diff --git a/notebooks/multipleMinimumFrequentPatterns/basic/CFPGrowthPlus.ipynb b/notebooks/multipleMinimumFrequentPatterns/basic/CFPGrowthPlus.ipynb index b18b5c9c..1528642a 100644 --- a/notebooks/multipleMinimumFrequentPatterns/basic/CFPGrowthPlus.ipynb +++ b/notebooks/multipleMinimumFrequentPatterns/basic/CFPGrowthPlus.ipynb @@ -7,7 +7,7 @@ "colab_type": "text" }, "source": [ - "\"Open" + "\"Open" ] }, { @@ -69,7 +69,7 @@ "execution_count": 1, "metadata": { "id": "0FiJZo_JqiHg", - "outputId": "0858686b-2cd9-47f0-e8b7-9cec03e25ef7", + "outputId": "94010138-ae91-4fe1-955d-3a676ca6caa6", "colab": { "base_uri": "https://localhost:8080/" } @@ -79,26 +79,20 @@ "output_type": "stream", "name": "stdout", "text": [ - "Collecting PAMI\n", - " Downloading pami-2024.10.14.2-py3-none-any.whl.metadata (80 kB)\n", - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/80.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m80.3/80.3 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from PAMI) (5.9.5)\n", + "Requirement already satisfied: PAMI in /usr/local/lib/python3.10/dist-packages (2024.10.24.2)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from PAMI) (5.9.5)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from PAMI) (2.2.2)\n", "Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from PAMI) (5.24.1)\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from PAMI) (3.7.1)\n", - "Collecting resource (from PAMI)\n", - " Downloading Resource-0.2.1-py2.py3-none-any.whl.metadata (478 bytes)\n", - "Collecting validators (from PAMI)\n", - " Downloading validators-0.34.0-py3-none-any.whl.metadata (3.8 kB)\n", + "Requirement already satisfied: resource in /usr/local/lib/python3.10/dist-packages (from PAMI) (0.2.1)\n", + "Requirement already satisfied: validators in /usr/local/lib/python3.10/dist-packages (from PAMI) (0.34.0)\n", "Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from PAMI) (2.2.3)\n", "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from PAMI) (10.4.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from PAMI) (1.26.4)\n", - "Requirement already satisfied: sphinx in /usr/local/lib/python3.10/dist-packages (from PAMI) (5.0.2)\n", - "Collecting sphinx-rtd-theme (from PAMI)\n", - " Downloading sphinx_rtd_theme-3.0.1-py2.py3-none-any.whl.metadata (4.4 kB)\n", - "Collecting discord.py (from PAMI)\n", - " Downloading discord.py-2.4.0-py3-none-any.whl.metadata (6.9 kB)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from PAMI) (3.4)\n", + "Requirement already satisfied: sphinx in /usr/local/lib/python3.10/dist-packages (from PAMI) (8.1.3)\n", + "Requirement already satisfied: sphinx-rtd-theme in /usr/local/lib/python3.10/dist-packages (from PAMI) (3.0.1)\n", + "Requirement already satisfied: discord.py in /usr/local/lib/python3.10/dist-packages (from PAMI) (2.4.0)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from PAMI) (3.4.2)\n", "Requirement already satisfied: deprecated in /usr/local/lib/python3.10/dist-packages (from PAMI) (1.2.14)\n", "Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.10/dist-packages (from deprecated->PAMI) (1.16.0)\n", "Requirement already satisfied: aiohttp<4,>=3.7.4 in /usr/local/lib/python3.10/dist-packages (from discord.py->PAMI) (3.10.10)\n", @@ -107,93 +101,49 @@ "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->PAMI) (4.54.1)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->PAMI) (1.4.7)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->PAMI) (24.1)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->PAMI) (3.1.4)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->PAMI) (3.2.0)\n", "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->PAMI) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->PAMI) (2024.2)\n", "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->PAMI) (2024.2)\n", "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly->PAMI) (9.0.0)\n", - "Collecting JsonForm>=0.0.2 (from resource->PAMI)\n", - " Downloading JsonForm-0.0.2.tar.gz (2.4 kB)\n", - " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "Collecting JsonSir>=0.0.2 (from resource->PAMI)\n", - " Downloading JsonSir-0.0.2.tar.gz (2.2 kB)\n", - " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "Collecting python-easyconfig>=0.1.0 (from resource->PAMI)\n", - " Downloading Python_EasyConfig-0.1.7-py2.py3-none-any.whl.metadata (462 bytes)\n", - "Requirement already satisfied: sphinxcontrib-applehelp in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", - "Requirement already satisfied: sphinxcontrib-devhelp in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", - "Requirement already satisfied: sphinxcontrib-jsmath in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (1.0.1)\n", - "Requirement already satisfied: sphinxcontrib-htmlhelp>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.1.0)\n", - "Requirement already satisfied: sphinxcontrib-serializinghtml>=1.1.5 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", - "Requirement already satisfied: sphinxcontrib-qthelp in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", - "Requirement already satisfied: Jinja2>=2.3 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (3.1.4)\n", - "Requirement already satisfied: Pygments>=2.0 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.18.0)\n", - "Requirement already satisfied: docutils<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (0.18.1)\n", - "Requirement already satisfied: snowballstemmer>=1.1 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.2.0)\n", - "Requirement already satisfied: babel>=1.3 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.16.0)\n", - "Requirement already satisfied: alabaster<0.8,>=0.7 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (0.7.16)\n", - "Requirement already satisfied: imagesize in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (1.4.1)\n", - "Requirement already satisfied: requests>=2.5.0 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.32.3)\n", - "Collecting sphinx (from PAMI)\n", - " Downloading sphinx-8.1.3-py3-none-any.whl.metadata (6.4 kB)\n", - "Collecting sphinxcontrib-jquery<5,>=4 (from sphinx-rtd-theme->PAMI)\n", - " Downloading sphinxcontrib_jquery-4.1-py2.py3-none-any.whl.metadata (2.6 kB)\n", - "Collecting docutils<0.22,>0.18 (from sphinx-rtd-theme->PAMI)\n", - " Downloading docutils-0.21.2-py3-none-any.whl.metadata (2.8 kB)\n", + "Requirement already satisfied: JsonForm>=0.0.2 in /usr/local/lib/python3.10/dist-packages (from resource->PAMI) (0.0.2)\n", + "Requirement already satisfied: JsonSir>=0.0.2 in /usr/local/lib/python3.10/dist-packages (from resource->PAMI) (0.0.2)\n", + "Requirement already satisfied: python-easyconfig>=0.1.0 in /usr/local/lib/python3.10/dist-packages (from resource->PAMI) (0.1.7)\n", + "Requirement already satisfied: sphinxcontrib-applehelp>=1.0.7 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", + "Requirement already satisfied: sphinxcontrib-devhelp>=1.0.6 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", + "Requirement already satisfied: sphinxcontrib-htmlhelp>=2.0.6 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.1.0)\n", + "Requirement already satisfied: sphinxcontrib-jsmath>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (1.0.1)\n", + "Requirement already satisfied: sphinxcontrib-qthelp>=1.0.6 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", + "Requirement already satisfied: sphinxcontrib-serializinghtml>=1.1.9 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.0)\n", + "Requirement already satisfied: Jinja2>=3.1 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (3.1.4)\n", + "Requirement already satisfied: Pygments>=2.17 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.18.0)\n", + "Requirement already satisfied: docutils<0.22,>=0.20 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (0.21.2)\n", + "Requirement already satisfied: snowballstemmer>=2.2 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.2.0)\n", + "Requirement already satisfied: babel>=2.13 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.16.0)\n", + "Requirement already satisfied: alabaster>=0.7.14 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (0.7.16)\n", + "Requirement already satisfied: imagesize>=1.3 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (1.4.1)\n", + "Requirement already satisfied: requests>=2.30.0 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.32.3)\n", "Requirement already satisfied: tomli>=2 in /usr/local/lib/python3.10/dist-packages (from sphinx->PAMI) (2.0.2)\n", + "Requirement already satisfied: sphinxcontrib-jquery<5,>=4 in /usr/local/lib/python3.10/dist-packages (from sphinx-rtd-theme->PAMI) (4.1)\n", "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (2.4.3)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (1.3.1)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (24.2.0)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (1.4.1)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (6.1.0)\n", - "Requirement already satisfied: yarl<2.0,>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (1.14.0)\n", + "Requirement already satisfied: yarl<2.0,>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (1.16.0)\n", "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4,>=3.7.4->discord.py->PAMI) (4.0.3)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.3->sphinx->PAMI) (3.0.1)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=3.1->sphinx->PAMI) (3.0.2)\n", "Requirement already satisfied: jsonschema in /usr/local/lib/python3.10/dist-packages (from JsonForm>=0.0.2->resource->PAMI) (4.23.0)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->PAMI) (1.16.0)\n", "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from python-easyconfig>=0.1.0->resource->PAMI) (6.0.2)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.5.0->sphinx->PAMI) (3.4.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.5.0->sphinx->PAMI) (3.10)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.5.0->sphinx->PAMI) (2024.8.30)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.30.0->sphinx->PAMI) (3.4.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.30.0->sphinx->PAMI) (3.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.30.0->sphinx->PAMI) (2024.8.30)\n", "Requirement already satisfied: typing-extensions>=4.1.0 in /usr/local/lib/python3.10/dist-packages (from multidict<7.0,>=4.5->aiohttp<4,>=3.7.4->discord.py->PAMI) (4.12.2)\n", "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from yarl<2.0,>=1.12.0->aiohttp<4,>=3.7.4->discord.py->PAMI) (0.2.0)\n", "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema->JsonForm>=0.0.2->resource->PAMI) (2024.10.1)\n", "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema->JsonForm>=0.0.2->resource->PAMI) (0.35.1)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema->JsonForm>=0.0.2->resource->PAMI) (0.20.0)\n", - "Downloading pami-2024.10.14.2-py3-none-any.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m27.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading discord.py-2.4.0-py3-none-any.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m37.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading Resource-0.2.1-py2.py3-none-any.whl (25 kB)\n", - "Downloading sphinx_rtd_theme-3.0.1-py2.py3-none-any.whl (7.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.7/7.7 MB\u001b[0m \u001b[31m64.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading sphinx-8.1.3-py3-none-any.whl (3.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.5/3.5 MB\u001b[0m \u001b[31m51.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading validators-0.34.0-py3-none-any.whl (43 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.5/43.5 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading docutils-0.21.2-py3-none-any.whl (587 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m587.4/587.4 kB\u001b[0m \u001b[31m30.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hDownloading Python_EasyConfig-0.1.7-py2.py3-none-any.whl (5.4 kB)\n", - "Downloading sphinxcontrib_jquery-4.1-py2.py3-none-any.whl (121 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.1/121.1 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hBuilding wheels for collected packages: JsonForm, JsonSir\n", - " Building wheel for JsonForm (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for JsonForm: filename=JsonForm-0.0.2-py3-none-any.whl size=3311 sha256=364f0d2c4ca89bf01a1a39d09fe564d91eaaca62a55698afef8cd0077a3cedc3\n", - " Stored in directory: /root/.cache/pip/wheels/b6/e5/87/11026246d3bd4ad67c0615682d2d6748bbd9a40ac0490882bd\n", - " Building wheel for JsonSir (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for JsonSir: filename=JsonSir-0.0.2-py3-none-any.whl size=4752 sha256=e6e9584420f00aba23d7e82dc30a763cd3b886120f9476172df2ddc72d728db7\n", - " Stored in directory: /root/.cache/pip/wheels/1d/4c/d3/4d9757425983b43eb709be1043d82cd03fb863ce5f56f117e6\n", - "Successfully built JsonForm JsonSir\n", - "Installing collected packages: JsonSir, validators, python-easyconfig, docutils, sphinx, sphinxcontrib-jquery, sphinx-rtd-theme, JsonForm, discord.py, resource, PAMI\n", - " Attempting uninstall: docutils\n", - " Found existing installation: docutils 0.18.1\n", - " Uninstalling docutils-0.18.1:\n", - " Successfully uninstalled docutils-0.18.1\n", - " Attempting uninstall: sphinx\n", - " Found existing installation: Sphinx 5.0.2\n", - " Uninstalling Sphinx-5.0.2:\n", - " Successfully uninstalled Sphinx-5.0.2\n", - "Successfully installed JsonForm-0.0.2 JsonSir-0.0.2 PAMI-2024.10.14.2 discord.py-2.4.0 docutils-0.21.2 python-easyconfig-0.1.7 resource-0.2.1 sphinx-8.1.3 sphinx-rtd-theme-3.0.1 sphinxcontrib-jquery-4.1 validators-0.34.0\n" + "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema->JsonForm>=0.0.2->resource->PAMI) (0.20.0)\n" ] } ], @@ -218,7 +168,7 @@ "id": "b47437ab", "metadata": { "id": "b47437ab", - "outputId": "160abe3b-6b30-4d03-9186-02461cccb3c1", + "outputId": "bfea8eb8-8e4d-45bd-c494-e73c94099cc7", "colab": { "base_uri": "https://localhost:8080/" } @@ -228,16 +178,16 @@ "output_type": "stream", "name": "stdout", "text": [ - "--2024-10-15 07:35:58-- https://u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv\n", - "Resolving u-aizu.ac.jp (u-aizu.ac.jp)... 150.95.161.176, 150.31.244.160\n", - "Connecting to u-aizu.ac.jp (u-aizu.ac.jp)|150.95.161.176|:443... connected.\n", + "--2024-10-24 13:50:51-- https://u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv\n", + "Resolving u-aizu.ac.jp (u-aizu.ac.jp)... 150.31.244.160, 150.95.161.176\n", + "Connecting to u-aizu.ac.jp (u-aizu.ac.jp)|150.31.244.160|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 4019277 (3.8M) [text/csv]\n", - "Saving to: ‘Transactional_T10I4D100K.csv’\n", + "Saving to: ‘Transactional_T10I4D100K.csv.1’\n", "\n", - "Transactional_T10I4 100%[===================>] 3.83M 1.26MB/s in 3.0s \n", + "Transactional_T10I4 100%[===================>] 3.83M 811KB/s in 4.8s \n", "\n", - "2024-10-15 07:36:02 (1.26 MB/s) - ‘Transactional_T10I4D100K.csv’ saved [4019277/4019277]\n", + "2024-10-24 13:50:57 (811 KB/s) - ‘Transactional_T10I4D100K.csv.1’ saved [4019277/4019277]\n", "\n" ] } @@ -267,8 +217,8 @@ "source": [ "from PAMI.extras.calculateMISValues import usingBeta as ub\n", "inputFile = \"Transactional_T10I4D100K.csv\"\n", - "beta = 1.8\n", - "LS = 500\n", + "beta = 0.1\n", + "LS = 400\n", "sep = \"\\t\"\n", "output = \"MIS_T10.txt\"\n", "cd = ub.usingBeta(inputFile, beta, LS, sep)\n", @@ -340,7 +290,7 @@ "id": "38ee53a6-d1fd-4266-8c8c-06662540657d", "metadata": { "id": "38ee53a6-d1fd-4266-8c8c-06662540657d", - "outputId": "af9815ef-23c0-46f2-cbd7-e563b8519977", + "outputId": "142f7837-a8b5-49f0-a2c9-5702d3c4ce9d", "colab": { "base_uri": "https://localhost:8080/" } @@ -350,7 +300,7 @@ "output_type": "stream", "name": "stdout", "text": [ - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n" + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n" ] } ], @@ -442,14 +392,14 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "ca49de9d-5d84-444a-b874-a2325627b0ef" + "outputId": "ae501175-9c52-4e70-db11-22f5c39310ae" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Total No of patterns: 535\n" + "Total No of patterns: 1983\n" ] } ], @@ -476,14 +426,14 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "acb08538-3af3-4ea1-f0c3-ac120cb19fc5" + "outputId": "825854df-e85c-45c9-f4c1-1f74ec36032d" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Runtime: 19.176114320755005\n" + "Runtime: 15.221588611602783\n" ] } ], @@ -510,15 +460,15 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "d5bb95f0-8c0a-401b-82f1-a22f5d5f4b94" + "outputId": "9b6d974f-930d-4d4f-a648-7767ef7a2323" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Memory (RSS): 581443584\n", - "Memory (USS): 527093760\n" + "Memory (RSS): 621088768\n", + "Memory (USS): 566169600\n" ] } ], @@ -610,7 +560,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 13, "metadata": { "id": "z132gyB_qiHp" }, @@ -618,7 +568,7 @@ "source": [ "inputFile = 'Transactional_T10I4D100K.csv'\n", "seperator='\\t'\n", - "betaList = [0.1, 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]\n", + "betaList = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]\n", "\n", "result = pd.DataFrame(columns=['algorithm', 'minSup', 'patterns', 'runtime', 