/SY1vH0h/ZD5bGxzflfdViDMuP6t9fK0+eoUUZVp48rbS9PQu++vw52hGrfI8AbvjP2osXaFKCtRcvqndYt93YQItSrG1shPuZwx4QRrD6/DlaER3puOub6rgvnrtifMVE2uazIatPnwefqaohUavPZPu1Z89VO5txKA6HWn70BO1I3iOUWTVaLKZC31N6YqywIORbe+2tNriYPX4Evc1NzB7/2AEVABywYIOKtO2n6PYHmD1+xN2pBTDMviyAITjHxZMz6PZ6uHjyqNe2HGhcPHUMvW4Ps6dPmB/rXBPCmSqZPX0CvZ7VtqbNHj+Cbr+fPecqbY99LNse+7TS9naGqNnTJ9Dt9jB79pRcqcOebBBiZqLdl8vsuTPY7A9w4ewZB5hIICPDpEirnTq9jSZosw3CKC58/B56wwTnP3jHmTmr+jn/wTvoDROc++AQADh6i7JwqwsfvYtunODCJ+9l1tGoYT7uCumkn//0fXQHMc5//F52vWd+yMzszEfY7A0wO/NxYf/ybHbmY3QHfVw8eSSN67dBhtcP+/gXjvwY3f5QPo8FgnIDMHj6rF449gl6m5u4eHJGLaueAW327Bls9nq4cO4cRKMN0WhBRG2QZkeC0KgB2p4G6UyDtKdB21Nm+cVjP0aPc1z4+D1Q5aiwdtM4SmWOzel39qKfcJw+vN84Xszb1nbE7P2cefcAusMYZ947oIZVi4g98OhpakijIZ/lOMHF0zMwYm7FTkjQRXJD6s6dP49er4cLF86HBdye2cCCDPvyHbaxgYsnZ0x2KJ3WVwx6EP2uBBaDGHG3r8LL5Pvq1Dv70BvGOHVgd/ZAlrGmLG7HmgyUEDBC8EnUQQzgk6gDppZpbQUj+R+oNn0IfNzooEkJKCGVHZmZbdvQ5xzHtm8PrjchUjkhIyf37kJ3GOPk3mpMou2cndizE70kqdzWOe6+XegNE5zcJ9uG7snQBwBO7N7htAXU71+S5FbWtjVIhw+/i94wxrkPDzvrixIg6M+5Dw7J5+JQmNnPA+x8IO+rfpLg5L78+ysP4B3ftQN9nuD4rp25bfPs2PbthfdImc1s24YBF5jZts1ZXiUsamZ6Gn3OMTMdZufz9iESIfsd88xxfQvd20en5HGPTk2r/fHCNskwMX2Z2bYN/Tg7XlVDxo7tkON9fNcOs6yo8rYNBE/tl/fI6YN7ZbsAqEj7k6i+b2FGzgmbzhb1Kj+vm5Eq+dfNxoSIeOlPAMAFFNrqFIrLXeeiVwBp+E/ohztXcBt2RDOF5cp0GbbeQoELInjqiOmsN3ocNCgKjY+1vemPl2nHyRil9Q02SwA4YVE2c2ELuUP1CIqAhaAR/sEf/C/4z//ef4D2VAfgHCQZgiQDkKEMuyDJAKK3IdNeDnrg3Y101lSFvMSbXRPnXid7T57lgYtQqJQzk1IxZj68nqbVuk3htHBIlLNNTkX1UgtoKpzicmUF5QCLRWL5/ci7l1qdyveRZi50umJAOcI8AYl7IPFQfo/70ukdqvAoVdvChEh1N5D0+yZkqarWQouT7Vkt//rTwDozXmqfrBmBtZtgjYaqciwBCG22XeAcNeRz1mrLsVMgiUQNiKgNEclwKMGaMrxQFaEEZYodZBACGHKBQSIUoHDBBUUOa8FjkHgAEvdBhj2QZAjEffDuBkRvU/1Vepbuhnn2kuFQ/tXhYglH3OurdTHi7hCCC8TdGMkgwbAXgw84hr1YLhsm8m/M0Z1AHDEjxAEXdtYoymSIHmsqMKiWs4bcRm9nOyq+mDQvt34VK4pnL3KcMudYIRtOmdmOIm1EZnY3xF6wdtMwG7QZ4QfO8H8+ncJ/9l6Z1qZIi8JNW1v8bz97gHT6hPWsmufU+q0z2w7072M6znrMbc2FfR0yDrPnOPk6jjqi7bJtX6beoui4efdlESub1Zy596rdFx/kF4F+XzNhP3/2sxfSWvhplOW21XQVhDF89N/97xBCjJ+2bYtt30fHxb/z3/wfr7QP/+u/f/6yEGL2lXbCstq801igoopZQm9AgQxL6K3N0Whoc4S51gvWcqqdlLZAykbkgQwPfOVminpdrSKwMKZ/PCkFeBpzT4SAXVhPsxdCi4+VoFT/8CW9gQEGkwAZ7imFNRhADqioI7QOvPCq1LQY2ULsBE8MQBDDgKDbyiTmh0kVGk9UKmGARHo/Y9zPKmGBoBEIABG15b0VSw2Q/kWgmJZOdqxATW8D6EyDUQbCeqlQf6Ay1ijBqE6lqbPY2Hn4tTmAMkfYXfl0rHsndM1J1EhDQjRTYbMWXkYtQIY7CTUSIWDhpJ31wqGIEWxL8OYDC8Ra49JD0u8rhzApzQ7EmgxxL3a+CyUMZU055noZC9EqE7I6IKCK+RmkCrctEslaQvEqfZyEiNt2xlmTmfsegxisnY3pF4l+LlybRJrmIvF3ldlkH1i4/Xj9Zli1bUWmqCoC60kdN5OWPSD2BsKAR+qWqj+PoZAo2xywTdMwKHtZmY2dcfOtvVKrH9Tm5aLfErMy2jjVvAGn4J62ykDDyzZVD2RsPagI1rnw06HWyaJQF1jY2+gx0hmBdOYoymRaQi2MbrXTbDXDAVirhaTfNxlKZF700UBGnZAowqgLLCYBBLYCTAT2rwXmIgQeGo2UxbDTE+dkkKrCnqRVu9V+VCaw0c5B3WOIAMNqUJBhD6LRkecWDSVDEjdgnqKBjOGXrbMAw7l/gAzAMIevAShKqxZ7ZodEEQ3eIouVsITuwq7T4wMMkmL2zDFsQAErHCqJDVtI4mGhziLpbkrxthUiw9WMc+Z4NC0upx1xfQ+xhvwuZ8on5wT6rIXfH99Czo9dJM+3KmDC3jZ33QSyF40KbIH8Whz6miZwgbU2PoghAuM4zqROUYrZN9XpK2IttrLGRd0MTuMAMD+Tnt6X/3zUBRPaaInwu07q2d83ex1Dk16ljQAuJlC/odJx1MstlK4WcAWVPE2FF+ynccSyICMTJlUAMgxrsZXVubU56X4TEHg59stS0NZmLKi3DVXAQmYYMuwFIMdesRc6Na0Mx0nrXpjdOmkL2dgsRlk4VG1AEGIqGsWZRyZiFrDQBRUdkFGHxbD/lpnatw0wRCIZCP2zYFLS2vOidkgU4PwPwVMWg1nghscSaOjUtQBoexrcE61rgGGcXsh7xmYxbIBhW11njg9jJ2wqY/qZMt9TQT1UfLBMgpCyFjrbmhmjHMtjLZx6FlpnYUIS+yA8LtRZmNSzWpxek42iVDr+NnuRDBMQRtCsEZEQKqgXMt+pYc2X43BsNbAY1UIF/6JOeEzSdLwxWAhoTNDxLwLj/j2mv4fajFqd+2XZyyielwcwqoZD1bUiFkP3ZVSAoS2UfhbIZy1+n4HFW8va6y/HD4VJAU7q20I2AwjM9mZrZhSCjDzWYkyg5estyrYlBfR7Jk4eIwALe9u8c6YRCE2AAvaCNtvggzS7jA8wgPIfwTLWIhgOFXKwX8cXmsdYAOksuQYZtVgMvY+qmg8fYBSwFySJ3Vl5ABkFsr5fbIBBCMDVdYshhd6UQgx6oJSlDIYKkaKUysrvgKmZ4odJUcCpKDyq8WEMVkbR+/oVnS0tahmwDZ1lbcR7jBhA4YVDDfuKsRhIYDHoQvRVSl8NLFTaWZutcGLmrTEKhbIQSgDlcCRJGhoFc3uRdJk9dgUaveYEKlrXsVB9m1BoVJnD5gMLu1Bf1dAoACaVJlAf4NnaBOLU9MiGPmlzQqO26DUXYr/MOktv4durqM5dZLm1W14CsLCPNW6F7jpWxGKEwE5VsJEXElXGWry1f7WsvubCFpC+LPNYDG1V2AwgEDZFmQMwgBwWQ+6otHuFPyTK4XrpFqoYXJGxcNZxEgyNyrAXUROIhyCtDkS/WwgwgOogwz2lAMuQCYea0EvNF3JPyjxgYcTVloaiNouBGsBCmwUwRnIJKXWZC/2/XoRqOgwOgMQDcEhmgwGmwJ4PMACkLMaECxYR5jEW9joFIAjVdWQUa6FSOmvWosgYIeAEYdYCcAXcVhIFxH0JLGwBt6+z8FgLe2zqhIIRRjKhUX4RMr/GBVAMOHQbPySqqsMecnh0Ub0yqwsq7DZVQ63yQrV0Qbkys69P3gy/XTwUOawbj8dj04v6WnYPFbEWr4O9DsDCPmZeiNRW6VGKisyOy1749pa1eGva6oML7aCrd9lLBxnWTVqFzQACYVN21W+gnMWw1m1VSFQmS9Q4Niqw0H3RFboFD4dGhdiLRgOIpbAbjaZhMMATx1n0BYcjgQwrHIo6gubxX2C5IVET1F9kgIW9fyWQNyC+CosxqpnnIHFDo0oqvQdOSP71QEapDkNuBt4FaBsQlIJ3N8AAcDUrrwEGVEidEyZVw5mp6viQhipaZmffUkJu6LSzOiOUl3rWCRUrO47FWpBkEBRwk2E3o7Mwmba6m1Y61sRhLcrOWT4/iZyd19/1fcVIRtidDBLHAfGdNR9wlIEN04+CxAx1rY7uAgizFeOYzVrQmuxanVn+ZBibitmh0KhgiHBFK6s18yalBi2zVwEsXuWxbRZDPyt1tSB5gF5mfHNZCx9YaB/tTdXrlJkQAoP49/PcRrWRNRfmVfyyQYY9w2KJvgELZAC5YVMZgAFUZzGcfryGN5IVEiW/12cssqFU3P1egb0A5VJ/MZTXgLVajrMY+hGzQUYoJCotsFOssyjSS+j+vDJTqWABH1joe5IbZ98PkwLyWYyxTNW/cEKjeAwE4rm1aSfa1xfoWXgDMgyLEdBhAEBnGqAUFJCZpKDBxoaJ8hAJT2eBA2FSdZw4nVKzkiOrQqJcIbeuZWGdf+g9EZjdJz5rwd0ieXkCbtHv5eosQoDCTh9axWiTgXdjUEqg32g+e2HPRpYBDSDMbphxmHCGqJDp0Kii9c537xzse6RuaJRJt8moZOMqstaateCJAIUWsKuVBferDo0SJKyBqGtl7ao4hzZYCqWgfZlWJ03tq7SXNTb63rbBuM1eVGUyKCOZZ6xK1jTC2O8twHhrrtVnLtRsKVH+goCaXY2HWwcwfEfeOFhpuBTgvviCQMNKZ0toOluXFyYFSBbjpQq5RzARCMswjl/dUCirPUkGbmhUMki3z2MvuIrb5+qaKIdeH74IYACu1qLMqOeglwmxKwu1C1iKke9xH1iY5X4YGq/NYoxqtn6D2OwFZfkAO09vgfQeI/5zQhXAsHUYgBF6AwB6ADqyLxJsDEG7G+BI2ZlcHQbqh0nxhCNzlU2CBFcLQxqy3oXOEJUpmFeRrTD7FMKIuI3OooqA29NZhGqDjGK27iIZJJm0tHqvIkmBhnYgy4CG3maUkKgqVhksojgMyt6f/stBC/uqz8lmLQCXoS0KjxIJdxzxPAeTJxyoEBo1KSt7lkLnUzck6lUK6F8laxGylw267GemjL3IZHcrqaWRx1roukTJMK4MMEZ9n72118NGZy6GKs5b584HJstiFDlOGYF2DTajiMXwwqQAvNK6FmI4LJ+dLsgUNRZjoWefbWG7Do2Kh1n2otk2M+vSIYZJdSr6XaerJpyjJB9/EWuRq7PISdE6ik0sTjQg3LbDuBzKeEQWo44ZUJHXjifFoVFabxECpyqUDvBABqMQlILEg1SHMYQRekvtRSMr9FYz9+bQRelqKzo4IUfIqXFhhURVZS18FieUNcpmLUw4FI/LBdy6UJ7SWUzC/FoXfmgUhpajgFRcDIRBhmlnbVOtH9WfsaJ0tEBxaFSVMKgqDrIWXIfMz+VfNTyqbjalotAokzijJHV3aZ9K+p0n5n6dhNxvCmvxqiyPvahrhGZTTAe3YxQMUSWA8aYBC4G3qWh9Gw1c6Dht5aPYLAYAleJyBIARcHZCGZXMvoPpZkvYDI/FqBIm9VKtjqPozbCXVuWuHAqFjONEkmG6nBB5sT32gjbb4DxRhfUgAQYAKJE3ZBNwDEEhZzV0Ne+qlgmH0g56o+mOh1Pn5OX84AXBoJdy1iwLVKJ3Xrg2i+GJvfX+6rIYuVW/Q6FRgAKY1jhmqtt7P0ZKm2O+2iBdAQ0RNeV56e1iAgKAdlQ4lE5VC7i1MCztDms3QfXMPcrDpMocJfueMkDWhESlQu5S1iKHwSBCQKixIhZboXUWeQJuR2fR7xmdRR5rUZe90RmjtGVDo9LZdwCVQYYc00Bo2EsIidJmskbVYCuC+0kEUBAa5bMWgByvMvYiU4U6ccOH7NCoskkOkXBwLyzKSZ4xItDQYYSFx+Y8d5vXMQXtv8qsRTKQ14k1aSF7EQIatt4iD8AXsRb2O5Y1okr6nbLJx7f2ettI2aKI18pmMewUl0AFkFERUAiepLO21voM0MgBGQCy9TJqhEk5IVFODQrrxWrpPOrEFoaK52lHUAyHIK0KoUKWo6edutrAwt6XEGmWKKhMUSo0ygi7BU9ndpN07EirDdHvZQAGeALR7xmAAcBU8849LYu10C8oP+2sHe4UTAXphzkVOeLBdLYjirnzgIUycy/q5APxIMtiTChMKsNW2PewyjzlhEbl6C7y9BayQ37IFIOucC9YEybdKuHI/KQSpb0Y9ExNC+e4/Z7R7qRF4MJhUiEnu4qjZABqjpDbsHc1hNvO/j3WwgCKHAG36G5U0lk446T0FkF2phmBd91nTYu6tYVCowDpmIwCMvQ+M2MxJitYJWPUKMCCWw4xRX7IlX9Ooaw48v6snq5V99ePZberddNm5LLxFWxcoPG6ZoEC8tmJ0PLXDVi8DNOAwl+mn+tR2QuqwHYV1sL+7ZbH4RJgIKzhKXvHvbU3w9hnn31WeeOf/OQnn/2dv3kWP/vtVVAIHNq7S4XOCPnhXM6G6WwharkGBQvXb+PzX/4OjFIc2rMz3U6ZiIfw07YKngBCYPHGF/j8V5fACHBwz04Q/ePOuYkTt4+ZZrARWFi7ic//8q/AGMPBPbvCbIUQINo50u0Fx8K1dfz0z38NRggO7d+brjcdtP73nTshsLB+Sx6bUhzatyd1tmwAFdof51i8eQef/+YKokaEQ/v2gDA5a2qy2WiHh7J0NlU5Qgsra/j8j/4UjFEcPHRI7rOEsfjVb/8af+Nfu4iVlVV8/oe/AKMEh/bvAwhAeAKASLAhuCmoR4RKZarCpxZvfInPf3kJUaOBg3t2q3VCpSAl5odRvc7k/4xC53Zf+vohfrF8C1GzgYM7t4EQkoZDUZKGrxDq6iwow9KX9/Cz3y3Lfu/ZJdsSkrnPbEdRr1u8fRc/u3QNjFIc3L3DdX4sR9KuTaGXL976Gp//5oq8xvv3mP7o7TPAwsqegaiJxfVb8h6LGjh08IB0NKnqGyEG7On+Eq3f4ByLN+7I54ISHLTuL3M7DdUzpZ4jeW/J+3Rh/TZ+9turYIypfhPpUEeWkFndX6Z2hZrNX1xZw+e/+GNQFuHgoXfcMbU+BNY5EAoQhsVrq/jZL/4YLGrg4IED8p5WQJUQeXMQNU7mGjEGJDEIIVi8cx8/v3pdXavthjIllABcqOFynymhnPrl+9/hT2/eRRRFOLB9CqzZAG1GoM0WSBSBsAik0ZLfm23Q9pQEWZRhYe0mfvon/1L2++DB7HOk3x/6XK1li0tL+PnnnyMCx6F9u4FkmOos4gFIohgLLeDuydAo3t0A4iGuXv8Kf7hwHRQEB7ZNZTNECSHP2TpX7RRee/AIf3brLggB9jab5h0pEqEYSAIeqzYidcwIIbj+/AV++/wJGCXY125JB0Q9V/I0STr2QjnZjEIkArcHm/hd9xkoJdgTNeTzq5wX/a413611lFHcePECv378Aygh2NtumUtJbZbJel/rfsjHhGD96TP88uF3oATY126BJyLzGsgDFtefPcevvvsejBDs67RBKDHvKH1cajlMhBCzzeqjx/iz2/dAGcH+qbZKSGD9rljHFYkws/tCAGs/PMUvH34Hxij2T7XT41DiHMOcp3X+XTD82TfPcO/6KgiAA9um0vXeOdsfvb/lu9/iF8u3QAmwf9uUcx9BCCTDOHUE1b2l77fVR0/wF18/BIkF9nVa1sG8Y9uPpLrHzHUS1nX232GZ6yYX3Hj+Ar969L28R5reREgAc/hMys2NF/jNk8egAPb47UtsEm2RjNb2t0+fyOPmaAiTAZf3lgewbvU28FfPn4ISYG+rZZ4bQgkEF/LZUs+PvmepdY/feLEhrxUl2D/dMfelfhZyWQtKsPLtD/iT61+BMYoD6v6ijMpra11gO60xTzj+x/k1fPbZZz+pNUivwP7b/+EPPvvgX/+74AKv7LP6L/7nbz777LN/9qrHQlvt6aPL179Ap9XA5et35AJvJjQUz60d6bmVG+g0G5i7tu7sU8TDDFshVHiNtrmVG+g0GphbvWXW+/twTBV1k22vo9NqYW55TW6bJOmLUoUeyH3ydMZbtb+0tIJOM8KlpRVnn3p7YxZrYe9/7po69sp11LW5tduYajfNOQdZnmDaWYq5q4vodDqYW1jK3X9GeAt5k87NX8FUp4W5+avlndSOlZp9n1u9ial2G3PrX0g2K2qCNNvScVTghzSaQNQAjRpmVkOHElz56gE6jQhXvrzvOPiFaWfVvi/f+AqdVguXb9x1z1OFthQVS7t86y467RYu37hTfs6eza3dlNdp7Xb5xoE+XFpeQ6fTNven6XdohtJjUeZWb8jx1veIZUG2Qj+n8RCXr99Bp9XA3NotGdsfD2Q4Tr8rGcpEpkbVoTt2obfLc5cw1Wrg8twcCI9zPxkjBHPzV9GZ3oa5q4sQTAmlI8UaRNKpR9QAbbZleFKzLa9fS95H87fvY6rZwPyX97PDo37Y9I+i70AuffMI7Yjh6tcPgmNrC7g1a6H7d2lp1fRb7lyxnnaWLABaqG3CnwDMz83Ja3x5HrDHKJbjKtMBJ2qCRV4n/X7h8RDzX95Hm8n7NHOdS+JXjcK/AAAgAElEQVSTFx98j3YjwtLDH3K3oUw6rj4bcL23gQ5jWO9vypjpJjWznvqZoip9LVEfQM7s3+R9tBsRrvc3K82IalYhGSZYe/ECTRCsPn/uOEmOALog7GblyTO0KMPKk2dBtqKIsVh99hwtSrHy5Fmwf7b5DtXSt0/QaTWx9ECOtc0U5LE1er+6z9d+eCr7yYVikbgJe9MhcKEZ3/v376HFGBbufqva89yPOfYgBh/EmP9C3l9XvnrosF/+OKUhedyERC0/eoIWCJZ/eGL67WeJcsK+rGu48uQZmoRi5cnT8Nh419i+/qvP5XVaff7c7WNF1mJtYwMtSrG2sRE8dpFNpG33Re2265uy7fpm+LghpsK07W6iRSjWu5vO8qqhWStPnqIVMee5YE3mAAvbdDgUYRRLD7/HVLuJhfvfAUhDUeU27m/aW9bi98Nqg4sLn76Pbn+IC0c+qLS9sJyZ2eOfotsfYPb4p+n6nBAox3iC2ZmP0R30MXv0x7nbhUAKeILZ40fQ7fcxe/yIYTqAaiDj4smj6PZ6uHjyqHVc6wVtt7P3p2z2xBF0B0PMnpyRC6yMQXpG25kN1+sbDczOfIRunGD22Mdu6lIdRmMxD04KWgCzZ0+j2+1i9swpa4C4+0HYMZo9fxabmz1cPKvamhks7mwn18XpOACYPX4Em/0+Zo997PRH918DDH2uNsAAgAsfv4c+5zj/0buynUepFuksnHszJ5QpD2Rc+PQDdPsDXPi0+L527i91/80e+QibvR5mZz6CGA4VW6Due6VnMNur+8++72aPH0G328Ps8Y+z95J1v/rgAABmj30qj33s42yok9XHEDC9cOQDdPtDzB790ISsGYChCraRYVfOsGuAocDG7JlT6G68wOy502m/Kn5mz52Wbc+c9Gbvh0DcN7P1fqYkPat//sN3sNkf4Nz772S0B0lvgGQYIxmEQ4NOv3cAvTjB2R8dUoyFigfOA5+WzZ45jW6vh9lzZ6wbghvQ5aSW1cyeWnbh/Dl0NzbSZ8qucyHU+0S/l4bWe0wtO//hYfSGMc69fwhVa8Lo5+b0ob3oDWOcOrhHzYRTBRQYQuJk6TBIoHB85w70OcfxbducfdpC7LS+g5rZV3+PtKbQFxxHWlO5fdTOUFqzQ47bkXYHAy5wbPt2tb7YAbKvNU8Eju/agT5PcGz7jtztAOm8+g7ssR3b5TnvSttWzW506sAudIcxTh3aU2l7IB033ecTe3am/Q0ADG2JBQBEkuDw4XfR7Q9w+p39EojkfOR+XbBx5t392BwMceadfZmwOs1ahIAFAJzYuQO9JMGJ3TtLQQX3smMd274D/TjB8V07M2CmCFgAwMz0NvQ5N/cIUH6fuO2n0eccM9PTwfW6/6HPkXZx2yrHPb5tmwHm+lPadtt29InAzLbtwfUa/NuTANqOduTzeLQjn0cTZqyKZ8plxNqXXKYnHI7v2omB4Di5fzfs2hahexNw789TB/diszfAmcP7TRtzHAtg6EnGt/bmGxE+51i0MSGi+/N/mn7PhHukjrHzPZSCE9WBRdA855H4332tR17cvDM7bm0TuXH8mdlBj6mobPZ+PEcRsM7fOm8SNeX56NlU/Z1GkrmgLBVzq8rBWiORd67qxJy//+Af/U/4T//jv4+pthT0OsW9/GJfWpiq4sXFoCfHQQE8oWdfh9ZMrJqVFSpMRwwHAOdpPHmSgjbtAAV1FjociqYvJLk8cI2LdAg5M76Ok5kHUpxsVWEhOWk0nGegMDxK98m+l2xQodcHGL7MNhWAhb0v/1xIqy3vOYs5QNRSM/jqvmNNiEYruN9cs1m2JFagpWeKx2nNgQkN0poDa1lRGlYemGm1zXaaouk2GtNtNKY7UiDengLtTIO0p0E606DqL2l25Hk3WhBRW55zkd7CDpXyQqMgBEjck+ce9+W5q0xRorchU8/2NrIZonKE3ACcFLT2+dszz0XOYTJIILhymgaJDB9KOLhyarly/vXMr3YW9XEMOOCucy+30WGPfghUdvwMG1Li8NjMiDabbSlKS1vEVoSMWmFIOq+/HWceCgWRfWBmvAE4mZVsp1yPPQAz/kAaz26bPiZtRMHQk8esif8vegd/P3pYeE5l42M/I2X3jn8OZlw9B3+UTF1lwGISWotJiKlHTatsC6iraEGq9rVysVDmTgiwBjPPlp06Wj9bRc+BXl8k5jbhfNa9ZZsWePvPzZF/8v9CCPHyMkGMaLs/PCb+9n/1v73SPvzzv/c3LgshZl9pJyzbEohosuZYAm/b+a8EKoCgw2SAi62XUO39YzhOky/4NstT4beTvjZQG8MpzIeaoEJbhVSjwjs3p99RM1cPUGq+yN1PN4uUyTCMhs9aGOYibVM1bZxJUQs3JJZGDaeeAeD+CBbVsygVhhYInYty0JeZc3/5aWF14oHhUGZSyyQ50P2SwuaM+L8OqPC3qwgsco0n0qmPhiA8AeVtiCQB7ah+x4CIlCYCSB3nuqZFzXnAIsBYaAc77vYzznUZsLCNKF1AbqhcpgGp/pxZjGAK7q3nzWI5SKKfsST71w83HSM1oxZPApbIWK9rSseNAkCTAYME9q1IGCmcDWZNasTefh9DbfPGW4tMQ1lsQkJTOy2tLe7Oq3tRF1jY7arW0XCyD07YjDbDE3cDUNc2AiIUFk+kjagy+B4FWIwCKvSxnO2sfVYFFWXrXifTjrzub6jOhA84clMs+89XhXvf32dVYBGyvPTQ+l2QACZtsg8wbNMZpExCE87fKAZDCGAQv76JD16FjXz1Rkk1GwIVQHVgof8fGWDY+60LMvQ+J1VdsiATkFPLAOlYO7PcmrUYxWyQYdexkAd1U2V6YIMksRsSxQNOcfB8s06+XcUbFrgoqmdhC7gr26gAY9QsUSGAAXgFJ+EADNmuJqjwtx0XWNgWDyAAmYkJAO9ugLS4vBcFB2hxXGwwm5RlhMcmW5IBFnbRuN6GAhZdCXjUrKoGFqOACtqIwJHtN40a2VTGwU7XAxkm/a5d98MB62lIlK+3CJlmLQq7yKgzHv730PasiUzNCwoOqMxRAMDAkAwTmV0qEcH96mdJbyP35bIWVU1nsfEBhg008gCGb3WAhTnfJquUkcrs0y5yt0VmV+3OAAyqQGjOtSaMVq7aXhVYaJsUqABGBxZ5tpWsxSjmO/K22edXBXAA4eeqCuDIAxZmfQBYVH2G856Fsvd0CGC8tTfXJvs2DM2457AX2oqARTAvP2XjAwx7f2qf6fIwyNiSkvUVC6bZ2zqahXEtBDKA9P881gLIFBcsHJ8QsKC0kL0oE3DrfVS2igCjzj5z2Qv9XR3XZvLyAIbfrg6oACYMLLTFAwieGIChr5dknpogw15G66MtI+b2nXIlYibJIAUWdkiQBhbxEEm/Dz6MDaBIeoNaoMI32ojyr7POxDWJGeiArsnVZXDAZgjhT6Ro/U34PMuEj1mgoWYkLfYive+Jw15wVAcYmr2wzQYYReFQtvnsRV2AYcZNtS9zXrPHT5z/qxQGA2Q4mi1mrfNboTP1AMity2H2q0LVQgAjL9wEqAYwdds6wEKH02kbp1DhqGFQRetft9Sz2pEPJTfISwO7FYDDBhba7HDDKoxFnvnPgm91AcZbe3Nty6ZaqlSXrg0s9P/KYQPghF/Z+60EMPz9l4CMUc1+UIL7KmIxQkLuMhPaHaxotnMbEHtnWAs/JCrOr1MRNMvR99kLR2Ohtw0IuDOOShXAVQIwau8PAYDht7Xu11yA4e3P+V5Bg7QlwMI6nuhugPMERBfAazRAmglEo6NSFFtWZWafkBRYKK2BDolKi8ZlgUUyHE4EWJj/GVNi7nzx/0TMDiXUmaTskCiTSCIFlnamqOzuys+dNiJnpjqvcJU+Rz88infdbY3zUQIwbKBuA4yqNgrA0OaHR/mWByzGqSo9SihUmbNffLwwwBBUa2Pc68ZKQqHsvowKLHyRdrDfReFYWwAsXjfzgYENXJNB4tzL9vkUsRuh/QLVAIetZwoBi7L2VSwUGlXF3kSAISDeVuj27OUEtQUYjUrhHfZy23HLhJ1UAxi2VWYzfJ1CTfMfEKdImm0FLIYj/KUsDYlS1bIdMfe4lcVNaE4+ayHXx5WcWNJoONfTLQIXYC/s61SQGWpkKwAYo1pQ31MBYABwqtkHhf32PvzjFj0nkzQuM0n5JmtRFFyTonuRx9KJVsBCZogagKtUuBpYCJV+0wYWSW/ggISJmC24t0xX5p6IcetZUiFRgHoXhK6flzJ0UmYyshQUeJPF9bLsBWEkAzC05QEMfcyqVgYwtGmAURYeVZWt+P/be/cYO7L8vu97qu693bebzUcP2eQMyR3ucEg2n8MZchPHSSBFMRKtIwgBggAx8kRkwA6M2DFkI7YTy1zHchAoERA7FoyFFBsBlMCJbMOR9pXVSvKupJVmmhyy2U2y+RzOkBy+X/24t++9VSd/VJ2qU6fOOXWqbl0+Zn4foEB23ao6p96/b/0epyxl8jGKEMdSHUBP265GYIR9ERaV3R/b3qnCwyQskt8twqKMl0KgOy91hEIBdq/FywqJEoa8bMSHYX4ASpugKPJuAMWCwyQssn0tf13LQnvYMEHXUbyJV5cXmjGj9VQA7sJC/N8mMIB0vvg6rgvHKhIb6lfoMKwnVEK0ZxMZshdDoCZyu7SRSSotQZjPtYg6G4kNNSTKGdmwN3gv0hxYuepSVlgM/UX5FREYaqI3oNwjRYJCXW4UwkJqI5PoDaUEo9arJolK5ZzxMEyqQQlhIUajxqCfjMQdlZbtJ8ZO0O1F84NeFDpXQWSwuKKJ7uUnxrhQGVq0q+VqgUhgiXAokW8h0JxL1xK0KvLXaTXE0/M9a3K3KjCEQS8Ehrr9pM0hiiUA2VGEVcokeI/CW/EqoAqM5DqSjjmzeN2Z7+eMN5OwEFXFRLsCk7Ao46WQqSIsXhevhSosxD2jExlA9liYvBq6303LqYLDVnJWFRZVK2KlfQki70XJZ3XZ5Qk7jLFxAD8EMIbI9v8NzvnfYoz9YwA/AUAMNvNfcM5zg5wxxr4L4E8A+H3O+c8UtTfSs+cSGlVKWMi/mQSG/LvYriHfI9PXQfbreq4fIja+5mogWpEhezGkZSptXzeQWcHykQGU9VokYRw2wiAtQ+vanuK9AJCeO6UylFi+FmwCo6KHpLBCWRLyF/2ZqSQlY8qnUCkwRkeCnOgdjqf7JvdRc46SfA3peo+qQfVSYTGIRhMPB/1kzIowCGLPRfx3/H/x4gkxGMqLIca4yM/XfJCoIjA0+UtReGE8f9DLhiUqCd1c+XrsQmK4xAnswthTvwZ6rUbGIyKSu4XACKX5qsCItucDCArzL4a5Z6vmX4zKWyFvwzUnoyyuxpwQGI12enzF+fRaDeN1YxIdrsJCLpurliZWca3KJZ8TV8FgWu5F5Fq4eq1MwgLI5rrI3jZXoZH2pZzgKFMZSr0WXTxrct7FKCuovWq8BmFR6wB+inO+whhrAvh9xth34t/+Kuf8NwrW/yUAEwD+nEtjL04ampK9Y3Qje2d+V2vyVxAYgN6LoaL1aqjG24hEBiAJDXkMDpHIPUyVqLJ9sgmTMEjyLZLB3ly3K4VGJfMyuRfICouic1Y1XOpFeDCAAi8GcuIj2ZbNS1E0b5RIAkNguq9MY9tEA1720rEspJKzsrBIBsUTHos4dGMQBEkddfGidxUZogxtpp+6QgnDhuHxMP1AoAywx+KE9nTRIH++azyvqvcialOELnmZ5G6BJ7wXIjHbY5kQKWGs2PIvhmGY/Av99uo5njzk2sEHddjC2XzpWA7VnyCUDP/4HBratYmOUAmTqyosqgiKtM3hhEURw4ZE5fY1viZ1mISFunyIbIlW1etmEhoC07WfKwOtjBejCoth0ImtF1FBjXCHR4PaiWHhm/HkfENwzn/AGPtJ1+UrnfkqZWhzOAqLXIKrrkKPYyUpwBKaJaEaShlhk7RZ7MWo6nGQv+6KQfM0nay07UI413st5JCokt4QI2qYFJA/pnWGQxX1QWmvKtrB6XReDFlgiHVdBYXLb6MkriSVCPt4tuqp5CLZX/NhQTeWRVpiNhUWoorNoNtDGIdIAYA/3sokC7p4MeQXIPOUUse6fla5zyRvRVopimfFehwSlcm3SFYPs0IbaUiUzYvh+Z4xh0Jg816YkrtFeFTiAbFUkEra0XgwqlBWYJg8CnUJC5sx+TJIRvBupGFRzLNcBxaxow70V0ZYFAkKl+NfRxjUKL0WqrCweS9swkL++h/2guR6CqUiLDpvBpDPjRCUER3ydmwDUNZ1nWcSuynU6aXCGPMBnAbwLoB/wDn/Y8bYfwXgFxljvwDgBwD+Gud8fdi26j/TOg+F+lsVYSELCJ2xL22/SGAUoRMgLNOu8uOI3H5CZBjLz1YdwExGHaFdGd+iNhxKwcrei9rzLCr2zRmdkC3yYkjXq3Z7trZeMtG9kBdRRjGhzgsDqeRsfpC8oNtLjZxuLyMsEsOp24vLcJbzYuS8FkronVVgKINOZpBDoIA0vFD8poZEidWk8S1MYwENg6k6UTbxOjVI1fAoNf9ChG1oBQaqV0JSEYbyMAKjztyKsBc4hYWURS5HWwUecoQD2QtmDofSiY5MGd2ahEXZ4/4q51eUvZ5toVCCxHAXYXyyyIi9gHLbRTlEZURH0gfHke1z61lER1EYlBzSStTOVsbYnPT3Nznn35QX4JwHAI4zxjYD+OeMsSMA/jqAuwBaAL4J4L8F8LeH7czIz3Iu72IYYSH+L76WCuNtBAIjtx9SWFWu3SIvhmsJ2SI0Md+VKtnoBIVEZhA91WsxLFIlrJwh5fnaUKgXErNZ9vqw5QJJuAoM4zZt84fExQOpuw9V40Wu/pVDc1zFuRfCAmF+kDwehgji8KhBNwq9E/kWSenM0Evie128GGJk7qhbfvaFqimgkF254BpUQ6AAyGWb03tKColS8y10m42rZam4Vo+SS9KaErtV74XOOPU0AiPaTrZErdxOVe+F3P4wAqNOynosqiSzVyndm7Znz31gvjnBXsy1CYtkWY2wGK7iVn2ioshrUeXYDissZITXwvNZIiirigyVsqKjSFjorvUywlo33oX4CCQ8p0Uio65KbC8Czl+JnIuHnPOTLgtyzp8yxn4PwE9zzv/nePY6Y+wfAfgrdXSmtGU6f+0znL52CycP7MGxvV8pt+6VTzB36RpOzu7F0T07o5mOwuLc1U9x+srNqN13dpcSGHK7x/btqdznYwf2JsnhWoEB5ETGuaWrmLtwDSePzOK9g/tKtX3u4hXMLVzC144dwnuHZ6P9dQzTOLdwAXPnzuPk8WN47/DB/AI6QQGAhQHOLV7B3Nl5nDx2GMdn382uF5egNY1vce7yDcxduIyTB/e6XR9CbMRGzfz1Wzh97RZO7Hsbx97Z5bSvgvlrn+H05Zs4sf9tHNu7u/51DUb+/PXPcPrKpzix7yvRtQlk830KwqTmL9/A3OXrOLn/HRx79ytOYkJs06XfJhExf+1TzC19gpMH9uDo22/m+pYYI5kPAr14n2/hzLVb+GDvruQ8paFRsmHezxnu5y7fwOnLn+CDPTtwbPeMdpA8ISyikKhsiNTi54+x+OQZjm6fxqGZLZFx5OjFWLjzAOduP8DJfV/B+7NvZ/uWy7nIPh7nFxYxN7+Ik8eP4djRI/EB0YdAid/EvHMLi5g7ex5fOzKL47N7MyFRSb6FSOYOoxwmuSzzwq37+PjmXRzfPYMju2ZQhsW7j3Du1n0ce2srDm3dkgmNKvJeXLj7BOcfPsGhLZuwb2ISRSVqRYI3AFxdW8XS2ioOTEziq422tY+q4Xutu4al7hoOjE9g7/iEVmDYuLK8govLyzg4NYV9UxtKHS+x7uHpTZjdvLFUydnFe4+wcP8JjsxswaFtW0q1u/TkOc4/fIqjWzfjwJaNpdYFgM/v3sX/feEGjkxvxoHpdH2/5ReKjouPnuH8vcc4snUz9k9tyAmLUMq9UYWF7VgXCYMrK9K6G/Lnybb+lZUVXFpZweyGDdp1i7i6uopLnRXMtjfg3cls9bsiUSGu7dkNU9i/MWpbVwJWDYfyfIbLT5ex+Ow5Dm/aiAPTG0uJjMvPlrH4+CkObd6I/RunMu3okEXH5efLuPh8GYeVdXN9NojopafPsfj4WanrU+RdiPvi6I5pHN6xDYDdi/E6CYvXBcbYNgD9WFi0AfwpAP8TY+xNzvnnjDEG4N8HsFBHe6XP4OnLN9FueJhb+iSd6VjtZu7SNbQbPj5auJxdTqqQkggLpWrK6Ss30R5r4fSVT3NtZNZR+sD7fXy0cBnt1hjmLl1z3k/e76frNvxo3cTo0vQ1aTf7UJpbuIzx8THMLVxybpt5UcLp3IXLaLfH8dHCknlZpYqTMGbmzs1jYnwcc2fPSTuV5lGIZZPqUMkyAebOzqM9PobTZ+ehDpqnkiRzxyEdcxevoD02hrmL7sda5vS1W/F5vhn1schrIRmEpy/fRHusidOXb5Zv17auci3m1r3yKdqtZnptyuso16mY5OXmLl3DRLORucbU5dWpzD6btjF34Vp0L1+4kpy/TBthAL7eAe/3ovyI9S4w6AODPs5c+RTtpo8zVz5N5olJLJtMndVoO/F0+uJVtBsMZy7f1A6SF/QGCGMhMeiuxzkYcdxuL8DCo6cY8zycv/c4CaUK4y/8wmiXczXC/iDxWpy7/QAT7TGcuXEnMiDCIBJMGcM+9ioM1iUPXg9zZz5Ge3wccx+fBYIBEAzABr1oClJxwIJeMiHOUZo7ex7tVhNz585H2429FmpIVJJvEXtzRP7JmZufY7zp4+PP7mW8FrJRboqzP3fnAdqtBubvPMzMl3PC5MRL+Z5bfPYc7WYDF548S75cen5sMHnR19lM9Zmmn/y+tLaKMS/611hWNsxXwwoDjkurq2hxhkurq5n9FJ4QHoRRqE7AEfQDBP2oipWYLjx7jjHPw8XlZX270rLqdOHZc7TAsPj4WWEugXr9nb/3GOPNBs7fe2xdJ9qXrIdg4dFTtJs+Fh49tbZp4s7t29F98fAJeMiTKegF2inpfxDi/L3HGAOL7iklFEoVFmHIMx4LcbwuPHueO5ZFXFxeTs6T7lzYuLSygiaP2i8a10LntbjUWcE483Gps5KZ7+KtENe2uq4tz0J4LBafPcd408fis+fR/eOxpECA57N0eel+Ewb/hafPMN5q4OLzZTDfy0w6PI8l06Xnyxj3fVx4+lzqr5sJ6LV8LD5+hnG/2vWZ3Bd3zfeF6I9aTYuojTcB/C5jbB7ARwC+zzn/LQC/zhg7D+A8gK0A/g4AMMZOMsZ+VazMGPsRgP8HwL/NGLvFGPt3bY2VPnsn9r+NznofJ/buynsYVONeCYE68e7bWOv2cHL2naywEMvojHXR7r630Vnv4cQ+6Wt4kSiJ/z05+w7W1tZw4t23E9FQNAlOzr6DtW4PJ959O7NNq8CQOHlkP7prazh5aK/2dx3ihfu1I7PorPfwtSMH4jYGaWhSHGIhrZQRDSePHcFat4OTx444CIr0d/AQJ48djvp89FCySJLIHWqqREn7fnL2HXTW13HyoGV/xSjb8ijciIya9Dy/XUpYANK1uf9t+3oahln3g727sdZdxwd7dyfnTp5yhmsYpInMg+heWlvrJveUbNwXTSf27UJnfR0n9u1yWl5dd63TSfqd9K3fSwRFdH6lfQAQDvo4vmc7VjtdHN+zPSodK03a9oT4CEN88M5OdNa6OP6VmSTsRxUWYW+AQTfNKZNd7Efe2IzuIMCR6c2Z8+C1GpEwjz0XMpExGuK9nduw1lnH8d0z6K92MFiLx9XorEY5IOtdhPG/vNcF63fA+utAOMDXjs6is/IcJ48cBAv6YIN1aepGgmLQje8TWXgM8LUjs+h2Ovja4QPOXgs5JOr93dux1lnHezu2RvsjGeVhkIovYSwKwv4A7721DZ1BgGNvbVWOSbGH7MjWzegGAY68sblwWdUYPDAxiU4/wL5WOxUF6r0h+hkbgMII3N+ewHoYYn97IjVsNQJDrAukYTE84Dg4NYXuIMDs5IbSRuvBqSmshyEOTqVfdxMxExva3BAOdGR6Ezq9Po5Mb0ryg5JRrg0jXQsObdmETj/AoS2bMsfDbQLe2rkzt75oQzfJQuPwpo3o9Ac4LLcd72sY8FSoS+uJY3lwagrrgxCzE/pjbZtmJzYk66oI0Wia9o+3sR6GmJW8DrpjY2K2vQFdHmC2nW3bZqwLDkxMRm23U6+FPCidjcObNqLbD3Bk62b9+CFSn1WRcWjzJqwPAhzavCm3XVVsqPtwaPNGrAcBDm3emCyvYguHOjy9yfgsSASBJ8JO43/jjxbH3nwD3f4AR3dMa4+JKipeN2HBORAMwpc6FfeRz3PO3+ecH+OcH+Gc/+14/k9xzo/G8/4TzvlKPH+Oc/5npfX/Tc75Ns55m3O+i3P+PVt7jKvx97aFGeOdb/1KOkOOiy+quiLmOYZBqYgXi9HgVA1WuQ91jOwMpRJOYhDrDeVkZGlTxagSeRjJPselaAGkI3QDSEbpjhaGbqTuXIK26o3gIX7x134Df/k//hlMCsNMrRBlERZJiVGdaLSMX1IkzrSUOJ9lKpsZk2kL+lZ1sLAi8TTMIGTOJB4+KcRNEw4Vmo5NRYSxIgbJk0ffVoUFgExY1KA7AEu+mkdePi8eGE8VF+JF5TUbifcieQHGyzcn29GgeuMT8NqTYK1xsPYkvPFJoNGE154Eb7ajUMvmeEaIA4r3UBX8EizoxXkmsaDpCW9QL1c1S81BESLD5KnIlcjMDZCWNchFSV+xTbF9dYwDIDKExajMiXGthMYIYzHop7/LgkKlam6BOuK38IgIY0T8rgtRKYutjKj8JVq9DgVy9SXA7LGIlh0uXvuJ18K/nH0fP3v2DzPzbe2/PNcAACAASURBVHHyuZKoUgiU/LcQFZm+J7+593sUlZxe5Gjb2qII8TWhigu5GpPOeyEXRHC5DmwjoZfdh6o5FvIywtMirv1onl5YMI0tJH/8yVTwk/7vNRvY+Tf/ITjnr055NgNTu2f5yZ//ZvGCI+T3/vJPnHbNuXgRlM65yFQDkOLGteNQxL8lVBQWTog8C23ZWKkvVdtQk8QL+xMleSflZFXUfAWL2EiOebIfDTAeRjHuzAM4BwsGqcCwVXvSiAoZFgRAs1EsLORNqMLCBTWx2+XcFIiKWkokl4RLAsuZZAT5AvEwzP3gSCIqSgiKOqoBlREWQJx0HAsS1zEG5LZCDOD72XtMxAP3Vztoog1gLWpL/A7AG59E2FmFB4A322D9brxRvYjQFj0Q96IIt3IJh5LCvMS/yeYMokIVFCbkUrRF16AtWVcWFjp04U5FFA0Iloy5geJEb5UqgoMHsYei5UeJ7MiPUyCPlB0im7tSJCyGNRaF0Ylx5Lbn+Sz9XcFr+dq2bbkV0bysqKhTMLxIoVAFk1EuhIULYcDhofp1MEzSP1A9eftlCAvi9abSGcx5EVxERvx75ot2la/WNoSYiLetTfQectuJwBB/h4YEbwmjwJCRxUaRVyMc5AUGkAoMUS5TeDYsgiI38rY0zoVOWKR9qGBUV+UVFBVD4Xjc1LEO6u2Dck1YREUVMWFbRxjMgVRa1iYsdJi8FkV9CpGKB+Z5GYHRCMeSZVkYJqNUs0YrXa8xlt2oTsSbvK+9bhR2GY9Mnh3nI/ZmxOFQYhDB7GaHExVF59GUs+FSJtXktbAZQmUHTFNFhgdhsEfzUgM/68UQlDWEfWSNxjDkicBAIjiQE7s2YVGXt0IWDaEU6pVWA/OM27eJDtUrlfRb46kQx/NliQJ5X19V1GtGNtrLCAuv5SfnzFa1rMy5qCoqgNEJi9dXVHCUiQL6MlD+TMpCwkFkAHmhUcVb4VyOtEhgDENZgSGVqJW/9lcRGhnvhecnAiP+EYAHMJYXGDImUaHJ3cgJC/GzIRzKGY0nyei9qFtUFG6v3P7IXouRCIFRhUVp7rkygqKM2Mh9vY7Db4SwEKNvi//b8HwPPPTgW7R3mYErkwHHNGVdhbDwAKANoBv/3U7XtaKppOaaZyGSuGWvhZxTIXAVFTqK8i10IxGbDFLt+mGYM3SGHadAFRmyFwOIRIbqxaiCbFAlX+g1g/OFksCQvRfpuvWHQannIM2HiA3VkMPzmPUeDS2pli4hUGVFRV3jnlTd/ssQH6bBHOVrBqhfmLkID9cys6MSFi7eildZMBJulA+L6veiUpOOIgNAxptRWxiUDUXkJAb/MFQVJ5oxMEoLDYvAYF4jyr9wFBgu8eGysJD7YRMWpUKibDgcZ6OoqCm3pixGYTGMOBjRvVE21GkYIZG0mcTzZ2P8hbDgQZjJAdCRG/iuktciHxolh3mKgfsEXph6OnijnwiOyljyLNRwKLl/IhxMUFZUFHosDNWntMvGxqxLrkXUdomYfIN4UY00ncjwfIZobBSxjrmdIsMlNfiCJJSqTHiUPJ5IXWFQOmEnexnkr6a2CleFwsMxBEoNnXpR6MZNMVUiE9j6OIwR6zruiey98BRh/CIx9dfmrQCyYVBAcfI2CQsCqBoWJY+iXEFkvLBwGikPY+jQGTl/o2x4lGWQPdWgMuZnqKFSBQIj2rijp0Jun/NMqIetMlQt2AbVUxi5qPB8Z++F8FrkchaKcPAajIpReSNUVE+ALCrE77KwEIPkFSHyLsqgJjCK0CggfSnKz62wN0AfnbRNxB6LcSDsIPfNt3TBAEOehclrIVNGVJjOZ135FkXIoTrDbkteVxYassjQeTHSddSPO8XXUOr5CEqHR9UpLIrClxIvQ2z4246z3/ILS+vKwsIWAiUfwyoDJdaJaL9IZIwCOd+iKO8ievbkw6NeFmW9FQAJCxsu4aNfJiqERcUPEs+rJjJelLAQKInermiNhmEFhsDylbXIq5FJqJf7y8N0gD0pwdvZU5Hs4wBAKw2HMggLq9ei5nNsNeDKCIuiZav225K/oF28RAiS68PWxWAqWmaY6lQmQSFvVw7xEV/pXYWFis5rUSYkKupj1C9ZZKgCgwchfCDOvehH/0pFHbgIf3K5DsPAmmeRCYNSjpVNWNRx7suKNlMbQS+tNlX3KNnyNlWRofNiJB6pAuNXZ5TmRak+PCoMeEZgiN+HERa28DNTBSdRT8fkKXIdtbwoBKpIVLyQCncK8nkuKzDKDJAoU2a0diANVxsGOe9iWFy9FcDohEWRqFBH+CZeL6pnzygiIxmV10VkvGgq5FyoYqTWpGHp2Fn7EBtdzPcLw6NMFaSiFVxFBdIvq47CohK63AqN96K0qHhBYVE5rwVgvbZ1ngn5JV1XaMEoxYOKLk8BcBMV6QB55YSFEBRV90KERnloZF5msshQBUZzMqoi5QNAexLorgIDpey0QHP9ZYSILc8iDodSk7hlYVHfdeKeb6F+jbOFRAmyCcbDf83TfRFWRYbNi5HbnvLcNYkPv4U4P8EcHqUaRWL8iCr5FUWGoyosMl6G0Hy8mc9KJ8+7ioqXISZUZDvjRXgxXIVFTohakrtHTZmSxGoYFFCPsHD1VpCo+GJQPaEbyCQtZ7wYYjml5KZzUvYoMBl/jgZpPlm7gvci1yc3b0ZCQXiUTmCkO+AgKhCdq5ywsFBbroVC6RCoOoRFMmZJCQGlCRVzyWtIYqVrfDnbtmUSA3WQM4gtogLAUB4LGZdcCxO6SjNhECYCQ/S/jw78WCD4ADA2Ht3b8tgzMbqxfvi6tI9hYMyzSCoLaZK45f7WjUu+hTy+hQ3Va1GHsADyBrMsNtSQKZ3IEAgjyrSfpmupVHiUz0p5K1y/ROvGFgHS8KVwEIdFKRWx/KZf6jyUFRWvQvlY+byq3qq6RYZsiJcpQasjqf5Us8hw3Z6LtwIgYUFUo7S4CAd9eHL1JyEwAGuoFPCKiAwVF+PYVH2qjMBQtpXvh1loZErZxgIjN96IroKUktBtExUZ1LEs6vRamJC8F9ZlXOYZKBqjJDPYn2kZ2Wshjz1Q4J1Q58kGrA3xAHfFxaOQ9GWI+9HzfaOoEP3QeStckret7bYagGYfy4ZEJX1WwiJUL0ZyPFejf3wges5BfEjpS6GP6n2e9cLp8iyAVFBkEt41xy3d12rPz7rzLdREbiDrtQgLSjN6rJphJhvLOqEhiwx5GZ0hnKkMpRyTqPpU9ng7hUcVjEVQNrTFNGih6E/QD4AxqR/SvrmU3xVeGZOwKBIVdYlImTJGu1wFSX2muYRKuYZGlQ2F0qFN7pauhyJhoIZGVRUmZcKgot9HKyxed1ERjdD98oX2q0SlsCjxUvRkw7mCyABGLzTKfqXSoqs+VZWKQkM3VoY2/yKX4F0sKjLHaNADZ1KeyKiERZn8mxLeCudBDgvac/ZeSEYi4CYogFQE6Iz+DCUr3Jq2px0lOe6DTcCYv+bqrx8XUaH25UV+bEhCo6SXnMmLAcQJ3YrASGKGB5KwyAgOAF72Gcd70X7n8iykcChdErcqLOT+6tAZSXXmW5gGzqvitSgSHwKbCNGJCJM3Q10OKBYckXFaLjzKNDhdFXKJ2xphEQY8JwjKleJ9dURFlW2r+TZA/aFSqjFexwjwqhAE3LwZw3g6dALpRQsLF2/FK/UBmqhE+VK08sNrSJEBjMab4RJqMrToKOu9MG0DsH9911WasuVfiP2IE7wTYSEP9iWFQCXbi4nCnHxtuI+KNiRqmDApneBw9FbUISpYswneh3EfTF4LIG/AZePWs14Kk2Guo0owjE1I6JYJur3cdS9eILb7pIqnIv1Kn3oI1DZt9yDzPKflihAhWk4iQ0q2Fv0UeRnM91Kx0Wimx0S8eJut5D6Rrxs1HAowh5EB0I4B4msGnCrMuxky30KmyGvRs1RPaZVIbjWJEFV06ESE6oHRiQ2xbNKelLMhX2Ou4VF1JN4aE7elYyznuhSdKxOyCKkiKkaRtK9DN2aEQJtvYwiVqiIw6hYW4nrRCdIyIsMVk8fFNQwq2gYJC6IclcSFXMe7UGSIL++6pG+xHIb3ZliNNBeDtWA7sgFfJTwKsOQRFHkzRF6LJjwqtx0l/yKan8+rSLYh9lsYHWGoFRYjC4cyUSIEyllY1F0tSiohKrCFPelKshZRNixKt93cQHY6wyPON0j+tAgOeZuqQQzA6K0QoiIjbKSPC2GnpxUb4ndXdEa3iTIiwwPQX+3A6zekr3m+u9iI7ytdOJR8TGziTH6Zq4KjzH4D2evEnq8T5IzLrIFp9loEkjDwJTGgEx5lBAdQLDpcxYZpWSA6Lq7hUXKp0WEoyq8ANMKunxcGRYgBBwVVRUXdHgxbAr8O+RzmBlhUQqXKejFswsIldMs0mF7U33yoY10ioyiEy9VbEW2rfmHxRRQVNEJ3Fv/UqVPOC3/jG9849TPvH8B3zi7BA7B9y1QUbMY5mMeSZGDm+cl8gCX/n7/+Gb7z4QI8HmLHG1uijYrlOI9yBJR5LH5RzF//DN/+cAG+x7B9y6ZosTCU2pEIg8w25q/fwrc/WoTPGLZv2ZhtU21bYf76LXz7w/PwGMOO6U3psvJ+iuRpMd9P589fvo5v/cEcfM+L2k6M9zDdhozUp3NL1/CtH30I3/Oi48WYdLwlb4V8rOJ2zy0u4bd+8EP4jGHHG5sBztPjNeilQiOIj1UY4kdLt/GvfnUGF699gm/96EN4YZj2WXRPPraa4z1/5RN86w9Pw/c8zGyczH3hz6yjO97XbuFbf3wOPvOwfXpT+oPBWyE/4OavfIJv/fhj+L6P7Vuno/MhTxbmr9yIzhOA7fG1yRiL+i+Oney1kIzE8zc/x3fOXIIHYGZqAuA8MrqTL7oBuHz8kRp2PAyxcPs+vn/hBhiAmQ0Tmes++cKtmZjvYeHWfXxv8TrYIMS2yXZW3EjnKQzCqA88/Uq5eOcBvn/xRtTvjZPJ7zy+n9X7UG578fOH+O65K2Dg2DrRTgzisD8AHwQIenF+gUZYXLj/BL9z/Q48xrB1fCy+ZpEeZ0QP6nAQXVc8CDP9ufDgCX73k8/hecC2yXYuXDD34hL7A2Dx3iP89tKn8DwvOtZikVATdy2tBwALtx/gexeug4Uhto6PRceaRQIlHARAGO0Hj//PwzAS5TzA+Zt38J25iwAPMDM1GR2v9T60I3FznogLISwuPHiM37l+Gwwc29rjueeX8CSpk+d7WLz3CN9fugnG42tE8p4kQpOnhqpc7ejio2f44Z378DjDlkYzMvJ4tIw8OnQ4CBPjNwwjr8X1Xgene8vwwbDZb4ADmUn1PAQ8na72ujjTWwEDsMUv55XkAK71O/iwuwyAY1qsLzWejknBk0lcN9fW1/BHK8/AALzRbMXXpXiERNeh53vRtoDkfmGM4cryCn74+X0wzrC1PVaq30vPnuOHd+6DcY43xsa0wiLoR+dGFhZBL0Sv2cTZqXHcOHsOHufY4je079HMcZL2/erqCv5o+RmYWBfFwoIHHODA9fhYe6z8udKuq14oPGsMJ+v21vBh5zkQhHijNZZZNzm/8rqZ5yrH9fU1/PjZU3gAphvNXBs2YXG1s4o/ePQIHmN4oxV95NP1MdpO9rly+fkyfnT/IXzG8MaY6Hf2WZOaJdnr9PLySnQ/imdnri1m7MfSk+f44ef34TMvuTaLwqDEtrxWI/Pcndm4QTouxcLiwr3H+P6lTyJ7ZHO6rtpmZl9aDfzSd3+MU6dOfUO7Q68Qf/eX/7dTO/6Vn3mpffjsB//H56dOnfrmS+2ERGmpOHflM4yB4cz125mva8KY4kFUXlFMkEovnrn6GdpNH2eu3QLv9/IjG4tlJcRLcm7pE7RbTcwtfZJWNNKtq67f7+H00g20Gwynl26Yd0yzLgCcvnIT7bEWTl+5mbYrD4Sl7GPUZjpY4NzFa2i3Wpi7cBk8DPJTvA3d9NH5i9E+Ly5F2x70E1HCgyCa1juRWBj0UqNi0MdH5xfRHmvio3Pno3m9brqcWLcfb0/sAwAeDPDR+YsY9718n4UokSa+3gXv95Ppo4XLaDd8fLRwKbes6Rxlrq/L1zHRamHu8vV0pmMY1NzSDbTHxjB38Zr5PJvavXAF7YaPuUtXM+cXoiyvQVjwIMTpa7fQbjZx5vrt6LQbPBKmLzPnbt3HeKOBc7fuW5cTeK1G8hXp48/uod1s4Oyte6X3+dzt+xhvNnDu9v3S63782b1o3Vv3o5eQ78FrNpIv97av6AsPn6I93sTCw6cAir+YyTDPw8L9JxhvNnD+7mOnvsrbn7/zEOMNH+fuPHBaV+bs7ftoNxv4+NN7iVAKuj1JGAQYdNbTv6Xn49zlTzHW8HD66i2E8QCCOmERdHu5Uct5GGL+80cY8z3Mf/5IKyLCfj+9r6Vp0F3H2U/vYlxaN+wNMOj0kn1IhEwvwKA7SIzXMOBYePAELeZh8fHTXFiOPK6FyEGQjdCrgw7GwHB10DEdUiPX+h20wHC13y29LgBc7XfRAsM1w/qq9wWIjOagF+Dy+hrGmIeltdXkOEQejPj9Fhv5QV8qx9sLEIYci4+fJsdLrOs6LT56hrGGjwtPnxs9FkDWsyF7G+7cvo0xMCx110ofr6VOtM+X16UBJIu+fse/X+l1MMYYrvTKn+eidZnPjB6CK70OWszLrSsvb9uHpbVVjHnRec6H69g9FheXlzHmebi4vJxrs4iLz6N1F58+z8zXhbKpeTMLD55g3Pex+PhZrr+2fWUew+KTZxj3fSw8jp67LvkVQOqx0D13fY3HV94P4Rk++9nd6D11+z7C+KNGKH3cUJ9ngJtnn3h1KS0uju+awVq3h2Nvbo1G2u1KRq1GaATr64nQ+OCdN9Hp9vDBV3ekRnIsMnJjBihG6Il9b2Otu44T+97OLyMnHUvbE9v84J2dUbt7d+lFjYyyzRP73kZnvZe2C6TCRhjk8sjjwjCNje2TB76KTreDkwe+qu2zVnDE08nZd7C2uooT+7+aFzIFQuPk7FfRWV3FyUN77YJCFkkAEIY4uX9Pps98vZsTEbyfltOUp5P792BtrYOT+98pe2kBAE7ufwdrvZ51fW0YlOfj5MG96Kyv4+TBvaXbPfHu21jrdqN2HYSF/BX/gz1vobPew/t73tI+ED3fhxd/XU8e3rFAYJ6H47t3oBsEOL57hzYUSZ1k3t+9HZ3+AMd3bS+1v8z38N7OGXT7AxzfvaPUuqLddc7xwTs7k/EndAKD+X6SJxF9CfNwdPs01kOOo9uno2W9dPL8aGq0W8n++uOt5HcAOLpjGt3+AEd3TJfu97G3tqIbhnjvrW2Z+Z5GDKkGx/GdM9Gx3jkDAMnLURjs4lmoigwehHh/93asdbp4f/eOXAJ3ZLimI5brwsmOTG9Cp9vHkelN0fqaKfMslqYjM1vQ6UXruoqKsBcg7AU4OLUR3d4AsxunACD5eh4GPBEWpsThdxttrIPj3Ua79Hna22yjB453m+Ol1wWAd5vj6IFjX8veti6k511vDOs8xP6xidQbowgM4blRBcb+9iS6QYDZjVNWr6NuOrhxKnOsRf90ORZAKizE++itnTuxDo4D4xMoy4H2BNZ5iAPticy9JoxWJk1+y5cMU4b94230GMf+8XZmOZepaF0b+1pt9HiIA5Ppl3CTsJD3CYjCog5MTGI9DHFgYjKzXZcci4NTU1gPQxycmsr9pqKGdB3cGK+7cSo3YnqRwDi0eSM6vT4Oy159ZRkTR6Y3oxsEODK9WRuqZfIeCMRz91j87LTlfKkC472dM+is9/Dem1tz+2gTG68NPAphfJnTqwYrEyfGGOP3fukvAsjH3wnjSZdsqR2dUeQfSNVWMm