From 19567ecc6dcd67e7ef31477898655c4a5523aee2 Mon Sep 17 00:00:00 2001 From: VojtechStep Date: Wed, 17 Apr 2024 20:48:26 +0200 Subject: [PATCH] Maps in sequential diagrams of contractibles are equivalences --- .../sequential-diagrams.lagda.md | 23 +++++++++++++++++++ 1 file changed, 23 insertions(+) diff --git a/src/synthetic-homotopy-theory/sequential-diagrams.lagda.md b/src/synthetic-homotopy-theory/sequential-diagrams.lagda.md index 34fe7194f0..36b3ab63ed 100644 --- a/src/synthetic-homotopy-theory/sequential-diagrams.lagda.md +++ b/src/synthetic-homotopy-theory/sequential-diagrams.lagda.md @@ -9,7 +9,9 @@ module synthetic-homotopy-theory.sequential-diagrams where ```agda open import elementary-number-theory.natural-numbers +open import foundation.contractible-types open import foundation.dependent-pair-types +open import foundation.equivalences open import foundation.universe-levels ``` @@ -88,6 +90,27 @@ module _ pr2 postcomp-sequential-diagram n g x = map-sequential-diagram A n (g x) ``` +### A sequential diagram of contractible types consists of equivalences + +This is an easy corollary of the fact that every map between +[contractible types](foundation-core.contractible-types.md) is an +[equivalence](foundation-core.equivalences.md). + +```agda +module _ + {l1 : Level} {A : sequential-diagram l1} + where + + is-equiv-sequential-diagram-is-contr : + ((n : ℕ) → is-contr (family-sequential-diagram A n)) → + (n : ℕ) → is-equiv (map-sequential-diagram A n) + is-equiv-sequential-diagram-is-contr contrs n = + is-equiv-is-contr + ( map-sequential-diagram A n) + ( contrs n) + ( contrs (succ-ℕ n)) +``` + ## References {{#bibliography}} {{#reference SDR20}}