'memory'])\n", "#initialize a data frame to store the results of CFPGrowthPlus algorithm" @@ -638,29 +588,29 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 14, "metadata": { "id": "G8qrwb_2qiHp", "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "8a5aff6e-af21-4c11-c561-b30dab553696" + "outputId": "c12cf52c-fcd4-43d2-b1b6-ab48192b094d" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n", - "Frequent patterns were generated successfully using frequentPatternGrowth algorithm\n" + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n", + "Frequent patterns were generated successfully using Conditional Frequent Pattern Growth algorithm\n" ] } ], @@ -684,13 +634,13 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 15, "metadata": { "id": "fdxVkrU-qiHq", "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "4888eb8c-70bf-4025-d92a-bc35944b3f84" + "outputId": "f1ee1b3f-9af6-4e28-f40f-e18b7197d0c3" }, "outputs": [ { @@ -698,16 +648,16 @@ "name": "stdout", "text": [ " algorithm minSup patterns runtime memory\n", - "0 CFPGrowthPlus 0.1 936 14.058609 711897088\n", - "1 CFPGrowthPlus 0.2 936 16.360479 712052736\n", - "2 CFPGrowthPlus 0.3 936 15.058426 714321920\n", - "3 CFPGrowthPlus 0.4 936 15.264088 714047488\n", - "4 CFPGrowthPlus 0.5 936 14.016433 714207232\n", - "5 CFPGrowthPlus 0.6 936 14.029211 714731520\n", - "6 CFPGrowthPlus 0.7 936 15.059381 714715136\n", - "7 CFPGrowthPlus 0.8 936 16.258358 714452992\n", - "8 CFPGrowthPlus 0.9 936 14.137519 714670080\n", - "9 CFPGrowthPlus 1.0 936 14.508618 714526720\n" + "0 CFPGrowthPlus 0.1 22827 21.847227 664973312\n", + "1 CFPGrowthPlus 0.2 14423 23.350201 660336640\n", + "2 CFPGrowthPlus 0.3 9883 20.530882 658436096\n", + "3 CFPGrowthPlus 0.4 7005 18.136225 661266432\n", + "4 CFPGrowthPlus 0.5 4947 19.230281 657379328\n", + "5 CFPGrowthPlus 0.6 3581 18.778890 657174528\n", + "6 CFPGrowthPlus 0.7 2814 20.005580 659423232\n", + "7 CFPGrowthPlus 0.8 2166 19.727741 659677184\n", + "8 CFPGrowthPlus 0.9 1475 18.775949 655007744\n", + "9 CFPGrowthPlus 1.0 798 20.039713 655163392\n" ] } ], @@ -740,7 +690,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 16, "metadata": { "id": "BG2czf9XqiHq" }, @@ -770,7 +720,7 @@ "base_uri": "https://localhost:8080/", "height": 1000 }, - "outputId": "5ef4ab11-c814-4e5c-c488-81f4d10af5d9" + "outputId": "4bd37be3-f32e-47c4-cef0-5806b599c874" }, "outputs": [ { @@ -779,7 +729,7 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGwCAYAAACD0J42AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArxElEQVR4nO3df3RN957/8ddx8ktwkuIkJ5lGlAqi4mebifGr1RHkWm1XR6dpBm2VssT1Yxh0fK9gjbh36ei9amhnbqWr05mO6nAtt2hw6VRQRUhRl6BhJZGWykkEjWR//+jKuT2I5gjO56TPx1p7rey9P5993h+fnnVe3XuffWyWZVkCAAAwSDN/FwAAAHAjAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHGC/F3AnaitrVVxcbFatWolm83m73IAAEADWJaliooKxcbGqlmz258jCciAUlxcrLi4OH+XAQAA7sDZs2f14IMP3rZNQAaUVq1aSfphgA6Hw8/VAACAhnC73YqLi/N8jt9OQAaUuss6DoeDgAIAQIBpyO0Z3CQLAACMQ0ABAADGIaAAAADjBOQ9KACAn6eamhpVV1f7uwzUIzg4WHa7/a4ci4ACADCeZVkqLS3VpUuX/F0KfkJkZKRcLlejn1NGQAEAGK8unERFRSk8PJyHdBrIsixVVVWprKxMkhQTE9Oo4xFQAABGq6mp8YSTNm3a+Lsc3Ebz5s0lSWVlZYqKimrU5R5ukgUAGK3unpPw8HA/V4KGqJunxt4rREABAAQELusEhrs1TwQUAABgHAIKAAAwDgEFAAAYh4ACAICBduzYIZvNdtOzXwYPHqxp06b5pab7iYACAMDP0Pfff+/vEm6LgAIACCiWZanq++t+WSzLanCdgwcPVmZmpjIzMxUREaG2bdvq//2//+c5xnvvvae+ffuqVatWcrlceuGFFzwPOTtz5owef/xxSdIDDzwgm82mF198US+++KJ27typ3/72t7LZbLLZbDpz5owk6csvv9Tw4cPVsmVLRUdHa/To0fr2229vqmfatGlq27atUlNTPWdptm3bpr59+yo8PFz9+vXT8ePHPf0OHTqkxx9/XK1atZLD4VCfPn30xRdfNHYafxIPagMABJQr1TVK/NUWv7z20YWpCg9p+Efnu+++q3Hjxunzzz/XF198oQkTJqhdu3YaP368qqurtWjRInXu3FllZWWaMWOGXnzxRX388ceKi4vTRx99pGeffVbHjx+Xw+HwPATtz3/+sx555BEtXLhQkuR0OnXp0iU98cQTeuWVV7Rs2TJduXJFs2fP1nPPPaft27d71TNp0iTt2rVLklRSUiJJ+ud//me9/vrrcjqdmjhxol5++WVPm4yMDPXq1UsrV66U3W5Xfn6+goOD78q/5+0QUAAAuEfi4uK0bNky2Ww2de7cWQUFBVq2bJnGjx+vl19+2dOuQ4cO+t3vfqdHH31UlZWVatmypVq3bi1JioqKUmRkpKdtSEiIwsPD5XK5PNvefPNN9erVS4sXL/Zse+eddxQXF6c///nPSkhIkCR16tRJv/nNbzxt6gLKv/zLv2jQoEGSpDlz5igtLU1Xr15VWFiYioqKNGvWLHXp0sVzjPuBgAIACCjNg+06ujDVb6/ti7/+67/2enBZSkqKXn/9ddXU1Cg/P19ZWVk6dOiQvvvuO9XW1kqSioqKlJiY6NPrHDp0SH/605/UsmXLm/YVFhZ6AkqfPn1u2T8pKcnzd91v6JSVlaldu3aaMWOGXnnlFb333nt68sknNWrUKHXs2NGn+u4EAQUAEFBsNptPl1lMdPXqVaWmpio1NVXvv/++nE6nioqKlJqaekc3r1ZWVmrkyJH69a9/fdO+H/9oX4sWLW7Z/8eXbOoCVV1gysrK0gsvvKA//vGP2rRpk+bPn68PPvhAzzzzjM91+iKwZxgAAIPt3bvXa33Pnj3q1KmTvvrqK124cEFLlixRXFycJN1042lISIikH34s8cbtN27r3bu3PvroI7Vv315BQXf/oz0hIUEJCQmaPn260tPTtXr16nseUPgWDwAA90hRUZFmzJih48eP67//+7+1fPlyTZ06Ve3atVNISIiWL1+uU6dOacOGDVq0aJFX3/j4eNlsNm3cuFHffPONKisrJUnt27fX3r17debMGX377beqra3V5MmTdfHiRaWnp2vfvn0qLCzUli1b9NJLL90UZnxx5coVZWZmaseOHfr666+1a9cu7du3T127dm3Uv0tD+BRQsrKyPF9rqlvqbpqps3v3bj3xxBNq0aKFHA6HBg4cqCtXrnj2X7x4URkZGXI4HIqMjNS4ceM8/+gAADQlY8aM0ZUrV/TYY49p8uTJmjp1qiZMmCCn06mcnBx9+OGHSkxM1JIlS7R06VKvvn/1V3+lBQsWaM6cOYqOjlZmZqYkaebMmbLb7UpMTPRcGoqNjdWuXbtUU1OjoUOHqnv37po2bZoiIyPVrNmdn4uw2+26cOGCxowZo4SEBD333HMaPny4FixY0Kh/l4awWT58qTsrK0tr167V1q1bPduCgoLUtm1bST+Ek2HDhmnu3LkaOXKkgoKCdOjQIT311FMKDQ2VJA0fPlwlJSV66623VF1drZdeekmPPvqo/uu//qvBRbvdbkVERKi8vFwOh6PB/QAAgefq1as6ffq0HnroIYWFhfm7nAYbPHiwevbsqTfeeMPfpdxXt5svXz6/fb5QFRQU5PXVph+bPn26fvnLX2rOnDmebZ07d/b8fezYMW3evFn79u1T3759JUnLly/XiBEjtHTpUsXGxvpaDgAAaIJ8Pu9z4sQJxcbGqkOHDsrIyFBRUZGkH76OtHfvXkVFRalfv36Kjo7WoEGD9Nlnn3n67t69W5GRkZ5wIklPPvmkmjVrdtONRD927do1ud1urwUAADRdPgWU5ORk5eTkaPPmzVq5cqVOnz6tAQMGqKKiQqdOnZL0w2Wg8ePHa/Pmzerdu7eGDBmiEydOSJJKS0sVFRXldcygoCC1bt1apaWl9b5udna2IiIiPEvdHc8AAJhqx44dP7vLO3eTT5d4hg8f7vk7KSlJycnJio+P15o1azx39L766qt66aWXJEm9evXStm3b9M477yg7O/uOi5w7d65mzJjhWXe73YQUAPiZ8eV3cOA/d2ueGvU148jISCUkJOjkyZOeB8Hc+PS7rl27ei4DuVwuzw8h1bl+/bouXrxY730tkhQaGiqHw+G1AAB+HuoeIlZVVeXnStAQdfPU2N/radTTXCorK1VYWKjRo0erffv2io2N9foFROmHHzWqO/OSkpKiS5cuaf/+/Z7H7W7fvl21tbVKTk5uTCkAgCbKbrcrMjLS8z+44eHhXo+Phxksy1JVVZXKysoUGRkpu923nwW4kU8BZebMmRo5cqTi4+NVXFys+fPny263Kz09XTabTbNmzdL8+fPVo0cP9ezZU++++66++uorrV27VtIPZ1OGDRum8ePHa9WqVaqurlZmZqaef/55vsEDAKhX3Vn2G8/CwzyRkZG3vSrSUD4FlHPnzik9PV0XLlyQ0+lU//79tWfPHjmdTknStGnTdPXqVU2fPl0XL15Ujx49lJub6/WjQu+//74yMzM1ZMgQNWvWTM8++6x+97vfNXogAICmy2azKSYmRlFRUaqurvZ3OahHcHBwo8+c1PHpQW2m4EFtAAAEHl8+v/ktHgAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjONTQMnKypLNZvNaunTp4tk/ePDgm/ZPnDjR6xhFRUVKS0tTeHi4oqKiNGvWLF2/fv3ujAYAADQJQb526Natm7Zu3fqXAwR5H2L8+PFauHChZz08PNzzd01NjdLS0uRyuZSXl6eSkhKNGTNGwcHBWrx48Z3UDwAAmiCfA0pQUJBcLle9+8PDw+vd/8knn+jo0aPaunWroqOj1bNnTy1atEizZ89WVlaWQkJCfC0HAAA0QT7fg3LixAnFxsaqQ4cOysjIUFFRkdf+999/X23bttUjjzyiuXPnqqqqyrNv9+7d6t69u6Kjoz3bUlNT5Xa7deTIkXpf89q1a3K73V4LAABounw6g5KcnKycnBx17txZJSUlWrBggQYMGKAvv/xSrVq10gsvvKD4+HjFxsbq8OHDmj17to4fP67//d//lSSVlpZ6hRNJnvXS0tJ6Xzc7O1sLFizwdWwAACBA+RRQhg8f7vk7KSlJycnJio+P15o1azRu3DhNmDDBs7979+6KiYnRkCFDVFhYqI4dO95xkXPnztWMGTM86263W3FxcXd8PAAAYLZGfc04MjJSCQkJOnny5C33JycnS5Jnv8vl0vnz573a1K3f7r6W0NBQORwOrwUAADRdjQoolZWVKiwsVExMzC335+fnS5Jnf0pKigoKClRWVuZpk5ubK4fDocTExMaUAgAAmhCfAsrMmTO1c+dOnTlzRnl5eXrmmWdkt9uVnp6uwsJCLVq0SPv379eZM2e0YcMGjRkzRgMHDlRSUpIkaejQoUpMTNTo0aN16NAhbdmyRfPmzdPkyZMVGhp6TwYIAAACj0/3oJw7d07p6em6cOGCnE6n+vfvrz179sjpdOrq1avaunWr3njjDV2+fFlxcXF69tlnNW/ePE9/u92ujRs3atKkSUpJSVGLFi00duxYr+emAAAA2CzLsvxdhK/cbrciIiJUXl7O/SgAAAQIXz6/+S0eAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACM41NAycrKks1m81q6dOlyUzvLsjR8+HDZbDatX7/ea19RUZHS0tIUHh6uqKgozZo1S9evX2/UIAAAQNMS5GuHbt26aevWrX85QNDNh3jjjTdks9lu2l5TU6O0tDS5XC7l5eWppKREY8aMUXBwsBYvXuxrKQAAoInyOaAEBQXJ5XLVuz8/P1+vv/66vvjiC8XExHjt++STT3T06FFt3bpV0dHR6tmzpxYtWqTZs2crKytLISEhvo8AAAA0OT7fg3LixAnFxsaqQ4cOysjIUFFRkWdfVVWVXnjhBa1YseKWIWb37t3q3r27oqOjPdtSU1Pldrt15MiRel/z2rVrcrvdXgsAAGi6fAooycnJysnJ0ebNm7Vy5UqdPn1aAwYMUEVFhSRp+vTp6tevn5566qlb9i8tLfUKJ5I866WlpfW+bnZ2tiIiIjxLXFycL2UDAIAA49MlnuHDh3v+TkpKUnJysuLj47VmzRo5nU5t375dBw8evOtFzp07VzNmzPCsu91uQgoAAE1Yo75mHBkZqYSEBJ08eVLbt29XYWGhIiMjFRQU5Ll59tlnn9XgwYMlSS6XS+fPn/c6Rt367e5rCQ0NlcPh8FoAAEDT1aiAUllZqcLCQsXExGjOnDk6fPiw8vPzPYskLVu2TKtXr5YkpaSkqKCgQGVlZZ5j5ObmyuFwKDExsTGlAACAJsSnSzwzZ87UyJEjFR8fr+LiYs2fP192u13p6elyOp23PAvSrl07PfTQQ5KkoUOHKjExUaNHj9ZvfvMblZaWat68eZo8ebJCQ0PvzogAAEDA8ymgnDt3Tunp6bpw4YKcTqf69++vPXv2yOl0Nqi/3W7Xxo0bNWnSJKWkpKhFixYaO3asFi5ceEfFAwCApslmWZbl7yJ85Xa7FRERofLycu5HAQAgQPjy+c1v8QAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABgnyN8FmMSyLF2prvF3GQAAGKF5sF02m80vr01A+ZEr1TVK/NUWf5cBAIARji5MVXiIf6ICl3gAAIBxOIPyI82D7Tq6MNXfZQAAYITmwXa/vTYB5UdsNpvfTmUBAIC/4BIPAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwjk8BJSsrSzabzWvp0qWLZ/+rr76qjh07qnnz5nI6nXrqqaf01VdfeR2jqKhIaWlpCg8PV1RUlGbNmqXr16/fndEAAIAmIcjXDt26ddPWrVv/coCgvxyiT58+ysjIULt27XTx4kVlZWVp6NChOn36tOx2u2pqapSWliaXy6W8vDyVlJRozJgxCg4O1uLFi+/OiAAAQMCzWZZlNbRxVlaW1q9fr/z8/Aa1P3z4sHr06KGTJ0+qY8eO2rRpk37xi1+ouLhY0dHRkqRVq1Zp9uzZ+uabbxQSEnLL41y7dk3Xrl3zrLvdbsXFxam8vFwOh6Oh5QMAAD9yu92KiIho0Oe3z/egnDhxQrGxserQoYMyMjJUVFR0y3aXL1/W6tWr9dBDDykuLk6StHv3bnXv3t0TTiQpNTVVbrdbR44cqfc1s7OzFRER4VnqjgcAAJomnwJKcnKycnJytHnzZq1cuVKnT5/WgAEDVFFR4Wnzb//2b2rZsqVatmypTZs2KTc313NmpLS01CucSPKsl5aW1vu6c+fOVXl5uWc5e/asL2UDAIAA41NAGT58uEaNGqWkpCSlpqbq448/1qVLl7RmzRpPm4yMDB08eFA7d+5UQkKCnnvuOV29erVRRYaGhsrhcHgtAACg6WrU14wjIyOVkJCgkydPerZFRESoU6dOGjhwoNauXauvvvpK69atkyS5XC6dP3/e6xh16y6XqzGlAACAJqRRAaWyslKFhYWKiYm55X7LsmRZlucG15SUFBUUFKisrMzTJjc3Vw6HQ4mJiY0pBQAANCE+BZSZM2dq586dOnPmjPLy8vTMM8/IbrcrPT1dp06dUnZ2tvbv36+ioiLl5eVp1KhRat68uUaMGCFJGjp0qBITEzV69GgdOnRIW7Zs0bx58zR58mSFhobekwECAIDA49NzUM6dO6f09HRduHBBTqdT/fv31549e+R0OlVdXa3/+7//0xtvvKHvvvtO0dHRGjhwoPLy8hQVFSVJstvt2rhxoyZNmqSUlBS1aNFCY8eO1cKFC+/J4AAAQGDy6TkopvDle9QAAMAM9/Q5KAAAAPcaAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMbxKaBkZWXJZrN5LV26dJEkXbx4UVOmTFHnzp3VvHlztWvXTr/85S9VXl7udYyioiKlpaUpPDxcUVFRmjVrlq5fv373RgQAAAJekK8dunXrpq1bt/7lAEE/HKK4uFjFxcVaunSpEhMT9fXXX2vixIkqLi7W2rVrJUk1NTVKS0uTy+VSXl6eSkpKNGbMGAUHB2vx4sV3aUgAACDQ2SzLshraOCsrS+vXr1d+fn6D2n/44Yf6h3/4B12+fFlBQUHatGmTfvGLX6i4uFjR0dGSpFWrVmn27Nn65ptvFBIScsvjXLt2TdeuXfOsu91uxcXFqby8XA6Ho6HlAwAAP3K73YqIiGjQ57fP96CcOHFCsbGx6tChgzIyMlRUVFRv27oC6s6y7N69W927d/eEE0lKTU2V2+3WkSNH6j1Odna2IiIiPEtcXJyvZQMAgADiU0BJTk5WTk6ONm/erJUrV+r06dMaMGCAKioqbmr77bffatGiRZowYYJnW2lpqVc4keRZLy0trfd1586dq/Lycs9y9uxZX8oGAAABxqd7UIYPH+75OykpScnJyYqPj9eaNWs0btw4zz632620tDQlJiYqKyur0UWGhoYqNDS00ccBAACBoVFfM46MjFRCQoJOnjzp2VZRUaFhw4apVatWWrdunYKDgz37XC6Xzp8/73WMunWXy9WYUgAAQBPSqIBSWVmpwsJCxcTESPrhzMnQoUMVEhKiDRs2KCwszKt9SkqKCgoKVFZW5tmWm5srh8OhxMTExpQCAACaEJ8CysyZM7Vz506dOXNGeXl5euaZZ2S325Wenu4JJ5cvX9bvf/97ud1ulZaWqrS0VDU1NZKkoUOHKjExUaNHj9ahQ4e0ZcsWzZs3T5MnT+YSDgAA8PDpHpRz584pPT1dFy5ckNPpVP/+/bVnzx45nU7t2LFDe/fulSQ9/PDDXv1Onz6t9u3by263a+PGjZo0aZJSUlLUokULjR07VgsXLrx7IwIAAAHPp+egmMKX71EDAAAz3NPnoAAAANxrBBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADCOTwElKytLNpvNa+nSpYtn/9tvv63BgwfL4XDIZrPp0qVLNx3j4sWLysjIkMPhUGRkpMaNG6fKyspGDwQAADQdPp9B6datm0pKSjzLZ5995tlXVVWlYcOG6bXXXqu3f0ZGho4cOaLc3Fxt3LhRn376qSZMmHBn1QMAgCYpyOcOQUFyuVy33Ddt2jRJ0o4dO265/9ixY9q8ebP27dunvn37SpKWL1+uESNGaOnSpYqNjfW1HAAA0AT5fAblxIkTio2NVYcOHZSRkaGioqIG9929e7ciIyM94USSnnzySTVr1kx79+6tt9+1a9fkdru9FgAA0HT5FFCSk5OVk5OjzZs3a+XKlTp9+rQGDBigioqKBvUvLS1VVFSU17agoCC1bt1apaWl9fbLzs5WRESEZ4mLi/OlbAAAEGB8CijDhw/XqFGjlJSUpNTUVH388ce6dOmS1qxZc6/qkyTNnTtX5eXlnuXs2bP39PUAAIB/+XwPyo9FRkYqISFBJ0+ebFB7l8ulsrIyr23Xr1/XxYsX672vRZJCQ0MVGhramFIBAEAAadRzUCorK1VYWKiYmJgGtU9JSdGlS5e0f/9+z7bt27ertrZWycnJjSkFAAA0IT6dQZk5c6ZGjhyp+Ph4FRcXa/78+bLb7UpPT5f0wz0mpaWlnjMqBQUFatWqldq1a6fWrVura9euGjZsmMaPH69Vq1apurpamZmZev755/kGDwAA8PDpDMq5c+eUnp6uzp0767nnnlObNm20Z88eOZ1OSdKqVavUq1cvjR8/XpI0cOBA9erVSxs2bPAc4/3331eXLl00ZMgQjRgxQv3799fbb799F4cEAAACnc2yLMvfRfjK7XYrIiJC5eXlcjgc/i4HAAA0gC+f3/wWDwAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYJ8ncBd8KyLEmS2+32cyUAAKCh6j636z7HbycgA0pFRYUkKS4uzs+VAAAAX1VUVCgiIuK2bWxWQ2KMYWpra1VcXKxWrVrJZrPdtq3b7VZcXJzOnj0rh8Nxnyq8/xhn0/JzGOfPYYwS42xqGGfjWJaliooKxcbGqlmz299lEpBnUJo1a6YHH3zQpz4Oh6NJ/8dUh3E2LT+Hcf4cxigxzqaGcd65nzpzUoebZAEAgHEIKAAAwDhNPqCEhoZq/vz5Cg0N9Xcp9xTjbFp+DuP8OYxRYpxNDeO8fwLyJlkAANC0NfkzKAAAIPAQUAAAgHEIKAAAwDgEFAAAYJwmEVBWrFih9u3bKywsTMnJyfr8889v2/7DDz9Uly5dFBYWpu7du+vjjz++T5U2ji/jzMnJkc1m81rCwsLuY7W++/TTTzVy5EjFxsbKZrNp/fr1P9lnx44d6t27t0JDQ/Xwww8rJyfnntfZWL6Oc8eOHTfNpc1mU2lp6f0p+A5kZ2fr0UcfVatWrRQVFaWnn35ax48f/8l+gfbevJNxBuJ7c+XKlUpKSvI8tCslJUWbNm26bZ9Am0vJ93EG4lzeaMmSJbLZbJo2bdpt2/ljPgM+oPzP//yPZsyYofnz5+vAgQPq0aOHUlNTVVZWdsv2eXl5Sk9P17hx43Tw4EE9/fTTevrpp/Xll1/e58p94+s4pR+eAFhSUuJZvv766/tYse8uX76sHj16aMWKFQ1qf/r0aaWlpenxxx9Xfn6+pk2bpldeeUVbtmy5x5U2jq/jrHP8+HGv+YyKirpHFTbezp07NXnyZO3Zs0e5ubmqrq7W0KFDdfny5Xr7BOJ7807GKQXee/PBBx/UkiVLtH//fn3xxRd64okn9NRTT+nIkSO3bB+Icyn5Pk4p8Obyx/bt26e33npLSUlJt23nt/m0Atxjjz1mTZ482bNeU1NjxcbGWtnZ2bds/9xzz1lpaWle25KTk61XX331ntbZWL6Oc/Xq1VZERMR9qu7uk2StW7futm3+6Z/+yerWrZvXtr//+7+3UlNT72Fld1dDxvmnP/3JkmR9991396Wme6GsrMySZO3cubPeNoH63vyxhowz0N+bdR544AHrP/7jP265rynMZZ3bjTOQ57KiosLq1KmTlZubaw0aNMiaOnVqvW39NZ8BfQbl+++/1/79+/Xkk096tjVr1kxPPvmkdu/efcs+u3fv9movSampqfW2N8GdjFOSKisrFR8fr7i4uJ/8v4BAFIhz2Rg9e/ZUTEyM/vZv/1a7du3ydzk+KS8vlyS1bt263jZNYT4bMk4psN+bNTU1+uCDD3T58mWlpKTcsk1TmMuGjFMK3LmcPHmy0tLSbpqnW/HXfAZ0QPn2229VU1Oj6Ohor+3R0dH1Xp8vLS31qb0J7mScnTt31jvvvKM//OEP+s///E/V1taqX79+Onfu3P0o+b6oby7dbreuXLnip6ruvpiYGK1atUofffSRPvroI8XFxWnw4ME6cOCAv0trkNraWk2bNk1/8zd/o0ceeaTedoH43vyxho4zUN+bBQUFatmypUJDQzVx4kStW7dOiYmJt2wbyHPpyzgDdS4/+OADHThwQNnZ2Q1q76/5DMhfM8ZPS0lJ8Ur9/fr1U9euXfXWW29p0aJFfqwMvurcubM6d+7sWe/Xr58KCwu1bNkyvffee36srGEmT56sL7/8Up999pm/S7mnGjrOQH1vdu7cWfn5+SovL9fatWs1duxY7dy5s94P70DlyzgDcS7Pnj2rqVOnKjc31/gbegM6oLRt21Z2u13nz5/32n7+/Hm5XK5b9nG5XD61N8GdjPNGwcHB6tWrl06ePHkvSvSL+ubS4XCoefPmfqrq/njssccC4gM/MzNTGzdu1KeffqoHH3zwtm0D8b1Zx5dx3ihQ3pshISF6+OGHJUl9+vTRvn379Nvf/lZvvfXWTW0DeS59GeeNAmEu9+/fr7KyMvXu3duzraamRp9++qnefPNNXbt2TXa73auPv+YzoC/xhISEqE+fPtq2bZtnW21trbZt21bvNcOUlBSv9pKUm5t722uM/nYn47xRTU2NCgoKFBMTc6/KvO8CcS7vlvz8fKPn0rIsZWZmat26ddq+fbseeuihn+wTiPN5J+O8UaC+N2tra3Xt2rVb7gvEuazP7cZ5o0CYyyFDhqigoED5+fmepW/fvsrIyFB+fv5N4UTy43ze01tw74MPPvjACg0NtXJycqyjR49aEyZMsCIjI63S0lLLsixr9OjR1pw5czztd+3aZQUFBVlLly61jh07Zs2fP98KDg62CgoK/DWEBvF1nAsWLLC2bNliFRYWWvv377eef/55KywszDpy5Ii/hvCTKioqrIMHD1oHDx60JFn/+q//ah08eND6+uuvLcuyrDlz5lijR4/2tD916pQVHh5uzZo1yzp27Ji1YsUKy263W5s3b/bXEBrE13EuW7bMWr9+vXXixAmroKDAmjp1qtWsWTNr69at/hrCT5o0aZIVERFh7dixwyopKfEsVVVVnjZN4b15J+MMxPfmnDlzrJ07d1qnT5+2Dh8+bM2ZM8ey2WzWJ598YllW05hLy/J9nIE4l7dy47d4TJnPgA8olmVZy5cvt9q1a2eFhIRYjz32mLVnzx7PvkGDBlljx471ar9mzRorISHBCgkJsbp162b98Y9/vM8V3xlfxjlt2jRP2+joaGvEiBHWgQMH/FB1w9V9nfbGpW5cY8eOtQYNGnRTn549e1ohISFWhw4drNWrV9/3un3l6zh//etfWx07drTCwsKs1q1bW4MHD7a2b9/un+Ib6Fbjk+Q1P03hvXkn4wzE9+bLL79sxcfHWyEhIZbT6bSGDBni+dC2rKYxl5bl+zgDcS5v5caAYsp82izLsu7tORoAAADfBPQ9KAAAoGkioAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAXBP7dixQzabTZcuXfJ3KQACCAEFwD3Vr18/lZSUKCIiosF9qqqqNHfuXHXs2FFhYWFyOp0aNGiQ/vCHP9zDSgGYJMjfBQBo2kJCQnz+WfaJEydq7969Wr58uRITE3XhwgXl5eXpwoUL96hKAKbhDAoAnwwePFhTpkzRtGnT9MADDyg6Olr//u//rsuXL+ull15Sq1at9PDDD2vTpk2Sbr7Ek5OTo8jISG3ZskVdu3ZVy5YtNWzYMJWUlHheY8OGDXrttdc0YsQItW/fXn369NGUKVP08ssve9rYbDatX7/eq7bIyEjl5ORIks6cOSObzaYPPvhA/fr1U1hYmB555BHt3Lnznv77ALg7CCgAfPbuu++qbdu2+vzzzzVlyhRNmjRJo0aNUr9+/XTgwAENHTpUo0ePVlVV1S37V1VVaenSpXrvvff06aefqqioSDNnzvTsd7lc+vjjj1VRUdHoWmfNmqV//Md/1MGDB5WSkqKRI0dyJgYIAAQUAD7r0aOH5s2bp06dOmnu3LkKCwtT27ZtNX78eHXq1Em/+tWvdOHCBR0+fPiW/aurq7Vq1Sr17dtXvXv3VmZmprZt2+bZ//bbbysvL09t2rTRo48+qunTp2vXrl13VGtmZqaeffZZde3aVStXrlRERIR+//vf39GxANw/BBQAPktKSvL8bbfb1aZNG3Xv3t2zLTo6WpJUVlZ2y/7h4eHq2LGjZz0mJsar7cCBA3Xq1Clt27ZNf/d3f6cjR45owIABWrRokc+1pqSkeP4OCgpS3759dezYMZ+PA+D+IqAA8FlwcLDXus1m89pms9kkSbW1tQ3ub1nWTW0GDBig2bNn65NPPtHChQu1aNEiff/99/X2qa6uvrMBATAOAQVAQEhMTNT169d19epVSZLT6fS6sfbEiRO3vOdlz549nr+vX7+u/fv3q2vXrve+YACNwteMARhn8ODBSk9PV9++fdWmTRsdPXpUr732mh5//HE5HA5J0hNPPKE333xTKSkpqqmp0ezZs286MyNJK1asUKdOndS1a1ctW7ZM3333nde3gQCYiTMoAIyTmpqqd999V0OHDlXXrl01ZcoUpaamas2aNZ42r7/+uuLi4jRgwAC98MILmjlzpsLDw2861pIlS7RkyRL16NFDn332mTZs2KC2bdvez+EAuAM268aLuADQBJw5c0YPPfSQDh48qJ49e/q7HAA+4gwKAAAwDgEFAAAYh0s8AADAOJxBAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACM8/8BvUW5WZ73W4YAAAAASUVORK5CYII=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGwCAYAAABLvHTgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKF0lEQVR4nO3deXhTVcIG8DdJm3RNUujehrIvpaUsZSmyiHaoyKDgwjoIyDIiOEJdkHEBlxHGXRFhdD4FHWVTQEQEsVBQKFuhBQqUtXRvodCk+5Kc74/SSKVICm1vlvf3PHmGJifJm96RvNx7zr0yIYQAERERkZ2RSx2AiIiIqCmw5BAREZFdYskhIiIiu8SSQ0RERHaJJYeIiIjsEksOERER2SWWHCIiIrJLTlIHkJLJZEJ2djY8PT0hk8mkjkNEREQWEEKgqKgIgYGBkMtvvr/GoUtOdnY2dDqd1DGIiIjoNmRkZCA4OPimjzt0yfH09ARQ80tSq9USpyEiIiJLGAwG6HQ68/f4zTh0yak9RKVWq1lyiIiIbMytpppw4jERERHZJZYcIiIiskssOURERGSXHHpODhEROR6j0YiqqiqpY9CfcHZ2hkKhuOPXYckhIiKHIIRAbm4uCgsLpY5CFtBqtfD397+j89ix5BARkUOoLTi+vr5wc3PjSWCtlBACpaWlyM/PBwAEBATc9mux5BARkd0zGo3mgtOyZUup49AtuLq6AgDy8/Ph6+t724euOPGYiIjsXu0cHDc3N4mTkKVqt9WdzJ9iySEiIofBQ1S2ozG2FUsOERER2SWWHCIiIrJLLDlERERkl1hymkBFtRH7zhdIHYOIiAjx8fGQyWQ3nB/o7rvvxpw5cyTJ1FxYchqZvrQKUYt2YPxn+5CjL5M6DhERUZOqrKyUOsJNseQ0Mo2bM9r7esAkgG8PZUodh4iIbkIIgdLKakluQgiLc959992YPXs2Zs+eDY1GA29vb7z88svm1/jqq68QGRkJT09P+Pv7Y/z48eYT6aWlpWHIkCEAAC8vL8hkMkyePBmTJ0/Grl278OGHH0Imk0EmkyEtLQ0AcPz4cQwbNgweHh7w8/PDxIkTcfny5RvyzJkzB97e3oiJiTHvLYqLi0NkZCTc3NzQv39/pKammp+XnJyMIUOGwNPTE2q1Gr169cKhQ4fudDP+KZ4MsAmM7a3DgQtXsOZQBmYNaQ+5nEsWiYisTVmVEaGvbJPkvU+8FgM3peVfwStXrsTUqVNx4MABHDp0CDNmzECrVq0wffp0VFVV4fXXX0enTp2Qn5+P2NhYTJ48GVu2bIFOp8N3332Hhx9+GKmpqVCr1eYT7Z0+fRphYWF47bXXAAA+Pj4oLCzEPffcg2nTpuH9999HWVkZ5s2bh9GjR2PHjh118sycORN79uwBAOTk5AAAXnzxRbz77rvw8fHBE088gccff9w8ZsKECejRoweWLVsGhUKBpKQkODs7N8rv82ZYcprAsLAALNiUgsyrZdh7rgADOnhLHYmIiGyYTqfD+++/D5lMhk6dOuHYsWN4//33MX36dDz++OPmcW3btsVHH32E3r17o7i4GB4eHmjRogUAwNfXF1qt1jxWqVTCzc0N/v7+5vs+/vhj9OjRA2+++ab5vs8//xw6nQ6nT59Gx44dAQAdOnTAW2+9ZR5TW3L+9a9/YfDgwQCAF154AcOHD0d5eTlcXFyQnp6O5557Dp07dza/RlNjyWkCrkoFRvUIwpcJF7H6YDpLDhGRFXJ1VuDEazGSvXdD9OvXr87J8aKiovDuu+/CaDQiKSkJCxcuRHJyMq5evQqTyQQASE9PR2hoaIPeJzk5GTt37oSHh8cNj507d85ccnr16lXv87t162b+c+01p/Lz89GqVSvExsZi2rRp+OqrrxAdHY1HH30U7dq1a1C+huKcnCYyprcOAPBzSh6ulFjvpCwiIkclk8ngpnSS5NZYZ14uLy9HTEwM1Go1vv76axw8eBAbNmwAcHsTgouLizFixAgkJSXVuZ05cwaDBg0yj3N3d6/3+dcffqr9jLWla+HChUhJScHw4cOxY8cOhIaGmrM2Fe7JaSJdAzUID9LgWJYeG45kYeqANlJHIiIiG7V///46P+/btw8dOnTAqVOnUFBQgMWLF0Onq/nH9R8n8yqVSgA1Fyn94/1/vK9nz5747rvv0Lp1azg5NX5F6NixIzp27Ii5c+di3Lhx+OKLLzBq1KhGf59a3JPThGr35qw+kN6gmfRERETXS09PR2xsLFJTU7Fq1SosWbIETz/9NFq1agWlUoklS5bg/Pnz2LRpE15//fU6zw0JCYFMJsPmzZtx6dIlFBcXAwBat26N/fv3Iy0tDZcvX4bJZMKsWbNw5coVjBs3DgcPHsS5c+ewbds2TJky5YZC1BBlZWWYPXs24uPjcfHiRezZswcHDx5Ely5d7uj3cissOU3oge6BcHGW40x+MQ6nF0odh4iIbNRjjz2GsrIy9OnTB7NmzcLTTz+NGTNmwMfHBytWrMC6desQGhqKxYsX45133qnz3KCgILz66qt44YUX4Ofnh9mzZwMAnn32WSgUCoSGhsLHxwfp6ekIDAzEnj17YDQaMXToUISHh2POnDnQarWQy2+/MigUChQUFOCxxx5Dx44dMXr0aAwbNgyvvvrqHf1ebkUmHHgXg8FggEajgV6vh1qtbpL3eGZtMr47nInRkcF465GIJnkPIiL6c+Xl5bhw4QLatGkDFxcXqeM0yN13343u3bvjgw8+kDpKs/qzbWbp9zf35DSxsX1qDln9kJyDovIqidMQERE5DpacJhYZ4oW2Pu4oqzJi89EcqeMQERE5DJacJiaTyTC2dgLywQyJ0xARka2Jj493uENVjYUlpxk81DMYTnIZkjMKcTLHIHUcIiKH5cDTUG1OY2wrlpxm4O2hwl9C/QAAa7g3h4io2dWepK60tFTiJGSp2m11J9e34skAm8mY3jr8dDwXG45k4YVhneHSwFN6ExHR7VMoFNBqtearc7u5uTXaWYepcQkhUFpaivz8fGi1WigUt/99yZLTTAZ28EGgxgXZ+nJsS8nFg92DpI5ERORQai9EWVt0yLpptdo6Fw+9HSw5zUQhl+HRSB0+jDuDNQczWHKIiJqZTCZDQEAAfH19UVXFU3pYM2dn5zvag1OLJacZPRoZjI92nMHecwW4WFCCkJb1X+CMiIiajkKhaJQvULJ+nHjcjIK93DCwgw8AYO0hTkAmIiJqSiw5zaz2nDnrDmWi2miSOA0REZH9YslpZtFd/NDSXYn8ogrEp16SOg4REZHdYslpZkonOR7uFQyAZ0AmIiJqSiw5EhgdWXPIamdqPvIM5RKnISIisk8sORJo7+uB3q29YDQJfJuYKXUcIiIiu8SSI5ExvVsBqLnMg8nEa6kQERE1NpYcidwf7g9PlRPSr5Ri3/kCqeMQERHZHZYcibgpnfBA90AAnIBMRETUFFhyJDT22iGrrcdzcbWkUuI0RERE9oUlR0JhQWqEBqhRaTRhY1KW1HGIiIjsCkuOhGQyGcb2qVlOvvpABoTgBGQiIqLGwpIjsQcjgqBykiM1rwjJmXqp4xAREdkNlhyJadyccX94AABgzcF0idMQERHZD5YcKzDm2kU7NyVlo6SiWuI0RERE9oElxwr0bdMCrVu6oaTSiB+P5kgdh4iIyC6w5FgBmUxmPgPyah6yIiIiahQsOVbi4V5BcJLLcDi9EKfziqSOQ0REZPNYcqyEr6cL7u3iC6DmelZERER0Z1hyrEjtGZDXH85ERbVR4jRERES2jSXHigzq6AN/tQuullZh+4k8qeMQERHZtAaVnEWLFqF3797w9PSEr68vRo4cidTU1DpjysvLMWvWLLRs2RIeHh54+OGHkZdX9ws7PT0dw4cPh5ubG3x9ffHcc8+hurru0un4+Hj07NkTKpUK7du3x4oVK27Is3TpUrRu3RouLi7o27cvDhw40JCPY3UUchlGRwYD4CErIiKiO9WgkrNr1y7MmjUL+/btw/bt21FVVYWhQ4eipKTEPGbu3Ln44YcfsG7dOuzatQvZ2dl46KGHzI8bjUYMHz4clZWV2Lt3L1auXIkVK1bglVdeMY+5cOEChg8fjiFDhiApKQlz5szBtGnTsG3bNvOYNWvWIDY2FgsWLMDhw4cRERGBmJgY5Ofn38nvQ3KPRuogkwG/nrmMjCulUschIiKyXeIO5OfnCwBi165dQgghCgsLhbOzs1i3bp15zMmTJwUAkZCQIIQQYsuWLUIul4vc3FzzmGXLlgm1Wi0qKiqEEEI8//zzomvXrnXea8yYMSImJsb8c58+fcSsWbPMPxuNRhEYGCgWLVpkcX69Xi8ACL1e34BP3fT+9t99ImTeZvHOtlNSRyEiIrI6ln5/39GcHL2+5lpLLVq0AAAkJiaiqqoK0dHR5jGdO3dGq1atkJCQAABISEhAeHg4/Pz8zGNiYmJgMBiQkpJiHnP9a9SOqX2NyspKJCYm1hkjl8sRHR1tHlOfiooKGAyGOjdrVHsG5HWHMlFtNEmchoiIyDbddskxmUyYM2cO7rrrLoSFhQEAcnNzoVQqodVq64z18/NDbm6uecz1Baf28drH/myMwWBAWVkZLl++DKPRWO+Y2teoz6JFi6DRaMw3nU7X8A/eDP4S6gcvN2fkGsqx+8wlqeMQERHZpNsuObNmzcLx48exevXqxszTpObPnw+9Xm++ZWRY5+RelZMCD/WsmYC8+oB1ZiQiIrJ2t1VyZs+ejc2bN2Pnzp0IDg423+/v74/KykoUFhbWGZ+Xlwd/f3/zmD+utqr9+VZj1Go1XF1d4e3tDYVCUe+Y2teoj0qlglqtrnOzVrWHrOJO5SO/qFziNERERLanQSVHCIHZs2djw4YN2LFjB9q0aVPn8V69esHZ2RlxcXHm+1JTU5Geno6oqCgAQFRUFI4dO1ZnFdT27duhVqsRGhpqHnP9a9SOqX0NpVKJXr161RljMpkQFxdnHmPrOvp5omcrLYwmge8Ss6SOQ0REZHMaVHJmzZqF//3vf/jmm2/g6emJ3Nxc5ObmoqysDACg0WgwdepUxMbGYufOnUhMTMSUKVMQFRWFfv36AQCGDh2K0NBQTJw4EcnJydi2bRteeuklzJo1CyqVCgDwxBNP4Pz583j++edx6tQpfPLJJ1i7di3mzp1rzhIbG4vPPvsMK1euxMmTJzFz5kyUlJRgypQpjfW7kVztGZDXHEyHEELiNERERDamIUu2ANR7++KLL8xjysrKxJNPPim8vLyEm5ubGDVqlMjJyanzOmlpaWLYsGHC1dVVeHt7i2eeeUZUVVXVGbNz507RvXt3oVQqRdu2beu8R60lS5aIVq1aCaVSKfr06SP27dvXkI9jtUvIaxWXV4nQl38SIfM2i4Rzl6WOQ0REZBUs/f6WCeG4uwgMBgM0Gg30er3Vzs+Zv/4oVh3IwKgeQXh/THep4xAREUnO0u9vXrvKyo25dshqy7Ec6EurJE5DRERkO1hyrFxEsAad/T1RUW3C98mcgExERGQplhwrJ5PJzMvJVx3I4ARkIiIiC7Hk2IBRPYKgdJLjZI4Bx7Os81IURERE1oYlxwZo3ZQYFlZzksPVB9MlTkNERGQbWHJsRO0hq01J2SitrJY4DRERkfVjybER/dq0REhLNxRVVGPLsZtfhJSIiIhqsOTYCLlchtGRNXtz1vCQFRER0S2x5NiQR3oFQyGX4WDaVZzNL5Y6DhERkVVjybEhfmoXDOnkC4B7c4iIiG6FJcfGjL02Afm7w1morDZJnIaIiMh6seTYmLs7+cDXU4UrJZX45WSe1HGIiIisFkuOjXFSyPFoZDAAYPXBDInTEBERWS+WHBtUu8rq1zOXkHm1VOI0RERE1oklxwaFtHRH/3YtIQSw7lCm1HGIiIisEkuOjao9A/K6QxkwmnjRTiIioj9iybFRMV39oXF1Rra+HL+euSR1HCIiIqvDkmOjXJwVGNUjCACwhhOQiYiIbsCSY8NqD1ltP5GHy8UVEqchIiKyLiw5NqxLgBoROi2qTQLrD3MCMhER0fVYcmzcuGt7c1YfzIAQnIBMRERUiyXHxv01IhBuSgXOXyrBoYtXpY5DRERkNVhybJyHygkjugUCAFYf4ARkIiKiWiw5dmBMn5pDVj8ey4ahvEriNERERNaBJccO9NBp0dHPA+VVJmxKypY6DhERkVVgybEDMpkMY3q3AsBz5hAREdViybETo3oEQamQ41iWHsez9FLHISIikhxLjp1o4a7E0K5+ALg3h4iICGDJsStjrx2y2piUhbJKo8RpiIiIpMWSY0f6t2uJYC9XFJVX46fjOVLHISIikhRLjh2Ry2UYE/n7GZCJiIgcGUuOnXkkMhhyGXDgwhWcv1QsdRwiIiLJsOTYmQCNK+7u5AsAWHOIe3OIiMhxseTYoTHXLtr5XWImqowmidMQERFJgyXHDt3T2RfeHipcLq5E3Ml8qeMQERFJgiXHDjkr5HikVzAAYM3BdInTEBERSYMlx07VHrLadfoSsgvLJE5DRETU/Fhy7FQbb3f0a9sCJgF8m5gpdRwiIqJmx5Jjx8Zed9FOk0lInIaIiKh5seTYsfvC/KF2cUJWYRn2nLssdRwiIqJmxZJjx1ycFRjVIwgAz4BMRESOhyXHzo25dsjq55RcXCmplDgNERFR82HJsXOhgWp0C9agyiiw/jAnIBMRkeNgyXEAtcvJ1xzMgBCcgExERI6BJccBPBARCFdnBc7kF+Nw+lWp4xARETULlhwH4OnijOHdAgAAqw9wAjIRETkGlhwHMfbaIavNR3NQVF4lcRoiIqKmx5LjIHqFeKGdjzvKqoz4ITlH6jhERERNjiXHQchksuvOgMyLdhIRkf1jyXEgo3oGwVkhQ3KmHieyDVLHISIialIsOQ7E20OFv4T6AQDWHuIEZCIism8sOQ6m9gzI6w9norzKKHEaIiKipsOS42AGtPdGkNYVhvJqbEvJlToOERFRk2HJcTAKuQyjI2uWk/OcOUREZM9YchzQo5HBkMmAhPMFSLtcInUcIiKiJsGS44ACta4Y3NEHACcgExGR/WLJcVC1Z0Bel5iJaqNJ4jRERESNjyXHQd3T2Q/eHkpcKqrAztRLUschIiJqdCw5DkrpJMfDPYMB8AzIRERkn1hyHNjoa4esdpzKR66+XOI0REREjYslx4G18/FAn9YtYBLAd4czpY5DRETUqFhyHNyYa3tz1hzMgMkkJE5DRETUeFhyHNz94QHwVDkh/UopEs4XSB2HiIio0bDkODhXpQIP9ggEAKw+yHPmEBGR/WDJIYy9dtHObcdzcbWkUuI0REREjYMlhxAWpEHXQDUqjSZsOJIldRwiIqJG0eCSs3v3bowYMQKBgYGQyWTYuHFjnccnT54MmUxW53bffffVGXPlyhVMmDABarUaWq0WU6dORXFxcZ0xR48excCBA+Hi4gKdToe33nrrhizr1q1D586d4eLigvDwcGzZsqWhH4euGXvdBGQhOAGZiIhsX4NLTklJCSIiIrB06dKbjrnvvvuQk5Njvq1atarO4xMmTEBKSgq2b9+OzZs3Y/fu3ZgxY4b5cYPBgKFDhyIkJASJiYl4++23sXDhQnz66afmMXv37sW4ceMwdepUHDlyBCNHjsTIkSNx/Pjxhn4kAvBA9yConORIzStCUkah1HGIiIjumEzcwT/bZTIZNmzYgJEjR5rvmzx5MgoLC2/Yw1Pr5MmTCA0NxcGDBxEZGQkA2Lp1K+6//35kZmYiMDAQy5Ytw4svvojc3FwolUoAwAsvvICNGzfi1KlTAIAxY8agpKQEmzdvNr92v3790L17dyxfvrze966oqEBFRYX5Z4PBAJ1OB71eD7Vafbu/BrsRuyYJ649kYWxvHRY/3E3qOERERPUyGAzQaDS3/P5ukjk58fHx8PX1RadOnTBz5kwUFPy+NDkhIQFardZccAAgOjoacrkc+/fvN48ZNGiQueAAQExMDFJTU3H16lXzmOjo6DrvGxMTg4SEhJvmWrRoETQajfmm0+ka5fPai9pz5mxKzkZxRbXEaYiIiO5Mo5ec++67D19++SXi4uLw73//G7t27cKwYcNgNBoBALm5ufD19a3zHCcnJ7Ro0QK5ubnmMX5+fnXG1P58qzG1j9dn/vz50Ov15ltGBpdMX69PmxZo6+2O0kojfjyaLXUcIiKiO+LU2C84duxY85/Dw8PRrVs3tGvXDvHx8bj33nsb++0aRKVSQaVSSZrBmslkMozprcOin05h9cEMjLm2tJyIiMgWNfkS8rZt28Lb2xtnz54FAPj7+yM/P7/OmOrqaly5cgX+/v7mMXl5eXXG1P58qzG1j9PteahnMJzkMhxJL0RqbpHUcYiIiG5bk5eczMxMFBQUICAgAAAQFRWFwsJCJCYmmsfs2LEDJpMJffv2NY/ZvXs3qqqqzGO2b9+OTp06wcvLyzwmLi6uzntt374dUVFRTf2R7JqPpwrRXWoOA67hGZCJiMiGNbjkFBcXIykpCUlJSQCACxcuICkpCenp6SguLsZzzz2Hffv2IS0tDXFxcXjwwQfRvn17xMTEAAC6dOmC++67D9OnT8eBAwewZ88ezJ49G2PHjkVgYM3lBcaPHw+lUompU6ciJSUFa9aswYcffojY2Fhzjqeffhpbt27Fu+++i1OnTmHhwoU4dOgQZs+e3Qi/Fsc2pk/NBOT1RzJRUW2UOA0REdFtEg20c+dOAeCG26RJk0RpaakYOnSo8PHxEc7OziIkJERMnz5d5Obm1nmNgoICMW7cOOHh4SHUarWYMmWKKCoqqjMmOTlZDBgwQKhUKhEUFCQWL158Q5a1a9eKjh07CqVSKbp27Sp+/PHHBn0WvV4vAAi9Xt/QX4NdqzaaRL83fxEh8zaLTUlZUschIiKqw9Lv7zs6T46ts3SdvSN6b/tpfBR3BgPae+N/0/pKHYeIiMhM0vPkkO17tFcwZDLgt7OXcTafE5CJiMj2sORQvXQt3HBv55rzGcWuTUZltUniRERERA3DkkM39frIMGjdnHE0U493f06VOg4REVGDsOTQTQVoXPHva9ew+s/u8/j1zCWJExEREVmOJYf+VExXf0zoW3Pm49i1ySgorrjFM4iIiKwDSw7d0kvDQ9HB1wOXiirw3LdH4cAL8oiIyIaw5NAtuSoVWDK+B5ROcuw4lY8Ve9OkjkRERHRLLDlkkc7+arw0vAsAYNGWU0jJ1kuciIiI6M+x5JDFJvYLQXQXP1QaTfjHqiMorayWOhIREdFNseSQxWQyGd56pBv81Cqcu1SC1zefkDoSERHRTbHkUIO0cFfi/dHdIZMBqw5kYMuxHKkjERER1Yslhxqsf3tvzBzcDgDwwndHkVVYJnEiIiKiG7Hk0G2Z+5eO6K7TwlBejTmrj6DayMs+EBGRdWHJodvirJDjo7E94KFywsG0q/h451mpIxEREdXBkkO3rVVLN7wxMgwA8FHcGRxMuyJxIiIiot+x5NAdGdkjCA/1CIJJAE+vOgJ9aZXUkYiIiACw5FAjeG1kGFq3dEO2vhzzN/CyD0REZB1YcuiOeaic8OHYHnCSy7DlWC7WHMyQOhIRERFLDjWOCJ0Wz8Z0AgC8+sMJnM0vljgRERE5OpYcajQzBrbFgPbeKKsy4qlVR1BeZZQ6EhEROTCWHGo0crkM742OQAt3JU7mGPDvraekjkRERA6MJYcala/aBe882g0A8MWeNOw8lS9xIiIiclQsOdTo7unsh8n9WwMAnl2XjHxDubSBiIjIIbHkUJN4YVhndAlQo6CkEs+sS4bJxGXlRETUvFhyqEm4OCuwZFx3uDjL8euZy/js1/NSRyIiIgfDkkNNpr2vJxaM6AoAeHtbKo5mFkobiIiIHApLDjWpsb11GBbmj2qTwD9WHUFxRbXUkYiIyEGw5FCTkslkWPxQNwRqXJBWUIoF36dIHYmIiBwESw41OY2bMz4Y2wNyGfDd4Ux8n5QldSQiInIALDnULPq0aYGn7ukAAHhxw3GkF5RKnIiIiOwdSw41m6fuaY/IEC8UV1TjH6uPoMpokjoSERHZMZYcajZOCjk+GNsdni5OSMooxAe/nJY6EhER2TGWHGpWwV5uWPxQzWUfPok/h71nL0uciIiI7BVLDjW74d0CMCZSByGAuWuTcKWkUupIRERkh1hySBILHghFWx935Bkq8Py3RyEEL/tARESNiyWHJOGmdMKScT2gVMjxy8k8/G/fRakjERGRnWHJIcl0DdRg3rDOAIDXfzyJU7kGiRMREZE9YckhST1+V2vc3ckHldUm/GPVEZRXGaWOREREdoIlhyQlk8nwzqMR8PZQ4XReMd748YTUkYiIyE6w5JDkvD1UeG90BADgf/vSsS0lV+JERERkD1hyyCoM6uiDGYPaAgDmfXcUOfoyiRMREZGtY8khq/Hs0E4ID9KgsLQKc1YnwWjisnIiIrp9LDlkNZROcnw0rgfclArsv3AFy+LPSh2JiIhsGEsOWZU23u547cEwAMD7v5xB4sWrEiciIiJbxZJDVufhnkF4ICIQRpPA06uPwFBeJXUkIiKyQSw5ZHVkMhneGBWGYC9XZF4tw4sbjvOyD0RE1GAsOWSV1C7O+GhcDyjkMvyQnI1vEzOljkRERDaGJYesVs9WXoj9S0cAwIJNKTh/qVjiREREZEtYcsiqPTG4Hfq1bYHSSiOeXp2EymqT1JGIiMhGsOSQVVPIZfhgTA9o3ZxxLEuPd35OlToSERHZCJYcsnr+Ghe89XA3AMCnu89j1+lLEiciIiJbwJJDNmFoV3/8rV8rAMAza5NxubhC4kRERGTtWHLIZrw0PBQd/TxwubgCz65LhomXfSAioj/BkkM2w8VZgSXjekLlJEd86iV8sTdN6khERGTFWHLIpnTy98RLw7sAABb/dBLHs/QSJyIiImvFkkM252/9QvCXUD9UGQX+sfoISiurpY5ERERWiCWHbI5MJsNbD3eDv9oF5y+V4NVNJ6SOREREVoglh2ySl7sS742JgEwGrDmUgc1Hs6WOREREVoYlh2xW/3beePLudgCA+euPIeNKqcSJiIjImrDkkE2bE90R3XVaFJVXY86aJFQbedkHIiKqwZJDNs1ZIceScT3gqXJC4sWr+GjHWakjERGRlWDJIZuna+GGN0aFAQA+3nEGBy5ckTgRERFZA5YcsgsPdg/Cwz2DYRLAnNVHUFhaKXUkIiKSGEsO2Y1XH+yK1i3dkK0vxwvfHYMQvOwDEZEjY8khu+GhcsJH43rAWSHD1pRcrDqQIXUkIiKSUINLzu7duzFixAgEBgZCJpNh48aNdR4XQuCVV15BQEAAXF1dER0djTNnztQZc+XKFUyYMAFqtRparRZTp05FcXFxnTFHjx7FwIED4eLiAp1Oh7feeuuGLOvWrUPnzp3h4uKC8PBwbNmypaEfh+xMt2AtnovpBAB4bXMKzuQVSZyIiIik0uCSU1JSgoiICCxdurTex9966y189NFHWL58Ofbv3w93d3fExMSgvLzcPGbChAlISUnB9u3bsXnzZuzevRszZswwP24wGDB06FCEhIQgMTERb7/9NhYuXIhPP/3UPGbv3r0YN24cpk6diiNHjmDkyJEYOXIkjh8/3tCPRHZm2oC2GNjBG+VVJjy16gjKq4xSRyIiIimIOwBAbNiwwfyzyWQS/v7+4u233zbfV1hYKFQqlVi1apUQQogTJ04IAOLgwYPmMT/99JOQyWQiKytLCCHEJ598Iry8vERFRYV5zLx580SnTp3MP48ePVoMHz68Tp6+ffuKv//97xbn1+v1AoDQ6/UWP4dsQ56hTPR87WcRMm+zWPD9canjEBFRI7L0+7tR5+RcuHABubm5iI6ONt+n0WjQt29fJCQkAAASEhKg1WoRGRlpHhMdHQ25XI79+/ebxwwaNAhKpdI8JiYmBqmpqbh69ap5zPXvUzum9n3qU1FRAYPBUOdG9snX0wXvPBoBAFixNw1xJ/MkTkRERM2tUUtObm4uAMDPz6/O/X5+fubHcnNz4evrW+dxJycntGjRos6Y+l7j+ve42Zjax+uzaNEiaDQa802n0zX0I5INGdLZF4/f1QYA8Ny3R3nZByIiB+NQq6vmz58PvV5vvmVkcPWNvZs3rBNCA9S4UlKJh5btxbFMvdSRiIiomTRqyfH39wcA5OXVPTSQl5dnfszf3x/5+fl1Hq+ursaVK1fqjKnvNa5/j5uNqX28PiqVCmq1us6N7JvKSYHPJ/dGZ39PXCqqwJhPE7DzVP6tn0hERDavUUtOmzZt4O/vj7i4OPN9BoMB+/fvR1RUFAAgKioKhYWFSExMNI/ZsWMHTCYT+vbtax6ze/duVFVVmcds374dnTp1gpeXl3nM9e9TO6b2fYhq+WtcsPaJKAxo743SSiOmfXkI3+xPlzoWERE1sQaXnOLiYiQlJSEpKQlAzWTjpKQkpKenQyaTYc6cOXjjjTewadMmHDt2DI899hgCAwMxcuRIAECXLl1w3333Yfr06Thw4AD27NmD2bNnY+zYsQgMDAQAjB8/HkqlElOnTkVKSgrWrFmDDz/8ELGxseYcTz/9NLZu3Yp3330Xp06dwsKFC3Ho0CHMnj37zn8rZHfULs74fHJvPNwzGEaTwD83HMPb207xrMhERPasocu2du7cKQDccJs0aZIQomYZ+csvvyz8/PyESqUS9957r0hNTa3zGgUFBWLcuHHCw8NDqNVqMWXKFFFUVFRnTHJyshgwYIBQqVQiKChILF68+IYsa9euFR07dhRKpVJ07dpV/Pjjjw36LFxC7nhMJpN49+dUETJvswiZt1k8veqwqKgySh2LiIgawNLvb5kQjvtPWYPBAI1GA71ez/k5DmbtwQzM33AMRpNAVNuWWD6xFzSuzlLHIiIiC1j6/e1Qq6uIao3urcPnk3vDXalAwvkCPLp8L7IKy6SORUREjYglhxzW4I4+WPtEFPzUKpzOK8aopXtwPItLzImI7AVLDjm0roEabHjyLnTy80R+UQXG/CcB8alcYk5EZA9YcsjhBWpdsfaJKPRv1xIllUZMXXkIaw5yiTkRka1jySECoHF1xoopffBQjyAYTQLzvjuG935O5RJzIiIbxpJDdI3SSY53R0fgqXvaAwA+2nEWz6xNRmW1SeJkRER0O1hyiK4jk8nwzNBOWPxQOBRyGdYfycLkLw7AUF516ycTEZFVYckhqsfYPq3wf5Mi4a5UYO+5Ajy6LAHZXGJORGRTWHKIbuLuTr5Y8/co+HiqkJpXhFGf7MGJbIPUsYiIyEIsOUR/IixIgw1P9kcHXw/kGSow+j8J2H36ktSxiIjIAiw5RLcQ7OWGb5/oj35tW6C4ohqPrziItYcypI5FRES3wJJDZAGNmzNWPt4HD3YPRLVJ4Plvj+L97ae5xJyIyIqx5BBZSOWkwAdjumPWkHYAgA/jzuC5b49yiTkRkZViySFqAJlMhudiOuPNUTVLzL9NzMTjKw6iiEvMiYisDksO0W0Y37cV/vtYJNyUCvx29jIeXZ6AHD2XmBMRWROWHKLbNKSzL9bMiIK3hwqncoswaulenMzhEnMiImvBkkN0B8KDa5aYt/NxR66hHKOXJ+C3M5eljkVERGDJIbpjuhZuWD/zLvRp0wJFFdWY/MUBfJuYKXUsIiKHx5JD1Ag0bs74amofjIioWWL+7LpkfPjLGS4xJyKSEEsOUSNROSnw4ZjueGJwzRLz9385jXnfHUWVkUvMiYikwJJD1IjkchleGNYZr48Mg1wGrD3EJeZERFJhySFqAhP7heCzxyLh6qzAr2cuY/R/9iHPUC51LCIih8KSQ9RE7u3ihzV/7wdvDyVO5hgwaukepOYWSR2LiMhhsOQQNaFuwVpsePIutPVxR7a+HI8s34u9Z7nEnIioObDkEDWxmiXm/dG7tReKyqsx6YsD2HCES8yJiJoaSw5RM9C6KfHV1L4Y3i0AVUaBuWuS8fEOLjEnImpKLDlEzcTFWYElY3vg74PaAgDe+fk05q8/xiXmRERNhCWHqBnJ5TLMv78LXnuwK+QyYPXBDExbeQjFFdVSRyMisjssOUQSeCyqNf4zMRIuznLsOn0JY/6TgHwuMScialQsOUQS+UuoH1bPiEJLdyVSsg0Y9clenMnjEnMiosbCkkMkoe66a0vMvd2RVViGh5btRcK5AqljERHZBZYcIom1aumG72b2R6+QmiXmj32+H98nZUkdi4jI5rHkEFkBL3clvp7WF/eH+6PKKPD06iQs3XmWS8yJiO4ASw6RlXBxVuDjcT0xbUAbAMDb21Lx4sbjqOYScyKi28KSQ2RF5HIZXvprKBaMCIVMBnyzPx3TvzyEEi4xJyJqMJYcIis05a42WP63XlA5ybEz9RLGfroP+UVcYk5E1BAsOURWKqarP1bN6IcW7kocy9Jj1NK9OJvPJeZERJZiySGyYj1beWH9zP5o3dKtZon5J3vx07EcTkgmIrIASw6RlWvt7Y71T96Fnq20MJRXY+bXhzH9y0PIKiyTOhoRkVVjySGyAS3clfhmej88dU97OCtk+OVkPv7y3i7899fzXH1FRHQTLDlENsLFWYFnhnbCln8MRGSIF0orjXjjx5MY+ckeHMvUSx2PiMjqsOQQ2ZgOfp5Y+/coLH4oHGoXJxzPMuDBpb/h1R9SeDVzIqLrsOQQ2SC5XIaxfVoh7pm78WD3QJgE8MWeNPzlvV34OSVX6nhERFaBJYfIhvl4qvDh2B5Y+Xgf6Fq4IkdfjhlfJWLGl4eQo+fEZCJybCw5RHZgcEcf/DxnMJ68ux2c5DL8fCIP0e/uwhd7LsBo4nJzInJMLDlEdsJVqcDz93XG5n8MQM9WWpRUGvHqDycw6pM9OJ7FiclE5HhYcojsTGd/Nb59oj/eGBkGTxcnHM3U44GPf8Mbm0/wGlhE5FBYcojskFwuw9/6hSAudjCGdwuASQD//e0Chr6/G3En86SOR0TULFhyiOyYr9oFS8f3xBeTeyNI64qswjJMXXkIT36diDwDL/hJRPaNJYfIAQzp7IvtsYPw90FtoZDLsOVYLu59dxe+TEjjxGQislssOUQOwk3phPn3d8EPswcgQqdFcUU1Xvk+BQ8v24sT2Qap4xERNTqWHCIHExqoxvqZ/fHag13hoXJCUkYhRnz8GxZtOYnSSk5MJiL7wZJD5IAUchkei2qNuGcGY1iYP4wmgf/sPo+h7+/GztR8qeMRETUKlhwiB+andsGyv/XCfx+LRJDWFZlXyzDli4OY/c1h5HNiMhHZOJYcIkJ0qB9+njsI0wa0gVwGbD6ag3vf24X/7bsIEycmE5GNYskhIgCAu8oJL/01FJtmD0C3YA2Kyqvx0sbjeGT5XqTmFkkdj4iowVhyiKiOsCANNjx5FxaMCIW7UoHD6YUY/tGv+PfWUyirNEodj4jIYiw5RHQDhVyGKXe1wfbYwRga6odqk8Cy+HOI+WA3dp++JHU8IiKLsOQQ0U0Fal3x6WOR+M/EXvBXuyD9Sike+/wAnl59BJeKKqSOR0T0p1hyiOiWYrr645dnBmPKXa0hlwHfJ2Xj3nfjsepAOicmE5HVYskhIot4qJywYERXbJx1F7oGqmEor8b89ccw5tMEnMnjxGQisj4sOUTUIN2Ctfh+1l14aXgXuCkVOJh2Ffd/9Cve/TkV5VWcmExE1oMlh4gazEkhx7SBbfHz3EG4t7MvqowCS3acxX0f7Maes5eljkdEBIAlh4juQLCXG/47KRLLJvSEr6cKaQWlmPDf/Yhdk4SCYk5MJiJpseQQ0R2RyWQYFh6AX54ZjElRIZDJgPVHsnDve7uw9lAGhODEZCKSRqOXnIULF0Imk9W5de7c2fx4eXk5Zs2ahZYtW8LDwwMPP/ww8vLy6rxGeno6hg8fDjc3N/j6+uK5555DdXXdqyPHx8ejZ8+eUKlUaN++PVasWNHYH4WIGkDt4oxXHwzD+pn90dnfE4WlVXj+26MY++k+nM0vljoeETmgJtmT07VrV+Tk5Jhvv/32m/mxuXPn4ocffsC6deuwa9cuZGdn46GHHjI/bjQaMXz4cFRWVmLv3r1YuXIlVqxYgVdeecU85sKFCxg+fDiGDBmCpKQkzJkzB9OmTcO2bdua4uMQUQP0aOWFH54agPnDOsPFWY79F67g/g9/xfvbT3NiMhE1K5lo5H3JCxcuxMaNG5GUlHTDY3q9Hj4+Pvjmm2/wyCOPAABOnTqFLl26ICEhAf369cNPP/2Ev/71r8jOzoafnx8AYPny5Zg3bx4uXboEpVKJefPm4ccff8Tx48fNrz127FgUFhZi69atFmc1GAzQaDTQ6/VQq9V39sGJ6AYZV0rx8vfHEZ9ac5bktt7u+NeocES1aylxMiKyZZZ+fzfJnpwzZ84gMDAQbdu2xYQJE5Ceng4ASExMRFVVFaKjo81jO3fujFatWiEhIQEAkJCQgPDwcHPBAYCYmBgYDAakpKSYx1z/GrVjal/jZioqKmAwGOrciKjp6Fq44YvJvfHx+B7w8VTh/OUSjPtsH55dl4wcfZnU8YjIzjV6yenbty9WrFiBrVu3YtmyZbhw4QIGDhyIoqIi5ObmQqlUQqvV1nmOn58fcnNzAQC5ubl1Ck7t47WP/dkYg8GAsrKb/8W5aNEiaDQa802n093pxyWiW5DJZPhrt0D8EjsYf+vXCjIZ8G1iJgb8eyf+/tUh7Dl7mZOTiahJODX2Cw4bNsz8527duqFv374ICQnB2rVr4erq2thv1yDz589HbGys+WeDwcCiQ9RMNK7OeGNkOEb1CMLb21Kx7/wVbEvJw7aUPLT1ccfEfiF4qGcwNK7OUkclIjvR5EvItVotOnbsiLNnz8Lf3x+VlZUoLCysMyYvLw/+/v4AAH9//xtWW9X+fKsxarX6T4uUSqWCWq2ucyOi5tUrpAVWz4jCz3MH4bGoELgrFTh/qQSv/nAC/d6Mw/z1R3Eim4eSiejONXnJKS4uxrlz5xAQEIBevXrB2dkZcXFx5sdTU1ORnp6OqKgoAEBUVBSOHTuG/Px885jt27dDrVYjNDTUPOb616gdU/saRGT9Ovp54rUHw7D/xWi8PjIMHf08UFZlxKoDGbj/o1/xyLK9+D4pCxXVXJFFRLen0VdXPfvssxgxYgRCQkKQnZ2NBQsWICkpCSdOnICPjw9mzpyJLVu2YMWKFVCr1XjqqacAAHv37gVQs4S8e/fuCAwMxFtvvYXc3FxMnDgR06ZNw5tvvgmgZgl5WFgYZs2ahccffxw7duzAP/7xD/z444+IiYmxOCtXVxFZDyEEDly4gi/3XcS247movnZ1c28PJcb01mF83xAEaaU95E1E1sHS7+9GLzljx47F7t27UVBQAB8fHwwYMAD/+te/0K5dOwA1JwN85plnsGrVKlRUVCAmJgaffPKJ+VAUAFy8eBEzZ85EfHw83N3dMWnSJCxevBhOTr9PIYqPj8fcuXNx4sQJBAcH4+WXX8bkyZMblJUlh8g65RvKsepABr45cBF5hprLQ8hlwL1d/DCxXwgGtPeGXC6TOCURSUWykmNLWHKIrFuV0YRfTuThq30Xsfdcgfn+Nt7umNC3FR7tpYPGjROViRwNS44FWHKIbMfZ/CL8b186vkvMRFFFzWVeXJzleDAiCBOjQhAWpJE4IRE1F5YcC7DkENmekopqbEzKwlcJF3Eqt8h8f49WWkzsF4L7wwPg4qyQMCERNTWWHAuw5BDZLiEEDl28iq8SLuKn4zmoMtb8VdbCXYnRkTpM6NsKuhZuEqckoqbAkmMBlhwi+5BfVI61BzPw9f505OjLAQAyGXBPJ19MjArBoA4+nKhMZEdYcizAkkNkX6qNJsSdysdXCRfx29nL5vtDWrrhb31D8GhkMLRuSgkTElFjYMmxAEsOkf06d6kYX+9Lx7rEDBSV10xUVjnJ8UBEICZGhaBbsFbagER021hyLMCSQ2T/Siur8X1SNr5MuIiTOb9fLiJCVzNR+a/dOFGZyNaw5FiAJYfIcQghcDi9EF8lpGHLsVxUGk0AAC8352sTlUPQqiUnKhPZApYcC7DkEDmmy8UVWHMwA9/sT0dWYRmAmonKd3f0wWNRrTGoow8UnKhMZLVYcizAkkPk2IwmgR2n8vHVvovYffqS+X5dC9drE5V1aOHOicpE1oYlxwIsOURU68LlEny97yLWHsqA4dpEZaWTHH/tFoDHolojIlgDmYx7d4isAUuOBVhyiOiPyiqN+CE5G1/uS8PxrN8nKocHaTAxKgQPRARyojKRxFhyLMCSQ0Q3I4RAUkYhvkq4iM1Hc8wTlTWuzhgdGYwJfUPQ2ttd4pREjoklxwIsOURkiYLiCqw9lImv919E5tUy8/2DOvrgvq7+6N3aC+18PHhWZaJmwpJjAZYcImoIo0kgPrVmovKu05dw/d+eWjdnRIZ4oVdIC/Ru7YXwYA1UTjysRdQUWHIswJJDRLfrYkEJ1h/OwoELV3Ak4yrKq0x1Hlc6yRERrDGXnl4hXrykBFEjYcmxAEsOETWGKqMJJ7INOJh2BYfSruLQxSu4XFx5w7iOfh6IbN0CkSFe6N26BYK9XLlii+g2sORYgCWHiJqCEAJpBaU4dK30HLx4Becvldwwzk+tQmTrFugd4oXI1i3Q2d8TTgq5BImJbAtLjgVYcoiouRQUVyDx4lUcungVB9Ou4HiWHlXGun/9uisV6Bnihchrh7i6t9LCTekkUWIi68WSYwGWHCKSSnmVEckZhebSk3jxqvlq6bUUchm6BqrNpadXay/4erpIlJjIerDkWIAlh4ishdEkcDqvCIcuXjUf5qq9rtb1Qlq6mUtP5LWl65zXQ46GJccCLDlEZM2yCstw6NpenoNpV3Eq14A//o3t5eZsXsEV2boFwoLUXLpOdo8lxwIsOURkSwzlVTh88eq10nMFSRmF9S5d7x6sRWTrmhVcPVt5QePmLFFioqbBkmMBlhwismWV1SakZOvNpedQ2lUUlNy4dL2Tn6e59ES29kKQlkvXybax5FiAJYeI7IkQAhcul9SZ13P+8o1L1/3VLnVKT2d/NRS8JAXZEJYcC7DkEJG9u1xcgUNpV5F48QoOpl3F8Sw9qk11/9r3UDkhPEiD8GANugaqER6kQeuW7rwWF1ktlhwLsOQQkaMpqzQiKaOwZk/Pxas4fPEqiiqqbxjnoXJCaKAaYYEahAfX/G9bHw/u8SGrwJJjAZYcInJ0tUvXj2XqcTxbj2NZepzMMdwwoRkAXJ0VCL22p6droBphQRp08PXgWZqp2bHkWIAlh4joRtVGE85dKsHxrJrSk5KtR0q2AaWVxhvGqpzk6BygRnhQzd6esCANOvp5QunE4kNNhyXHAiw5RESWMZpqJjUfz9JfV34MKK7nUJdSIUcnf0+EBdXs7QkL1KCTvydcnHn+HmocLDkWYMkhIrp9JpPAxSul5uJzPFuPY5l6GMpvLD5Ochk6+HnW7PEJqtnj08VfDVcliw81HEuOBVhyiIgalxACmVfLcOy6PT7Hs/S4Wlp1w1iFXIb2Ph7oGlQzzycsSIPQADXcVbwoKf05lhwLsOQQETU9IQSy9eV1DnUdz9LjcvGNJy6UyYC23u7m0hMWpEFooBpqF561mX7HkmMBlhwiImkIIZBnqKgzuflYlh55hop6x7fxdjefw6d2ng8vV+G4WHIswJJDRGRd8ovKkZJlqDO5ub6rsQOAroXrteXsGnP5aeGubObEJAWWHAuw5BARWb+C4gqkZBvq7PHJuFJ/8QnSuqK7TosInQYRwVqEBWk4x8cOseRYgCWHiMg26UurcDy77nL2C/Vcp0suAzr6eSIiWItu14pPJ39POPMEhjaNJccCLDlERPbDUF6F45l6JGUWIjmjEMkZeuQaym8Yp3KSIyyopvBE6DTortOiVQs3XpndhrDkWIAlh4jIvuUZymsKT2ZN6UnOLERRPefx0bo5o1uwFt2DNYjQadEtWAsfT5UEickSLDkWYMkhInIsJpPAhYISJGcU4mimHkkZhTiRbUCl8cZrdV0/v6dbsBbhnN9jNVhyLMCSQ0REldUmnMo1IDmjEEnX9vacu1SMP347ymVAB1/PmknNOi3n90iIJccCLDlERFSfovIqHMvS1xziuna4K0df//yeroFqROi0NXt9grUIacn5PU2NJccCLDlERGSpfEM5kjN/Lz1JGfXP79G4OteUnuCaw1wROs7vaWwsORZgySEiottlMgmkFZTUmdSckm1AZXX983tqz90ToeP8njvFkmMBlhwiImpMldUmpOYWXbeMvRBnbzG/p1twzaEuzu+xHEuOBVhyiIioqRWVV+F4luHaHp+aW/Yt5vdEBGvRLViD1i3dIZdzfs8fseRYgCWHiIik8Mf5PckZhTDUM7/H08UJ4UHX5vYEaxAerEGQ1tXhJzaz5FiAJYeIiKyBEAJpBaXXlrEX4ui1+T0V9czvaemuRDfzpGYNwoMcb2IzS44FWHKIiMhaVRlNOJ1XhGOZeiRn6nE0sxCpuUWoNt34tR2ocUG3a9fn6hakRXiwBhpXZwlSNw+WHAuw5BARkS0przLiZI4BRzNrVnMdzdTXe+JCAGjj7Y5uwRqEB9WcvLBroBpuSvtY0cWSYwGWHCIisnXFFdU4nlWzpyc5U49jmXqkXym9YVztFdnDgzTopquZ49PZXw2lk+2t6GLJsQBLDhER2aOrJZU4mqXH0YxrxSerEHmGihvGKRVydAnwRHjtHJ9gLdr7ekBh5Su6WHIswJJDRESOovaK7Meyfp/jU1hadcM4V2cFwoLUNXN8gjVWeakKlhwLsOQQEZGjEkIg40oZjmbVzO1JzijE8Sw9SiqNN4xVuziZS0/t/wZoXCQrPiw5FmDJISIi+p3RJHD+UjGOZv4+x+dETv2XqvD2UCHiutLTLViDlh7Ns5SdJccCLDlERER/rrK6Zil7bfE5mqlHal4RjPUsZa+9Rld4UM3E5rBgDdQujb+UnSXHAiw5REREDVdeZURKtsFceo5mFuL85ZJ6l7L/9PRAdAlo3O9YS7+/7WPBPBERETUbF2cFeoV4oVeIl/m+ovIqHMvS4+i1ZezJmYXIN1SgnY+HZDlZcoiIiOiOebo4o387b/Rv522+T19WJel5eGzvDEBERERkE6S+tARLDhEREdkllhwiIiKySyw5REREZJdYcoiIiMguseQQERGRXbL5krN06VK0bt0aLi4u6Nu3Lw4cOCB1JCIiIrICNl1y1qxZg9jYWCxYsACHDx9GREQEYmJikJ+fL3U0IiIikphNl5z33nsP06dPx5QpUxAaGorly5fDzc0Nn3/+udTRiIiISGI2W3IqKyuRmJiI6Oho831yuRzR0dFISEio9zkVFRUwGAx1bkRERGSfbLbkXL58GUajEX5+fnXu9/PzQ25ubr3PWbRoETQajfmm0+maIyoRERFJwGZLzu2YP38+9Hq9+ZaRkSF1JCIiImoiNnuBTm9vbygUCuTl5dW5Py8vD/7+/vU+R6VSQaVSNUc8IiIikpjN7slRKpXo1asX4uLizPeZTCbExcUhKipKwmRERERkDWx2Tw4AxMbGYtKkSYiMjESfPn3wwQcfoKSkBFOmTLHo+UIIAOAEZCIiIhtS+71d+z1+MzZdcsaMGYNLly7hlVdeQW5uLrp3746tW7feMBn5ZoqKigCAE5CJiIhsUFFRETQazU0fl4lb1SA7ZjKZkJ2dDU9PT8hkMqnjWB2DwQCdToeMjAyo1Wqp4zg8bg/rw21iXbg9rEtTbg8hBIqKihAYGAi5/OYzb2x6T86dksvlCA4OljqG1VOr1fwLw4pwe1gfbhPrwu1hXZpqe/zZHpxaNjvxmIiIiOjPsOQQERGRXWLJoZtSqVRYsGABzy1kJbg9rA+3iXXh9rAu1rA9HHriMREREdkv7skhIiIiu8SSQ0RERHaJJYeIiIjsEksOERER2SWWHAe3dOlStG7dGi4uLujbty8OHDhw07GfffYZBg4cCC8vL3h5eSE6OvpPx1PDNWR7XG/16tWQyWQYOXJk0wZ0QA3dJoWFhZg1axYCAgKgUqnQsWNHbNmypZnS2r+Gbo8PPvgAnTp1gqurK3Q6HebOnYvy8vJmSmvfdu/ejREjRiAwMBAymQwbN2685XPi4+PRs2dPqFQqtG/fHitWrGjakIIc1urVq4VSqRSff/65SElJEdOnTxdarVbk5eXVO378+PFi6dKl4siRI+LkyZNi8uTJQqPRiMzMzGZObp8auj1qXbhwQQQFBYmBAweKBx98sHnCOoiGbpOKigoRGRkp7r//fvHbb7+JCxcuiPj4eJGUlNTMye1TQ7fH119/LVQqlfj666/FhQsXxLZt20RAQICYO3duMye3T1u2bBEvvviiWL9+vQAgNmzY8Kfjz58/L9zc3ERsbKw4ceKEWLJkiVAoFGLr1q1NlpElx4H16dNHzJo1y/yz0WgUgYGBYtGiRRY9v7q6Wnh6eoqVK1c2VUSHcjvbo7q6WvTv31/897//FZMmTWLJaWQN3SbLli0Tbdu2FZWVlc0V0aE0dHvMmjVL3HPPPXXui42NFXfddVeT5nRElpSc559/XnTt2rXOfWPGjBExMTFNlouHqxxUZWUlEhMTER0dbb5PLpcjOjoaCQkJFr1GaWkpqqqq0KJFi6aK6TBud3u89tpr8PX1xdSpU5sjpkO5nW2yadMmREVFYdasWfDz80NYWBjefPNNGI3G5optt25ne/Tv3x+JiYnmQ1rnz5/Hli1bcP/99zdLZqorISGhzvYDgJiYGIu/c26HQ1+g05FdvnwZRqMRfn5+de738/PDqVOnLHqNefPmITAw8Ib/01LD3c72+O233/B///d/SEpKaoaEjud2tsn58+exY8cOTJgwAVu2bMHZs2fx5JNPoqqqCgsWLGiO2HbrdrbH+PHjcfnyZQwYMABCCFRXV+OJJ57AP//5z+aITH+Qm5tb7/YzGAwoKyuDq6tro78n9+TQbVm8eDFWr16NDRs2wMXFReo4DqeoqAgTJ07EZ599Bm9vb6nj0DUmkwm+vr749NNP0atXL4wZMwYvvvgili9fLnU0hxQfH48333wTn3zyCQ4fPoz169fjxx9/xOuvvy51NGom3JPjoLy9vaFQKJCXl1fn/ry8PPj7+//pc9955x0sXrwYv/zyC7p169aUMR1GQ7fHuXPnkJaWhhEjRpjvM5lMAAAnJyekpqaiXbt2TRvazt3OfyMBAQFwdnaGQqEw39elSxfk5uaisrISSqWySTPbs9vZHi+//DImTpyIadOmAQDCw8NRUlKCGTNm4MUXX4Rczn/nNyd/f/96t59arW6SvTgA9+Q4LKVSiV69eiEuLs58n8lkQlxcHKKiom76vLfeeguvv/46tm7disjIyOaI6hAauj06d+6MY8eOISkpyXx74IEHMGTIECQlJUGn0zVnfLt0O/+N3HXXXTh79qy5cALA6dOnERAQwIJzh25ne5SWlt5QZGoLqOBlG5tdVFRUne0HANu3b//T75w71mRTmsnqrV69WqhUKrFixQpx4sQJMWPGDKHVakVubq4QQoiJEyeKF154wTx+8eLFQqlUim+//Vbk5OSYb0VFRVJ9BLvS0O3xR1xd1fgauk3S09OFp6enmD17tkhNTRWbN28Wvr6+4o033pDqI9iVhm6PBQsWCE9PT7Fq1Spx/vx58fPPP4t27dqJ0aNHS/UR7EpRUZE4cuSIOHLkiAAg3nvvPXHkyBFx8eJFIYQQL7zwgpg4caJ5fO0S8ueee06cPHlSLF26lEvIqWktWbJEtGrVSiiVStGnTx+xb98+82ODBw8WkyZNMv8cEhIiANxwW7BgQfMHt1MN2R5/xJLTNBq6Tfbu3Sv69u0rVCqVaNu2rfjXv/4lqqurmzm1/WrI9qiqqhILFy4U7dq1Ey4uLkKn04knn3xSXL16tfmD26GdO3fW+51Quw0mTZokBg8efMNzunfvLpRKpWjbtq344osvmjSjTAjusyMiIiL7wzk5REREZJdYcoiIiMguseQQERGRXWLJISIiIrvEkkNERER2iSWHiIiI7BJLDhEREdkllhwiIiKySyw5RGQT4uPjIZPJUFhYKHUUIrIRLDlEZBP69++PnJwcaDQai59TWlqK+fPno127dnBxcYGPjw8GDx6M77//vgmTEpG1cJI6ABGRJZRKJfz9/Rv0nCeeeAL79+/HkiVLEBoaioKCAuzduxcFBQVNlJKIrAn35BCRJO6++2489dRTmDNnDry8vODn54fPPvsMJSUlmDJlCjw9PdG+fXv89NNPAG48XLVixQpotVps27YNXbp0gYeHB+677z7k5OSY32PTpk345z//ifvvvx+tW7dGr1698NRTT+Hxxx83j5HJZNi4cWOdbFqtFitWrAAApKWlQSaTYfXq1ejfvz9cXFwQFhaGXbt2Nenvh4juHEsOEUlm5cqV8Pb2xoEDB/DUU09h5syZePTRR9G/f38cPnwYQ4cOxcSJE1FaWlrv80tLS/HOO+/gq6++wu7du5Geno5nn33W/Li/vz+2bNmCoqKiO8763HPP4ZlnnsGRI0cQFRWFESNGcI8QkZVjySEiyUREROCll15Chw4dMH/+fLi4uMDb2xvTp09Hhw4d8Morr6CgoABHjx6t9/lVVVVYvnw5IiMj0bNnT8yePRtxcXHmxz/99FPs3bsXLVu2RO/evTF37lzs2bPntrLOnj0bDz/8MLp06YJly5ZBo9Hg//7v/27rtYioebDkEJFkunXrZv6zQqFAy5YtER4ebr7Pz88PAJCfn1/v893c3NCuXTvzzwEBAXXGDho0COfPn0dcXBweeeQRpKSkYODAgXj99dcbnDUqKsr8ZycnJ0RGRuLkyZMNfh0iaj4sOUQkGWdn5zo/y2SyOvfJZDIAgMlksvj5QogbxgwcOBDz5s3Dzz//jNdeew2vv/46Kisrb/qcqqqq2/tARGRVWHKIyKGEhoaiuroa5eXlAAAfH586k5XPnDlT7xygffv2mf9cXV2NxMREdOnSpekDE9Ft4xJyIrJbd999N8aNG4fIyEi0bNkSJ06cwD//+U8MGTIEarUaAHDPPffg448/RlRUFIxGI+bNm3fDHiIAWLp0KTp06IAuXbrg/fffx9WrV+us0iIi68M9OURkt2JiYrBy5UoMHToUXbp0wVNPPYWYmBisXbvWPObdd9+FTqfDwIEDMX78eDz77LNwc3O74bUWL16MxYsXIyIiAr/99hs2bdoEb2/v5vw4RNRAMvHHg9FERGSWlpaGNm3a4MiRI+jevbvUcYioAbgnh4iIiOwSSw4RERHZJR6uIiIiIrvEPTlERERkl1hyiIiIyC6x5BAREZFdYskhIiIiu8SSQ0RERHaJJYeIiIjsEksOERER2SWWHCIiIrJL/w8qxdC4ysHQJgAAAABJRU5ErkJggg==\n" }, "metadata": {} }, @@ -796,7 +746,7 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGwCAYAAAAJ/wd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGWklEQVR4nO3deXhTdb4/8PdJ2iZNl3Tf6MrWhaVWNqkgLSC0eFHUGR31MijoXH1EZRi9iqM4XvUHOjrO3JFRZwTRGa/bOKCjgGCh1LJvlZa9dAW6t6Rt2qZtcn5/pIlU2tK0SU6W9+t58kybfJN8zhxD3v1uRxBFUQQRERGRncikLoCIiIjcC8MHERER2RXDBxEREdkVwwcRERHZFcMHERER2RXDBxEREdkVwwcRERHZlYfUBfyUwWDApUuX4OfnB0EQpC6HiIiIBkEURbS0tCAqKgoy2cB9Gw4XPi5duoSYmBipyyAiIqIhqKysRHR09IBtHC58+Pn5ATAW7+/vL3E1RERENBjNzc2IiYkxf48PxOHCh2moxd/fn+GDiIjIyQxmygQnnBIREZFdMXwQERGRXTF8EBERkV053JwPIiIiANDr9ejq6pK6DLqCp6cn5HL5sF+H4YOIiByKKIqorq7G5cuXpS6F+hAQEICIiIhh7cXF8EFERA7FFDzCwsKgUqm44aSDEEURbW1tqK2tBQBERkYO+bUYPoiIyGHo9Xpz8AgODpa6HPoJb29vAEBtbS3CwsKGPARj8YTTvLw8LFy4EFFRURAEAZs3b+71eE1NDe6//35ERUVBpVIhKysL586dG1JxRETkXkxzPFQqlcSVUH9M52Y483EsDh9arRapqalYt27dVY+JoohFixahpKQEX375JY4dO4a4uDjMnTsXWq12yEUSEZF74VCL47LGubF42CU7OxvZ2dl9Pnbu3Dns378fRUVFGDduHADg7bffRkREBD7++GM8+OCDw6uWiIiInJ5V9/nQ6XQAAKVS+eMbyGRQKBTIz8/v9znNzc29bkREROS6rBo+kpKSEBsbi1WrVqGpqQmdnZ149dVXceHCBVRVVfX5nDVr1kCtVptvvKItERHRtfU179JZWDV8eHp64l//+hfOnj2LoKAgqFQq7Nq1C9nZ2ZDJ+n6rVatWQaPRmG+VlZXWLKkXra4bRyuabPb6RERE1va73/0O11133VX3V1VV9TsNwtFZfantpEmTUFBQAI1Gg87OToSGhmLatGmYPHlyn+0VCgUUCoW1y7hKSV0rsv/0PTzlMhx+bi6UnsPfoY2IiKg/nZ2d8PLystnrR0RE2Oy1bc1m13ZRq9UIDQ3FuXPncPjwYdx22222eqtBiQ/2QaDKC626buSfq5e0FiIiGhxRFNHW2S3JTRRFi2rNyMjA8uXLsWLFCoSEhGD+/PkQBAEFBQXmNpcvX4YgCMjNzQUA5ObmQhAE5OTkYPLkyVCpVEhPT8eZM2cAABs3bsSLL76IH374AYIgQBAEbNy4EUDvYZeysjIIgoDPPvsMM2fOhLe3N6ZMmYKzZ8/i0KFDmDx5Mnx9fZGdnY26urpedb/33ntITk6GUqlEUlIS/vKXvwzpXFnC4p6P1tZWFBcXm38vLS1FQUEBgoKCEBsbi88//xyhoaGIjY1FYWEhnnjiCSxatAjz5s2zauGWkskEZI2PwMa9ZdhaVI25KeGS1kNERNfW3qVHyupvJXnvk/8zHyovy74mP/jgAzzyyCPYs2cPAONcyMH47W9/izfeeAOhoaF4+OGHsXTpUuzZswd33303ioqKsG3bNnz33XcAjH/c9+eFF17AH//4R8TGxmLp0qW499574efnhz/96U9QqVS46667sHr1arz99tsAgI8++girV6/GW2+9hbS0NBw7dgwPPfQQfHx8sGTJEouO3RIWh4/Dhw8jMzPT/PvKlSsBAEuWLMHGjRtRVVWFlStXoqamBpGRkfjlL3+J559/3noVD0N2T/jYcbIand0T4OXBi/oSEZH1jBkzBq+99hoAY2/EYL3yyiuYNWsWAOCZZ57BLbfcgo6ODnh7e8PX1xceHh6DGmZ58sknMX/+fADAE088gXvuuQc5OTm48cYbAQDLli0z95wAxrDyxhtv4I477gAAJCQk4OTJk3j33XcdK3xkZGQM2BX1+OOP4/HHHx9WUbYyOT4IIb4K1LfqsK+kAbPGhkpdEhERDcDbU46T/zNfsve21KRJk4b0XhMnTjT/bLpmSm1tLWJjY4f8OuHhxh7+CRMm9LrPdG0WrVaL8+fPY9myZXjooYfMbbq7uwfsXbEGt7q2i1wmYP64cHx0oALbiqoYPoiIHJwgCBYPfUjJx8fH/LNpleeVf7D3tyW5p6en+WfTDqIGg8Hi9+/rdX56n+l1W1tbAQB/+9vfMG3atF6vM9RrtgyW2407LJhgTJTfnqhBt97yE0tERDQYoaHGP3Cv3Ofqysmng+Xl5QW9Xm+tsszCw8MRFRWFkpISjB49utctISHB6u93JeeJk1YyLSEIgSpPNGo7cbCsEemjQqQuiYiIXJC3tzduuOEGrF27FgkJCaitrcVzzz1n8evEx8ebF3dER0fDz8/PaltUvPjii3j88cehVquRlZUFnU6Hw4cPo6mpyTyn0xbcrufDQy7DvBTjpJ2thdUSV0NERK5sw4YN6O7uxqRJk7BixQq8/PLLFr/GnXfeiaysLGRmZiI0NBQff/yx1ep78MEH8d577+H999/HhAkTMGvWLGzcuNHmPR+CaOlCZhtrbm6GWq2GRqOBv7+/Td5j15laPPD+IYT6KXBg1RzIZLx6IhGRI+jo6EBpaSkSEhJ6XSeMHEd/58iS72+36/kAgBtHhcBP6YG6Fh2OcLt1IiIiu3LL8OHlIcPNycYlSBx6ISIisi+3DB8AkDXeOO9jW1GVxVvoEhER0dC5bfi4aWwofLzkuKTpwA8XNFKXQ0REV+AfhY7LGufGbcOH0lOOzKQwAMDWwqprtCYiInswbYjV1tYmcSXUH9O5uXLzMku53T4fV1owIRJfH6/C1qJqPJOdZN4NjoiIpCGXyxEQEGDeAlylUvHfZgchiiLa2tpQW1uLgICAYe2C6tbhIyMxFEpPGSoa23DiUjPGj7DtXvZERHRtpguomQIIOZaAgIBBXeRuIG4dPlReHsgYG4ZtJ6qxraia4YOIyAEIgoDIyEiEhYX1ey0Ukoanp6dVrvvi1uEDALInRGDbiWpsKarCb+aNZfceEZGDkMvlNr/AGUnDbSecmsxOCoOXXIaSOi3O1bZKXQ4REZHLc/vw4af0xMwxxovLbeGqFyIiIptz+/ABANkTIgEA24q42ykREZGtMXwAuDk5HB4yAaerW1BSx6EXIiIiW2L4AKBWeSJ9tHHoZSt7P4iIiGyK4aNHtvlaLwwfREREtsTw0WNeSjhkAlB4UYPKRm7rS0REZCsMHz2CfRWYlhAMgL0fREREtsTwcYXsCcahly1FXHJLRERkKwwfV5g/LgKCAByruIwqTbvU5RAREbkkho8rhPsrMSk2EACHXoiIiGyF4eMnTBuOccktERGRbTB8/ERWz5LbQ2WNqG3pkLgaIiIi18Pw8RMjAryRGhMAUQS2n6iRuhwiIiKXw/DRB9OGY1u56oWIiMjqGD76YAof+0sa0ajtlLgaIiIi18Lw0Ye4YB+kRPpDbxCx4yQnnhIREVkTw0c/FkwwDb0wfBAREVkTw0c/ssYbl9zuKa6Hpr1L4mqIiIhcB8NHP0aH+WJsuC+69CJyTnHVCxERkbUwfAzA1PuxpZBDL0RERNbC8DEA07yPvHN1aNV1S1wNERGRa2D4GEBiuB8SQnzQ2W3ArtO1UpdDRETkEiwOH3l5eVi4cCGioqIgCAI2b97c6/HW1lYsX74c0dHR8Pb2RkpKCt555x1r1WtXgiBwwzEiIiIrszh8aLVapKamYt26dX0+vnLlSmzbtg3/+Mc/cOrUKaxYsQLLly/HV199NexipZDdM+9j1+k6tHfqJa6GiIjI+VkcPrKzs/Hyyy/j9ttv7/PxvXv3YsmSJcjIyEB8fDx+9atfITU1FQcPHhx2sVIYP8If0YHeaO/SY/dZDr0QERENl9XnfKSnp+Orr77CxYsXIYoidu3ahbNnz2LevHl9ttfpdGhubu51cyS9h1646oWIiGi4rB4+/vznPyMlJQXR0dHw8vJCVlYW1q1bh5tuuqnP9mvWrIFarTbfYmJirF3SsJmW3OacqoWum0MvREREw2GT8LF//3589dVXOHLkCN544w08+uij+O677/psv2rVKmg0GvOtsrLS2iUNW1pMACL8lWjVdSP/XL3U5RARETk1D2u+WHt7O5599lls2rQJt9xyCwBg4sSJKCgowOuvv465c+de9RyFQgGFQmHNMqxOJhOQNT4CG/eWYUthNeYkh0tdEhERkdOyas9HV1cXurq6IJP1flm5XA6DwWDNt7I707yPHSer0dnt3MdCREQkJYt7PlpbW1FcXGz+vbS0FAUFBQgKCkJsbCxmzZqFp556Ct7e3oiLi8Pu3bvx4Ycf4g9/+INVC7e3yfFBCPH1Qn1rJ/aVNGDW2FCpSyIiInJKFvd8HD58GGlpaUhLSwNg3NcjLS0Nq1evBgB88sknmDJlCu677z6kpKRg7dq1eOWVV/Dwww9bt3I7k8sEzB9n7P3Yxg3HiIiIhkwQRVGUuogrNTc3Q61WQ6PRwN/fX+pyesk/V4//XH8AQT5eOPjsHHjIuTs9ERERYNn3N789LTBtZBACVZ5o1HbiYFmj1OUQERE5JYYPC3jKZbg5xbjSZWshNxwjIiIaCoYPC2VPMG44tu1ENQwGhxqxIiIicgoMHxa6cVQI/JQeqGvR4UhFk9TlEBEROR2GDwt5echwczKHXoiIiIaK4WMIssb/uOTWwRYLEREROTyGjyG4aWwofLzkuKTpwA8XNFKXQ0RE5FQYPoZA6SlHZlIYAGArNxwjIiKyCMPHEGWPN6562VpYzaEXIiIiCzB8DFFGYiiUnjJUNLbhZFWz1OUQERE5DYaPIfJReJgvLsdVL0RERIPH8DEMC3o2HNvCVS9ERESDxvAxDLOTwuAll6GkTotzta1Sl0NEROQUGD6GwU/piZljQgBw6IWIiGiwGD6GybThGJfcEhERDQ7DxzDdnBIOD5mA09UtKKnj0AsREdG1MHwMU4DKC9NHBQMAthZx6IWIiOhaGD6swLTqZRvDBxER0TUxfFjBvJRwyASg8KIGlY1tUpdDRETk0Bg+rCDYV4FpCcahF/Z+EBERDYzhw0qyJxhXvWzhqhciIqIBMXxYyfxxERAE4FjFZVRp2qUuh4iIyGExfFhJuL8Sk2IDAXDohYiIaCAMH1aU3bPqhUtuiYiI+sfwYUWm3U4PlTWirkUncTVERESOieHDikYEeCM1Wg1RBL49wd4PIiKivjB8WFk2NxwjIiIaEMOHlWX3DL3sK2lAk7ZT4mqIiIgcD8OHlcUF+yAl0h96g4gdJ2ukLoeIiMjhMHzYgKn3gxuOERERXY3hwwZM8z72FNdD094lcTVERESOheHDBkaH+WJMmC+69CJyTnHohYiI6EoMHzbCDceIiIj6xvBhI6Z5H7vP1qFV1y1xNURERI6D4cNGkiL8kBDig85uA3adrpW6HCIiIofB8GEjgiCYt1vfylUvREREZgwfNrRgvHHex67TdWjv1EtcDRERkWOwOHzk5eVh4cKFiIqKgiAI2Lx5c6/HBUHo8/b73//eWjU7jfEj/BEd6I32Lj12n+XQCxERETCE8KHVapGamop169b1+XhVVVWv24YNGyAIAu68885hF+tsBEEwTzzlqhciIiIjD0ufkJ2djezs7H4fj4iI6PX7l19+iczMTIwcOdLy6lxA1vhI/O37UuScqoWuWw+Fh1zqkoiIiCRl0zkfNTU1+Oabb7Bs2bJ+2+h0OjQ3N/e6uZK0mABE+CvRqutG/rl6qcshIiKSnE3DxwcffAA/Pz/ccccd/bZZs2YN1Gq1+RYTE2PLkuxOJrty1QuHXoiIiGwaPjZs2ID77rsPSqWy3zarVq2CRqMx3yorK21ZkiRM4WPHyRp06Q0SV0NERCQti+d8DNb333+PM2fO4NNPPx2wnUKhgEKhsFUZDmFKfBBCfL1Q39qJfecbcNPYUKlLIiIikozNej7Wr1+PSZMmITU11VZv4TTkMgHzxnHDMSIiImAI4aO1tRUFBQUoKCgAAJSWlqKgoAAVFRXmNs3Nzfj888/x4IMPWq1QZ2facGz7iRp0c+iFiIjcmMXh4/Dhw0hLS0NaWhoAYOXKlUhLS8Pq1avNbT755BOIooh77rnHepU6uWkjgxCg8kSDthMHyxqlLoeIiEgyFoePjIwMiKJ41W3jxo3mNr/61a/Q1tYGtVptzVqdmqdchnkp4QCAbVz1QkREbozXdrGj7J6hl21F1TAYRImrISIikgbDhx2ljw6Gn9IDtS06HK1okrocIiIiSTB82JHCQ465ycahly2FHHohIiL3xPBhZ6YLzW0rqoIocuiFiIjcD8OHnd00NhQqLzkuaTrwwwWN1OUQERHZHcOHnSk95ZidFAaAG44REZF7YviQgGnVy9bCag69EBGR22H4kEBGYiiUnjJUNLbhZFWz1OUQERHZFcOHBHwUHpjVc3G5rVz1QkREbobhQyILJhiHXrZw1QsREbkZhg+JzE4Kg5dchpI6Lc7VtkpdDhERkd0wfEjET+mJGWNCAHDohYiI3AvDh4RMG45xyS0REbkThg8J3ZwSDg+ZgNPVLSit10pdDhERkV0wfEgoQOWF6aOCAbD3g4iI3AfDh8Su3HCMiIjIHTB8SGzeuHDIBKDwogaVjW1Sl0NERGRzDB8SC/FVYGpCEABgWxF7P4iIyPUxfDgA04ZjnPdBRETugOHDAcwfZ1xye7TiMqo07RJXQ0REZFsMHw4g3F+JyXGBAIBvOfRCREQujuHDQWT1bDi2heGDiIhcHMOHg8jumfdxqKwRdS06iashIiKyHYYPBzEiwBup0WqIIvDtCfZ+EBGR62L4cCCm3g8uuSUiIlfG8OFATBea21fSgCZtp8TVEBER2QbDhwOJC/ZBSqQ/9AYRO07WSF0OERGRTTB8OJhs86oXbjhGRESuieHDwWRPMIaPPcX10LR3SVwNERGR9TF8OJjRYX4YE+aLLr2Inac59EJERK6H4cMBmYdeCrnqhYiIXA/DhwMyLbndfbYOrbpuiashIiKyLoYPB5QU4Yf4YBU6uw3YdbpW6nKIiIisiuHDAQmCwA3HiIjIZTF8OCjTvI+dp2vR3qmXuBoiIiLrYfhwUBNGqDEiwBvtXXrsPlsndTlERERWw/DhoARBMPd+bOWGY0RE5EIsDh95eXlYuHAhoqKiIAgCNm/efFWbU6dO4dZbb4VarYaPjw+mTJmCiooKa9TrVkzzPnJO1ULXzaEXIiJyDRaHD61Wi9TUVKxbt67Px8+fP48ZM2YgKSkJubm5OH78OJ5//nkolcphF+tu0mICEO6vQKuuG/nn6qUuh4iIyCo8LH1CdnY2srOz+338t7/9LRYsWIDXXnvNfN+oUaP6ba/T6aDT6cy/Nzc3W1qSy5LJBGSPj8TGvWXYWlSNOcnhUpdEREQ0bFad82EwGPDNN99g7NixmD9/PsLCwjBt2rQ+h2ZM1qxZA7Vabb7FxMRYsySnl9Uz72PHyRp06Q0SV0NERDR8Vg0ftbW1aG1txdq1a5GVlYXt27fj9ttvxx133IHdu3f3+ZxVq1ZBo9GYb5WVldYsyelNiQ9CiK8XNO1d2He+QepyiIiIhs3iYZeBGAzGv8xvu+02/PrXvwYAXHfdddi7dy/eeecdzJo166rnKBQKKBQKa5bhUuQyAfPGReD/DlRga1EVbhobKnVJREREw2LVno+QkBB4eHggJSWl1/3Jyclc7TIMC8YbV71sP1GDbg69EBGRk7Nq+PDy8sKUKVNw5syZXvefPXsWcXFx1nwrtzJtZBACVJ5o0HbiYFmj1OUQERENi8XDLq2trSguLjb/XlpaioKCAgQFBSE2NhZPPfUU7r77btx0003IzMzEtm3b8O9//xu5ubnWrNuteMpluDk5HJ8fuYBtRdVIHxUidUlERERDZnHPx+HDh5GWloa0tDQAwMqVK5GWlobVq1cDAG6//Xa88847eO211zBhwgS89957+OKLLzBjxgzrVu5mFlxxoTmDQZS4GiIioqETRFF0qG+y5uZmqNVqaDQa+Pv7S12Ow9B16zH5pe/QouvGPx+ejsnxQVKXREREZGbJ9zev7eIkFB5yzE0xbjK2taha4mqIiIiGjuHDiZg2HNtWVA0H67AiIiIaNIYPJzJrbChUXnJcvNyO4xc0UpdDREQ0JAwfTkTpKUdmUhgAYEtRlcTVEBERDQ3Dh5MxbTjGoRciInJWDB9OJiMxFAoPGcob2nCyilcAJiIi58Pw4WR8FB7ISDRe32UbV70QEZETYvhwQtk9Qy9bCjnvg4iInA/DhxOanRwGL7kM5+u0OFfTInU5REREFmH4cEL+Sk/MGGO8vsuWQg69EBGRc2H4cFLZPRuObeWSWyIicjIMH07q5pRweMgEnK5uQWm9VupyiIiIBo3hw0kFqLwwfVQwAPZ+EBGRc2H4cGKmVS9bOe+DiIicCMOHE5s3LhwyASi8qEFlY5vU5RAREQ0Kw4cTC/FVYGpCEABuOEZERM6D4cPJmYdeOO+DiIicBMOHk8vqWXJ7tOIyqjUdEldDRER0bQwfTi7cX4lJcYEAgG3s/SAiIifA8OECftxwjPM+iIjI8TF8uADT0MvBskbUtegkroaIiGhgDB8uIDpQhdRoNUQR2H6SvR9EROTYGD5cRBY3HCMiIifB8OEiTPM+9pU0oEnbKXE1RERE/WP4cBHxIT5IjvSH3iBix8kaqcshIiLqF8OHC1lgXvXCJbdEROS4GD5cSPYEY/jIL66Hpr1L4mqIiIj6xvDhQkaH+WFMmC+69CJ2nubQCxEROSaGDxdjmni6hateiIjIQTF8uJjsCcYlt7vP1qFV1y1xNURERFdj+HAxSRF+iA9WobPbgF2na6Uuh4iI6CoMHy5GEATzhmPbeK0XIiJyQAwfLmhBz6qXnadr0d6pl7gaIiKi3hg+XNCEEWqMCPBGe5ceu8/WSV0OERFRLwwfLkgQBPOqF244RkREjobhw0WZNhzbeaoWum4OvRARkeNg+HBRaTGBCPdXoEXXjT3F9VKXQ0REZGZx+MjLy8PChQsRFRUFQRCwefPmXo/ff//9EASh1y0rK8ta9dIgyWQCssZxwzEiInI8FocPrVaL1NRUrFu3rt82WVlZqKqqMt8+/vjjYRVJQ2PacGzHyRp06Q0SV0NERGTkYekTsrOzkZ2dPWAbhUKBiIiIQb2eTqeDTqcz/97c3GxpSdSPKfFBCPH1Qn1rJ/adb8BNY0OlLomIiMg2cz5yc3MRFhaGxMREPPLII2hoaOi37Zo1a6BWq823mJgYW5TkluQyAfPGmVa9cOiFiIgcg9XDR1ZWFj788EPk5OTg1Vdfxe7du5GdnQ29vu8VF6tWrYJGozHfKisrrV2SWzMtud1+ohp6gyhxNUREREMYdrmWX/ziF+afJ0yYgIkTJ2LUqFHIzc3FnDlzrmqvUCigUCisXQb1uGFkMAJUnmjQduJgaSOmjwqWuiQiInJzNl9qO3LkSISEhKC4uNjWb0V98JTLcHNyOABuOEZERI7B5uHjwoULaGhoQGRkpK3fivqxYMKPF5ozcOiFiIgkZnH4aG1tRUFBAQoKCgAApaWlKCgoQEVFBVpbW/HUU09h//79KCsrQ05ODm677TaMHj0a8+fPt3btNEjpo4Php/BAbYsORyuapC6HiIjcnMXh4/Dhw0hLS0NaWhoAYOXKlUhLS8Pq1ashl8tx/Phx3HrrrRg7diyWLVuGSZMm4fvvv+e8DgkpPOSYm2IaeuGqFyIikpYgiqJD9cM3NzdDrVZDo9HA399f6nJcxrcnqvFffz+CEQHeyH86E4IgSF0SERG5EEu+v3ltFzcxa2woVF5yXLzcjuMXNFKXQ0REbozhw00oPeXITAoDAGzhqhciIpIQw4cbMW04tq2oGg422kZERG6E4cONZCaGQeEhQ3lDG05W8Ro6REQkDYYPN+Kj8MCsnovLbeOqFyIikgjDh5sxbTjGJbdERCQVhg83Mzs5DJ5yAcW1rThX0yJ1OURE5IYYPtyMv9ITM8cYh17Y+0FERFJg+HBDWT2rXrYUcsktERHZH8OHG5qXEg4PmYDT1S0orddKXQ4REbkZhg83FKDywvRRwQCArdxwjIiI7Izhw01ljzeueuGSWyIisjeGDzc1b1w4ZAJw/IIGlY1tUpdDRERuhOHDTYX4KjA1IQiA8Yq3RERE9sLw4cZMQy9c9UJERPbE8OHGTEtuj1ZcRrWmQ+JqiIjIXTB8uLFwfyUmxQUCALZx1QsREdkJw4eby+7p/eBup0REZC8MH27ONPRysKwRdS06iashIiJ3wPDh5qIDVZgYrYYoAttPsveDiIhsj+GDzKtethYyfBARke0xfJB53se+kgY0aTslroaIiFwdwwchPsQHyZH+0BtE7DhZI3U5RETk4hg+CMCVq1645JaIiGyL4YMAAAsmGMNHfnE9mju6JK6GiIhcGcMHAQBGh/lhdJgvuvQick5x6IWIiGyH4YPMFpiGXrjqhYiIbIjhg8yyepbc7j5bB62uW+JqiIjIVTF8kFlypB/ig1XQdRuw60yt1OUQEZGLYvggM0EQzL0fHHohIiJbYfigXkyrXnadqUV7p17iaoiIyBUxfFAvE0aoMSLAG22deuw+Wyd1OURE5IIYPqgXQRDMG45t44ZjRERkAwwfdJXsnqGXnFO10HVz6IWIiKyL4YOukhYTiHB