01lXwCC1qxYLowq7RjidVX692z3H4NmSegbEMOo8rkcMjt5CpIZcUQkAqiJCk7DPA//vZF/Nf/2h5MigeKycNg8Txo80uGHYNCWd8kLioTC6jk/w7CApAepCW+tJgGmauSW5HZbkGeRdS2Pum8KMnOlnsht+9SJUpO5lbbqppjoYZFqS89df+0o8E6iIsihHgC0qRv9bmoCosgPk6ux8u1HyqZl7Ym/EkYJyLGO2PE9oPEKzHoDpIv5+n/U6+FSOQWuRYBB0w2ol9QirZsDoZK2VK3OmM2m+gaG9rxOfZbsaD2WWbMA/GvLQk56aOyj0VVoaK/w5ywWN04hXNf/0n8yX/ym/p9c7ifRB6CmreRKTpgqRZVd3K3y/GTsQmL7Hbtz4MicaG7ToqEUNG+qNeBfsRqaf802yvyXJj6M2wCt7a9ghG5bcvLvPU3fgWc8+EeBC+ADTsP8KN/4Vdeah/+6L/7U6c55ydfaickyid0K4ZU8tKMfw87Qe6FKldsEIQQSeCaRqQqU4BeADgLCjVZOgwzxndu8D8dloTrJFlM/B3beMx2ZOPkb1eYZEvLj3PeCySxUVyVSicoAGT7EgZAyLQCwprUnUsAlwRGUcK6DZflhxUWUhjbKIVF1FU/bipI4uSHFRY61GpOdaEKANGG12pEIgnRs8BDAyGiY+KjgUBeXzpWVQVFndheemUQlaU830sEYyCefT2xTJCGUxmEWBhfj7oEeBfkJHlBWVGRTfRNv84LYZEYt5YvpiOsVFpIlTE05KpDgmzCNo+vbXEclVG8kX0OmYxtddRmlSJhMQpkg1sVGeI6inJ40oTpJOk97ltZMVAnLsLCJYm7irBwwZbYDUTXgSwwRE5dZpkgLbUbjnCEb5cxJ4qKR8j9F/8PlQIUuiIaMlXH8yFeDUq/VYO4Iop4icpVZVyEhoyoNGUrZQsYhISgSFAAUjUrZTlFZDh5MeR+SiQCSldRKmlPM9iWAzxj0/czX+4zr6aBtExs2JsERbTdfm4ewgBcZyjbvBXacxAmxyIjegzHzxWbx4fFFbqcEcLCMcdCFhZqCdGyiEHo5Bf3MAjjvgz6r2N2r4U6P2N4OAgMESbFNQbwKCjyWpiExTAvNlFZSjwbZZGRhk7lhcWgu554K8R2ZFFQllzp2JKiQhi+cjJxtJ1sOJTqtVAxeS8Czgu9F1WoOjifQK46BOQH5wvi3z2EGYERBoPIiwHzs01XsUrgt3z9AHlJv7J5Fpln0AjCImRjPOiFhSLDlWGrS9naKyss6jBghxmlW6aswMitb/nNhG3/TV4L16p0smdcuy+a8tpFgoN4fSg/Qnd/EA1K22wgEBeMg9CQBwNThUbqxTCIDCAb6uMgKADkRk3OCJmqXgxde+oI5GJ7iRdD8wV/CGSxkfFqiP1C5NXQ9TcnKFSvRq8HtBwN3oL9iWuFZb0YunWH8TyIcLQK2ygrLIrKzHolR4nWeTFGied7pUNsMusXDLZnExgiD4MHIeq5C15t5EH45OeiTlgMuj1tGJQQFnWEm7iKCtlIlduVS58KYZEMJKcQlAi1NVE1JGpYYSEo48UQAgNIvRgAciKD+SxnWOtEjNi+PGK2LoFbRxUD0+WLvuzN0IkMXT9M1GWMqwwrLEYxUJ5MkfcCKCcw6vRejPIjj9gHF++ETnC8HnCoY8182SkvLmLPRRD0ogsjFhrisvGk5QSZ8AAA6Bnitk0iA6gsKNRa0kUCAygpMuR+FIiMqthCrPh6kDHOmebDfpGgyMwLQ/AQ2mObbs9t2GjWbNkFhtI2gKHzM5y9F3LyfQ3CQvxbVmAAWS9GnQJj2O0VeS1Ev9X2ZIEBSVSoXoyiAd2qUGash1F4LVRkkSH+5nFVKFt+hSoshn1xuYoK3fgFajiUPFhe8nuBoLDlXtRFXcJCRhUZqhdDCIxBN3q/pWFSACQZ7Tezg/epIUW6NgGzsDDlQZRFNryz43jonxs6kaH2B7DH/+sYZh/U9kblsRiVKFJxERjJshUEhk3gqLkWgrJeCxXTPti8ExQW9XpTPiwq9lz4zUYaSwezNwOAPj8jtk8T15vkOjMOygc4CQoge9HmqhNAIzCAkYuMquTFiTm/QhUbashTtL2s2Mi8GHgAvr6e37CrkSodAxFq5iQw5PVdBYbitWCNpttgf1KexTDCQk3OHubrT91hUtX64O4iT8IdJe9L5ncpgbkoD2MUIkPHy3xZCdFgqwgl51cIYaF6HCq338vH7eu8FKpoABBXRErLzqrrCOSQqBedbzEKYSGjExmywABMXgyBWWjI2y2qDAWM5tlQFD6ovkNNIVM2bP0uK0ZMFAkL0zNg1F4LgYv3AigWGCYPVRXPlY06PRplhQSFRb3eVAiL6oN5HgbxaNE+UpEhvBkesiFRyXccKQZZDpey5WMAisgQ/SgQFKa/06+oUh6G7B3R3Ey6L/VlEsCHfRnoHhVZwdHP5zUoYswoKJJwqWgfea8LNLzsthxQz4fIb6kkMAxk8i3UClKu21TyLIYVFvK55WEYGdFlw6PE9S8l/Y4sIdsxNCpTOcQh4VwnMlzyMACMzIthjSd+AV4LGZeKUDZhEQ4RGlXWSyGQw3IAEdKV91q4ovNe1JF3UaewUD0w6rZlkSF7MQBkwqSi+YiX9ZJj6Pksk0chjFj1uLsmcNfltSjCZvyZtqOGcA0rQIqoS1iUanOE3gxXD0bV8ChdlSj9csN5LVx43YUE50Dwmu9D3VQKiwJSg0MWGQI1ZCqQbgpP2YbwYmSqxkjxearIsIU9af+WHlbM8zICIw2TihcwhEnpsIUGZYRHDXkWXPM1X32k8Z4SHtUo8FAooiJTrjbkWvGW65flZoq8Q0iNd88Dmi3AMyR6VySTa+H50X5bDDE1z6IOYSFfz2UFhnzdJ4Z4xTCpKkndZdCVnVbbk0OlXPIweBC+cC9GXdWhXEgMegdhoVZzkkOZqhiROY+tIipMXorMOoZwKFmYyAZ5HfkWZRilsFDnyW2pIkMNkwKQExlA1puhCo1kGUVYlPValP16XVVQF31ttokXU+5IkaGr2/+i1oS36AAAIABJREFUUrNAuX3UeS3qFBGu3gvALjDq9lKYys8OS1Axj2KUYoYYPeXFhXh4GESGCJlKlo+/Uma8GUq5xhBIKkvpREZyM0kGbxlRoQoiddvaPAzASWTocM1JKIPqKSkSHLKBbfJS6Me/GCCwGDKuXxiEIcV8r34vhiYcSsaYd6HJs6hLWIj/J+FADvkX6kM8Y4jXFCblKlDkkCid10IVFurvmRwrQ7ldVWAAGNqLoY5xYV6u+F6u02shPBXi/+JfUWq2KL9C9laULUNqKm8abcMuKFQRYwuHkrelqxIFjK4iFDB6YWFbRrStii2/5WfCpKLfEP+mfDSTjp9qJLokcNfttRjGUA0TsaW/h2xhVTJFCetFBm/RGBYqdRrno8IpyVvyXtQtOoDqhn5VYTHsusTLp1q1KAA8jAaMCjs9eL6XfLVlnhd9hVTyMnQhU2W9GCo2QQEg91VVGH/qclqBATh7MbTUHNJiEiyy6NAJjiJBIQRb8oW1F4JLV0UdoTmJFwOOAkMnnIoGHSzK0zDkWdQhLOSyquIaK3oJykZ7InSVfIVRhUm5hkbZwqHU36wiQ1pGFhhANkwKGG2y94vAJipcE7dVYaErD2vCVFlKDXsqEhTp9rLVodTt6YxysZjOi1FXYnddwkLXf1Uo6SpXifVkkSF7MQAYRQaQ9WaoQsMkLEaZazGsMWqK/1fb0VHk7SgSHKb1qgiLUeVaqJTxXgBmgVG798IyaJ7NFlORhcHr+iwvC1WLylJhnAvxhUa6wAGzyAC0IVORUYFMdakiL4agjKiQk249388IDBEmlSyrJnoDeoFR5iFfU/lZE0X5IK6iIvrXS6pFVQ2vEcdbPX+lBYYJm9dCPBDV0ChLnoX4fVhhIf6fKTkKfXiUKiyA9PoWIsPkxRh1ordOFOnCocT8XJUYg8gQ/Rf75MfrJl6MZvrhwkcDaDYSg9wV+euaMb56BLkWcuiT+DsxEJN55fIrZG+FqTxsvh/6l1uRoFCfp6oxZwqHUjGFRNXtvXARFrqyryqqsDB5X2xiI+PNiA+NLhcj+iFIDEGTN8P4IU19x5XwWpjChoa55m1GuLjOXMvUFlWpKhIcoxYWppCoYUOlhhUYyXxNaVqT6BDtqfkWtmIe6nO1SGAMIyxeRiETYjRUqBYljC8eDykf3SDM9xDENdzl2D2TyAgxgIc0H0N4MdSKUmIbugvaNpCZWskn2aa0XVlgaBO9gWyYlI2Kic/uxMJH1646oN96NzK0nQSFfBw9hIMBBpo4YBOmh4HOC1WbwIhJltd4LeTQqKI8i2GFRVJu1PcSA7IoPMooLCQvxijCpHToXixF4VDyfuj6o4oM2YuhqyQFjM6LMcokbcBNVAAolV8hJ1+rBn1R+VKZKoKi6NpSvRYmo9yE6r0oIz5chUURrsJCh0lsJN6M+JAPOoOkL0XeDFlkRPNL3t/K+S/zRdu0nOtX/NxI3Zr15OvQ5uUoqlKV9G2IErOvUijUMALDVqJ2GHRei8zvFoEhP/cEJBi+nPinTp1yXvgb3/jGqZ+YeQM/vHMfHmOYbrXAWOzKH4SR2GDSxcQ5+CBIkgEWPn+A3756Cx5jmNkwEf3GOVj8wmAM0bxEuADg0byFW/fx3fkr8Dgws3ES4OJlPEhfxEEAzjk4T6ubgHMs3LqP7y1ehwdg+6YN0e9cfCVmybbE/5nHYuHhY/6T2/jOmSV4HsP2zVOIG4rWkSdExnv05T+dzt24jW+fvgiGEDMbJzLHkwdhfjvSdP7m5/j2mUvwGYv2GTy3fR6G0fFT1p2/cQvfmbsIz+PYtmE8NWh4PBBWEO1DuN6Pv5728WGnhWPNDpZu3cP3Fq7BAzAzNZHbdrjeBx8E0RQbVGI6/2m0ru/FfeZIz2V8QqPzzQAuRjWPj0MYYP7qp/j2h+fhez62T28CmJeGRKleC89PhYXn4dzSNXzrRx/CZ8D2LZuSbUKEQYk8i2CQDYfqDzB/4w6+e+4yPB5dI2WExeKdh/j+pU/idSfBGEuuLcYYOOeZkKd0dGsG5ntYuP0A3z59Cb7vYfvGDel1yKL1xXLRsfSi7cXnXFzb4hrRPfiT60Oe5zEs3H6A71/6JDpXU5OZL5yJ8BH3phKytXDrPr577jJ8xrB904akr7l2pHEuxHYW7zzE985fg9/wMLNhAp7vQdiMjDF4DT+9JxmD12hEf8bzLjx4jN+5fhueB8xsmEzayuaNMO3/L9x/jN9e+iR6Bk1NaJcxkZ5njm2T7ShJO76vxLMsSOYF6T3WG+DCvcf4nRu3wTiwdSzyLLoKCx5wXFlewe8/fASPA9N+E+DITEE/2pY8Bf0QnANXVlbxB08fgwUc041mchyDXggx+rZ4VibPsoCDc+Bqdw1/tPwUHoBNYXx8eeafxK4Vf4t/Pxl0cba3AgZgi5/9cKAeblk0tDyG6/0OPlrPrltGWFzvreGj9eVc2yHn4Mo6qli