-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSTid.v
66 lines (44 loc) · 1.79 KB
/
STid.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
(** * The properties STid and StTtid
of quadruples of operations T, Tt, S, St.
By Vladimir Voevodsky, started on Jan. 10, 2015 *)
Unset Automatic Introduction.
Require Export lBsystems.T_Tt .
Require Export lBsystems.S_St .
(** Properties of the domans of definition of operations S and St required to formulate
the properties STid and StTtid *)
Lemma S_dom_STid { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( Tax1b : T_ax1b_type T )
{ r : Tilde BB } { X : BB }
( inn : T_dom ( dd r ) X ) : S_dom r ( T ( dd r ) X inn ) .
Proof .
intros .
unfold S_dom .
exact ( Tax1b _ _ _ ) .
Defined.
Lemma St_dom_StTtid { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( Tax1b : T_ax1b_type T )
{ Tt : Tt_ops_type BB } ( Ttax1 : Tt_ax1_type T Tt )
{ r s : Tilde BB }
( inn : Tt_dom ( dd r ) s ) : St_dom r ( Tt ( dd r ) s inn ) .
Proof .
intros .
unfold St_dom .
rewrite Ttax1 .
exact ( S_dom_STid Tax1b inn ) .
Defined.
(** The property STid *)
Definition STid_type { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( Tax1b : T_ax1b_type T )
( S : S_ops_type BB ) :=
forall ( r : Tilde BB ) ( X : BB ) ( inn : T_dom ( dd r ) X ) ,
S r ( T ( dd r ) X inn ) ( S_dom_STid Tax1b inn ) = X .
Identity Coercion STid_to_Fun: STid_type >-> Funclass .
(** The property StTtid *)
Definition StTtid_type { BB : lBsystem_carrier }
{ T : T_ops_type BB } ( Tax1b : T_ax1b_type T )
{ Tt : Tt_ops_type BB } ( Ttax1 : Tt_ax1_type T Tt )
( St : St_ops_type BB ) :=
forall ( r s : Tilde BB ) ( inn : Tt_dom ( dd r ) s ) ,
St r ( Tt ( dd r ) s inn ) ( St_dom_StTtid Tax1b Ttax1 inn ) = r .
Identity Coercion StTtid_to_Fun: StTtid_type >-> Funclass .
(* End of the file lBsystem_STid.v *)