generated from UnBParadigmas2020-2/RepositorioTemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
143 lines (118 loc) · 4.86 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import yaml
import matplotlib
from matplotlib.patches import Circle, Rectangle, Arrow
from matplotlib.collections import PatchCollection
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation
import matplotlib.animation as manimation
import argparse
import math
Colors = ['#fffb96', '#01cdfe', '#05ffa1']
class Animation:
def __init__(self, map, schedule):
self.map = map
self.schedule = schedule
self.combined_schedule = {}
self.combined_schedule.update(self.schedule["schedule"])
aspect = map["map"]["dimensions"][0] / map["map"]["dimensions"][1]
self.fig = plt.figure(frameon=False, figsize=(4 * aspect, 4))
self.ax = self.fig.add_subplot(111, aspect='equal')
self.fig.subplots_adjust(left=0,right=1,bottom=0,top=1, wspace=None, hspace=None)
self.patches = []
self.artists = []
self.agents = dict()
self.agent_names = dict()
xmin = -0.5
ymin = -0.5
xmax = map["map"]["dimensions"][0] - 0.5
ymax = map["map"]["dimensions"][1] - 0.5
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
self.patches.append(Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, facecolor='#9452cc', edgecolor='#9452cc'))
for o in map["map"]["obstacles"]:
x, y = o[0], o[1]
self.patches.append(Rectangle((x - 0.5, y - 0.5), 1, 1, facecolor='#04cc80', edgecolor='#03b270'))
self.T = 0
for d, i in zip(map["agents"], range(0, len(map["agents"]))):
self.patches.append(Rectangle((d["goal"][0] - 0.25, d["goal"][1] - 0.25), 0.5, 0.5, facecolor=Colors[1], edgecolor='black', alpha=0.5))
for d, i in zip(map["agents"], range(0, len(map["agents"]))):
name = d["name"]
self.agents[name] = Circle((d["start"][0], d["start"][1]), 0.3, facecolor=Colors[2], edgecolor='black')
self.agents[name].original_face_color = Colors[0]
self.patches.append(self.agents[name])
self.T = max(self.T, schedule["schedule"][name][-1]["t"])
self.agent_names[name] = self.ax.text(d["start"][0], d["start"][1], name.replace('agent', ''))
self.agent_names[name].set_horizontalalignment('center')
self.agent_names[name].set_verticalalignment('center')
self.artists.append(self.agent_names[name])
self.anim = animation.FuncAnimation(self.fig, self.animate_func,
init_func=self.init_func,
frames=int(self.T+1) * 10,
interval=100,
blit=True)
def save(self, file_name, speed):
self.anim.save(
file_name,
"ffmpeg",
fps=10 * speed,
dpi=200),
def show(self):
plt.show()
def init_func(self):
for p in self.patches:
self.ax.add_patch(p)
for a in self.artists:
self.ax.add_artist(a)
return self.patches + self.artists
def animate_func(self, i):
for agent_name, agent in self.combined_schedule.items():
pos = self.getState(i / 10, agent)
p = (pos[0], pos[1])
self.agents[agent_name].center = p
self.agent_names[agent_name].set_position(p)
for _,agent in self.agents.items():
agent.set_facecolor(agent.original_face_color)
agents_array = [agent for _,agent in self.agents.items()]
for i in range(0, len(agents_array)):
for j in range(i+1, len(agents_array)):
d1 = agents_array[i]
d2 = agents_array[j]
pos1 = np.array(d1.center)
pos2 = np.array(d2.center)
if np.linalg.norm(pos1 - pos2) < 0.7:
d1.set_facecolor('#01cdfe')
d2.set_facecolor('#01cdfe')
print("COLLISION! (agent-agent) ({}, {})".format(i, j))
return self.patches + self.artists
def getState(self, t, d):
idx = 0
while idx < len(d) and d[idx]["t"] < t:
idx += 1
if idx == 0:
return np.array([float(d[0]["x"]), float(d[0]["y"])])
elif idx < len(d):
posLast = np.array([float(d[idx-1]["x"]), float(d[idx-1]["y"])])
posNext = np.array([float(d[idx]["x"]), float(d[idx]["y"])])
else:
return np.array([float(d[-1]["x"]), float(d[-1]["y"])])
dt = d[idx]["t"] - d[idx-1]["t"]
t = (t - d[idx-1]["t"]) / dt
pos = (posNext - posLast) * t + posLast
return pos
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("map", help="input file containing map")
parser.add_argument("schedule", help="schedule for agents")
parser.add_argument('--video', dest='video', default=None, help="output video file (or leave empty to show on screen)")
parser.add_argument("--speed", type=int, default=5, help="speedup-factor")
args = parser.parse_args()
with open(args.map) as map_file:
map = yaml.load(map_file, Loader=yaml.FullLoader)
with open(args.schedule) as states_file:
schedule = yaml.load(states_file, Loader=yaml.FullLoader)
animation = Animation(map, schedule)
if args.video:
animation.save(args.video, args.speed)
else:
animation.show()