43utE6/J8v3UEPJ1uDrr4sLsMgGfOE+fRcY7u7Wg9zqN3HjgHD4Grqyv4o+VnwCDEdEMOd9V8WFN2ot9q4dymNm6cOQvPY5huNJNrmknHTee1YB5L2vZ9D1vb48Yv2cyPn0fSdGVlBX/w6BF8j+GN8bHMb2JfPd/LTTzkuLq6gj98+gS+B7wxlq4r9k9tS97xq2ur+PGz6NqcbracvBXyfS7a9gBsm2wb19M9G66srOAPHj+GB4Y3xhxL1Yt1l6PjJdYV96DNeyC4/HwZP7r/ED5jyfEC4mvJY3F4Xvp+SfaBMSw9fo7fux3ZbmJ/GWP5RG7pmS+8Fsz3sHjvEX5w5TN48ftCPhfiuQfohcWFB0/wOzfugA1CbB1r5ewG0/T35y7i1KlT3yh1gF8Cf/d/+funtr7/9dxz+UVOn//w1z8/derUN1/E/rpQWvZeePocY56PxcfPMl8AZPUtDBHxRTfsRRfe+buPMe57OHvrfuYCEpVUAunLnlgn6PcRBgFOX7uFMTCcvnYr+gLYG2DQWUcYBMmkGt1iuTM37mCMMZy5cSf9TawXL8PDbKlIHkRftOcuf4p208eZK59Ghmivi3DQ104AcjfH6au30G74OH31Vu63Ik5fv42JVhOnr9/ObVtG148zV29jrOFh7vKn+ZvW8GVe8PFn95LjJY6PPNk4e+sexpuN5FiLY5wYYfFxjTwJYS6s6/Tlm2g3PMxdupZ6G/r9rPdBLq+bhDqFmFu8jHariY/OX4yWkcKhivIszly/jXHfT6+v+PoA7MICAM5+dje6rj+7i1DE18fXX9Dt5a635BqNj8fc5U/z14jmOlavcwCZa1u+lnP3QpCfzt6+j3azgY8/vZd+UVfaNN0v4niduX5b31fLNfPxp3cx3mrg7Gf3s9Wy/NSb4zUbiTABIte8+JJ2/u5jjDcbOH/3ceZFlnXH6++vc7fvY7zZwLnb95N5rl//xPGS13Xl/P0nGPN9LDx8WnpdALi4vIwxz8PF5eXcb7aKQwBwqbOCMc6wtLaarmPxVMjrLq2tYox5WFpdiZa15Fqo3Bh00WLRv2W52u+iBYar/WjdImHBfJbxWFzpddBiHq4OOpnlXATK1UEHY2C4XrLfLY/l+i365sJSZw1jnoelzlpmvmvVnju3b2OMebisrC+wJXFf7nbQ8hguraxk+q1Out8ura5gvOHj0uqKdTn1OPhNH5e7HYzH/6r9ElPmWMTPBOZ70bXpeVhaX6sUBnVpNVr/0uoqgn6gvY8AJMa/zMXlZbTAcOHZ81SgS5MN070c9IJkMq77PFr3wtPncd/cvQILj59ivJl/Bsl2GpB9HgSSV3b+zkOMN3zM33mY9bLJXlrpnSm/N+dvP8QYoucg8eWgtLg4sm0Leozj6NbNACJ1LMfxqQ9C+cI9MrMF3f4AR2c2I+gP4pjqVGAI414YOkG3lxg4x3fNYK3bw/FdM4ViQjVoju/ajm6vj+O7thcaTbLICHsDfLDnTax2uji+ZzuC9fVCpa1y4p2dWOv1ceKdnQDy4sM2ffD2m1hb7+GDt9/MbdvWbjjo4/ie7ej0+vhgz5vJ8kDeUNaN1/Dejq3o9gc4vmu783WROdbxusnxdBEYseF/Yt8udNb7OLF3l7iAtCKDi2nQT4TDyYPvotPt4uTsO0ZhIdqUhQUAvL/nLax1e3j/Kzsyx0RnaEfdSkPL3ts5g25/gPd2zqT7J4mMoNvLiIxBZz1zrb2/ezvW1nt4f/eOzHUvC+ig39de5+Lafm/ntlz/5El7rnbOoNMf4PjOmdw6RSLjvZ3R/fjezhln4Sl4/ys70O0NcHz3TGa+3M+wn92WLByO7piOniM7puNzoBcYAvn+OLr9jeRc6X63kRyv3Ttyv+mMG/lZeHRmC9aDAEe2bs4t6xKmcXBqCuthiINTU059lTkwNoH1MMSBicjL4yoseMCxf2wC3f4A+1pto7AQYUEitEnszruNNno8+ldG3l2fsUxIlNjWu81x9MGxv9VOBIHO2FWNVr/lw2/5ODC5AX0f2Ndq55bzGMtMLS877WtOoA9gb7Od+802qf0WfZb7JfohDGfmefHI3h4OTm2Iz/EG+C0vO3q2l3235gxvn+GtnTvRA8f+9kTym1hH9lioSdx+08fshg3ohRyzGzZohUDSD81vumvTJCjU+XK7ftPXhlTpREa07hTWGcdse4O2ryaBkqw/OYn1MMTsZOr9FCJDJzRk4VB0P+oEh5hmJzegOwis97JJaBzcGLU7u7H4OaDmthyZ3oxuP3oG5ewBRWBE+xC1LZ6px97aim6vj6Pbp5P5RWFQYntHZ7ag0x/g8BubtB+6TBPx+sK4wxeoZGHG+Px/9PXo/1760HQZjMVUQ5n5fsb1xnwv+Wop1hOJoDImQ8Ylvs+l1Ga+n2lc/KuC7WuNHIriKiz+wZMp/OftJ5goKTl1x1wXBiSSvEW+QVSmthmFNnlelIju+en5UZO2kxAo3xgqBQB80Mt6OnrdbJ5F7OGRvQRl8yu4xRD2NInFnnSP6I6JadRvuQ+m4+36ELZdu+YBpvIlauuqgy4fd+FdkfMY5OtXzWFQ25bjg02J3fL/1cTusrHLpn4CyCSiq/kWYl7kqS1O5BZhUdm2s3/rxqbQ9RUoJyyi5bNlZ00eCxFaJJK6dR9vVRtPJyoEHjMbuEUx6vJ6uWPlkL9SNJCeC2quRSJsDEZ/up4+nl2XgyGfv9WNUzj39Z/En/wnv5nZvtyGrjKUbMxXSVzWnYthig5ktmPJ/TMltI8in6JsondZymxHPt4i90J3XkVid3q9sdz68rpqYncmfFcziJ4uaVsnKgD395OM2NbBX/sX4Jy/OkkyBibf2s9nf+7vvdQ+nPk7Xz/NOT/5UjshUal4cVlhAUQXmDy2hTAQeBDkEr5DDJIB+EIgU7JWUCQiTBe0SLoVfVbHwJCTvuX5w1JXUpN8nHOx9ZqqG2WTlE2U7b84v2ppVjnZGYA5ydvzInEAJKORM7lEbpwXz2KNIb9qyiRw1y0s5HleXIo52s8ID/mR6sOO/eFcRkxUFb+ma0luS67sBpjvjbKiI7d/hvAm9etY9l4Ikpdg0B8kL0I56bGOBEhdGV9tnovvR30qqPAV5XfZP/DIlY/KjIgdLT+8sEiWsXyIankMvTBKzI4StLMCQ/VWqOsKZC8FYBYSRQaZ5zOEcXlYAQ94bns6sWESE1WMQHkdm7DQiWD53MnLivNoKqZg277srciso9m3quJO/l09vmryt22+3EdVaLzIpGzRtnrMXO5Fl2tG3k7R8molsmj94cvSJu/rIC3II9to8rM1bdfurQCy74+6bKBXEc45jdCtUNpyLgqDsmEagE8QIBIYyc0SV5QKgWTgPe32SqBW9knmy6UzxZgbQCIydP19GZheJIDZsCwrLEbxEOBhiZGrwyARC0aREVfJUkWGWF8Oh5KFRbItNZRMqeoj+pz+nhUWJgNYwHwvs4wY30WujiaLDFO7ctu29upGbkMVGuKKE/0HsveG3ZhOX1x1fN2qKjDC/qD0SN2eYgDqBBkPQvhxGd3Muq0GIHkvgMhAUI0vYRS7Yvu6m1luCGHhKmh0AkPFVVjojHOVIkNK/V29wlzEhg7X6j4u3ooi73Pa17zQkEVGkrytCYMS6IRFHaJCfEHXjcFiEhom75JJfIg+u17vo8AkMmzY7h3dcZZHfi/CVJq2DJlnoyQwYPkIHK1n97BXFRWvUmQIMRylreUy3goTZb0YmdG9FapcjEz5+mjzZgSSASPG33iZqALHJjbE77b8Cq2wGO7jbmZbsvci6YNDidpEBMj7JQTFoB+FSskji8sVfh0SuEX/RKJ0FW9F9qt6aDQGZKEhvBmqyJBxERM6j0ldqEZ3TojJy4p5PY0xrUG9XuW/1eMpyHwtK/GikgVGEVW9Gl6zgbA/sHovXiRFg7FVFRYuCdxAXmAIXEQFoBcWNhHh+g7iYVhJbNhw8Z7IfSwSFXL/XMaCMJVjrRoGVVVU6P62CQ0Xb8brIDIEVQfeswmJIm9G2RK2zn2S7R2NfaYuKygSFiQavnyU91wMISwyF6P4T4EXA0BudG8TLgaXHKoCaISGvD1N34pukVGLD134ku2rsauwqOKtKPraLESbGh7lIjAEYkDARGSI/mpCpZJ9KUjglsOh5ByHImGh81aYDGJAH94gj+Mgj/Ni2obpmjY9rOuoe267j9T7Rw73ApB5MWXWs3j9TIncLi8km/cis9yQ3gsv8wU4embYvBeZeZrQKN1yXstH6PDl3IWXISwEeQ9GuTAonaiwvW9MRrZMoIw16iI2yqATQFVEhWmeabRrcZ69pt5j4eKtGFZUFC2jCo0ib8brIjIELn2wCZAib4Xtd+G9UEOj5AH1ish9GEuiDPIfgOVlADdvhauwcPEavspw0k8ZKoRFVTNeRBIjEL9YxcUpFtAY8gEA9NNEItkwq0omVMUiNGRvhhoypSIfE7Ws6yhQBYzJkKsjDKruig26LyNJW5LAAAB4XiI0SokMSViISlSmPAvRJ1ERKd2EXljoxIQaAiOH49hIrmfDuIpF6+tCl8p8IaoiRHLJ65JXUfUAZtZTww6V4128ryUGdnQIj6qKdlTy2HshowuNsm7DEA6lC50yYQunelHCQqUoaRswCwvTyNI6bOeVB2FuXRexMQy28CTA7I3xm77WWDV5NdQxDcqEQemMVdvXcJOoKBph20VofBFEhg1d/0w5HEUiw7aMihAbYtBjV4+HSWBktl3CW/G6CweiPC8kiUAWFgByIiOJ8wMysX4C2YtRF2pMPICMZ0QX+gHoDXlbtaRRoAoYm9ioIizqEhQi/M0UHuX5frHAAEqJDAC5BG5z/4KcsCgTBgXoS5+ajEpfEbM2Y7esG9mU91F2nbLIXsXEi6HkM9mEhu5aM4VEmdBVjyoSGFWERrYUaPnEbl3exShQvRYvQ1gI74X8t0ANgwL0wkInJqqMZxBCvTaKxcawlBEVqpGp/m1LZtYJyireiipeCm355YpCo6zIUOebRNmoUI97FWFalCjuktxdV2iU6XmohrAn85MPl8XeChdhUVTUgnj9KG2x616qNmRhIV9kfsvXhg+IZCLA7sWogu3BZ0rABcxCQ87PSH6P+zzKygj5sUR0X7p8q7Aw9S8MeOWcC92XdO1yiaDU57CEg35UojZU9stBZEQbCLR5Fmo4lClx2jUMSlfjW0UO0dEZyqpodjGmbcj3RxXBoeIqQNQKb0AaSmTyZuS2McS+6wSGjMmDIYdGmV6wtpFzyyZ2a7dhqBjleUwbu57ukxTS55h0XVZYCIGgeh1c0K1jExZyjoLJOE+2Y/nyLxP0A034U7HYGBadB0GmTJy+TWx4kiCT/x3WW1FWVLgslwsD1AgNV5Eh5uuqS41SZJjuM5f7z3TNVhEZXKqEpoZG1YVaQUq1dYqERea58gUXD5zr84y+zJQXFxW/vsk13YV7DtCLjMJQKQd0IsRmbOX7IN1I/TTJ1SY0gHKx5lUxCQNdeJarsKhjrAR1ORFmpvNeyAJDzb9gvpeMNF5WZLgKi2TxZKC/amFQReE6Rb8Pag6jU7em3gfDeCtUQ1l4B3QV3oA0VCpZXhIZRSFR2nnStexyX6n5F2qCd5mXsXxv2UKjyiR2M9+D36o3ZMDmtagqLMT/qwgMGVOZWZ2w0CUjqxSNP8ADXkls1IXajk1QFCX12rZjSjCuU1TY7hNbfohpGyahUVZkmErY1i0wylRwK7MN+dgN68mQ26niSdE9D3UlaqM28s8Xk7eiSFjUcWyJV49KOReuAkN4LYSwkOP/om25iwzZI2D6Qln0lVjGNS4+7UssdDQeDVsYiOuoxWXRGVdGb4ShxGnyu6NxNyy68Ci5j7p9CmERGUBeZFiEhdoXV2FR5K14Vep3yxU9dHXJy3r9dGIi+b8StgjoCzCoXgx5XdfrTmeY666XovAoE7bEbpvXomxid+b3ovEvCtaXcXk5DyMsBFUFhslbIf6W8yt0wqKsUW6b70O3LfMghMPmYQwzAJtL7L1ow2v4yf/VdV1CoMqKCttxcREbJqGheuvKiIxReDF0fbfe1yU9BzohUEZk2EKjyiR128iFrkvz077lhYUsKqoIiLqKWxAvhwrVoqQRrC0CQycsgPQiKysywk4vN8p3pl+aUmm6fgts4kONjc+sFxtOALQlclWhIfpWBZuQMokWXVyk2FZuG1pDjoPXVPZA9V7kflfCo1SDUTawQinrOcnJ8PwkpyKpMKUpOSuQw6F0CcVVvBXa4zoiQVmEcVA7R6GhuyeKBkqSvVBqbpQtVCrdfj4EzdafYRHeiyq5F3KhhCqJ3a4fZsqOdSEweS2GERZqOdmyYVKu+RXR/EhYuI7HUPSbOl8OJZHn5QXAcNV/yvRRt1zRuCKux+JFiwoTRWJDjR7QjZvhIjLq9mKUFRYuvwP5YyvbRDJBP9BeZ+I6dg2NKuPJMD0PZVukrLfC9iwjAfHFpfw4F81G8ug1vShVYSHIXEjS8PRlPRmy0BAUVXFyrTbDfF9v1GjyPeRqP9qwKT9/M5bF+nVTIzx0hu1Ik7YNBqD6JdglPEoWGJFYjMNo/Oz/05ApXYfUEXeL8yyqCAvbWCH5LpkFuImyglSOiTUVGQD0QiPXrxIDJIl7Udx/A4dQqSKcv9hX9F7oxr8Q3gvdy9V2LsomdhfhWo62isE0jLAQf4vqTy5ejGGFhWvJVLFdG0EvGEJslKeKGHL53SQ8mGc+VqMUFaYv47ZruKjyVRWRUacXo4qoKIMpN1EnMlwG7qt7zAubwFCXk/sQLaMXFV94EcGBcPBqRDC8KpQWFxcePsH8rfs4vG0LDr6xKScw9IYsR9gLcOnxc1x4+gyH39iEA5s2Rj86ioyLj55h8clzHNm6GQff2JQZ3A6wC44LD57g/L3HOLp9Goe2bcksozNEMvv74DHO332MozumcXjHtqhP0CSGGsKmFu88xNnb93F85wwOv7XVeFx1iHXf/8p2HHlrW+53W+7Fwu0HOPvZXby3ayazblEoCgew+PlDnLt9H+/tnMHhN7eWSrRdvPsI5+48wHtvbcPR3dudvgzLAmPxzkN8/OldnNi7C0e/sj27X0aREYVMzd+8gzNXb+P4nu04umt7RljIyOFQQlgs3n2Ec7fu49hbW3Foa3qN2MKgxHYvPnyK+XuPcGTrFhzcujm3XGZfNcf/4qNnWHj4NLm2dcuZjqFY9+g2qW2l7Gsm10Haj4uPnmH+7iMcndmMQ9umc322lRqU+3xo25ZcfpQtVOrCvcfJPXFo+7RW2KnIx/ziw6c4f/8Jjs5E+1xGYFy4/xjzdx/h+K4ZHN7+htV7oT5PFm7dx8ef3cP7u7fj0Mx05reixO7zt+9j/s4DHJnZgtlNU7m2mMfgwfyV78rKCi4uL2N2YgP2bdiQzBfL27wW19bXsLS2iv1jE9jDxqRjUiwsrve6uB50sK/RxtvN8ZzAAMwlZq/3O7jS62D/eBvv+BPWilCqsLjaWcWl1RUcnJrCvql0f11LpV5+vowLT5/j0OaN2L9xKnnPyJhyXcSxPjg1lTnWLsjr7tecZ+u6y1K7U/p2zV4a4PO7d/Gb9+5m1ncVFldWVnHh6TMc2rwp028XUbH09DkWHz/D4elNOLB5Y+53wGxcXlmJztPBqY1Ju64i49KjZ7njVcaLcXV1BZdWVzE7OYl3Jzc4i4qgF+JadxVLnTUcaE9g7/hkbhlbgYCra6tYWlvFgYlJvDsxmdlnwC4yrq93cGllBbMbNuSuL3nEbp234tKjZ1h88gxHpjfj0I6sHeSCeOYf3rIxeU+5eCvCXoClZ8+T+1HYfpRr8cWmtLj4+q/+i1H0g3hFOPWyO0AQxBeL5y+7AwRBvKbcfNkdIKpRSlxwzofLbiMIgiAIgiCILwx86AFHv2iMbqQ3giAIgiAIgiC+VJC4IAiCIAiCIAiiFuof4Y0gCIIgCIIgvgRwFA8W+GWDPBcEQRAEQRAEQdQCiQuCIAiCIAiCIGqBxAVBEARBEARBELVAORcEQRAEQRAEUQVOORcq5LkgCIIgCIIgCKIWSFwQBEEQBEEQBFELFBZFEARBEARBEBUJgvBld+GVgjwXBEEQBEEQBEHUAokLgiAIgiAIgviCwhjbzRj7XcbYRcbYImPsL8Xz32OM/Zgxdp4x9puMsY2G9f93xth9xtiCS3skLgiCIAiCIAiiApxz8PDlTg4MAPw85/wggD8B4C8wxg4B+FUAf41zfhTAPwfwVw3r/2MAP+16TEhcEARBEARBEMQXFM7555zzM/H/lwFcBLATwAEAP4wX+z6A/8Cw/g8BPHZtj8QFQRAEQRAEQXwJYIztAfA+gD8GsADgZ+Of/kMAu+tog6pFEQRBEARBEERFwpc/iN5Wxtic9Pc3OeffVBdijG0A8E8B/Dec8+eMsf8SwN9jjP37VqT7AAAFx0lEQVQCgP8XQK+OzpC4IAiCIAiCIIjXl4ec85O2BRhjTUTC4tc55/8MADjnlwD8O/Hv+wH8e3V0hsKiCIIgCIIgCOILCmOMAfg1ABc5578szZ+J//UA/PcA/mEd7ZG4IAiCIAiCIIgvLv86gP8UwE8xxs7G058G8GcYY5cBXAJwB8A/AgDG2FuMsW+LlRlj/xeAHwM4wBi7xRj7OVtjFBZFEARBEARBEFXgHOGgllSFkcE5/30AzPDz/6pZ/g6APy39/WfKtEeeC4IgCIIgCIIgaoHEBUEQBEEQBEEQtUBhUQRBEARBEARRAQ4OHgYvuxuvFOS5IAiCIAiCIAiiFkhcEARBEARBEARRCxQWRRAEQRAEQRBV4AAPKCxKhjwXBEEQBEEQBEHUAokLgiAIgiAIgiBqgcQFQRAEQRAEQRC1QDkXBEEQBEEQBFEJKkWrQp4LgiAIgiAIgiBqgcQFQRAEQRAEQRC1QGFRBEEQBEEQBFEFzhEOei+7F68U5LkgCIIgCIIgCKIWSFwQBEEQBEEQBFELFBZFEARBEARBEBXgVC0qB3kuCIIgCIIgCIKoBRIXBEEQBEEQBEHUAoVFEQRBEARBEEQVOCgsSoE8FwRBEARBEARB1AKJC4IgCIIgCIIgaoHEBUEQBEEQBEEQtUA5FwRBEARBEARRBR4ioBG6M5DngiAIgiAIgiCIWiBxQRAEQRAEQRBELVBYFEEQBEEQBEFUgINK0aqQ54IgCIIgCIIgiFogcUEQBEEQBEEQRC1QWBRBEARBEARBVIFz8IDComTIc0EQBEEQBEEQRC2QuCAIgiAIgiAIohZIXBAEQRAEQRAEUQuUc0EQBEEQBEEQVeAcIY3QnYE8FwRBEARBEARB1AKJC4IgCIIgCIIgaoHCogiCIAiCIAiiEpxG6FYgzwVBEARBEARBELVA4oIgCIIgCIIgiFqgsCiCIAiCIAiCqAAHwMPwZXfjlYI8FwRBEARBEARB1AKJC4IgCIIgCIIgaoHEBUEQBEEQBEEQtUA5FwRBEARBEARRBU6laFXIc0EQBEEQBEEQRC2QuCAIgiAIgiAIohYoLIogCIIgCIIgqsA5gkHvZffilYI8FwRBEARBEARB1AKJC4IgCIIgCIIgaoHCogiCIAiCIAiiAhwAD6halAx5LgiCIAiCIAiCqAUSFwRBEARBEARB1AKFRREEQRAEQRBEFWgQvRzkuSAIgiAIgiAIohZIXBAEQRAEQRAEUQskLgiCIAiCIAiCqAXKuSAIgiAIgiCISnCENEJ3BvJcEARBEARBEARRCyQuCIIgCIIgCOILCmNsN2PsdxljFxlji4yxvxTP/x8YY/OMsbOMsf+PMfaWYf3vMsaeMsZ+y6U9CosiCIIgCIIgiCq8HqVoBwB+nnN+hjE2BeA0Y+z7AH6Jc/43AYAx9hcB/AKAP69Z/5cATAD4cy6NkeeCIAiCIAiCIL6gcM4/55yfif+/DOAigJ2c8+fSYpMAuGH9HwBYdm2PPBcEQRAEQRAE8SWAMbYHwPsA/jj++xcB/GcAngH4t2ppg3OtSCEIgiAIgiAIwgJj7LsAtr7kbowD6Ep/f5Nz/k11IcbYBgD/EsAvcs7/mfLbXwcwzjn/W7oGGGM/CeCvcM5/pqgz5LkgCIIgCIIgiApwzn/6ZffBBcZYE8A/BfDrqrCI+T8BfAuAVlyUgXIuCIIgCIIgCOILCmOMAfg1ABc5578szd8nLfazAC7V0h6FRREEQRAEQRDEFxPG2L8B4EcAzgMI49l/A8DPATgQz7sJ4M9zzm8zxk7G//+z8fo/AjALYAOARwB+jnP+PWN7JC4IgiAIgiAIgqgDCosiCIIgCIIgCKIWSFwQBEEQBEEQBFELJC4IgiAIgiAIgqgFEhcEQRAEQRAEQdQCiQuCIAiCIAiCIGqBxAVBEARBEARBELVA4oIgCIIgCIIgiFogcUEQBEEQBEEQRC38/1KUBfiB0Y+KAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import cartopy.crs as ccrs\n", @@ -548,7 +264,7 @@ "fig.colorbar(contours)\n", "\n", "# Make a title with the time value\n", - "ax.set_title(u'Temperature forecast (\\u00b0F) for {0}Z'.format(time_val), fontsize=20)\n", + "ax.set_title(u'Temperature forecast (\\u00b0F) for {0}Z'.format(time_1d[0].values), fontsize=20)\n", "\n", "# Plot markers for each lat/long to show grid points for 0.25 deg GFS\n", "ax.plot(lon_2d.flatten(), lat_2d.flatten(), linestyle='none', marker='o',\n", @@ -583,7 +299,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.5" } }, "nbformat": 4,