/BVp03dhTXC91OURE5GIYPugqMpmArHHG3o8tXPVCRERWZnH4yMvLw8KFCxEVFQVBELB58+Z+2z788MMQBAF//OMfh1EiScG05HbHyRp06Q0SV0NERK7E4vCh1WqRmpqKdevWDdhu06ZN2L9/P6KiooZcHElnakIQgn28oGnvwr7zDVKXQ0RELsTi8JGdnY2XX34Zt99+e79tLl68iMceewwfffQRPD09h1UgSUMuEzCvZ+hlaxGHXoiIyHqsPufDYDBg8eLFeOqppzBu3LhrttfpdGhubu51I8dg2nBs+4lq6A2ixNUQEZGrsHr4ePXVV+Hh4YHHH398UO3XrFkDtVptvsXExFi7JBqiG0YGQ+3tiQZtJw6WNkpdDhERuQirho8jR47gT3/6EzZu3AhBEAb1nFWrVkGj0ZhvlZWV1iyJhsFTLsO8lHAA3HCMiIisx6rh4/vvv0dtbS1iY2Ph4eEBDw8PlJeX4ze/+Q3i4+P7fI5CoYC/v3+vGzkO04ZjW4uqYeDQCxERWYGHNV9s8eLFmDt3bq/75s+fj8WLF+OBBx6w5luRndw4OgR+Cg/UtuhwrLIJk+KCpC6JiIicnMXho7W1FcXFxebfS0tLUVBQgKCgIMTGxiI4OLhXe09PT0RERCAxMXH41ZLdKTzkmJMchs0Fl7ClsJrhg4iIhs3iYZfDhw8jLS0NaWlpAICVK1ciLS0Nq1evtnpx5BiyJxg3HNtWVA1R5NALERENj8U9HxkZGRZ9AZWVlVn6FuRgZo0NhcpLjouX23H8ggapMQFSl0RERE6M13aha1J6ypGZFAaAG44REdHwMXzQoGSPN616qeLQCxERDQvDBw1KZmIYFB4ylDe04VRVi9TlEBGRE2P4oEHxUXhg1thQAMbeDyIioqFi+KBBu3LDMSIioqFi+KBBm5McDk+5gOLaVpyr4dALERENDcMHDZq/0hMzRocAYO8HERENHcMHWcS04diWQs77ICKioWH4IIvcnBwOuUzA6eoWlNZrpS6HiIicEMMHWSTQxwvpo4zX7+GqFyIiGgqGD7JYVs+GY9s474OIiIaA4YMsNi8lAjIBOH5Bg8rGNqnLISIiJ8PwQRYL9VNgSnwQAODbE+z9ICIiyzB80JAs6Fn1wiW3RERkKYYPGpL544zzPo6UN6Fa0yFxNURE5EwYPmhIItRKTIoLBMChFyIisgzDBw1Zds+qF244RkRElmD4oCEzLbk9VNaIuhadxNUQEZGzYPigIYsOVGFitBoGEdh+kkMvREQ0OAwfNCzZ442rXrjhGBERDRbDBw2Lad7H3vMNaNJ2SlwNERE5A4YPGpb4EB8kRfhBbxCx41SN1OUQEZETYPigYTNvOMZVL0RENAgMHzRspqGX/OJ6NHd0SVwNERE5OoYPGrYx4X4YHeaLLr2IHA69EBHRNTB8kFWYej+2FnLVCxERDYzhg6zCtOR299k6aHXdEldDRESOjOGDrCI50g9xwSroug3YdaZW6nKIiMiBMXyQVQiCYO794NALERENhOGDrMY072PXmVp0dOklroaIiBwVwwdZzcRoNUYEeKOtU4/dZ+ukLoeIiBwUwwdZjSAI5ivdcsMxIiLqD8MHWdWCCcbwkXOqFrpuDr0QEdHVGD7IqtJiAhHur0CLrht7iuulLoeIiBwQwwdZlUwmIGscNxwjIqL+MXyQ1WX1LLndfrIGXXqDxNUQEZGjYfggq5uaEIRgHy9o2ruwv6RB6nKIiMjBWBw+8vLysHDhQkRFRUEQBGzevLnX47/73e+QlJQEHx8fBAYGYu7cuThw4IC16iUnIJcJmNcz9LKFQy9ERPQTFocPrVaL1NRUrFu3rs/Hx44di7feeguFhYXIz89HfHw85s2bh7o67vvgTkwbjm0/UQ29QZS4GiIiciSCKIpD/mYQBAGbNm3CokWL+m3T3NwMtVqN7777DnPmzLnma5raazQa+Pv7D7U0kliX3oDJL38HTXsXPn7oBkwfFSx1SUREZEOWfH/bdM5HZ2cn/vrXv0KtViM1NbXPNjqdDs3Nzb1u5Pw85TLcnBIOANhWxA3H3JGBPV5E1A+bhI+vv/4avr6+UCqVePPNN7Fjxw6EhIT02XbNmjVQq9XmW0xMjC1KIgmYNhzbWlTNLyI3IIoizlS34C+5xfj5O3sx5rmtuOV/v8cXRy5wwzki6sUmwy5arRZVVVWor6/H3/72N+zcuRMHDhxAWFjYVa+h0+mg0+nMvzc3NyMmJobDLi5A163H5Je+Q4uuG188Mh2T4oKkLomsrKNLj33nG7DzdC12nq7FxcvtfbYL9VNg8Q1xuG9aLIJ9FXaukojswZJhFw9bFODj44PRo0dj9OjRuOGGGzBmzBisX78eq1atuqqtQqGAQsF/jFyRwkOOOclh2FxwCVsKqxk+XESVpt0YNk7VYs/5enR0/biXi8JDhvRRwZidHI6p8UHIOV2DD/eWo7q5A3/YcRbrdhXj9rQRWDojAWPD/SQ8CiKSkk3Cx08ZDIZevRvkPrLGR2JzwSVsK6rGc7ckQxAEqUsiC+kNIgoqm3p6N+pwqqr3vKxItRKzk8IwOykM6aNC4O0lNz+WGOGHh2aOxJbCKqzPL8XxCxp8cqgSnxyqxMwxIVg6IwGzxoRCJuN/F0TuxOLw0draiuLiYvPvpaWlKCgoQFBQEIKDg/HKK6/g1ltvRWRkJOrr67Fu3TpcvHgRP//5z61aODmHjMRQqLzkuHi5HccvaJAaEyB1STQImvYu5J2tw87Ttcg9U4umti7zYzIBSIsNNAeOpAi/AUOlp1yG264bgVtTo3CkvAnr80vx7YlqfH+uHt+fq8eoUB8snZGAO9KiewUXInJdFs/5yM3NRWZm5lX3L1myBO+88w7uvfdeHDhwAPX19QgODsaUKVPw3HPPYcqUKYN6fS61dT2PfnQU3xRW4eFZo/BMdpLU5VAfRFHE+bpW5Jwyzt04XN7Ua38Wf6UHZiWGYXZSKGaNDUOQj9ew3q+ysQ0b95bh00OVaNV1AwACVJ64d2osfjk9HhFq5bBen4jsz5Lv72FNOLUFhg/X8/XxS1j+f8cQF6xC7pMZHHpxEB1dehwobcTOUzXYeaYWlY29J4uOCfM1925MiguEh9z6i+NaOrrw+eELeH9vqfn9PWQC/mNiJJbNGIkJ0WqrvycR2QbDBzkUra4b17+0A7puA7Y8PhMpUTyvUqlp7jCvTMk/V4/2rh+XwHrJZZg+KtgcOGKCVHarS28QseNkDTbkl+JgWaP5/qnxQVg6Ix43p0RAznkhRA5N8tUuRFfyUXhg1thQbD9Zg21FVQwfdmQwiPjhwmXsOl2LnNO1OHGp92TRcH9FT9gIx42jg6HykuafBLlMQNb4CGSNj0DhBQ027CnFv3+4hINljThY1oiYIG/cn56AuyZHw0/pKUmNRGQ97Pkgu9h07AJ+/ekPGB3mi+9WzpK6HJfW3NGF78/WmyeLNmg7zY8JApAaHYA5SWHITArDuCh/hx0Gq2nuwIf7yvDRgQpc7pnw6qvwwN1TYnB/erxde2aI6No47EIOp7mjC5Ne2oEuvYgdv74JY7jHg9WIooiSeq2xd+NULQ6VNaL7ismifgoP3DQ2FJlJYchIDEWIk23y1d6px7+OXcCG/FKcr9MCMK64mT8uAktnJGByXKDDBigid8JhF3I4/kpPzBgdgl1n6rC1qJrhY5g6uw04WNqInNM12HW6FmUNbb0eHxnqY+7dmBIfBE8bTBa1F28vOe6bFod7psQi71wd1ueX4vtz9dhaVI2tRdWYGK3GshkJWDAh0qmPk8idsOeD7Oazw5X4738eR3KkP7Y+MVPqcpxObUsHck8b9974/lwdtJ0/Thb1lAu4YWQwMhONk0XjQ3wkrNT2zta0YEN+Kf517CI6u407rEb4K/HL9DjcOzUWAarhLQUmIstx2IUcUpO2E5Nf+Q56g4jcJzNc/gtyuAwGEUWXNMg5VYtdZ2px/IKm1+OhfgpkJoZidlI4ZowJga/C/ToyG1p1+OhABT7cV476VuMuykpPGe68PhpLZyRgVKivxBUSuQ+GD3JY//neAeQX1+PprCQ8kjFK6nIcTquuG/nnjL0bu87Uoa6l92UJUqPVyOxZCjs+Ss1tyXvouvX4+gfjFu4nr9j+PTMxFMtmjMSNo4M5L4TIxhg+yGF9dKAcv91UhInRany1fIbU5TiEsnqtee+NA6UN6NL/+JH08ZJj5phQzE42ThYN8+POnwMRRRH7SxqxPr8UOadrYPrXLTHcD0tnxOO260ZA6ckt3IlsgeGDHFZdiw5T/993EEUg/+lMRAe633LJzm4DDpc1GgPHmVqU9KzgMIkPVmF2UjhmJ4VhSkIgFB78shyKsnotNu4tw2eHK9HWMz8m2McL990Qh8U3xCHUz7lW/RA5OoYPcmh3v7sPB0ob8dwtyXhw5kipy7GL+lYdcs/UYefpGnx/th4tPdczAYzbiU9NCDLvLDqS8xSsStPehU8PVeCDveW4eNm4hbuXXIaFqVFYNiOBm94RWQnDBzm0jXtK8bt/n8SkuEB88Ui61OXYhCiKOHGp2Tyc8sOFy7jykxbs42WeuzFjTAj8uWunzXXrDfj2RA3W55fgaMVl8/3TRwZj2YwEzE4K4xwaomFg+CCHVq3pwA1rcgAA+1fNcZkrmLZ1diP/XD12nTEGjprm3pNFx4/wx+zEMMxODsfEEZwsKqVjFU1Yn1+KrUXV5qv3xger8MCNCfjZpGj4uOHKIaLhYvggh3fHX/bgaMVlvHjrOCxJj5e6nCGraGjDztM12HmmDvtLGsx7TgCAykuOG0eHmDf7Cvd3jZDlSi5ebseH+8rw8YEKNHcYh8L8lR64Z2oslqTHIyrAW+IKiZwHwwc5vPe+L8HL35zCtIQgfPpf06UuZ9C69AYcKW8yX6ituLa11+MxQd6YkxSOzKQwTEsI4soKJ6HVdeOLoxfw/p4ylNYbJwDLZQKyxxu3cL8+NlDiCokcH8MHObzKxjbMfG0XZAJw4Nm5Dr3yoFHbid1njddNyTtbZ/4LGTB+QU2OC8ScZOP8jVGhvtxPwokZDCJ2nq7Fhj2l2Hu+wXx/WmwAls1IQNa4CHhwC3eiPjF8kFO49a18HL+gwSu3j8d90+KkLsdMFEWcrm4xTxY9WtHUa7JooMoTmYnGoZSbxoZC7c3Joq7o5KVmbNhTiq8KLqFTbxxOGxHgjSXpcbh7SizPO9FPMHyQU/hLbjFe23YGM8eE4O/LpklaS3unHnvP1yPndC12na5Flaaj1+PJkf6YnWTcyvy6mADIOVnUbdS2dOAf+yvw0f5yNGg7ARjn8/x8UjQeuDGBlwkg6sHwQU6htF6LzNdzIZcJOPzbuQj0se/FwC40tWFXT+/G3vMN0F0xWVTpKcOM0SHITApDZmIYJx4SOrr0+KrgEtbnl+JMTQsAQBCAOUnhWDYjATeMDOKQG7k1hg9yGll/zMPp6ha89rOJuGtyjE3fq1tvwLHKy8bhlFO15i8QkxEB3saNvpLDMH1kMCeLUp9EUcSe4gaszy/BrjN15vtTIv2xdEYCFqZGcldacksMH+Q0/jfnHP6w4yxmJ4Vhw/1TrP76l9s6sfus8UJtuWfqoGnvMj8mE4BJcYHmrczHhnOyKFnmfF0r3t9Tin8euYCOLmPPWaifAotviMN902IR7Ou4E6mJrI3hg5zGuZoW3PxmHjzlAo48f/Owd/oURRFna1p7JovW4Eh5EwxX/Beu9vZERmIoZieFYdbYUASo7DvUQ67pclsn/u9gBT7cW47qZuN8IS8PGW6/bgSWzkhAYoSfxBUS2R7DBzmVuX/YjeLaVvzx7uuwKG2Exc/v6NJj3/kG8+oU0/U7TBLD/TC7ZylsWkwAl0qSzXTpDdhSWIUN+aX44YLGfP/MMSFYOiMBs8aEcmdbclkMH+RU3th+Bn/eWYx5KeH46y8nD+o5VZp289yNPefrzV3eAKDwkCF9VDBm9+ws6o5XziVpiaKII+XGLdy/PVFt7n0bFeqDB25MwJ3XR8Pbi/NCyLUwfJBTOXFJg1v+Nx8KDxmOPn9zn9fV0BtEFFReNm5lfroOp6qaez0eqVYiMykMc5LCkD4qhP+wk8OobGzDB3vL8OmhSvPVjANUnrh3aix+OT3eZa5tRMTwQU5FFEVkvJ6L8oY2vHVvGv5jYhQA46XQ887WYdfpWuSerUNjzx4LgHGJ4/WxgcbejcQwJEf6cbIoObSWji58fvgC3t9bispG49Cgh0zAf0yMxLIZIzEhWi1xhUTDw/BBTmfN1lN4d3cJZo4JwcwxIcg5VYvD5U3mK44CgJ/SA7PGhmJOchhmjQ1DkJ33BSGyBr1BxI6TNdiwpxQHSxvN90+ND8LSGfG4OSWCm9iRU2L4IKfzQ+Vl3LZuz1X3jw7zNV8VdlJcIDw5WZRcSOEFDTbsKcW/f7iE7p6gHRPkjfvTE3DX5Gj4DXP1F1FfuvUGNGg7rX6lbYYPcjqiKOLOt/ei6GIzbhgVjNmJxq3MY4M5WZRcX01zBz7cV4aPDlTgcptxLxpfhQfunhKD+9PjERPEzwFZpr1Tj4rGNpQ3aFHR2IayBi3KG9pQ0diGi03tCFB54vBzN1v1PRk+yCmJoohug8jeDXJb7Z16bDp2ERv2lKK4thWAcTO8eSkRWDYzAZPjAjm3icwut3WivKEN5Y1tKK/XoryxDRUNbShv1KKmWTfgcxUeMhSsnmfVyfkMH0RETsxgEJF3rg7r80vx/bl68/0To9VYNiMBCyZEMqS7AYNBRG2LDuU9vRbljT/2XpTVa9Hc0T3g8/2VHogL9kFcsMp4C/JBbLAK8cE+CPNTWH3PGYYPIiIXcbamBe/vKcW/jl40X/ww3F+BX06Px33TYrlLr5Pr0htwsand2HthChkNbajoCRpXXvCyL2F+CsQHG0NFXJDKHC7iglV2/2+D4YOIyMU0tOrwfwcq8OH+ctS1GLvUlZ4y3Hl9NB64MQGjw3wlrpD609bZ3dNb8WOoMM3DuHS5o9eqvp+SywREB3ojNujH3gtjT4YPYoNUDrWnEcMHEZGL0nXr8c3xKqzPL8WJSz9utpeRGIplMxIwY3QI54XYmSiKuNzWdVXvRXmDcR6GKSz2R+kpMw+JxAWpEBfiY/zfYBWiArydZoiN4YOIyMWJoogDpY1Yn1+K707VwPQveWK4H5bOiMdt142A0tNx/ip2dgaDiJqWjl69F1eGjZZrzL8IUHn2DIv8GCxM8zHC/BQuERgZPoiI3EhZvRYb95bhs8OVaOvUAwCCfbxw37RY/Of0OIT5cQv3wejsNuBCU9uPq0au6L2oaGxD5zXmX0T4K829F/EhPr2GStQq19+zheGDiMgNadq78NmhSmzcW2a+urOXXIaFqVFYNiMBKVH8N1Wr6+41ofPK3otLl9sxwPQLeJjmXwT7ID5Y1RMujL0XsUEqt+9psmn4yMvLw+9//3scOXIEVVVV2LRpExYtWgQA6OrqwnPPPYctW7agpKQEarUac+fOxdq1axEVFWX14omI6GrdegO+PVGD9fklOFpx2Xz/9JHBWDojAXOSwqy+zNJRiKKIRm1nn70X5Q1tqG8deP6Ft6fcHCau7L2ID/ZBpFoJDyeZfyEFS76/r7586DVotVqkpqZi6dKluOOOO3o91tbWhqNHj+L5559Hamoqmpqa8MQTT+DWW2/F4cOHLX0rIiIaAg+5DLdMjMQtEyNxrKIJG/aUYUthFfaVNGBfSQPig1V44MYE/GxSdJ9XkXZ0BoOIquYO4+6dDW0ou6Ino6KhzXz14P4EqjzNvRfmeRg9e2GE+rrG/AtHN6xhF0EQevV89OXQoUOYOnUqysvLERsbe83XZM8HEZH1Xbrcjg/2leHjAxXmzan8lR64Z2osfpkejxEB3hJX2JuuW48LTe09vRfanoBh/LmysR2d+oHnX0Sqlb021jL1XsQGq+DPa+bYhE17Piyl0WggCAICAgL6fFyn00Gn+7EbrLm5uc92REQ0dFEB3liVnYzHZ4/BF0cv4P09ZSit1+LdvBK8l1+KrPERWDYjAdfHBtqtplZdd5+9F+UNbbikacdAfxp7ygVEB5omdKp+7MkIViE6kPMvHJ1Nw0dHRweefvpp3HPPPf2moDVr1uDFF1+0ZRlERNTDR+GBX06Px39Oi8OuM7VYn1+Kvecb8M3xKnxzvAppsQFYNiMBWeMihj2/QRRFNGg7zRM8jctUf5zg2aDtHPD5Ki+5cUJnz7wL0+6dsUHG/S/kLjpvxR3YbNilq6sLd955Jy5cuIDc3Nx+w0dfPR8xMTEcdiEispOTl5qxYU8pviq4ZB7OiFIrsSQ9Hr+YGgu1d//DFHqDiCpNu7n3orxR22uip7Zn6W9/gn28rtga/Mfei9ggH4T4enH+hROx21Lb/sJHV1cX7rrrLpSUlGDnzp0IDg4e9GtyzgcRkTTqWnT4x/5y/GN/ublXQuUlx88nReO2tBFoMvdi/Nh7caFp4PkXggBEqa/YHvyKpalxwSr4cf6Fy5B0zocpeJw7dw67du2yKHgQEZF0Qv0U+PXNY/FIxih8VXAJG/aU4nR1Cz7YV44P9pX3+zwvuQzRQd49wyM/rhyJDfJBTJA3FB6cf0G9WRw+WltbUVxcbP69tLQUBQUFCAoKQmRkJH72s5/h6NGj+Prrr6HX61FdXQ0ACAoKgpcXr75IROTolJ5y3DUlBj+fHI295xuwPr8UBZWXEeGv7NV7YbqKaqSa8y/IMhYPu+Tm5iIzM/Oq+5csWYLf/e53SEhI6PN5u3btQkZGxjVfn8MuREREzsemwy4ZGRkYKK842G7tRERE5GC4TywRERHZFcMHERER2RXDBxEREdkVwwcRERHZFcMHERER2RXDBxEREdkVwwcRERHZFcMHERER2RXDBxEREdkVwwcRERHZFcMHERER2RXDBxEREdkVwwcRERHZlcVXtbU101Vxm5ubJa6EiIiIBsv0vT2Yq9s7XPhoaWkBAMTExEhcCREREVmqpaUFarV6wDaCOJiIYkcGgwGXLl2Cn58fBEEYsG1zczNiYmJQWVkJf39/O1VofzxO18LjdC3ucJzucIwAj3O4RFFES0sLoqKiIJMNPKvD4Xo+ZDIZoqOjLXqOv7+/S/+HYsLjdC08TtfiDsfpDscI8DiH41o9HiaccEpERER2xfBBREREduXU4UOhUOCFF16AQqGQuhSb4nG6Fh6na3GH43SHYwR4nPbkcBNOiYiIyLU5dc8HEREROR+GDyIiIrIrhg8iIiKyK4YPIiIisiuHDx/r1q1DfHw8lEolpk2bhoMHDw7Y/vPPP0dSUhKUSiUmTJiALVu22KnS4bHkODdu3AhBEHrdlEqlHasdmry8PCxcuBBRUVEQBAGbN2++5nNyc3Nx/fXXQ6FQYPTo0di4caPN6xwOS48xNzf3qnMpCAKqq6vtU/AQrVmzBlOmTIGfnx/CwsKwaNEinDlz5prPc7bP51CO09k+n2+//TYmTpxo3nBq+vTp2Lp164DPcbbzCFh+nM52Hvuzdu1aCIKAFStWDNjO3ufUocPHp59+ipUrV+KFF17A0aNHkZqaivnz56O2trbP9nv37sU999yDZcuW4dixY1i0aBEWLVqEoqIiO1duGUuPEzDuTFdVVWW+lZeX27HiodFqtUhNTcW6desG1b60tBS33HILMjMzUVBQgBUrVuDBBx/Et99+a+NKh87SYzQ5c+ZMr/MZFhZmowqtY/fu3Xj00Uexf/9+7NixA11dXZg3bx60Wm2/z3HGz+dQjhNwrs9ndHQ01q5diyNHjuDw4cOYPXs2brvtNpw4caLP9s54HgHLjxNwrvPYl0OHDuHdd9/FxIkTB2wnyTkVHdjUqVPFRx991Py7Xq8Xo6KixDVr1vTZ/q677hJvueWWXvdNmzZN/K//+i+b1jlclh7n+++/L6rVajtVZxsAxE2bNg3Y5r//+7/FcePG9brv7rvvFufPn2/DyqxnMMe4a9cuEYDY1NRkl5pspba2VgQg7t69u982zvr5vNJgjtMVPp+BgYHie++91+djrnAeTQY6Tmc/jy0tLeKYMWPEHTt2iLNmzRKfeOKJfttKcU4dtuejs7MTR44cwdy5c833yWQyzJ07F/v27evzOfv27evVHgDmz5/fb3tHMJTjBIDW1lbExcUhJibmmundWTnj+Ryq6667DpGRkbj55puxZ88eqcuxmEajAQAEBQX128YVzudgjhNw3s+nXq/HJ598Aq1Wi+nTp/fZxhXO42COE3De8wgAjz76KG655ZarzlVfpDinDhs+6uvrodfrER4e3uv+8PDwfsfDq6urLWrvCIZynImJidiwYQO+/PJL/OMf/4DBYEB6ejouXLhgj5Ltpr/z2dzcjPb2domqsq7IyEi88847+OKLL/DFF18gJiYGGRkZOHr0qNSlDZrBYMCKFStw4403Yvz48f22c8bP55UGe5zO+PksLCyEr68vFAoFHn74YWzatAkpKSl9tnXm82jJcTrjeTT55JNPcPToUaxZs2ZQ7aU4pw53VVu6tunTp/dK6+np6UhOTsa7776Ll156ScLKyFKJiYlITEw0/56eno7z58/jzTffxN///ncJKxu8Rx99FEVFRcjPz5e6FJsa7HE64+czMTERBQUF0Gg0+Oc//4klS5Zg9+7d/X4xOytLjtMZzyMAVFZW4oknnsCOHTsceoKsw4aPkJAQyOVy1NTU9Lq/pqYGERERfT4nIiLCovaOYCjH+VOenp5IS0tDcXGxLUqUTH/n09/fH97e3hJVZXtTp051mi/y5cuX4+uvv0ZeXh6io6MHbOuMn08TS47zp5zh8+nl5YXRo0cDACZNmoRDhw7hT3/6E959992r2jrzebTkOH/KGc4jABw5cgS1tbW4/vrrzffp9Xrk5eXhrbfegk6ng1wu7/UcKc6pww67eHl5YdKkScjJyTHfZzAYkJOT0+8Y3fTp03u1B4AdO3YMOKYntaEc50/p9XoUFhYiMjLSVmVKwhnPpzUUFBQ4/LkURRHLly/Hpk2bsHPnTiQkJFzzOc54PodynD/ljJ9Pg8EAnU7X52POeB77M9Bx/pSznMc5c+agsLAQBQUF5tvkyZNx3333oaCg4KrgAUh0Tm02ldUKPvnkE1GhUIgbN24UT548Kf7qV78SAwICxOrqalEURXHx4sXiM888Y26/Z88e0cPDQ3z99dfFU6dOiS+88ILo6ekpFhYWSnUIg2Lpcb744ovit99+K54/f148cuSI+Itf/EJUKpXiiRMnpDqEQWlpaRGPHTsmHjt2TAQg/uEPfxCPHTsmlpeXi6Iois8884y4ePFic/uSkhJRpVKJTz31lHjq1Clx3bp1olwuF7dt2ybVIVyTpcf45ptvips3bxbPnTsnFhYWik888YQok8nE7777TqpDGJRHHnlEVKvVYm5urlhVVWW+tbW1mdu4wudzKMfpbJ/PZ555Rty9e7dYWloqHj9+XHzmmWdEQRDE7du3i6LoGudRFC0/Tmc7jwP56WoXRzinDh0+RFEU//znP4uxsbGil5eXOHXqVHH//v3mx2bNmiUuWbKkV/vPPvtMHDt2rOjl5SWOGzdO/Oabb+xc8dBYcpwrVqwwtw0PDxcXLFggHj16VIKqLWNaVvrTm+nYlixZIs6aNeuq51x33XWil5eXOHLkSPH999+3e92WsPQYX331VXHUqFGiUqkUg4KCxIyMDHHnzp3SFG+Bvo4RQK/z4wqfz6Ecp7N9PpcuXSrGxcWJXl5eYmhoqDhnzhzzF7IousZ5FEXLj9PZzuNAfho+HOGcCqIoirbrVyEiIiLqzWHnfBAREZFrYvggIiIiu2L4ICIiIrti+CAiIiK7YvggIiIiu2L4ICIiIrti+CAiIiK7YvggIiIiu2L4IKIhy83NhSAIuHz5stSlEJETYfggoiFLT09HVVUV1Gr1oJ/T1taGVatWYdSoUVAqlQgNDcWsWbPw5Zdf2rBSInIkHlIXQETOy8vLy+LLbj/88MM4cOAA/vznPyMlJQUNDQ3Yu3cvGhoabFQlETka9nwQkVlGRgYee+wxrFixAoGBgQgPD8ff/vY3aLVaPPDAA/Dz88Po0aOxdetWAFcPu2zcuBEBAQH49ttvkZycDF9fX2RlZaGqqsr8Hl999RWeffZZLFiwAPHx8Zg0aRIee+wxLF261NxGEARs3ry5V20BAQHYuHEjAKCsrAyCIOCTTz5Beno6lEolxo8fj927d9v0/x8isg6GDyLq5YMPPkBISAgOHjyIxx57DI888gh+/vOfIz09HUePHsW8efOwePFitLW19fn8trY2vP766/j73/+OvLw8VFRU4MknnzQ/HhERgS1btqClpWXYtT711FP4zW9+g2PHjmH69OlYuHAhe1CInADDBxH1kpqaiueeew5jxozBqlWroFQqERISgoceeghjxozB6tWr0dDQgOPHj/f5/K6uLrzzzjuYPHkyrr/+eixfvhw5OTnmx//6179i7969CA4OxpQpU/DrX/8ae/bsGVKty5cvx5133onk5GS8/fbbUKvVWL9+/ZBei4jsh+GDiHqZOHGi+We5XI7g4GBMmDDBfF94eDgAoLa2ts/nq1QqjBo1yvx7ZGRkr7Y33XQTSkpKkJOTg5/97Gc4ceIEZs6ciZdeesniWqdPn27+2cPDA5MnT8apU6csfh0isi+GDyLqxdPTs9fvgiD0uk8QBACAwWAY9PNFUbyqzcyZM/H0009j+/bt+J//+R+89NJL6Ozs7Pc5XV1dQzsgInI4DB9EJLmUlBR0d3ejo6MDABAaGtprkuq5c+f6nGOyf/9+88/d3d04cuQIkpOTbV8wEQ0Ll9oSkV1lZGTgnnvuweTJkxEcHIyTJ0/i2WefRWZmJvz9/QEAs2fPxltvvYXp06dDr9fj6aefvqpHBQDWrVuHMWPGIDk5GW+++Saampp6rZohIsfEng8isqv58+fjgw8+wLx585CcnIzHHnsM8+fPx2effWZu88YbbyAmJgYzZ87EvffeiyeffBIqleqq11q7di3Wrl2L1NRU5Ofn46uvvkJISIg9D4eIhkAQfzqwSkTk4MrKypCQkIBjx47huuuuk7ocIrIQez6IiIjIrhg+iIiIyK447EJERER2xZ4PIiIisiuGDyIiIrIrhg8iIiKyK4YPIiIisiuGDyIiIrIrhg8iIiKyK4YPIiIisiuGDyIiIrKr/w8bAJltBHhpfgAAAABJRU5ErkJggg==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGwCAYAAAAJ/wd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWI0lEQVR4nO3dd3iT9f4+8PtJmtGRpnS3tEAHo1CWBZFV9vSn4l6Hrx5xnoIiTtAjbjwetyK40ePACSIyZBaQJaNAGR1QoHTPdDfr+f2RtoCMNm2SJ+N+XVeuC9r0ybs8lNx8xvsjiKIogoiIiMhBZFIXQERERJ6F4YOIiIgciuGDiIiIHIrhg4iIiByK4YOIiIgciuGDiIiIHIrhg4iIiBzKS+oC/s5sNiM/Px8ajQaCIEhdDhEREbWBKIqorq5GZGQkZLLLj204XfjIz89HdHS01GUQERFRO+Tm5iIqKuqyz3G68KHRaABYivf395e4GiIiImqLqqoqREdHt7yPX47ThY/mqRZ/f3+GDyIiIhfTliUTXHBKREREDsXwQURERA7F8EFEREQO5XRrPoiIiADAZDLBYDBIXQadQ6FQQC6Xd/g6DB9ERORURFFEYWEhKisrpS6FLiIgIADh4eEd6sXF8EFERE6lOXiEhobCx8eHDSedhCiKqKurQ3FxMQAgIiKi3ddi+CAiIqdhMplagkdQUJDU5dDfeHt7AwCKi4sRGhra7ikYLjglIiKn0bzGw8fHR+JK6FKa701H1uMwfBARkdPhVIvzssW9YfggIiIih2L4ICIiIodi+CAiInJBgiBg+fLlUpfRLgwfLshoMsNgMktdBhEROcDzzz+PAQMGXPDxgoICTJkyxfEF2QDDh4sxmUXc/slODF2wEZV1eqnLISKiS9Dr7ftvdHh4OFQqlV1fw14YPlzMyoP5+OtkBUprGrE5o0TqcoiI7EoURdTpjZI8RFG0qtbRo0dj5syZmD17NoKDgzFp0iQIgoC0tLSW51RWVkIQBGzevBkAsHnzZgiCgA0bNmDQoEHw8fHBsGHDkJGRAQBYsmQJXnjhBRw4cACCIEAQBCxZsgTA+dMuJ0+ehCAI+OGHHzBy5Eh4e3tj8ODByMzMxF9//YVBgwbBz88PU6ZMQUnJ+e8dn376KRISEqBWq9GrVy98+OGH7bpX1mCTMRdiMJnx9rrMlt9vySzBtIGdJayIiMi+6g0m9H5urSSvfeTFSfBRWvc2+eWXX+Khhx7Cn3/+CQDo1atXm77umWeewZtvvomQkBA8+OCDuOeee/Dnn3/i1ltvRXp6OtasWYP169cDALRa7SWvM3/+fLzzzjvo0qUL7rnnHtxxxx3QaDR499134ePjg1tuuQXPPfccFi1aBAD45ptv8Nxzz+GDDz7AwIEDsX//ftx3333w9fXFXXfdZdX3bg2GDxfyy74zOFlWBy+ZAKNZxJasUoiiyP3wREROonv37nj99dcBWEYj2uqVV17BqFGjAABPP/00rr76ajQ0NMDb2xt+fn7w8vJCeHh4q9d5/PHHMWnSJADAI488gttvvx0bNmzA8OHDAQAzZsxoGTkBLGHlzTffxA033AAAiImJwZEjR/DRRx8xfBDQaDThvQ3ZAIDHJvbEexuyUFrTiKMF1egd6S9xdURE9uGtkOPIi5Mke21rJSUlteu1+vXr1/Lr5jNTiouL0aVLl3ZfJywsDADQt2/f8z7WfDZLbW0tjh8/jhkzZuC+++5reY7RaLzs6IotMHy4iKW7c5FXWY9wfzX+Obwb/jpZjo3HirElq4Thg4jcliAIVk99SMnX17fl1zKZZVnluWtHLtWSXKFQtPy6eTTbbLZ+V+PFrvP3jzVft6amBgDwySefYMiQIeddp71ntrQVF5y6gHq9CR9ssox6zBoXD7VCjuTuwQCArVlcdEpE5IxCQkIAWLbENjt38WlbKZVKmEwmW5XVIiwsDJGRkThx4gTi4+PPe8TExNj89c7lOnHSg3214yRKqhsRHeiNm5OiAQAje1j+Uv+VU4E6vdGl/mdAROQJvL29cdVVV+G1115DTEwMiouL8eyzz1p9nW7duiEnJwdpaWmIioqCRqOx2RbbF154AQ8//DC0Wi0mT56MxsZG7NmzBxUVFZgzZ45NXuNiOPLh5KobDFicehwAMHtcDyi9LLcsNtgXnQO8oTeZsSunXMoSiYjoEj7//HMYjUYkJSVh9uzZePnll62+xo033ojJkydjzJgxCAkJwXfffWez+u699158+umn+OKLL9C3b1+MGjUKS5YssfvIhyBau5HZzqqqqqDVaqHT6eDvz7UM767PwtvrMxEX4os/Hh0Fuezszpa5vxzEd7tz8c/h3TD/mj4SVklEZBsNDQ3IyclBTEwM1Gq11OXQRVzqHlnz/s2RDydWWafHp1tPAADmTOh5XvAAgOTulqmXLZlc90FERK6D4cOJfbTlBKobjUiI8MeUxAv3dw+LC4ZMAI6X1CKvsl6CComIiKzH8OGkSqobseTPkwCAxyb0gEx2YSMxrY8CA6IDAABbOfpBREQuguHDSX24ORv1BhMGRAdgXELoJZ+X3LTrZWtWqaNKIyKyOydbjkjnsMW9YfhwQvmV9fhm52kAwOMTe162ffrIpnUf27JLYTLzh5WIXFtzQ6y6ujqJK6FLab435zYvsxabQzihDzZlQ28y46rYQAyPD7rsc/tHaeGv9oKu3oADZypxRZdODqqSiMj25HI5AgICWlqA+/j48PwqJyGKIurq6lBcXIyAgIAOdUFl+HAyp8vq8MNfuQAsZ7i09kPnJZdheHwwVqcXYmtmKcMHEbm85gPUmgMIOZeAgIA2HXJ3OQwfTuadDZkwmkWM6hGCwd0C2/Q1yT1CsDq9EFuySvDI+O52rpCIyL4EQUBERARCQ0MveRYKSUOhUNjk3BeGDyeSXVyN5fvzAFjWerTVyKZzXtJyK6GrN0Dr3f55OCIiZyGXy+1+wBlJgwtOncjb67JgFoFJfcLQN6rtxxlHdfJBbIgvTGYRO45z1wsRETk3q8LHggULMHjwYGg0GoSGhmLatGnIyMg47zkPPPAA4uLi4O3tjZCQEFx33XU4duyYTYt2R+l5Ovx+qACCYOlmaq3mbqepmQwfRETk3KwKH6mpqUhJScHOnTuxbt06GAwGTJw4EbW1tS3PSUpKwhdffIGjR49i7dq1EEUREydOtMtxwO7k7XWZAIBr+0eiZ7jG6q9P7mGZetmSWcL98URE5NQ6dLBcSUkJQkNDkZqaiuTk5Is+5+DBg+jfvz+ys7MRFxd3wecbGxvR2NjY8vuqqipER0d71MFy+05X4IYPt0MuE7B+zijEBPtafY06vREDXlgHvcmMjY+NQmyInx0qJSIiujiHHSyn0+kAAIGBF9+VUVtbiy+++AIxMTGIjo6+6HMWLFgArVbb8rjU89zZm39Ypq5uuiKqXcEDAHyUXhjUzbLNlt1OiYjImbU7fJjNZsyePRvDhw9HYmLieZ/78MMP4efnBz8/P6xevRrr1q2DUqm86HXmzp0LnU7X8sjNzW1vSS5p+/FS/JldBoVcwKxx8R261kiecktERC6g3eEjJSUF6enpWLp06QWfu/POO7F//36kpqaiR48euOWWW9DQ0HDR66hUKvj7+5/38BSiKOLNPyxrPe64sguiOvl06HrN6z52nCiD3mjucH1ERET20K7wMXPmTKxcuRKbNm1CVFTUBZ/XarXo3r07kpOT8dNPP+HYsWNYtmxZh4t1N5szS7D3VAXUChlSxnRs1AMAEsL9EeynRJ3ehL2nKmxQIRERke1ZFT5EUcTMmTOxbNkybNy4ETExMW36GlEUz1tUSs2jHpa1HncN7YZQf3WHrymTCWenXrI49UJERM7JqvCRkpKCr7/+Gt9++y00Gg0KCwtRWFiI+vp6AMCJEyewYMEC7N27F6dPn8b27dtx8803w9vbG1OnTrXLN+Cq1h4uRHpeFXyVcjww6sJdQO3VPPWyleGDiIiclFXhY9GiRdDpdBg9ejQiIiJaHt9//z0AQK1WY+vWrZg6dSri4+Nx6623QqPRYPv27QgNDbXLN+CKTOazaz1mjIhBoO/FF+O2x4h4y8hHel4VSms42kRERM7HqrNdWmsJEhkZiVWrVnWoIE/w24F8ZBXXQOutwIyRsTa9dohGhd4R/jhSUIVtWaWYNrCzTa9PRETUUTzbxcEMJjPeWW8Z9bg/OdYuh8CNbO52yqkXIiJyQgwfDvbz3jM4WVaHYD8l/jm8m11eY1TTotOtWaVstU5ERE6H4cOBGo0mvLchCwDw0Oh4+CitmvVqs6RuneCtkKOkuhHHCqvt8hpERETtxfDhQN/tOo18XQPC/dW4c0gXu72OykuOq2ItLe/Z7ZSIiJwNw4eD1OtN+GDTcQDArHHxUCvkdn295B7s90FERM6J4cNBvtxxEqU1jYgO9MbNSfY/PK+52dhfORWo15vs/npERERtxfDhANUNBixOtYx6zB7XA0ov+/+xx4X4onOAN/QmM3bmlNn99YiIiNqK4cMBPt92EpV1BsSF+Dqs74YgCGe7nWaWOuQ1iYiI2oLhw84q6/T4dOsJAMCcCT0hlwkOe22e80JERM6I4cPOPtpyAtWNRiRE+GNKYrhDX3t4XDBkApBdXIP8ynqHvjYREdGlMHzYUXF1A5b8eRIA8NiEHpA5cNQDALQ+CvSPDgDAg+aIiMh5MHzY0aLNx1FvMGFAdADGJUhzsF5y89QL130QEZGTYPiwk/zKenyz8zQA4PGJPSEIjh31aNbc72NbdilMZrZaJyIi6TF82Mn7G7OhN5lxVWwghscHSVZH/ygtNGov6OoNOHimUrI6iIiImjF82MGpslr8uCcXgLSjHgDgJZdhRHzTKbeceiEiIifA8GEH767PgtEsYnTPEAzqFih1OS1bbrnolIiInAHDh41lFVVjWVoeAOCxCT0lrsaiudnY/txKVDUYJK6GiIg8HcOHjb29PhOiCEzqE4a+UVqpywEARHXyQWyIL0xmEduz2WqdiIikxfBhQ+l5Oqw6VAhBsHQzdSbJ7HZKREROguHDht5alwkAuLZ/JHqGaySu5nzNUy9bMksgitxyS0RE0mH4sJG9pyqw8Vgx5DIBs8f3kLqcCwyJCYJCLuBMRT1OltVJXQ4REXkwhg8befOPDADATVdEISbYV+JqLuSr8sKgrpadN1syOfVCRETSYfiwge3Zpdh+vAxKuQwPj+8udTmX1NztlFtuiYhISgwfHSSKIt5sWutx+5XR6BzgLXFFlzayu2Xdx47jZdAbzRJXQ0REnorho4M2Z5Rg76kKqBUypIyJl7qcy+od4Y9gPyVq9SbsPVUhdTlEROShGD46QBRFvNG01uOuod0Q6q+WuKLLk8mEllbrnHohIiKpMHx0wJr0QhzOr4KfygsPjIqTupw2aV73wX4fREQkFYaPdjKZxZa+HveMiEGgr1LiitpmRNO6j/S8KpTVNEpcDREReSKGj3ZacSAPWcU10HorMGNEjNTltFmoRo2ECH8AwLZsnnJLRESOx/DRDgaTGe+szwIA3J8cC623QuKKrNPc7TSV/T6IiEgCDB/t8PPeMzhVVodgPyX+Obyb1OVYrfmcl61ZpWy1TkREDsfwYaVGownvbbCMejw0Oh4+Si+JK7LeoG6d4K2Qo6S6EccKq6Uuh4iIPAzDh5W+23Ua+boGhPurceeQLlKX0y4qLzmuirW0WueWWyIicjSGDyvU6Y34YNNxAMCscfFQK+QSV9R+I5umXrZkctEpERE5FsOHFb7acQqlNY3oEuiDWwZFS11OhzT3+9h9shz1epPE1RARkSdh+GijqgYDFqdaRj0eGdcdCrlr/9HFhfgiUquG3mjGrpwyqcshIiIP4trvoA70+bYcVNYZEBfii2kDO0tdTocJgnC22ymnXoiIyIEYPtqgolaPz7bmAADmTOgJuUyQuCLbaA4fXHRKRESOxPDRBh9tOYHqRiMSIvwxJTFc6nJsZnhcMGQCkFVcg/zKeqnLISIiD8Hw0Yri6gYs2W4Z9Xh8Yg/I3GTUAwC0Pgr0jw4AwNEPIiJyHIaPVny46TgaDGYMiA7A2F6hUpdjcy1bbrO47oOIiByD4eMy8ivr8e2u0wCAxyf2hCC4z6hHs1FN57xsyyqFycxW60REZH8MH5fx/sYs6E1mXBUbiOHxQVKXYxf9owKgUXtBV2/AoTyd1OUQEZEHYPi4hJOltfhhzxkA7jvqAQBechmGx1lGP7bwlFsiInIAho9LeG9DFkxmEaN7hmBQt0Cpy7Grs/0+GD6IiMj+GD4uIquoGsvS8gAAj03oKXE19jeyu2XkY39uJaoaDBJXQ0RE7o7h4yLeXp8JUQQm9wlH3yit1OXYXXSgD2KDfWEyi9iezVbrRERkXwwff5Oep8OqQ4UQBODRCT2kLsdhmkc/2O+DiIjsjeHjb95alwkAuLZ/JHqGaySuxnFa1n1klUAUueWWiIjsh+HjHHtPVWDjsWLIZQJmj/ecUQ8AuCo2CAq5gNzyepwsq5O6HCIicmMMH+d4848MAMBNV0QhJthX4mocy1flhaSunQBw6oWIiOyL4aPJ9uxSbD9eBqVchofHd5e6HElwyy0RETkCwwcAURTxRtOox+1XRqNzgLfEFUkjuemclx3Hy6A3miWuhoiI3JVV4WPBggUYPHgwNBoNQkNDMW3aNGRkZLR8vry8HLNmzULPnj3h7e2NLl264OGHH4ZO59xtuzdnlGDf6UqoFTKkjImXuhzJ9I7wR5CvErV6E/adrpC6HCIiclNWhY/U1FSkpKRg586dWLduHQwGAyZOnIja2loAQH5+PvLz8/HGG28gPT0dS5YswZo1azBjxgy7FG8LZvPZUY+7hnZDqL9a4oqkI5MJ3HJLRER2J4gd2FdZUlKC0NBQpKamIjk5+aLP+fHHH/GPf/wDtbW18PLyavWaVVVV0Gq10Ol08Pf3b29pbbb6UAEe+mYf/FRe2PLkGAT6Ku3+ms7s571n8NiPB9C3sxa/zRohdTlEROQirHn/bj0NXEbzdEpg4KXPPmku4lLBo7GxEY2NjS2/r6qq6khJVjGZRbzZ1NfjnhExHh88gLPNxtLzdSiraUSQn0riioiIyN20e8Gp2WzG7NmzMXz4cCQmJl70OaWlpXjppZdw//33X/I6CxYsgFarbXlER0e3tySrrTiQh+ziGmi9Fbh3ZIzDXteZhfqr0StcA1EEtmWXSl0OERG5oXaHj5SUFKSnp2Pp0qUX/XxVVRWuvvpq9O7dG88///wlrzN37lzodLqWR25ubntLsorBZMbb67IAAA+MioW/WuGQ13UFo1q23DJ8EBGR7bUrfMycORMrV67Epk2bEBUVdcHnq6urMXnyZGg0GixbtgwKxaXf2FUqFfz9/c97OMJPe8/gdHkdgv2UuHtYN4e8pqto7vexla3WiYjIDqwKH6IoYubMmVi2bBk2btyImJgLpyqqqqowceJEKJVKrFixAmq18+0eaTCY8N4Gy6jHQ6Pj4aPs0NIXt5PUtRPUChmKqxuRUVQtdTlERORmrAofKSkp+Prrr/Htt99Co9GgsLAQhYWFqK+vB3A2eNTW1uKzzz5DVVVVy3NMJpNdvoH2+G73aRToGhDur8adQ7pIXY7TUSvkuCo2CAC7nRIRke1ZFT4WLVoEnU6H0aNHIyIiouXx/fffAwD27duHXbt24dChQ4iPjz/vOY5ay9GaOr0RCzcdBwDMGhcPtUIucUXOaWT35qkXrvsgIiLbsmq+obX5/9GjRzv9GoEvt59CaU0jugT64JZBjttZ42pG9QjGSwB25ZSjXm+Ct5IhjYiIbMOjznapajBgcapl1OORcd2hkHvUt2+VuBA/RGrV0BvN2H2yXOpyiIjIjXjUu+9nW3OgqzcgLsQX0wZ2lrocpyYIQsvUC9d9EBGRLXlM+Kio1eOzbTkAgDkTekIuEySuyPkl92D4ICIi2/OY8FFvMGF4fBB6R/hjSmK41OW4hOHxQZAJQFZxDQp09VKXQ0REbsJjwkdkgDc+mj4IPz00FDKOerRJgI8S/aICAABb2e2UiIhsxGPCRzM2FLNOy9RLFqdeiIjINjwufJB1kptOud2WXQqT2bm3URMRkWtg+KDLGhAdAI3KC5V1BhzK00ldDhERuQGGD7osL7kMw+Itrda3ctcLERHZAMMHtYrrPoiIyJYYPqhVyU3NxvadrkR1g0HiaoiIyNUxfFCrogN9EBPsC5NZxPbjZVKXQ0RELo7hg9qkedcLu50SEVFHMXxQmzSf87I1i83GiIioYxg+qE2GxgVBIRdwurwOJ0trpS6HiIhcGMMHtYmvygtJXTsBALZy1wsREXUAwwe1WfPUSyrPeSEiog5g+KA2G9XU72PH8VLojWaJqyEiIlfF8EFt1jvCH0G+StTqTdh/ukLqcoiIyEUxfFCbyWQCRjRvueW6DyIiaieGD7JKMrfcEhFRBzF8kFVGNo18HMrTobxWL3E1RETkihg+yCqh/mr0CtdAFLnlloiI2ofhg6zWfMotp16IiKg9GD7IamfXfZRAFEWJqyEiIlfD8EFWG9StE9QKGYqqGpFZVCN1OURE5GIYPshqaoUcQ2KCAPCUWyIish7DB7VL87oP9vsgIiJrMXxQuyQ3bbndlVOOBoNJ4mqIiMiVMHxQu8SH+iFCq4beaMaunHKpyyEiIhfC8EHtIgjC2V0vXPdBRERWYPigdhvZg+e8EBGR9Rg+qN1GxAdDEIDMohoU6OqlLoeIiFwEwwe1W4CPEv2iAgCw2ykREbUdwwd1yKimXS/s90FERG3F8EEdMrKp38e27FKYzGy1TkRErWP4oA4ZEB0AjcoLlXUGpOfppC6HiIhcAMMHdYhCLsOweLZaJyKitmP4oA4b2XLKLRedEhFR6xg+qMNGNa372He6AtUNBomrISIiZ8fwQR0WHeiDbkE+MJpF7DheJnU5RETk5Bg+yCZ4yi0REbUVwwfZRPM5L1syue6DiIguj+GDbOKquCB4yQScLq/DqbJaqcshIiInxvBBNuGn8kJS104AuOWWiIguj+GDbObsug9OvRAR0aUxfJDNNK/72HG8DAaTWeJqiIjIWTF8kM30ifRHoK8SNY1G7DtVIXU5RETkpBg+yGZkMgEj4i2n3LLbKRERXQrDB9kU+30QEVFrGD7IpkZ2t4x8HMrTobxWL3E1RETkjBg+yKbC/NXoFa6BKALbsjn1QkREF2L4IJtrmXphvw8iIroIhg+yueapl61ZJRBFUeJqiIjI2VgVPhYsWIDBgwdDo9EgNDQU06ZNQ0ZGxnnP+fjjjzF69Gj4+/tDEARUVlbasl5yAYO7BULlJUNRVSMyi2qkLoeIiJyMVeEjNTUVKSkp2LlzJ9atWweDwYCJEyeitvbsWR51dXWYPHky5s2bZ/NiyTWoFXIMiQ0CYBn9ICIiOpeXNU9es2bNeb9fsmQJQkNDsXfvXiQnJwMAZs+eDQDYvHlzm67Z2NiIxsbGlt9XVVVZUxI5qeTuwdiSWYLUzBLcOzJW6nKIiMiJdGjNh06nAwAEBga2+xoLFiyAVqtteURHR3ekJHISo5oWne7OKUeDwSRxNURE5EzaHT7MZjNmz56N4cOHIzExsd0FzJ07FzqdruWRm5vb7muR84gP9UO4vxqNRjN255RLXQ4RETmRdoePlJQUpKenY+nSpR0qQKVSwd/f/7wHuT5BEJDcw7LrhVtuiYjoXO0KHzNnzsTKlSuxadMmREVF2bomchMjm0655TkvRER0LqvChyiKmDlzJpYtW4aNGzciJibGXnWRGxgRHwxBADKKqlGoa5C6HCIichJWhY+UlBR8/fXX+Pbbb6HRaFBYWIjCwkLU19e3PKewsBBpaWnIzs4GABw6dAhpaWkoL+e8v6fp5KtEv6gAADxojoiIzrIqfCxatAg6nQ6jR49GREREy+P7779vec7ixYsxcOBA3HfffQCA5ORkDBw4ECtWrLBt5eQSklu6nXLqhYiILATRyfpfV1VVQavVQqfTcfGpG/jrZDluXrwDnXwU2PPsBMhlgtQlERGRHVjz/s2zXciuBkQHwE/lhYo6Aw7n66Quh4iInADDB9mVQi7DsDhLq3VuuSUiIoDhgxwguanb6ZZMrvsgIiKGD3KA5KZ+H/tOV6C6wSBxNUREJDWGD7K7LkE+6BbkA6NZxI7jZVKXQ0REEmP4IIdgt1MiImrG8EEO0bLug83GiIg8HsMHOcTQuCB4yQScKqvDqbJaqcshIiIJMXyQQ/ipvHBF104AgC2ceiEi8mgMH+Qwo1q23HLqhYjIkzF8kMOMbDrnZcfxMhhMZomrISIiqTB8kMMkRmoR6KtETaMR+09XSl0OERFJhOGDHEYmEzAi3jL6wakXIiLPxfBBDtU89bKVW26JiDwWwwc5VHO/j4N5OpTX6iWuhoiIpMDwQQ4V5q9GzzANRBH4M5tbbomIPBHDBzlccg+u+yAi8mQMH+Rw57ZaF0VR4mqIiMjRGD7I4QZ3C4TKS4aiqkZkFddIXQ4RETkYwwc5nFohx5DYIACceiEi8kQMHySJ5KYttzznhYjI8zB8kCSa133sOlGGBoNJ4mqIiMiRGD5IEt1D/RDur0aj0YwdJ8qkLoeIiByI4YMkIQgCxiWEAgDWphdKXA0RETkSwwdJZmrfCADAH0eKYOQpt0REHoPhgyQzJCYQnXwUKK/VY3dOudTlEBGRgzB8kGS85DJM6B0GAFjNqRciIo/B8EGSmpJomXpZe7gQZjO7nRIReQKGD5LUsPggaFReKK5uxL7TFVKXQ0REDsDwQZJSeclbdr1w6oWIyDMwfJDkJjdNvaxJL+RBc0REHoDhgyQ3qkcIvBVy5FXW41CeTupyiIjIzhg+SHLeSjnG9LK0W+fUCxGR+2P4IKfQvOtl9aECTr0QEbk5hg9yCmN6hULpJcPJsjocK6yWuhwiIrIjhg9yCn4qLyR359QLEZEnYPggpzElMRwAsCa9QOJKiIjInhg+yGmMTwiDl0xAZlENjpfUSF0OERHZCcMHOQ2tjwLD4oMBWHp+EBGRe2L4IKfSPPWymlMvRERui+GDnMrE3mGQCUB6XhVyy+ukLoeIiOyA4YOcSpCfClfGBALg1AsRkbti+CCnM7VvU8MxTr0QEbklhg9yOpP6WNZ97DtdiQJdvcTVEBGRrTF8kNMJ81cjqWsnAMBaTr0QEbkdhg9ySmd3vTB8EBG5G4YPckrNUy9/nSxHaU2jxNUQEZEtMXyQU4oO9EHfzlqYReCPw0VSl0NERDbE8EFOazIbjhERuSWGD3Jazes+dhwvg67OIHE1RERkKwwf5LRiQ/zQM0wDo1nEuqOceiEichcMH+TUpvS1jH6s4dQLEZHbYPggpzYl0dLtdEtmKaobOPVCRNRRDQaT1CVYFz4WLFiAwYMHQ6PRIDQ0FNOmTUNGRsZ5z2loaEBKSgqCgoLg5+eHG2+8EUVFHDKn9ukR5ofYYF/oTWZsPFYsdTlERC7NYDLj+g+344kfD6CyTi9ZHVaFj9TUVKSkpGDnzp1Yt24dDAYDJk6ciNra2pbnPProo/jtt9/w448/IjU1Ffn5+bjhhhtsXjh5BkEQWna98KA5IqKOWfLnSRwtqML6o0Uwi9LVIYii2O6XLykpQWhoKFJTU5GcnAydToeQkBB8++23uOmmmwAAx44dQ0JCAnbs2IGrrrqq1WtWVVVBq9VCp9PB39+/vaWRGzl0RodrPtgGb4Uc+/49Ad5KudQlEdldVYMBn2/LQVyIHyb0DoNawb/31DH5lfUY/1Yq6vQmvH5jP9wyONqm17fm/durIy+k0+kAAIGBliPQ9+7dC4PBgPHjx7c8p1evXujSpcslw0djYyMaG892sKyqqupISeSGEjv7I6qTN85U1CM1sxiTm9aBELmz55anY3laPgDAT+WFyYnhmDagM4bGBUEuEySujlzRC78dRp3ehEFdO+GmpChJa2n3glOz2YzZs2dj+PDhSExMBAAUFhZCqVQiICDgvOeGhYWhsPDiQ+YLFiyAVqtteURH2zaJkesTBAGT+/CsF/IcqZklWJ6WD0EAOgd4o6bRiJ/2nsE/PtuFoQs24OWVR5Cep0MHBq7Jw2w4WoS1h4vgJRPw8vWJkEkcYNsdPlJSUpCeno6lS5d2qIC5c+dCp9O1PHJzczt0PXJPzVtuNx4tRqNR+pXaRPZSpzfimWWHAAB3D+uGrU+OwY8PDsWdQ7pA661AcXUjPt2Wg//3/jZMeHsLPtiYhdzyOomrJmdWrzdh/orDAIAZI2LQK1z6JQ3tmnaZOXMmVq5ciS1btiAq6uzQTXh4OPR6PSorK88b/SgqKkJ4ePhFr6VSqaBSqdpTBnmQgdGdEOavQlFVI/7MLsXYXmFSl0RkF++sz8KZinpEatV4bGJPyGQCBncLxOBugZh/TR/LqMj+PKw/WoTs4hq88Ucm3vgjE4O6dsK0gZ1xdd8IdPJVSv1tkBN5f6Pl71TnAG88Mr671OUAsHLkQxRFzJw5E8uWLcPGjRsRExNz3ueTkpKgUCiwYcOGlo9lZGTg9OnTGDp0qG0qJo8kk50z9XKIUy/kntLzdPh06wkAwMvXJ8JPdf7/D5VeMkzoHYaFd16Bv54dj9dv6ofh8UEQBGDPqQo8uzwdV766Hvd+uQcrD+Y7RT8HklZWUTU+3mL5OzX/mt7wUXZoqafNWFVFSkoKvv32W/z666/QaDQt6zi0Wi28vb2h1WoxY8YMzJkzB4GBgfD398esWbMwdOjQNu10IbqcyYkR+HLHKfxxpAivmsxQyNkjj9yH0WTG3F8OwSwCV/eLaHV0z1+twC2DonHLoGgU6hrw24F8LNufhyNN2yjXHy1qWah6/cDOuCqWC1U9jSiKeGZ5OoxmEeMTwjCxz8VnIKRg1VZbQbj4X9wvvvgCd999NwBLk7HHHnsM3333HRobGzFp0iR8+OGHl5x2+TtutaVLMZlFXPnKepTV6vG/GVdiZPcQqUsisplPt57Ay78fhUbthQ2PjUKoRt2u62QWVWP5/jz8mpaPvMr6lo+H+atwbf9IXDegM/pE+l/y33NyHz/tPYPHfzwAb4Uc6+YkI6qTj11fz5r37w71+bAHhg+6nLm/HMR3u3Nxx5AuePX6vlKXQ2QTueV1mPj2FtQbTFhwQ1/cfmWXDl/TbBax51QFlqfl4feDBdDVnz2eoHuoH6YN7Ixr+0ciOtC+b0gkjco6Pca+mYryWj2entILD46Ks/trMnyQ20rNLMFdn+9GsJ8Su+aN5zAyuTxRFHH3F38hNbMEV8YEYul9V9l8G2Sj0YTUjBIsT8vD+qPF0BvNLZ8b3O3sQtUAHy5UdRfN/1HrEeaH3x8e6ZBpaoc1GSNytKGxQfBXe6G0Ro89J8sxJDZI6pKIOuS3gwVIzSyBUi7Dq9f3tUv/BZWXHBP7hGNin3BUNRiw5lAhlqflYceJMvx1sgJ/nazA8ysOY3TPUEwb0BnjEkLZUdWF7T1Vju92W9pWvDytr1Ouj2P4IJei9JJhfO8w/LIvD6vTCxk+yKVV1unx4m+W/gspY+IRH+pn99f0Vytwy+Bo3DI4GgW6+qaFqvk4WlCFdUeKsO5IETTNHVW5UNXlGE1mPLMsHQBwc1IUrowJlLiii3O+OETUiilN7dXXHi6EWcqTkYg66NVVR1Fao0d8qB8eHB3r8NeP0Hrj/uQ4rH5kJNbOTsZDo+PQOcAb1Y1G/Lj3DO78dBeGvbYBr/x+BIfz2VHVFSzZfhLHCqsR4KPA3KkJUpdzSRz5IJczsnswfJVyFOgacOBMJQZ26SR1SURW2368FD/sOQMAeO2GvlB5STvN0TNcg6cm98ITE3vir5PlWJ6Wj98P5qOoqhGfbM3BJ1tzWhaqXjcg0u47J8h6+ZX1eGtdJgBg7pReCHTiZnMc+SCXo1bIMTbB0gNhDc96IRfUYDC1DI3fOaQLBnVznqFxmUzAkNggLLihL/56djw+mp6EKYnhUHrJkFVcg/+uzcCI/2zCLYt34Jtdp1BZp5e6ZGry4m9HWg6OuznJuc9J48gHuaQpieH47UA+VqUX4OkpvdizgFzKBxuzkVNai1CNCk9O7iV1OZek8pJjUp9wTOoTDl29AWvTC7Fsfx525pRh98ly7D5Z3rJQ9fqBnTG2FxeqSmXjsSKsOVwIuZMcHNcahg9ySaN7hkCtkCG3vB6H86uQ2FkrdUlEbZJRWI3FqccBAC9c2wdab4XEFbWN1vv8haor0iwdVY8VVl+wUPX6gZ0xhAtVHaZeb8Jzv1oWLt/rJAfHtYbhg1ySj9ILo3qEYO3hIqxJL2T4IJdgNot4+peDMJpFTOgdhsmJztPu2hoRWm88MCoOD4yKQ0ZhNZan5eHX/XnI1zXgx71n8OPeMwjzV+G6AZb1Ib0j2FHVnj7YdPYwwofHOcfBca3hmg9yWc27XlanF0hcCVHbfLPrFPafroSvUo4Xr+vjFm/IzQtVtz01Ft/ffxVuvzIa/movFFU14uMtJ3D1e9sw6Z0t2HisSOpS3VJ28dmD456/tg98Va4xpsDwQS5rbEIoFHIBx0tqkVVULXU5RJdVqGvAf9ZkAACenNwLEVpviSuyrbMLVfvhr2fHY/E/mhaqymXILKrBg1/vw/7TFVKX6VZEUcQzy9JhMIkYnxDqVAfHtYbhg1yWv1qBEfHBAIDV3PVCTu65X9NR02jEgOgA/OOqrlKXY1cqLzkmJ4Zj0T+S8Nez4zE+IQx6oxkP/G8viqoapC7PbfyyLw+7csrhrZDj+Wv7SF2OVRg+yKWdnXph+CDntSa9EH8cKYKXTMBrN/b1qIWYWm8F3rltAHqE+aG4uhH3/28vGgwmqctyeZV1ery66igA4OFx3V2u7wrDB7m0Cb3DIJcJOFpQhVNltVKXQ3SBqgYD5q+w9PR4YFSsS+xEsDU/lRc++b9BCPBR4EBuJeb9cojdUjvoP2syUFarR48wP9w7MkbqcqzG8EEurZOvEkObznfh6Ac5o/+uyUBRVSO6Bflg1ljX2IlgD12DfLHwjisglwn4ZX8ePt2aI3VJLmvvqQp8t/s0AOc9OK41rlcx0d80b1dcfYi7Xsi57D1Vjq93nQIAvHp9X49vwDU8Phj/vtpy3siC1UeRmlkicUWux2gy49nlzn9wXGsYPsjlTewTBkEADpzRIa+yXupyiAAAeqMZT/98CKJoeZMY1rQ42tPdNawbbh0UDbMIzPx2H06U1EhdkktZsv0kjhZUOf3Bca1h+CCXF6pRY3BXS/rnWS/kLD5KPY6s4hoE+Soxz4XfJGxNEAS8OK0Pkrp2QnWDEfd+tQdVDQapy3IJBbp6vN10cNzTk5374LjWMHyQW2ieelnDhmPkBI6X1OD9jdkAgOeu6Y1OLvwmYQ8qLzkW/yMJEVo1TpTU4uHv9sNk5gLU1rz42xHU6k1I6toJtwxy7oPjWsPwQW6hOXzsOVWB4mr2ESDpmM0i5v1yCHqTGck9QnBt/0ipS3JKIRoVPp4+CCovGTZnlOD1tcekLsmpbTpWjNXpTQfHTXP+g+Naw/BBbiEywBv9owMgisDaw2zjTNL5cW9uS+OnV6YlukULdXvpG6XF6zf1AwB8lHoCy/fnSVyRc6rXm/Bc03btGSNikBDh+tu1GT7IbUzh1AtJrKS6Ea/8bmn8NGdCD0QHulbjJylcN6AzHhodBwB46ueDOHimUtqCnNAHm7KQW245OO4RFzk4rjUMH+Q2msPHzhPlqKjVS1wNeaIXVx5BVYMRfSL98c/h3aQux2U8PrEnxvYKRaPRjPu/2otitmBvce7BcfNd6OC41jB8kNvoGuSL3hH+MJlFrDvCqRdyrE3HivHbgXzIBOC1G/rBywUbP0lFLhPw7m0DEB/qh8KqBjz49V40GtmCXRRFPLvccnDcuF6hmNg7TOqSbIY/HeRWmkc/VnHqhRyottHY0vhpxogY9I3SSlyR69GoFfjk/wbBX+2Ffacr8eyydI9vwb5sfx52niiHWiHD89f2cav1Qwwf5Fam9LWEjz+zS6GrZ+8Acoy31mUir7IenQO88eiEHlKX47Jign3xwR1XQCYAP+49gy/+PCl1SZKprNO3rB96eFx3t1s/xPBBbiU+VIP4UD8YTCI2HuPUC9nfwTOV+OJPyzklL1+fCB+le8zJSyW5R0hLU7aXfz+CrVme2YL99bWWg+O6h/rh3hGxUpdjcwwf5HamtJz1wm6nZF9Gk6WFulkEru0fiTE9Q6UuyS3MGBGDG6+IamrBvh8nSz3rxOp9pyvw7a7mg+MSofRyv7dq9/uOyOM1NxxLzSxBbaNR4mrInX22LQdHCqqg9VbguWt6S12O2xAEAa9cn4gB0QHQ1Rtw71d7UO0hLdiNJjOeWWZZP3RTUhSGNJ3a7W4YPsjt9I7wR5dAHzQazdic4ZlDtmR/p8vq8PZ6yzkbz1ydgGA/lcQVuRe1Qo6PpychzF+F7OIaPPp9Gswe0IK9+eA4rbcCc6f0krocu2H4ILcjCMLZqRfueiE7EEURzyw/hAaDGVfFBuLmpCipS3JLof5qfDx9EJReMqw/Wow312VIXZJdnXtw3NwpvRDkxoGW4YPcUvPUy6ZjxWgwsF8A2davafnYmlUKpZcMC27o51ZbIJ1N/+gA/OfGvgCAhZuO47cD+RJXZD/NB8dd0SXA5Q+Oaw3DB7ml/lEBiNCqUas3YWtWqdTlkBspr9XjxZVHAACPjOuOmGBfiStyf9cPjMIDyZYdH0/8dADpeTqJK7K9cw+Oe+X6vi5/cFxrGD7ILclkQsvox+pDnHoh23nl96Mor9WjZ5gG9410vy2QzurJyb0wumcIGgxm3P/VHpRUN0pdks2ce3DcPcO7ucXBca1h+CC3NSUxAgCw7mgR9EazxNWQO/gzuxQ/7zsDQQBevaGvW26BdFaWFuwDERvii3xdAx5yoxbsCzdlI7e8HhFaNWaP94wmdfzJIbeV1LUTgv1UqG4wYvtxTr1QxzQYTJi37BAAYPpVXZHUtZPEFXkerbelBbtG7YU9pyow/9fDLt+CPbu4Gh9tOQ4AmH+N+xwc1xqGD3JbcpmASX0sBzGtSWfDMeqYdzdk4VRZHcL91XhiUk+py/FYcSF+eO/2gRAEYOlfufhqxympS2q3vx8c1/zvlSdg+CC31jz18seRIhhNnHqh9jlaUNVyrPmL1/WBRq2QuCLPNqZnKJ6ebOmB8eLKI9ie7Zojm+58cFxrGD7IrQ2JDUSAjwLltXrsPlkudTnkgkxmEU//cggms4jJfcIxsU+41CURgPuTY3H9wM4wmUX869t9OF1WJ3VJVtHVGdz64LjWMHyQW1PIZZiQwKkXar//7TiJA7mV0Ki88MJ1faQuh5oIgoAFN/RFvygtKusMuO+rPahxoeMU/rP2mFsfHNcahg9ye1P6Wv6nuia90CPaM5Pt5FfW479rLV01n5rSC2H+aokronNZWrAPQohGhYyiasxxkRbs+05X4LvdloPjXnLTg+Na43nfMXmc4fHB0Ki8UFzdiP25FVKX47SOl9RgweqjOFZYJXUpTkEURfx7eTpq9SYkde2EO67sInVJdBHhWjU+mp4EpVyGP44U4Z0NWVKXdFnNB8eJInDjFVG4yk0PjmsNwwe5PZWXHOMSLEedrzrEqZeLqW4w4O4vduOj1BOY+u5WPPdrOipq9VKXJanV6YXYcKwYCrlleN/dO066siu6dMKrN1hasL+3IQurnLix4Jc7TrUcHDdvqvseHNcahg/yCJObdr2sSS90+b4A9vD8iiPILa+Hj1IOswh8teMUxry5GV/tOOmRu4R09QbMX3EYAPDQqDj0CNNIXBG15qakKMwYEQMAeOyHAzic73wt2At09XjrD8s03tNufnBcaxg+yCOM6hECb4UceZX1OOSG50J0xG8H8vHzvjOQCcCX91yJb+8bgl7hGlTWGfDcr4dx9XvbXHYrY3v9Z80xlFQ3IjbEF/8aEy91OdRGc6f0wsjuwag3mHD/V3tRVuNcLdhfWnn24Lhb3fzguNYwfJBH8FbKMaZXCADLcDpZ5FXW45mmrp0zx8RjcLdADIsLxspZI/DStEQE+CiQUVSNOz7dhQf/txe55a61nbE9dueU49tdlsWAr17fF2qFXOKKqK285DJ8cPsV6Bbkg7zKejz0zT6nOVphU0YxVh2yHBz38jRO4zF8kMfg1Mv5TGYRc75PQ1WDEQOiAzBrXPeWz3nJZZh+VVdsfnw07hraFXKZgDWHCzHurVS8sTYDdXrX2dJojUajCXN/OQgAuG1wtMcuBnRlWh8FPr1rEPxUXtidU44XfjssdUloMJjw3K+Wg+P+Oawbeke6/8FxrWH4II8xtlcolF4y5JTWIqOoWupyJPfRluPYlVMOX6Uc7942AAr5hf8cBPgo8cJ1iVj18EgMjw+C3mjGB5uyMfaNVCzfn+d2IW7R5uM4XlKLYD8V5k5JkLocaqf4UA3evW0ABAH4ZtdpfL1T2hbsH2w85+C4CZ5xcFxrGD7IY/ipvJDcPRgAsNrDd70cOqPDW39kAgCev7YPugb5Xvb5PcM1+HrGEHw0PQnRgd4orGrA7O/TcNPiHTh4ptIBFdtfdnE1PtxkOeDr+Wt7Q+vDFuqubFxCGB6faDmD5/kVh7HzRJkkdWQX15xzcFxv+HnIwXGtYfggj3Lu1IunqtMb8cjS/TCaRVzdNwI3JUW16esEQcCkPuFY9+goPDGpJ3yUcuw9VYHrFv6JJ386gJJq51rcZw2zWcTcXw5BbzJjbK9QXN03QuqSyAb+NToO1/SPhNEs4l/f7HP4miXLwXGHYDCJGNsrFJPYmr8Fwwd5lAkJYfCSCcgoqsbxkhqpy5HESyuP4kRpLSK0arxyfaLVh1mpFXKkjInHxsdG4/qBnSGKwA97zmDMG5vx8ZbjTrPAzxpL/8rFXycr4KOU48XrPOuAL3cmCAJev7EfEjv7o7xWj/u+2oNaB7ZgX5529uC4Fzzs4LjWMHyQR9H6KDAs3jL14omjH2sPF+K73achCMCbt/RHgI+y3dcK16rx9q0D8PNDQ9EvSouaRiNeXXUMk97Zgo3HimxYtX0VVzVgwWrLAV+PTeyJqE6edcCXu/NWWlqwB/upcKywGo//eMAhLdh1dQa8vNLy92rWWM87OK41DB/kcaYkWoY+V6c7bxdEeyiqasDTP1t2cjyQHIdhccE2uW5S10As/9dwvH5TPwT7qZBTWot7luzB3V/sdonRpRd+O4LqBiP6RWlx97BuUpdDdhAZ4I3F/7gCCrmA1emFeH9jtt1f8/Wmg+PiQ/1w30jPOziuNQwf5HEm9g6DTADS86o8om8FYFnT8PiPB1BRZ0BiZ3/MsfGKe5lMwC2DorHp8VG4PzkWCrmAzRklmPT2Frzy+xFUNRhs+nq2sv5IEX4/VAC5zNJCXe7hvRfc2aBugXh5WiIA4O31mXYd+dx/ugLfNh0c97KHHhzXGqv/RLZs2YJrrrkGkZGREAQBy5cvP+/zRUVFuPvuuxEZGQkfHx9MnjwZWVnOfdAPeZYgPxWujAkE4DlTL5//mYOtWaVQK2R497aBdvvHUKNWYN7UBKydnYyxvUJhNIv4ZGsOxr6xGd//ddqpThytaTTi3029F+4dGYM+kVqJKyJ7u3Vwl5bRrTk/pNnlEMVzD4674YrO7BVzCVb/C1RbW4v+/ftj4cKFF3xOFEVMmzYNJ06cwK+//or9+/eja9euGD9+PGpra21SMJEtTGna9eIJUy9H8qvw+hrLeRL//n+9ERfiZ/fXjA3xw+d3D8YX/xyM2BBflNbo8dTPh3Ddwj+x52S53V+/Ld5Ym4ECXQO6BPpg9jj2XvAUz1ydgGFxQajTm3DfV3tQbuMDFL/ccQpHWg6OY6+YS7E6fEyZMgUvv/wyrr/++gs+l5WVhZ07d2LRokUYPHgwevbsiUWLFqG+vh7ffffdRa/X2NiIqqqq8x5E9ta85W3f6UoU6hokrsZ+GgwmPLJ0P/QmM8YnhDn8WPgxPUOx5pFkPHt1AjQqLxzK0+GmxTvwyNL9KNDVO7SWc6XlVuLLHScBAK9cnwhvJVuoewqFXIaFd1yBLoE+yC2vR8o3+2Cw0eGJhbqGloPjnprcC8EefHBca2w69trYaNnnr1arz76ATAaVSoVt27Zd9GsWLFgArVbb8oiO9uzDdsgxwrVqXNElAIBlB4i7WrDqKLKKaxCiUeE/N/aVZKuf0kuGe0fGYtMTo3Hb4GgIAvBrWj7GvpGK9zdkocFgcmg9BpMZT/980DIsPrAzRnYPcejrk/Q6+Srxyf8Ngq9Sjh0nyvDyyiM2ue6LKw+jVm/CwC4BuG0w38sux6bho1evXujSpQvmzp2LiooK6PV6/Oc//8GZM2dQUHDx4e25c+dCp9O1PHJzc21ZEtElufvUy6Zjxfhyh6Wt9Bs395f8+O5gPxVeu7Effps5AoO6dkK9wYQ312Vi/FupWH2owGGt2j/ZegLHCqvRyUeBZ67msLin6hmuwdu3DgBgmSr5rmmBaHttPufguFd4cFyrbBo+FAoFfvnlF2RmZiIwMBA+Pj7YtGkTpkyZApns4i+lUqng7+9/3oPIESY3bbndnVOOUic7erujSqob8cRPBwAA9wyPwagezvO/+8TOWvz44FC8e9sARGjVOFNhOX30jk922WUB4LlOltbi3fWWBfDPXt1b8kBG0prYJxyPNe38eu7XdPzVzvVIloPjLAfY8eC4trH5kvekpCSkpaWhsrISBQUFWLNmDcrKyhAby33O5FyiA33Qt7MWZhH447DrNMVqjSiKePKnAyit0aNXuAZPTu4pdUkXEAQB1w3ojA2PjcLDY+Oh8pJhx4kyTH13K/69PB0VNl4ECFj+XJ5ZfgiNRjNGxAfjhis62/w1yPXMHBuPq/tGwGAS8eD/9iKv0vq1SAs3ZeN0eR3C/XlwXFvZbfOxVqtFSEgIsrKysGfPHlx33XX2eimidpvshg3H/rfzFDZllEDpZdlWq1Y472JKH6UX5kzsifVzRmFq33CYRUv9o9/YjC+3n4TRRgsBAeDnfXn4M7sMKi9Zu9rKk3sSBAH/vbkfekf4o6xWj/u/2oN6fdvXIWUX12Bx6tkDCXlwXNtYHT5qamqQlpaGtLQ0AEBOTg7S0tJw+rRlvuzHH3/E5s2bW7bbTpgwAdOmTcPEiRNtWjiRLTR3O91xvAy6OudshGWNrKJqvPK7paXzvCm90DNcI3FFbRMd6IMP70zCt/cNQa9wDXT1BsxfcRhXv7cN27NLO3z9sppGvPy7ZVHh7PE9Wj3FlzyLj9ILH/9fEoJ8lTicX4UnfjrQpjVIoiji38vTYTCJGNMzhAfHWcHq8LFnzx4MHDgQAwcOBADMmTMHAwcOxHPPPQcAKCgowPTp09GrVy88/PDDmD59+iW32RJJLTbEDz3DNDCaRaw76tpTL41GEx5emoZGoxmjeoTgLhdsFT4sLhgrZ43AS9MSEeCjQEZRNe74dBce+N+eDnWjffn3o6isMyAhwh/3joyxYcXkLqI6+WDRP5LgJROw8mABPtx8vNWv+TUtHztOWEbTXryOo2nWEERHLTFvo6qqKmi1Wuh0Oi4+JYd4e10m3t2QhfEJofj0rsFSl9Nur/x+BJ9szUGQrxKrZ49EqEbd+hc5sco6Pd5el4mvd52GySxC6SXD/SNj8dDoOPhaMbS9JbME//f5bggCsPxfw9E/OsB+RZPL+2bXKTyzLB2CAHwyfRDG9w676PN0dQaMe2szSmv0eGJST6SMiXdwpc7HmvdvNpwnjzelr2WodEtWKWoceNy2LW3LKsUnW3MAAK/f1M/lgwcABPgo8cJ1iVj18EgMjw+C3mjGB5uyMe7NVCzfn9emYfF6vQnPLD8EALh7WDcGD2rVnUO64h9XdYEoArO/T0NWUfVFn/ffP46htEaPuBBfHhzXDgwf5PF6hmkQE+wLvdGMjceKpS7HahW1esz5IQ0A8I+rumBcwsX/p+aqeoZr8PWMIfhoehKiA71RWNWA2d+n4abFO3DwTOVlv/ad9ZnILa9HpFaNxyY6364fck7zr+mDq2IDUdNoxL1f7UFl3fm7r9JyK/HNruaD4/ry4Lh24J8YeTxBEFp2vaxxsV0voiji6V8Oori6EXEhvnhmam+pS7ILQRAwqU841j06Ck9M6gkfpRx7T1XguoV/4smfDqCk+sI+Lel5Ony6zTIa9NK0RO5CoDZTyGX48M4kRHXyxqmyOsz8dn/LzivLwXGHWjrkDo3jwXHtwfBBhLO7XjYdK7Fqm53Uvv8rF2sPF0EhF/DubQPd/owStUKOlDHx2PjYaFw/sDNEEfhhzxmMeWMzPt5yHHqj5Q3CZBYx95dDMJlFXN0vwu1Gg8j+AptasPso5diWXYpXVll2kX214xQO51fBX+2FeeyQ224MH0QA+nbWonOAN+oNJqRmusbUy4mSGrzwm2X76BOTeiKxs+ccCR+uVePtWwfg54eGoV+UFjWNRry66hgmvbMFG48VYcn2kziUp4NG7YX517jnaBDZX0KEP966pT8A4Is/T2Lhpmy8tS4TAPDUFB4c1xEMH0SwDOtPaWk45vwHzemNZjyyNA31BhOGxQXh3hGeueAtqWsnLP/XcLx+Uz8E+6mQU1qLe5bswStNPT3mTU1wi8W3JJ3JiRF4ZFx3AMB/12agptGIgV0CcPtgx54Q7W4YPoiaNO962Xi0GI1G5556eWd9Jg7l6aD1VuCtWwZ49CFWMpmAWwZFY9Pjo/BAciwUcgFmEbiyWyBuHcSTRanjHhnXHZP6WKbuZALw8rREj/6ZswWuwCJqMjC6E8L8VSiqasSf2aUY28s51wnsPFGGRU3tnF+7oS/CtfyfPQBo1ArMnZqAWwdH448jRbgpKYpvEGQTMpmAt24ZgJd/P4r+UVr0ifScKU574cgHUROZTGhpj7z6kHNOvejqDJjzfRpEEbh1UDSm9I2QuiSnExvihwdHxXE+nmzKV+WFBTf0xW1XcrrFFhg+iM7RvOV23dEiGGx4qJktiKKIecsPIV/XgG5BPniOCymJyEUxfBCd48pugQj0VaKyzoBdJ8qlLuc8v+zLw+8HC+Als2yrtabFOBGRM2H4IDqHl1yGiU1nOax2ooZjp8vqMH/FYQDAoxN6sE04Ebk0hg+iv2meell7uBAms/TnLhpNZsz+fj9qGo24slsgHhwVJ3VJREQdwvBB9DfD4oLhr/ZCaY0ee05KP/XywaZs7DtdCY3aC2/d2h9y7uAgIhfH8EH0N0ovWcsx2lI3HNt7qhzvbcgCYOktENXJR9J6iIhsgeGD6CKmJFq2sK49XAizRFMv1Q0GzP4+DWYRuH5gZ1w3oLMkdRAR2RrDB9FFjOweDF+lHAW6Bhxo5dh2e5m/4jByy+sR1ckbL1zXR5IaiIjsgeGD6CLUCjnG9AoFAKyRYOplxYF8/LIvDzIBeOfWAfBXKxxeAxGRvTB8EF1C89TL6vRCiKLjpl7yKuvxzLJDAICZY7tjULdAh702EZEjMHwQXcLoniFQeclwurwORwqqHPKaJrOIR79PQ3WD5eTMh8fGO+R1iYgcieGD6BJ8VV4Y1SMEgOOmXhanHsfunHL4KuV459YB8JLzR5SI3A//ZSO6jCl9LQ3HVh2yf7fTA7mVeHtdJgDghesS0TXI1+6vSUQkBYYPossYlxAGhVzA8ZJaZBVV2+11ahuNmP19GoxmEVf3i8CNV3BbLRG5L4YPosvwVyswIj4YgH0bjr208ghySmsRoVXj1Wl9IQjsYkpE7ovhg6gV5+56sYc16QVY+lcuBAF465YB0PpwWy0RuTeGD6JWTOgdBrlMwNGCKpwqq7XptQt1DXj6F8u22geS4zA0Lsim1ycickYMH0St6OSrxFWxll4bthz9MJtFPP7jAVTWGZDY2R9zJvSw2bWJiJwZwwdRG0y2w9TL53/mYFt2KdQKGd69bSCUXvxxJCLPwH/tiNpgUp8wCIJlO2x+ZX2Hr3c4X4fX12QAAJ77f30QF+LX4WsSEbkKhg+iNgjVqDGoaycAHW84Vq834ZGladCbzJjQOwy3XxltixKJiFwGwwdRG52deulYw7EFq48iu7gGIRoV/nNjP26rJSKPw/BB1EaTEy3dTvecqkBxdUO7rrHhaBG+2nEKAPDmzf0R6Ku0WX1ERK6C4YOojToHeKN/dABEEVh7uMjqry+pbsSTPx0EAMwYEYPkpnNjiIg8DcMHkRWmNI1+rLFy6kUURTzx0wGU1erRK1yDJyb1tEd5REQugeGDyArN4WPniXJU1Orb/HVf7TiFzRklUHnJ8N7tA6FWyO1VIhGR02P4ILJC1yBfJET4w2QWse5I26ZeMouq8cqqowCAeVMT0CNMY88SiYicHsMHkZWaRz/asuulwWDCw9/th95oxpieIfi/oV3tXR4RkdNj+CCyUnP42JZdiqoGw2Wf+9+1GThWWI0gXyVev6k/t9USEYHhg8hq3cM0iAvxhcEkYuPR4ks+b0tmCT7blgMAeP2mfgjRqBxVIhGRU2P4IGqHKU0Nx1YduvjUS3mtHo/9eAAAMP2qrhiXEOaw2oiInB3DB1E7TOlrmXpJzSxBbaPxvM+Jooinfj6IkupGxIf6Yd7UBClKJCJyWgwfRO3QO8IfXQJ90Gg0Y3NGyXmfW/pXLtYdKYJCLuDd2wbAW8lttURE52L4IGoHQRAuuuvleEkNXvztCADgyUm90CdSK0l9RETOjOGDqJ2az3rZdKwYDQYT9EYzZi9NQ73BhOHxQZgxIkbiComInJOX1AUQuar+UQGI0KpRoGvA1qxS7DtdgUN5OgT4KPDmzQMgk3FbLRHRxXDkg6idZDIBk/pYRj/eXpeJxanHAQCv3dAP4Vq1lKURETk1hg+iDmhe93GkoAqiCNw2OLplOoaIiC6O4YOoAwZ1C0SwnxIAEBPsi3//v94SV0RE5PwYPog6QC4TkDImHrHBvnjvtoHwVXEZFRFRawRRFEWpizhXVVUVtFotdDod/P39pS6HiIiI2sCa92+OfBAREZFDMXwQERGRQzF8EBERkUNZHT62bNmCa665BpGRkRAEAcuXLz/v8zU1NZg5cyaioqLg7e2N3r17Y/Hixbaql4iIiFyc1eGjtrYW/fv3x8KFCy/6+Tlz5mDNmjX4+uuvcfToUcyePRszZ87EihUrOlwsERERuT6r9wVOmTIFU6ZMueTnt2/fjrvuugujR48GANx///346KOPsHv3blx77bXtLpSIiIjcg83XfAwbNgwrVqxAXl4eRFHEpk2bkJmZiYkTJ170+Y2NjaiqqjrvQURERO7L5uHj/fffR+/evREVFQWlUonJkydj4cKFSE5OvujzFyxYAK1W2/KIjo62dUlERETkROwSPnbu3IkVK1Zg7969ePPNN5GSkoL169df9Plz586FTqdreeTm5tq6JCIiInIiNu0FXV9fj3nz5mHZsmW4+uqrAQD9+vVDWloa3njjDYwfP/6Cr1GpVFCpVLYsg4iIiJyYTUc+DAYDDAYDZLLzLyuXy2E2m235UkREROSirB75qKmpQXZ2dsvvc3JykJaWhsDAQHTp0gWjRo3CE088AW9vb3Tt2hWpqan46quv8NZbb9m0cCIiInJNVh8st3nzZowZM+aCj991111YsmQJCgsLMXfuXPzxxx8oLy9H165dcf/99+PRRx+FIAitXp8HyxEREbkea96/eaotERERdZg17982XXBqC81ZiP0+iIiIXEfz+3ZbxjScLnxUV1cDAPt9EBERuaDq6mpotdrLPsfppl3MZjPy8/Oh0WjatEbEE1VVVSE6Ohq5ubmcmnICvB/Oh/fEufB+OBd73Q9RFFFdXY3IyMgLdr3+ndONfMhkMkRFRUldhkvw9/fnD7IT4f1wPrwnzoX3w7nY4360NuLRzOYdTomIiIguh+GDiIiIHIrhwwWpVCrMnz+fbemdBO+H8+E9cS68H87FGe6H0y04JSIiIvfGkQ8iIiJyKIYPIiIiciiGDyIiInIohg8iIiJyKIYPJ7Vw4UJ069YNarUaQ4YMwe7duy/53E8++QQjR45Ep06d0KlTJ4wfP/6yzyfrWXM/zrV06VIIgoBp06bZt0APY+39qKysREpKCiIiIqBSqdCjRw+sWrXKQdV6BmvvyTvvvIOePXvC29sb0dHRePTRR9HQ0OCgat3Xli1bcM011yAyMhKCIGD58uWtfs3mzZtxxRVXQKVSIT4+HkuWLLF7nRDJ6SxdulRUKpXi559/Lh4+fFi87777xICAALGoqOiiz7/jjjvEhQsXivv37xePHj0q3n333aJWqxXPnDnj4Mrdk7X3o1lOTo7YuXNnceTIkeJ1113nmGI9gLX3o7GxURw0aJA4depUcdu2bWJOTo64efNmMS0tzcGVuy9r78k333wjqlQq8ZtvvhFzcnLEtWvXihEREeKjjz7q4Mrdz6pVq8RnnnlG/OWXX0QA4rJlyy77/BMnTog+Pj7inDlzxCNHjojvv/++KJfLxTVr1ti1ToYPJ3TllVeKKSkpLb83mUxiZGSkuGDBgjZ9vdFoFDUajfjll1/aq0SP0p77YTQaxWHDhomffvqpeNdddzF82JC192PRokVibGysqNfrHVWix7H2nqSkpIhjx44972Nz5swRhw8fbtc6PU1bwseTTz4p9unT57yP3XrrreKkSZPsWJkoctrFyej1euzduxfjx49v+ZhMJsP48eOxY8eONl2jrq4OBoMBgYGB9irTY7T3frz44osIDQ3FjBkzHFGmx2jP/VixYgWGDh2KlJQUhIWFITExEa+++ipMJpOjynZr7bknw4YNw969e1umZk6cOIFVq1Zh6tSpDqmZztqxY8d59w4AJk2a1Ob3m/ZyuoPlPF1paSlMJhPCwsLO+3hYWBiOHTvWpms89dRTiIyMvOAvFFmvPfdj27Zt+Oyzz5CWluaACj1Le+7HiRMnsHHjRtx5551YtWoVsrOz8a9//QsGgwHz5893RNlurT335I477kBpaSlGjBgBURRhNBrx4IMPYt68eY4omc5RWFh40XtXVVWF+vp6eHt72+V1OfLhZl577TUsXboUy5Ytg1qtlrocj1NdXY3p06fjk08+QXBwsNTlEACz2YzQ0FB8/PHHSEpKwq233opnnnkGixcvlro0j7V582a8+uqr+PDDD7Fv3z788ssv+P333/HSSy9JXRo5CEc+nExwcDDkcjmKiorO+3hRURHCw8Mv+7VvvPEGXnvtNaxfvx79+vWzZ5kew9r7cfz4cZw8eRLXXHNNy8fMZjMAwMvLCxkZGYiLi7Nv0W6sPT8fERERUCgUkMvlLR9LSEhAYWEh9Ho9lEqlXWt2d+25J//+978xffp03HvvvQCAvn37ora2Fvfffz+eeeYZyGT8f7GjhIeHX/Te+fv7223UA+DIh9NRKpVISkrChg0bWj5mNpuxYcMGDB069JJf9/rrr+Oll17CmjVrMGjQIEeU6hGsvR+9evXCoUOHkJaW1vK49tprMWbMGKSlpSE6OtqR5bud9vx8DB8+HNnZ2S0hEAAyMzMRERHB4GED7bkndXV1FwSM5nAo8rgxhxo6dOh59w4A1q1bd9n3G5uw63JWapelS5eKKpVKXLJkiXjkyBHx/vvvFwMCAsTCwkJRFEVx+vTp4tNPP93y/Ndee01UKpXiTz/9JBYUFLQ8qqurpfoW3Iq19+PvuNvFtqy9H6dPnxY1Go04c+ZMMSMjQ1y5cqUYGhoqvvzyy1J9C27H2nsyf/58UaPRiN9995144sQJ8Y8//hDj4uLEW265RapvwW1UV1eL+/fvF/fv3y8CEN966y1x//794qlTp0RRFMWnn35anD59esvzm7faPvHEE+LRo0fFhQsXcqutJ3v//ffFLl26iEqlUrzyyivFnTt3tnxu1KhR4l133dXy+65du4oALnjMnz/f8YW7KWvux98xfNietfdj+/bt4pAhQ0SVSiXGxsaKr7zyimg0Gh1ctXuz5p4YDAbx+eefF+Pi4kS1Wi1GR0eL//rXv8SKigrHF+5mNm3adNH3g+Y//7vuukscNWrUBV8zYMAAUalUirGxseIXX3xh9zoFUeQYFxERETkO13wQERGRQzF8EBERkUMxfBAREZFDMXwQERGRQzF8EBERkUMxfBAREZFDMXwQERGRQzF8EBERkUMxfBBRu23evBmCIKCyslLqUojIhTB8EFG7DRs2DAUFBdBqtW3+mrq6OsydOxdxcXFQq9UICQnBqFGj8Ouvv9qxUiJyJl5SF0BErkupVF7y2PRLefDBB7Fr1y68//776N27N8rKyrB9+3aUlZXZqUoicjYc+SCiFqNHj8asWbMwe/ZsdOrUCWFhYfjkk09QW1uLf/7zn9BoNIiPj8fq1asBXDjtsmTJEgQEBGDt2rVISEiAn58fJk+ejIKCgpbXWLFiBebNm4epU6eiW7duSEpKwqxZs3DPPfe0PEcQBCxfvvy82gICArBkyRIAwMmTJyEIApYuXYphw4ZBrVYjMTERqampdv3zISLbYPggovN8+eWXCA4Oxu7duzFr1iw89NBDuPnmmzFs2DDs27cPEydOxPTp01FXV3fRr6+rq8Mbb7yB//3vf9iyZQtOnz6Nxx9/vOXz4eHhWLVqFaqrqztc6xNPPIHHHnsM+/fvx9ChQ3HNNddwBIXIBTB8ENF5+vfvj2effRbdu3fH3LlzoVarERwcjPvuuw/du3fHc889h7KyMhw8ePCiX28wGLB48WIMGjQIV1xxBWbOnIkNGza0fP7jjz/G9u3bERQUhMGDB+PRRx/Fn3/+2a5aZ86ciRtvvBEJCQlYtGgRtFotPvvss3Zdi4gch+GDiM7Tr1+/ll/L5XIEBQWhb9++LR8LCwsDABQXF1/06318fBAXF9fy+4iIiPOem5ycjBMnTmDDhg246aabcPjwYYwcORIvvfSS1bUOHTq05ddeXl4YNGgQjh49avV1iMixGD6I6DwKheK83wuCcN7HBEEAAJjN5jZ/vSiKFzxn5MiReOqpp/DHH3/gxRdfxEsvvQS9Xn/JrzEYDO37hojI6TB8EJHkevfuDaPRiIaGBgBASEjIeYtUs7KyLrrGZOfOnS2/NhqN2Lt3LxISEuxfMBF1CLfaEpFDjR49GrfffjsGDRqEoKAgHDlyBPPmzcOYMWPg7+8PABg7diw++OADDB06FCaTCU899dQFIyoAsHDhQnTv3h0JCQl4++23UVFRcd6uGSJyThz5ICKHmjRpEr788ktMnDgRCQkJmDVrFiZNmoQffvih5TlvvvkmoqOjMXLkSNxxxx14/PHH4ePjc8G1XnvtNbz22mvo378/tm3bhhUrViA4ONiR3w4RtYMg/n1ilYjIyZ08eRIxMTHYv38/BgwYIHU5RGQljnwQERGRQzF8EBERkUNx2oWIiIgciiMfRERE5FAMH0RERORQDB9ERETkUAwfRERE5FAMH0RERORQDB9ERETkUAwfRERE5FAMH0RERORQ/x8PW5u8iAFGpAAAAABJRU5ErkJggg==\n" }, "metadata": {} }, @@ -813,7 +763,7 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHACAYAAABaopmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABK40lEQVR4nO3deXhU5d3G8e9kJ2SDEEgCIewJW9hUSABFQBFo1EpRA4IbKhYoYGkFhBdRWWwVaVWQ1ypYFam7fWVTUFDZTYiAsiUsYQsBJDvZZs77RyAaSDADIWdmcn+uay5h5jknv4fDMLdnzvM7FsMwDEREREScnJvZBYiIiIhUB4UaERERcQkKNSIiIuISFGpERETEJSjUiIiIiEtQqBERERGXoFAjIiIiLkGhRkRERFyCQo2IiIi4BIUaERERcQm1MtR88803xMfHEx4ejsVi4dNPP7V7H6tXr6ZHjx74+/sTEhLCkCFDOHToULXXKiIiIlVTK0NNXl4enTp14tVXX72i7Q8ePMgdd9xB3759SU5OZvXq1Zw+fZq77rqrmisVERGRqrLU9htaWiwWPvnkE+68886y5woLC3nqqad47733yMzMpEOHDjz//PP06dMHgA8//JCEhAQKCwtxcyvNhf/3f//HHXfcQWFhIZ6enibMREREpHarlWdqfsvYsWPZtGkTy5YtY8eOHQwdOpTbbruN/fv3A9CtWzfc3NxYvHgxVquVrKws3n77bfr3769AIyIiYhKdqbnoTE1aWhotWrQgLS2N8PDwsnH9+/fnhhtuYPbs2QCsX7+eu+++mzNnzmC1WomNjWXFihUEBQWZMAsRERHRmZqL7Ny5E6vVSps2bfDz8yt7rF+/ntTUVADS09N55JFHuP/++9m2bRvr16/Hy8uLP/zhD9TyjCgiImIaD7MLcDS5ubm4u7uTmJiIu7t7udf8/PwAePXVVwkMDORvf/tb2WvvvPMOERERbNmyhR49etRozSIiIqJQc4kuXbpgtVrJyMigd+/eFY7Jz88vu0D4ggsByGazXfMaRURE5FK18uun3NxckpOTSU5OBkqXaCcnJ5OWlkabNm0YPnw4I0eO5OOPP+bgwYNs3bqVOXPmsHz5cgAGDx7Mtm3beOaZZ9i/fz9JSUk8+OCDREZG0qVLFxNnJiIiUnvVyguF161bx80333zJ8/fffz9LliyhuLiY5557jn//+98cO3aMBg0a0KNHD2bOnEnHjh0BWLZsGX/729/Yt28fvr6+xMbG8vzzzxMdHV3T0xERERFqaagRERER11Mrv34SERER16NQIyIiIi6h1qx+stlsHD9+HH9/fywWi9nliIiISBUYhkFOTg7h4eGXrDy+WK0JNcePHyciIsLsMkREROQKHDlyhCZNmlx2TK0JNf7+/kDpH0pAQIDJ1YiIiEhVZGdnExERUfY5fjm1JtRc+MopICBAoUZERMTJVOXSEV0oLCIiIi5BoUZERERcgkKNiIiIuIRac01NVVmtVoqLi80uQyrh6el5yd3TRUREQKGmjGEYpKenk5mZaXYp8huCgoIIDQ1VvyERESlHoea8C4GmYcOG+Pr66gPTARmGQX5+PhkZGQCEhYWZXJGIiDgShRpKv3K6EGiCg4PNLkcuo06dOgBkZGTQsGFDfRUlIiJldKEwlF1D4+vra3IlUhUXjpOufRIRkV9TqPkVfeXkHHScRESkIgo1IiIi4hIUakRERMQlKNSIiIiIS1CoEdMUFRWZXYKIiFQDwzD4em8GNpthah0KNU6uT58+jBs3jgkTJlCvXj0aNWrE66+/Tl5eHg8++CD+/v60atWKlStXlm2za9cuBg4ciJ+fH40aNWLEiBGcPn36qvYJsH79em644Qa8vb0JCwtj8uTJlJSUlNvv2LFjmTBhAg0aNGDAgAE89NBD/O53vyu3n+LiYho2bMgbb7xxjf7URESkOq3bd4oHF29jyGsbsZoYbBRqKmEYBvlFJaY8DMO+vxBvvfUWDRo0YOvWrYwbN47HH3+coUOHEhcXR1JSErfeeisjRowgPz+fzMxM+vbtS5cuXfj+++9ZtWoVJ0+e5O67777ifQIcO3aMQYMGcf311/PDDz+wcOFC3njjDZ577rlL9uvl5cWGDRt47bXXGDVqFKtWreLEiRNlYz7//HPy8/O55557rvDoiYhITSmx2pi9fDcA10XWw93NvBWqFsPeT1AnlZ2dTWBgIFlZWQQEBJR7raCggIMHD9K8eXN8fHwAyC8qod3/rDajVH56ZgC+XlXri9inTx+sVivffvstUNpIMDAwkLvuuot///vfQGm35LCwMDZt2sSaNWv49ttvWb36l7kdPXqUiIgI9u7dS5s2bezeZ48ePXjqqaf46KOP2L17d9mS6wULFvDkk0+SlZWFm5sbffr0ITs7m6SkpHJzaN++Pffffz9//etfAbj99tsJDg5m8eLFFc65ouMlIiLmWLoljamf7CTI15P1k24m0NezWvd/uc/vi+lMjQuIiYkp+7W7uzvBwcF07Nix7LlGjRoBpV14f/jhB77++mv8/PzKHtHR0QCkpqZe0T4Bdu/eTWxsbLkeMj179iQ3N5ejR4+WPdetW7dL6h81alRZgDl58iQrV67koYceuoI/CRERqUm5hSXM+3IfAH/q27raA429dJuEStTxdOenZwaY9rPt4elZ/i+RxWIp99yFoGGz2cjNzSU+Pp7nn3/+kv38+l5K9uzTHnXr1r3kuZEjRzJ58mQ2bdrExo0bad68Ob1797ZrvyIiUvMWrU/ldG4hzYJ9ua9HpNnlKNRUxmKxVPkrIGfStWtXPvroI5o1a4aHR/XNr23btnz00UcYhlEWeDZs2IC/vz9NmjS57LbBwcHceeedLF68mE2bNvHggw9WW10iInJtnMg6x+vfHgBg8sBovDzM//LH/AqkRo0ZM4aff/6ZhIQEtm3bRmpqKqtXr+bBBx/EarVe8X7/+Mc/cuTIEcaNG8eePXv47LPPmDFjBk888QRubr/912zUqFG89dZb7N69m/vvv/+K6xARkZrxwup9FBTbuL5ZPQa0DzW7HEChptYJDw9nw4YNWK1Wbr31Vjp27MiECRMICgqqUvioTOPGjVmxYgVbt26lU6dOjB49mocffphp06ZVafv+/fsTFhbGgAEDCA8Pv+I6RETk2tt1LIuPt5deLzl1UFuHuSefVj+h1TSOIDc3l8aNG7N48WLuuuuuy47V8RIRMY9hGAz/1xY2pp4hvlM4Lyd0uaY/z57VT6530Yg4FZvNxunTp3nxxRcJCgri9ttvN7skERG5jK/3ZrAx9Qxe7m78dUCU2eWUo1AjpkpLS6N58+Y0adKEJUuWVOvFyyIiUr1KrDZmr9gDwIM9mxFR39fkisrTJ4iYqlmzZnZ3UBYREXMs23aElIxc6vl68sebW5ldziV0obCIiIj8ppyCYl4632hvfL/WBNYxt9FeRRRqfkVnDJyDjpOISM17bX0qZ/KKaN6gLsMdoNFeRRRq+KV77oWbM4pju3CcLu56LCIi18bxzHP869uDQGmjPU93x4wPuqaG0nsbBQUFld3HyNfX12HW3MsvDMMgPz+fjIwMgoKCcHe373YSIiJyZV5YvZfCEhs3NK/Pre0amV1OpRRqzgsNLe2GeCHYiOMKCgoqO14iInJt7TyaxcfbjwEwbbDjNNqriELNeRaLhbCwMBo2bEhxcbHZ5UglPD09dYZGRKSGGIbBrBU/AXBn53BimgSZW9BvUKi5iLu7uz40RUREgDW7M9h84Ge8PNyY5GCN9irimFf6iIiIiKmKrTbmrNwNwMO9mtOknmM12quIQo2IiIhc4r2taRw4lUf9ul483qel2eVUiUKNiIiIlJNdUMz8NfsBmNi/NQE+ztFCQ6FGREREylnwdSo/5xXRIqQu997Q1OxyqkyhRkRERMocPZvPmxtKG+1NHdjWYRvtVcR5KhUREZFr7u+r91JUYqNHi/r0a9vQ7HLsolAjIiIiAPxwJJPPko8DMG1wO4dutFcRhRoREREpbbS3vHQJ911dGtOhcaDJFdlPoUZERET44qeTbD30M95O0mivIgo1IiIitVxRiY25K/cAMKp3c8KD6phc0ZVRqBEREanllm45zMHTeTTw8+LxPq3MLueKKdSIiIjUYlnnivnH2tJGexP6t8HP23lvC6lQIyIiUost+DqFs/nFtGrox73XR5hdzlWxK9Q8/fTTWCyWco/o6OjLbjN//nyioqKoU6cOERERTJw4kYKCArv2WVBQwJgxYwgODsbPz48hQ4Zw8uRJe0oXERGRixz5OZ/FGw4BMHVQNB5O1GivInafY2rfvj1r1qz5ZQcele9i6dKlTJ48mTfffJO4uDj27dvHAw88gMViYd68eVXe58SJE1m+fDkffPABgYGBjB07lrvuuosNGzbYW76IiIic97fVeymy2ujZKpibo5yr0V5F7A41Hh4ehIaGVmnsxo0b6dmzJ8OGDQOgWbNmJCQksGXLlirvMysrizfeeIOlS5fSt29fABYvXkzbtm3ZvHkzPXr0sHcKIiIitd72tLP83w/HsVhg6qC2TtdoryJ2n2fav38/4eHhtGjRguHDh5OWllbp2Li4OBITE9m6dSsABw4cYMWKFQwaNKjK+0xMTKS4uJj+/fuXPRcdHU3Tpk3ZtGlTpT+7sLCQ7Ozscg8REREp32hvSNcmtA93vkZ7FbEr1HTv3p0lS5awatUqFi5cyMGDB+nduzc5OTkVjh82bBjPPPMMvXr1wtPTk5YtW9KnTx+mTp1a5X2mp6fj5eVFUFBQuX03atSI9PT0SmudM2cOgYGBZY+ICOe++ElERKS6rNqVzveHz+Lj6cakW52z0V5F7Ao1AwcOZOjQocTExDBgwABWrFhBZmYm77//foXj161bx+zZs1mwYAFJSUl8/PHHLF++nGefffaK91lVU6ZMISsrq+xx5MiRq9qfiIiIKygqsTF3VWmjvUd7tyA00MfkiqrPVS1GDwoKok2bNqSkpFT4+vTp0xkxYgSjRo0CoGPHjuTl5fHoo4/y1FNP4eZ2aaa6eJ+hoaEUFRWRmZlZ7mzNyZMnL3ttj7e3N97e3lcxOxEREdfz9ubDHD6TTwM/bx69qaXZ5VSrq1q7lZubS2pqKmFhYRW+np+ff0lwcXd3B0q/z6vKPrt164anpydr164tG7N3717S0tKIjY29mvJFRERqlaz8Yv55vtHen2917kZ7FbFrNpMmTSI+Pp7IyEiOHz/OjBkzcHd3JyEhAYCRI0fSuHFj5syZA0B8fDzz5s2jS5cudO/enZSUFKZPn058fHxZuPmtfQYGBvLwww/zxBNPUL9+fQICAhg3bhyxsbFa+SQiImKHl7/aT9a5Yto08mNotyZml1Pt7Ao1R48eJSEhgTNnzhASEkKvXr3YvHkzISEhAKSlpZU7MzNt2jQsFgvTpk3j2LFjhISEEB8fz6xZs6q8T4CXXnoJNzc3hgwZQmFhIQMGDGDBggVXO3cREZFaI+1MPm9tOgSULuF29kZ7FbEYlX0P5GKys7MJDAwkKyuLgIAAs8sRERGpUWPeTWL5zhP0bt2Afz90g9P0pbHn89v1YpqIiIiUk3j4LMt3nnCpRnsVUagRERFxYYZh8NzynwAY2q0JbcNc99sKhRoREREXtmJnOtvTMqnj6c6fXajRXkUUakRERFxUYYmVuatKb4fw6I0taBTgOo32KqJQIyIi4qLe3nSYIz+fo6G/N4/d1MLscq45hRoREREXlJlfVK7Rnq+XazXaq4hCjYiIiAv659oUsgtKiA715w/dasdNnRVqREREXMyh03m8vfkQULqE293NNZdwX0yhRkRExMU8v2oPxVaDm9qEcGObkN/ewEUo1IiIiLiQ7w/9zMpd6bidb7RXmyjUiIiIuIjSRnulS7jvuT6CqFB/kyuqWQo1IiIiLuLzHSdIPpKJr5c7E29pY3Y5NU6hRkRExAUUFFt5ftUeAEbf1JKG/q7daK8iCjUiIiIu4N+bDnH07DkaBXgzqndzs8sxhUKNiIiIk/s5r4iXv0oBYNKtUbWi0V5FFGpERESc3D/X7ienoIS2YQHc1bWJ2eWYRqFGRETEiR04lcs7mw8DMG1w7Wm0VxGFGhERESf2/Ko9lNgMbo4KoWerBmaXYyqFGhERESe15cAZVv94slY22quIQo2IiIgTstkMZq8obbR37w1Nad2odjXaq4hCjYiIiBP6vx3H+eFoFnW93JnYv/Y12quIQo2IiIiTKSi28rdVewF4vE9LQvy9Ta7IMSjUiIiIOJnFGw5xLPMcYYE+PNyrhdnlOAyFGhERESdyJreQBV//0mivjpe7yRU5DoUaERERJ/KPtfvJKSyhfXgAv+/S2OxyHIpCjYiIiJNIPZXLu1vSAHhqcFvcanGjvYoo1IiIiDiJOSv2YLUZ9G/bkLiWtbvRXkUUakRERJzAptQzrNl9Enc3C5MHqtFeRRRqREREHJzNZjBrxU8ADLuhKa0a+plckWNSqBEREXFwn/1wjF3HsvHz9mB8/9Zml+OwFGpEREQcWEGxlb+fb7T3x5tb0sBPjfYqo1AjIiLiwN747iDHswpoHFSHh3o2N7sch6ZQIyIi4qBO5xaycF0qAH8ZEIWPpxrtXY5CjYiIiIOav2YfuYUlxDQJ5PZO4WaX4/AUakRERBxQSkYO7209AsDUQWq0VxUKNSIiIg7oQqO9W9o1okeLYLPLcQoKNSIiIg5mY8pp1u7JwMPNwpSB0WaX4zQUakRERByIzWbw3PLdAAzv3pQWIWq0V1UKNSIiIg7k4+3H+OlENv7eHozv38bscpyKQo2IiIiDOFdk5YXVpY32xvRtRf26XiZX5FwUakRERBzEv749QHp2aaO9B+KamV2O01GoERERcQAZOQUsXF/aaO+vt6nR3pVQqBEREXEAL325n/wiK50igtRo7wop1IiIiJhs38kc/rMtDYBpg9tisajR3pVQqBERETHZ7BW7sRlwW/tQrm9W3+xynJZCjYiIiIm+3X+KdXtP4eFm4Uk12rsqCjUiIiImsdoMZp1vtDciNpLmDeqaXJFzU6gRERExyUdJR9mTnkOAjwd/6tva7HKcnkKNiIiICfKLSsoa7Y3r25p6arR31RRqRERETPD6NwfJyCkkon4dRsZFml2OS1CoERERqWEZ2QUs+qa00d6Tt0Xj7aFGe9VBoUZERKSGzftyH/lFVro0DWJwxzCzy3EZCjUiIiI1aE96Nu9/fwRQo73qplAjIiJSg2av2IPNgEEdQ+kWqUZ71UmhRkREpIas33eKb/adwtPdwpO3qdFedVOoERERqQFWm8Hs8432RsY2IzJYjfaqm0KNiIhIDfjg+yPsPZlDYB1PxvVtZXY5LsmuUPP0009jsVjKPaKjL3/6bP78+URFRVGnTh0iIiKYOHEiBQUFFY6dO3cuFouFCRMmlHu+T58+l/zc0aNH21O6iIiIafIKS3jxy30AjOvbiiBfNdq7Fjzs3aB9+/asWbPmlx14VL6LpUuXMnnyZN58803i4uLYt28fDzzwABaLhXnz5pUbu23bNhYtWkRMTEyF+3rkkUd45plnyn7v6+trb+kiIiKmWPTNAU7lFBIZ7MvI2GZml+Oy7A41Hh4ehIaGVmnsxo0b6dmzJ8OGDQOgWbNmJCQksGXLlnLjcnNzGT58OK+//jrPPfdchfvy9fWt8s8VERFxFOlZBfzvrxrteXnoyo9rxe4/2f379xMeHk6LFi0YPnw4aWlplY6Ni4sjMTGRrVu3AnDgwAFWrFjBoEGDyo0bM2YMgwcPpn///pXu691336VBgwZ06NCBKVOmkJ+ff9k6CwsLyc7OLvcQERGpaS9+sZeCYhvdIusxsIP+5/xasutMTffu3VmyZAlRUVGcOHGCmTNn0rt3b3bt2oW/v/8l44cNG8bp06fp1asXhmFQUlLC6NGjmTp1atmYZcuWkZSUxLZt2yr9ucOGDSMyMpLw8HB27NjBk08+yd69e/n4448r3WbOnDnMnDnTnumJiIhUq5+OZ/Nh0lEAnlKjvWvOYhiGcaUbZ2ZmEhkZybx583j44YcveX3dunXce++9PPfcc3Tv3p2UlBTGjx/PI488wvTp0zly5AjXXXcdX375Zdm1NH369KFz587Mnz+/0p/71Vdf0a9fP1JSUmjZsmWFYwoLCyksLCz7fXZ2NhEREWRlZREQEHClUxYREakSwzAY8cZWvks5ze9iwnhlWFezS3JK2dnZBAYGVunz2+5ran4tKCiINm3akJKSUuHr06dPZ8SIEYwaNQqAjh07kpeXx6OPPspTTz1FYmIiGRkZdO36y4G2Wq188803vPLKKxQWFuLufulNvrp37w5w2VDj7e2Nt7f31UxPRETkiq3bd4rvUk7j5e6mRns15KpCTW5uLqmpqYwYMaLC1/Pz83FzK3/ZzoWQYhgG/fr1Y+fOneVef/DBB4mOjubJJ5+sMNAAJCcnAxAWppuAiYiI4ymx2soa7T3QsxkR9bVitybYFWomTZpEfHw8kZGRHD9+nBkzZuDu7k5CQgIAI0eOpHHjxsyZMweA+Ph45s2bR5cuXcq+fpo+fTrx8fG4u7vj7+9Phw4dyv2MunXrEhwcXPZ8amoqS5cuZdCgQQQHB7Njxw4mTpzIjTfeWOnybxERETO9//1R9mfkEuTryZg+arRXU+wKNUePHiUhIYEzZ84QEhJCr1692Lx5MyEhIQCkpaWVOzMzbdo0LBYL06ZN49ixY4SEhBAfH8+sWbOq/DO9vLxYs2YN8+fPJy8vj4iICIYMGcK0adPsKV1ERKRG5BaWMO/LvQCM79eaQF9PkyuqPa7qQmFnYs+FRiIiIlfqxS/28vJXKTQL9uWLiTepL81VsufzW3/SIiIi1eRE1jle//YAAJMHtlWgqWH60xYREakmL6zeR0GxjRua1WdA+0Zml1PrKNSIiIhUg13Hsvh4e2mjvalqtGcKhRoREZGrZBgGs5bvxjDg9k7hdI4IMrukWkmhRkRE5Cp9tSeDTQfO4OXhxl8GRJldTq2lUCMiInIVSqw2Zq8obbT3oBrtmUqhRkRE5Cq8t+0IqafyqOfryZib1WjPTAo1IiIiVyinoJj5X+4DYEL/NgT4qNGemRRqRERErtDCdamcySuiRYO6DOve1Oxyaj2FGhERkStwLPMcb3x3EIDJA6PxdNdHqtl0BERERK7AC6v3Ulhio3vz+tzSTo32HIFCjYiIiJ12Hs3ik+3HAHhKjfYchkKNiIiIHQzD4LnlPwHw+y6NiWkSZG5BUkahRkRExA5rdmew5eDPeHu4MUmN9hyKQo2IiEgVFVttzDnfaO/hXs1pHFTH5Irk1xRqREREqui9rWkcOJ1HcF0vHu/T0uxy5CIKNSIiIlWQXVDM/DX7AZhwSxv81WjP4SjUiIiIVMGCr1P5Oa+IliF1Sbg+wuxypAIKNSIiIr/hyM/5vLmhtNHe1EFt8VCjPYekoyIiIvIbXvhiL0UlNmJbBNM3uqHZ5UglFGpEREQuI/lIJp8lH8diUaM9R6dQIyIiUgnDMJi9vHQJ9++7NKZD40CTK5LLUagRERGpxOofT7L1UGmjvb+o0Z7DU6gRERGpQFGJjbkrS8/SPNK7BWGBarTn6BRqREREKvDulsMcOpNPAz8vRqvRnlNQqBEREblI1rli/rG2tNHexFva4OftYXJFUhUKNSIiIhd59esUMvOLad3Qj3uuU6M9Z6FQIyIi8itHfs5nyYZDAEwdrEZ7zkRHSkRE5FeeX7WHIquNXq0a0KdNiNnliB0UakRERM5LSjvL5ztOYLGU3g5Bjfaci0KNiIgIpY32Zp1vtPeHrk1oFx5gckViL4UaERERYNWudBIPn6WOpzt/vlWN9pyRQo2IiNR6RSU25q7aA8AjN7YgNNDH5IrkSijUiIhIrff25sMcPpNPiL83j93Ywuxy5Aop1IiISK2WmV/EP8832vvzLW2oq0Z7TkuhRkREarVXvkoh61wxUY38GapGe05NoUZERGqtw2fyeGvTIaC00Z67m5ZwOzOFGhERqbX+tmovxVaDG9uEcJMa7Tk9hRoREamVEg//zPKdJ3CzwNRB0WaXI9VAoUZERGodwzB47nyjvbuviyA6VI32XIFCjYiI1DrLd55ge1omvl7uPHFLG7PLkWqiUCMiIrVKYYmV58832nvsxpY0DFCjPVehUCMiIrXKvzce5sjP52gU4M0jNzY3uxypRgo1IiJSa5zNK+Llr8432rs1Cl8vNdpzJQo1IiJSa/zzq/1kF5QQHerPkK5NzC5HqplCjYiI1AoHT+fx9qbDAEwb3E6N9lyQQo2IiNQKz6/cQ4nNoE9UCL1aNzC7HLkGFGpERMTlbTv0M6t+TD/faK+t2eXINaJQIyIiLs1m+6XR3j3XN6VNI3+TK5JrRaFGRERc2uc7T/DDkUzqerkz8ZbWZpcj15BCjYiIuKyCYivPryxttDf6ppY09FejPVemUCMiIi7rrY2HOJZ5jtAAH0b1bmF2OXKNKdSIiIhL+jmviFe+TgFg0oAo6ni5m1yRXGsKNSIi4pL+uXY/OQUltAsL4K4ujc0uR2qAQo2IiLicA6dyeWfzhUZ7bXFTo71aQaFGRERcztzzjfb6RTckrpUa7dUWdoWap59+GovFUu4RHR192W3mz59PVFQUderUISIigokTJ1JQUFDh2Llz52KxWJgwYUK55wsKChgzZgzBwcH4+fkxZMgQTp48aU/pIiJSS2w+cIYvfjqJu5uFKYMu/xklrsXu25O2b9+eNWvW/LIDj8p3sXTpUiZPnsybb75JXFwc+/bt44EHHsBisTBv3rxyY7dt28aiRYuIiYm5ZD8TJ05k+fLlfPDBBwQGBjJ27FjuuusuNmzYYG/5IiLiwmw2g9krShvtJdwQQauGarRXm9gdajw8PAgNDa3S2I0bN9KzZ0+GDRsGQLNmzUhISGDLli3lxuXm5jJ8+HBef/11nnvuuXKvZWVl8cYbb7B06VL69u0LwOLFi2nbti2bN2+mR48e9k5BRERc1H9/OM6Oo1n4eXswoX8bs8uRGmb3NTX79+8nPDycFi1aMHz4cNLS0iodGxcXR2JiIlu3bgXgwIEDrFixgkGDBpUbN2bMGAYPHkz//v0v2UdiYiLFxcXlXouOjqZp06Zs2rTJ3vJFRMRFFRRb+fvqvQA83qclDfy8Ta5IappdZ2q6d+/OkiVLiIqK4sSJE8ycOZPevXuza9cu/P0vPcU3bNgwTp8+Ta9evTAMg5KSEkaPHs3UqVPLxixbtoykpCS2bdtW4c9MT0/Hy8uLoKCgcs83atSI9PT0SmstLCyksLCw7PfZ2dn2TFVERJzMmxsOcizzHOGBPjzcq7nZ5YgJ7DpTM3DgQIYOHUpMTAwDBgxgxYoVZGZm8v7771c4ft26dcyePZsFCxaQlJTExx9/zPLly3n22WcBOHLkCOPHj+fdd9/Fx6d6W1fPmTOHwMDAskdERES17l9ERBzHmdxCFnydCsBfbovCx1ON9mqjq1rSHRQURJs2bUhJSanw9enTpzNixAhGjRpFx44d+f3vf8/s2bOZM2cONpuNxMREMjIy6Nq1Kx4eHnh4eLB+/Xr++c9/4uHhgdVqJTQ0lKKiIjIzM8vt++TJk5e9tmfKlClkZWWVPY4cOXI1UxUREQc2f81+cgtL6Ng4kDs6qdFebXVVoSY3N5fU1FTCwsIqfD0/Px83t/I/wt29ND0bhkG/fv3YuXMnycnJZY/rrruO4cOHk5ycjLu7O926dcPT05O1a9eW7WPv3r2kpaURGxtbaW3e3t4EBASUe4iIiOtJychl6dbS6zunDlKjvdrMrmtqJk2aRHx8PJGRkRw/fpwZM2bg7u5OQkICACNHjqRx48bMmTMHgPj4eObNm0eXLl3o3r07KSkpTJ8+nfj4eNzd3fH396dDhw7lfkbdunUJDg4uez4wMJCHH36YJ554gvr16xMQEMC4ceOIjY3VyicREWHuyj1YbQb92zYitmWw2eWIiewKNUePHiUhIYEzZ84QEhJCr1692Lx5MyEhIQCkpaWVOzMzbdo0LBYL06ZN49ixY4SEhBAfH8+sWbPsKvKll17Czc2NIUOGUFhYyIABA1iwYIFd+xAREdezKfUMa3ar0Z6UshiGYZhdRE3Izs4mMDCQrKwsfRUlIuICbDaD21/9jl3HshkZG8kzd3T47Y3E6djz+a17P4mIiFP6NPkYu45l4+/twfh+rc0uRxyAQo2IiDidXzfa++PNrQhWoz1BoUZERJzQG98d5ERWAY2D6vBgz2ZmlyMOQqFGREScyqmcQhZ8Xdof7a9qtCe/olAjIiJOZf6afeQVWenUJJD4mHCzyxEHolAjIiJOY//JHJZtK+0Q/9Tgdmq0J+Uo1IiIiNOYc77R3oD2jbiheX2zyxEHo1AjIiJOYUPKab7ak4GHm4Unb1OjPbmUQo2IiDg8q81g1vLdANzXI5IWIX4mVySOSKFGREQc3ifbj/HTiWz8fTz4kxrtSSUUakRExKGdK7LywvlGe+P6tqJ+XS+TKxJHpVAjIiIO7V/fHiA9u4Am9eowMraZ2eWIA1OoERERh5WRU8DC9akAPHlbtBrtyWUp1IiIiMN66cv95BdZ6RwRxO9iwswuRxycQo2IiDikvek5/GdbGgDTBrfFYlGjPbk8hRoREXFIc1buxmbAwA6hXNdMjfbktynUiIiIw/l2/ynW7T2Fp7sa7UnVKdSIiIhD+XWjvRE9mtGsQV2TKxJnoVAjIiIO5aPEo+xJzyHAx4M/9WtldjniRBRqRETEYeQXlfDCF6WN9v7UrzVBvmq0J1WnUCMiIg7jf785QEZOIU3r+zIiNtLscsTJKNSIiIhDyMguYNH6A0Bpoz1vDzXaE/so1IiIiEN48Yt9nCu20rVpEIM6hppdjjghhRoRETHd7hPZvJ94BICnBrdToz25Igo1IiJiutkrdmMYMDgmjG6R9cwuR5yUQo2IiJhq/b5TfLv/NF7ubjw5QI325Mop1IiIiGmsNoPZ5xvt3R8XSdNgX5MrEmemUCMiIqb54Psj7D2ZQ5CvJ2Nvbm12OeLkFGpERMQUeYUlvPjlPgD+1Lc1gb6eJlckzs7D7AJERKT2sNkMTuUWcvRsPh8mHuVUTiHNgn25r4ca7cnVU6gREZFq8+vQcvTsufOPX3597Ow5iqy2cttMHhiNl4e+OJCrp1AjIiJVdiWh5WLubhbCAn1oUq8O3ZsHM6C9Gu1J9VCoERGRMtUdWprU873ov3UIDfDBw11nZqT6KdSIiNQiCi3iyhRqRERciM1mkJHz69BSPrwczyxQaBGXpVAjIuJEFFpEKqdQIyLiQBRaRK6cQo2ISA2qrtASHuRDk6BLA0uT+r408vdWaJFaSaFGRKQa/VZoOZZ5jmKrcdl9KLSIXBmFGhERO1htBhk5Bb8Elp/PB5bM0vByXKFFxDQKNSIiv6LQIuK8FGpEpFapjtDi4WYhTKFFxOEo1IiIS1FoEam9FGpExKlUV2gJD6rzS1C5aNlzowAf3N0sNTQjEakuCjUi4hSsNoN/rNnHom8OUFhy+SXPCi0itZNCjYg4vLN5RYz/TzLf7DsFKLSISMUUakTEoe06lsXodxI5evYcPp5uzLmrI7d3aqzQIiKXUKgREYf1UeJRpn6yk8ISG03r+7JoRDfahgWYXZaIOCiFGhFxOEUlNp5b/hP/3nQYgJujQph/TxcCfT1NrkxEHJlCjYg4lJPZBfzx3SQSD58FYHy/1ozv1xo3fd0kIr9BoUZEHMbWgz8zZmkSp3IK8ffxYP49nenXtpHZZYmIk1CoERHTGYbBWxsP8dzy3ZTYDKIa+bNoRDeaNahrdmki4kQUakTEVOeKrEz5eAefJh8HIL5TOM8P6Yivl/55EhH76F8NETFN2pl8Hnsnkd0nsnF3szBlYDQP92qOxaLrZ0TEfgo1ImKKr/dmMP697WQXlNDAz4uXE7oS2zLY7LJExIkp1IhIjbLZDF75OoWX1uzDMKBzRBAL7+tKWGAds0sTESenUCMiNSbrXDF/fj+ZNbszABjWvSkz4tvh7eFucmUi4grc7Bn89NNPY7FYyj2io6Mvu838+fOJioqiTp06REREMHHiRAoKCspeX7hwITExMQQEBBAQEEBsbCwrV64st48+ffpc8nNHjx5tT+kiYrK96Tnc+eoG1uzOwMvDjb8NiWH27zsq0IhItbH7TE379u1Zs2bNLzvwqHwXS5cuZfLkybz55pvExcWxb98+HnjgASwWC/PmzQOgSZMmzJ07l9atW5cu63zrLe644w62b99O+/bty/b1yCOP8Mwzz5T93tfX197SRcQkn+84zl8/3EF+kZXGQXVYeF9XYpoEmV2WiLgYu0ONh4cHoaGhVRq7ceNGevbsybBhwwBo1qwZCQkJbNmypWxMfHx8uW1mzZrFwoUL2bx5c7lQ4+vrW+WfKyKOocRq4/lVe3j924MA9GwVzMsJXalf18vkykTEFdn19RPA/v37CQ8Pp0WLFgwfPpy0tLRKx8bFxZGYmMjWrVsBOHDgACtWrGDQoEEVjrdarSxbtoy8vDxiY2PLvfbuu+/SoEEDOnTowJQpU8jPz7e3dBGpQadzC7nvjS1lgWb0TS1568EbFGhE5Jqx60xN9+7dWbJkCVFRUZw4cYKZM2fSu3dvdu3ahb+//yXjhw0bxunTp+nVqxeGYVBSUsLo0aOZOnVquXE7d+4kNjaWgoIC/Pz8+OSTT2jXrl25/URGRhIeHs6OHTt48skn2bt3Lx9//HGltRYWFlJYWFj2++zsbHumKiJXYXvaWf74bhInsgqo6+XOC0M7MbBjmNlliYiLsxiGYVzpxpmZmURGRjJv3jwefvjhS15ft24d9957L8899xzdu3cnJSWF8ePH88gjjzB9+vSycUVFRaSlpZGVlcWHH37Iv/71L9avX18u2PzaV199Rb9+/UhJSaFly5YVjnn66aeZOXPmJc9nZWUREBBwhTMWkd/y3tY0Znz2I0VWGy1C6vK/I7rRquGl/9MjIlIV2dnZBAYGVunz+6pCDcD1119P//79mTNnziWv9e7dmx49evD3v/+97Ll33nmHRx99lNzcXNzcKv72q3///rRs2ZJFixZV+HpeXh5+fn6sWrWKAQMGVDimojM1ERERCjUi10hBsZUZn/3If74/AsCA9o14YWgn/H08Ta5MRJyZPaHmqvrU5ObmkpqayogRIyp8PT8//5Lg4u5eunzzclnKZrOVCyQXS05OBiAsrPLT2d7e3nh7e1f6uohUn2OZ53j8nUR2HM3CzQKTBkTx+E0tdbsDEalRdoWaSZMmER8fT2RkJMePH2fGjBm4u7uTkJAAwMiRI2ncuHHZWZv4+HjmzZtHly5dyr5+mj59OvHx8WXhZsqUKQwcOJCmTZuSk5PD0qVLWbduHatXrwYgNTWVpUuXMmjQIIKDg9mxYwcTJ07kxhtvJCYmpjr/LETkCmxIOc2497bzc14RQb6evJzQhd6tQ8wuS0RqIbtCzdGjR0lISODMmTOEhITQq1cvNm/eTEhI6T9gaWlp5c7MTJs2DYvFwrRp0zh27BghISHEx8cza9assjEZGRmMHDmSEydOEBgYSExMDKtXr+aWW24BwMvLizVr1jB//nzy8vKIiIhgyJAhTJs2rTrmLyJXyDAM/vebAzy/ag82Azo0DmDh8G5E1FcPKRExx1VfU+Ms7PlOTkQuL7ewhL9++AMrdqYD8IduTXjuzg74eKo7sIhUrxq7pkZEap/UU7k89nYiKRm5eLpbmBHfnuHdm+r6GRExnUKNiFTZ6h/T+fP7P5BbWEKjAG8WDO9Gt8h6ZpclIgIo1IhIFVhtBvO+3MurX6cCcEPz+rwyrAsN/X1MrkxE5BcKNSJyWWfzivjTsu18u/80AA/1bM6UQdF4utt9lxURkWtKoUZEKrXrWBaj30nk6Nlz+Hi68fyQGO7o3NjsskREKqRQIyIV+jDxKE99spPCEhuRwb68dl832oZp5aCIOC6FGhEpp6jExrOf/8Tbmw8DcHNUCPPv6UKgr253ICKOTaFGRMqczC7g8XcSSUrLBGBC/9b8qW9r3Ny0XFtEHJ9CjYgAsPXgz/zx3SRO5xbi7+PB/Hs6069tI7PLEhGpMoUakVrOMAyWbDzErOW7KbEZRIf689p93WjWoK7ZpYmI2EWhRqQWO1dkZfLHO/gs+TgAt3cKZ+6Qjvh66Z8GEXE++pdLpJY6fCaPx95OZE96Du5uFqYOastDPZvpdgci4rQUakRqoa/3ZDB+2XayC0po4OfFK8O60qNFsNlliYhcFYUakVrEZjN4+asU5q/dh2FAl6ZBLBzejdBA3e5ARJyfQo1ILZF1rpgn/pPM2j0ZANzXoynTf9cObw93kysTEakeCjUitcDe9Bwee/t7Dp3Jx8vDjVl3dmDodRFmlyUiUq0UakRc3P/9cJy/friDc8VWGgfV4bX7utGxSaDZZYmIVDuFGhEXVWK1MXflHv713UEAerVqwD8TulC/rpfJlYmIXBsKNSIu6HRuIWOXJrH5wM8A/LFPS/58axTuut2BiLgwhRoRF7M97SyPv5NEenYBdb3cefHuTtzWIczsskRErjmFGhEXYRgG7209wtP//ZEiq42WIXVZNOI6WjX0M7s0EZEaoVAj4gIKiq38z2e7eP/7owDc1j6UF+7uhJ+33uIiUnvoXzwRJ3cs8xyPv5PIjqNZuFngLwOiGX1TC93uQERqHYUaESe2IeU0497bzs95RdTz9eTlhK70at3A7LJEREyhUCPihAzDYNE3B/jbqj3YDOjYOJCF93WlST1fs0sTETGNQo2Ik8ktLOEvH/zAyl3pAAzt1oRn7+yAj6dudyAitZtCjYgTScnIZfQ7iaRk5OLpbuHp29sz7Iamun5GRASFGhGnsWpXOpM++IHcwhJCA3xYcF9XujatZ3ZZIiIOQ6FGxMFZbQYvfrGXBetSAejevD6vDOtKiL+3yZWJiDgWhRoRB3Y2r4g/LdvOt/tPAzCqV3OeHBiNp7ubyZWJiDgehRoRB7XrWBaPvZ3Iscxz1PF05/k/xHB7p3CzyxIRcVgKNSIO6MPEozz1yU4KS2xEBvuyaEQ3okMDzC5LRMShKdSIOJCiEhvPfP4j72xOA6BvdENeuqczgXU8Ta5MRMTxKdSIOIj0rAL++G4iSWmZWCwwoV8bxvVthZublmuLiFSFQo2IA9hy4Axjlm7ndG4hAT4ezL+3M32jG5ldloiIU1GoETGRYRgs3nCIWSt2Y7UZRIf6s2hENyKD65pdmoiI01GoETFJflEJUz7eyWfJxwG4o3M4c+7qiK+X3pYiIldC/3qKmODwmTweezuRPek5uLtZeGpQWx7s2Uy3OxARuQoKNSI17Os9GYxftp3sghIa+Hnz6rAudG8RbHZZIiJOT6FGpIbYbAb//Go//1i7H8OALk2DWDi8G6GBPmaXJiLiEhRqRGpA1rlinvhPMmv3ZAAwokck03/XDi8P3e5ARKS6KNSIXGN70rN57O1EDp/Jx8vDjVl3dmDodRFmlyUi4nIUakSuof/+cJwnP9zBuWIrjYPqsGhENzo0DjS7LBERl6RQI3INFFttzF25hze+OwhA79YN+Oe9XahX18vkykREXJdCjUg1O5VTyNilSWw5+DMAf+zTkj/fGoW7bncgInJNKdSIVKOktLP88Z0k0rML8PP24IWhnbitQ6jZZYmI1AoKNSLVwDAMlm5N4+n//kix1aBlSF0WjbiOVg39zC5NRKTWUKgRuUoFxVb+57NdvP/9UQAGdgjl70M74eett5eISE3Sv7oiV+Ho2XwefyeJnceycLPAX2+L5rEbW+h2ByIiJlCoEblC3+0/zbj3kjibX0w9X09eGdaVnq0amF2WiEitpVAjYifDMHht/QH+vnoPNgM6Ng5k4X1daVLP1+zSRERqNYUaETvkFpbwlw9+YOWudADuvq4Jz9zRAR9Pd5MrExERhRqRKkrJyOWxt78n9VQenu4WZt7egYQbInT9jIiIg1CoEamCVbvSmfTBD+QWlhAa4MPC+7rSpWk9s8sSEZFfUagRuQyrzeCFL/aycF0qAN2b1+eVYV0J8fc2uTIREbmYQo1IJX7OK2L8su18u/80AKN6NWfywGg83N1MrkxERCqiUCNSgV3Hsnjs7USOZZ6jjqc7f/tDDPGdws0uS0RELsOu/+V8+umnsVgs5R7R0dGX3Wb+/PlERUVRp04dIiIimDhxIgUFBWWvL1y4kJiYGAICAggICCA2NpaVK1eW20dBQQFjxowhODgYPz8/hgwZwsmTJ+0pXaTKPvj+CHct3MixzHM0C/bl0zE9FWhERJyA3Wdq2rdvz5o1a37ZgUflu1i6dCmTJ0/mzTffJC4ujn379vHAAw9gsViYN28eAE2aNGHu3Lm0bt0awzB46623uOOOO9i+fTvt27cHYOLEiSxfvpwPPviAwMBAxo4dy1133cWGDRvsLV+kUkUlNp75/Efe2ZwGQP+2DXnx7s4E1vE0uTIREakKu0ONh4cHoaFVu+vwxo0b6dmzJ8OGDQOgWbNmJCQksGXLlrIx8fHx5baZNWsWCxcuZPPmzbRv356srCzeeOMNli5dSt++fQFYvHgxbdu2ZfPmzfTo0cPeKYhcIj2rgMffTWR7WiYWC0zs34axN7fCzU3LtUVEnIXdVzzu37+f8PBwWrRowfDhw0lLS6t0bFxcHImJiWzduhWAAwcOsGLFCgYNGlTheKvVyrJly8jLyyM2NhaAxMREiouL6d+/f9m46OhomjZtyqZNmyr92YWFhWRnZ5d7iFRky4Ez/O7lb9melkmAjwdvPnA9f+rXWoFGRMTJ2HWmpnv37ixZsoSoqChOnDjBzJkz6d27N7t27cLf3/+S8cOGDeP06dP06tULwzAoKSlh9OjRTJ06tdy4nTt3EhsbS0FBAX5+fnzyySe0a9cOgPT0dLy8vAgKCiq3TaNGjUhPT6+01jlz5jBz5kx7pie1jGEYvLnhELNX7MZqM4gO9WfRiG5EBtc1uzQREbkCdp2pGThwIEOHDiUmJoYBAwawYsUKMjMzef/99yscv27dOmbPns2CBQtISkri448/Zvny5Tz77LPlxkVFRZGcnMyWLVt4/PHHuf/++/npp5+ufFbAlClTyMrKKnscOXLkqvYnriW/qITxy5J59vOfsNoM7uwczid/7KlAIyLixK5qSXdQUBBt2rQhJSWlwtenT5/OiBEjGDVqFAAdO3YkLy+PRx99lKeeego3t9JM5eXlRatWrQDo1q0b27Zt4x//+AeLFi0iNDSUoqIiMjMzy52tOXny5GWv7fH29sbbWw3S5FKHTucx+p1E9qTn4OFmYdrgttwf10y3OxARcXJX1UUsNzeX1NRUwsLCKnw9Pz+/LLhc4O5eeuM/wzAq3a/NZqOwsBAoDTmenp6sXbu27PW9e/eSlpZWdt2NSFV9teck8a98x570HEL8vXnv0R480LO5Ao2IiAuw60zNpEmTiI+PJzIykuPHjzNjxgzc3d1JSEgAYOTIkTRu3Jg5c+YApSub5s2bR5cuXejevTspKSlMnz6d+Pj4snAzZcoUBg4cSNOmTcnJyWHp0qWsW7eO1atXAxAYGMjDDz/ME088Qf369QkICGDcuHHExsZq5ZNUmc1m8M+v9jN/zX4AukXWY8HwrjQK8DG5MhERqS52hZqjR4+SkJDAmTNnCAkJoVevXmzevJmQkBAA0tLSyp2ZmTZtGhaLhWnTpnHs2DFCQkKIj49n1qxZZWMyMjIYOXIkJ06cIDAwkJiYGFavXs0tt9xSNuall17Czc2NIUOGUFhYyIABA1iwYMHVzl1qiaz8Yia+n8xXezIAGBkbybTB7fDy0O0ORERcicW43PdALiQ7O5vAwECysrIICAgwuxy5hkqsNvaezGF7Wibb0zL5dv8pMnIK8fZwY/bvOzKkWxOzSxQRkSqy5/Nb934Sp5eRU1AWYLannWXH0SzOFVvLjWlSrw6v3deNDo0DTapSRESuNYUacSqFJVZ+PJ5dFmC2p2VyLPPcJeP8fTzoHBFEl6b16NI0iB7Ng6nj5W5CxSIiUlMUasRhGYbB0bPn2H7klwDz0/Fsiqy2cuPcLNCmkX9ZgOnaNIgWDfzUEVhEpJZRqBGHkVdYwo6jWWw/crbs66TTuYWXjAuu61UWYLo0DSKmSRB+3vqrLCJS2+mTQExhsxkcOJ1XegbmSGmA2Zueje2iy9Y93S20Cw+kS0TQ+bMw9WhSr476yoiIyCUUaqRGZOUXk3w0k6TDpSEmOe0s2QUll4wLD/T51VmYerQPD8DHU9fCiIjIb1OokWpXYrWx72Tur75GOkvqqbxLxvl4uhHTOKjsa6TOEfUIDVQzPBERuTIKNXLVMnIKSE7LLLugd8fRLPKLrJeMa96gbtnXSF2a1iMq1B9PdzXAExGR6qFQI3YpLLHy04Ul1edDzNGzFSyp9vagc9Og8yGmHp0igqhf18uEikVEpLZQqJFKGYbBscxzvzS2O3KWH49duqTaYoGoRv6lZ2AiSq+HaRmiJdUiIlKzFGqkTH7R+SXVFxrbHcnkVM6lS6rr1/Wi6/mvkLpEBNGxSSD+Pp4mVCwiIvILhZpaymYzOHgmr1xn3r0nc7BetKbaw81C+/CAX1YkRdQjor6WVIuIiONRqKklLiypvhBgko9kknWu+JJx5ZdUB9E+PFBLqkVExCko1Ligqi6p9vZwI6ZJYNnXSF2aakm1iIg4L4UaF3Aqp/BXnXkrX1LdLNi33NdI0WFaUi0iIq5DocbJVHVJtZ/3hbtU/9LYTkuqRUTElSnUODDDMDieVcD2tLMkHb78kuo2Df3LAkyXpvVoGeKHu5ZUi4hILaJQ40Dyi0rYeTSr7AzM9rRMMipZUv3rzrwxWlItIiKiUGMWwzA4eDqvrKnd9rRM9qRXvKS6XXhA2YW8XZoG0bS+r5ZUi4iIXEShpoZknSvmhyOZ5UJMRUuqwwJ9ynXm7dBYS6pFRESqQqHmGrDaDPadzCnXmTclI/eScd4ebnRsHEjXyNIl1Z2bBhEWWMeEikVERJyfQk01OJVTSPKvroP54WhmhUuqI4N9y32NFB0agJeHllSLiIhUB4Waq/Tp9mNM+E/yJc/7eXvQKSKw7GukzhFBBPt513yBIiIitYRCzVWKDvPHYoHWDf3KAkyXpvVo1VBLqkVERGqSQs1VatPQnx9m3EqAllSLiIiYShd0XCU3N4sCjYiIiANQqBERERGXoFAjIiIiLkGhRkRERFyCQo2IiIi4BIUaERERcQkKNSIiIuISFGpERETEJSjUiIiIiEtQqBERERGXoFAjIiIiLkGhRkRERFyCQo2IiIi4BIUaERERcQkeZhdQUwzDACA7O9vkSkRERKSqLnxuX/gcv5xaE2pycnIAiIiIMLkSERERsVdOTg6BgYGXHWMxqhJ9XIDNZuP48eP4+/tjsVguOzY7O5uIiAiOHDlCQEBADVVY8zRP11Ib5lkb5giap6vRPK+OYRjk5OQQHh6Om9vlr5qpNWdq3NzcaNKkiV3bBAQEuPRfwAs0T9dSG+ZZG+YImqer0Tyv3G+doblAFwqLiIiIS1CoEREREZegUFMBb29vZsyYgbe3t9mlXFOap2upDfOsDXMEzdPVaJ41p9ZcKCwiIiKuTWdqRERExCUo1IiIiIhLUKgRERERl1BrQ82rr75Ks2bN8PHxoXv37mzduvWy4z/44AOio6Px8fGhY8eOrFixooYqvTr2zHPJkiVYLJZyDx8fnxqs1n7ffPMN8fHxhIeHY7FY+PTTT39zm3Xr1tG1a1e8vb1p1aoVS5YsueZ1Xi1757lu3bpLjqXFYiE9Pb1mCr5Cc+bM4frrr8ff35+GDRty5513snfv3t/czpnen1cyR2d8by5cuJCYmJiyniWxsbGsXLnysts403G8wN55OuOxvNjcuXOxWCxMmDDhsuPMOJ61MtT85z//4YknnmDGjBkkJSXRqVMnBgwYQEZGRoXjN27cSEJCAg8//DDbt2/nzjvv5M4772TXrl01XLl97J0nlDZNOnHiRNnj8OHDNVix/fLy8ujUqROvvvpqlcYfPHiQwYMHc/PNN5OcnMyECRMYNWoUq1evvsaVXh1753nB3r17yx3Phg0bXqMKq8f69esZM2YMmzdv5ssvv6S4uJhbb72VvLy8SrdxtvfnlcwRnO+92aRJE+bOnUtiYiLff/89ffv25Y477uDHH3+scLyzHccL7J0nON+x/LVt27axaNEiYmJiLjvOtONp1EI33HCDMWbMmLLfW61WIzw83JgzZ06F4++++25j8ODB5Z7r3r278dhjj13TOq+WvfNcvHixERgYWEPVVT/A+OSTTy475q9//avRvn37cs/dc889xoABA65hZdWrKvP8+uuvDcA4e/ZsjdR0rWRkZBiAsX79+krHOOv784KqzNHZ35sX1KtXz/jXv/5V4WvOfhx/7XLzdOZjmZOTY7Ru3dr48ssvjZtuuskYP358pWPNOp617kxNUVERiYmJ9O/fv+w5Nzc3+vfvz6ZNmyrcZtOmTeXGAwwYMKDS8Y7gSuYJkJubS2RkJBEREb/5fxvOyBmP5dXo3LkzYWFh3HLLLWzYsMHscuyWlZUFQP369Ssd4+zHtCpzBOd+b1qtVpYtW0ZeXh6xsbEVjnH24whVmyc477EcM2YMgwcPvuQ4VcSs41nrQs3p06exWq00atSo3PONGjWq9HqD9PR0u8Y7giuZZ1RUFG+++SafffYZ77zzDjabjbi4OI4ePVoTJdeIyo5ldnY2586dM6mq6hcWFsZrr73GRx99xEcffURERAR9+vQhKSnJ7NKqzGazMWHCBHr27EmHDh0qHeeM788LqjpHZ31v7ty5Ez8/P7y9vRk9ejSffPIJ7dq1q3CsMx9He+bprMdy2bJlJCUlMWfOnCqNN+t41pobWspvi42NLfd/F3FxcbRt25ZFixbx7LPPmliZ2CsqKoqoqKiy38fFxZGamspLL73E22+/bWJlVTdmzBh27drFd999Z3Yp10xV5+is782oqCiSk5PJysriww8/5P7772f9+vWVfuA7K3vm6YzH8siRI4wfP54vv/zS4S9qrnWhpkGDBri7u3Py5Mlyz588eZLQ0NAKtwkNDbVrvCO4knlezNPTky5dupCSknItSjRFZccyICCAOnXqmFRVzbjhhhucJiCMHTuWzz//nG+++YYmTZpcdqwzvj/BvjlezFnem15eXrRq1QqAbt26sW3bNv7xj3+waNGiS8Y663EE++Z5MWc4lomJiWRkZNC1a9ey56xWK9988w2vvPIKhYWFuLu7l9vGrONZ675+8vLyolu3bqxdu7bsOZvNxtq1ayv9DjQ2NrbceIAvv/zyst+Zmu1K5nkxq9XKzp07CQsLu1Zl1jhnPJbVJTk52eGPpWEYjB07lk8++YSvvvqK5s2b/+Y2znZMr2SOF3PW96bNZqOwsLDC15ztOF7O5eZ5MWc4lv369WPnzp0kJyeXPa677jqGDx9OcnLyJYEGTDye1/QyZAe1bNkyw9vb21iyZInx008/GY8++qgRFBRkpKenG4ZhGCNGjDAmT55cNn7Dhg2Gh4eH8cILLxi7d+82ZsyYYXh6eho7d+40awpVYu88Z86caaxevdpITU01EhMTjXvvvdfw8fExfvzxR7Om8JtycnKM7du3G9u3bzcAY968ecb27duNw4cPG4ZhGJMnTzZGjBhRNv7AgQOGr6+v8Ze//MXYvXu38eqrrxru7u7GqlWrzJpCldg7z5deesn49NNPjf379xs7d+40xo8fb7i5uRlr1qwxawpV8vjjjxuBgYHGunXrjBMnTpQ98vPzy8Y4+/vzSubojO/NyZMnG+vXrzcOHjxo7Nixw5g8ebJhsViML774wjAM5z+OF9g7T2c8lhW5ePWToxzPWhlqDMMwXn75ZaNp06aGl5eXccMNNxibN28ue+2mm24y7r///nLj33//faNNmzaGl5eX0b59e2P58uU1XPGVsWeeEyZMKBvbqFEjY9CgQUZSUpIJVVfdhaXLFz8uzOv+++83brrppku26dy5s+Hl5WW0aNHCWLx4cY3XbS975/n8888bLVu2NHx8fIz69esbffr0Mb766itzirdDRXMEyh0jZ39/XskcnfG9+dBDDxmRkZGGl5eXERISYvTr16/sg94wnP84XmDvPJ3xWFbk4lDjKMdTd+kWERERl1DrrqkRERER16RQIyIiIi5BoUZERERcgkKNiIiIuASFGhEREXEJCjUiIiLiEhRqRERExCUo1IiIiIhLUKgREYezbt06LBYLmZmZZpciIk5EoUZEHE5cXBwnTpwgMDCwytvk5+czZcoUWrZsiY+PDyEhIdx000189tln17BSEXEkHmYXICJyMS8vL0JDQ+3aZvTo0WzZsoWXX36Zdu3acebMGTZu3MiZM2euUZUi4mh0pkZErrk+ffowbtw4JkyYQL169WjUqBGvv/46eXl5PPjgg/j7+9OqVStWrlwJXPr105IlSwgKCmL16tW0bdsWPz8/brvtNk6cOFH2M/773/8ydepUBg0aRLNmzejWrRvjxo3joYceKhtjsVj49NNPy9UWFBTEkiVLADh06BAWi4Vly5YRFxeHj48PHTp0YP369df0z0dEqodCjYjUiLfeeosGDRqwdetWxo0bx+OPP87QoUOJi4sjKSmJW2+9lREjRpCfn1/h9vn5+bzwwgu8/fbbfPPNN6SlpTFp0qSy10NDQ1mxYgU5OTlXXetf/vIX/vznP7N9+3ZiY2OJj4/XGR8RJ6BQIyI1olOnTkybNo3WrVszZcoUfHx8aNCgAY888gitW7fmf/7nfzhz5gw7duyocPvi4mJee+01rrvuOrp27crYsWNZu3Zt2ev/+7//y8aNGwkODub6669n4sSJbNiw4YpqHTt2LEOGDKFt27YsXLiQwMBA3njjjSval4jUHIUaEakRMTExZb92d3cnODiYjh07lj3XqFEjADIyMirc3tfXl5YtW5b9PiwsrNzYG2+8kQMHDrB27Vr+8Ic/8OOPP9K7d2+effZZu2uNjY0t+7WHhwfXXXcdu3fvtns/IlKzFGpEpEZ4enqW+73FYin3nMViAcBms1V5e8MwLhnTu3dvnnzySb744gueeeYZnn32WYqKiirdpri4+MomJCIOR6FGRFxWu3btKCkpoaCgAICQkJByFxfv37+/wmt4Nm/eXPbrkpISEhMTadu27bUvWESuipZ0i4hL6NOnDwkJCVx33XUEBwfz008/MXXqVG6++WYCAgIA6Nu3L6+88gqxsbFYrVaefPLJS84AAbz66qu0bt2atm3b8tJLL3H27Nlyq6hExDHpTI2IuIQBAwbw1ltvceutt9K2bVvGjRvHgAEDeP/998vGvPjii0RERNC7d2+GDRvGpEmT8PX1vWRfc+fOZe7cuXTq1InvvvuO//73vzRo0KAmpyMiV8BiXPwFs4hILXXo0CGaN2/O9u3b6dy5s9nliIiddKZGREREXIJCjYiIiLgEff0kIiIiLkFnakRERMQlKNSIiIiIS1CoEREREZegUCMiIiIuQaFGREREXIJCjYiIiLgEhRoRERFxCQo1IiIi4hIUakRERMQl/D+opa8AHtKdMQAAAABJRU5ErkJggg==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHACAYAAACBGTONAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYHklEQVR4nO3dd3hUdb4G8PfMTGbSJ70SEkoCIYm0gBQRUCSIi7IKWAC52FZEWFBQkHXdFZdmWa4uwsoqoqtwFURRIaFJD1IDhJBGgBRSIG1SJ8nMuX8kGYm0TJKZM+X9PM88ksk5Z77jIZmXXxVEURRBREREZMFkUhdAREREdCcMLERERGTxGFiIiIjI4jGwEBERkcVjYCEiIiKLx8BCREREFo+BhYiIiCweAwsRERFZPAYWIiIisngMLERERGTxbC6w7N+/H+PGjUNQUBAEQcD3339v9DUSEhIwaNAguLm5wdfXF4899hguXbrU4bUSERFR69hcYKmqqkLv3r2xatWqNp1/8eJFPPLII7jvvvuQlJSEhIQEXLt2DY8++mgHV0pEREStJdjy5oeCIGDLli0YP3684TmtVotFixZhw4YNKCsrQ3R0NJYvX44RI0YAADZt2oQnn3wSWq0WMlljnvvxxx/xyCOPQKvVwsHBQYJ3QkREZN9sroXlTl5++WUkJiZi48aNOHPmDCZOnIgxY8YgIyMDANC/f3/IZDKsW7cOOp0O5eXl+PLLLzFq1CiGFSIiIonYVQtLdnY2unbtiuzsbAQFBRmOGzVqFAYOHIglS5YAAPbt24dJkyahuLgYOp0OgwcPxrZt2+Dh4SHBuyAiIiK7amE5e/YsdDodIiIi4Orqanjs27cPFy5cAAAUFBTg+eefx7Rp03Ds2DHs27cPSqUSEyZMgA1nOyIiIoumkLoAc6qsrIRcLseJEycgl8tbfM/V1RUAsGrVKqjVaqxYscLwvf/+978ICQnBr7/+ikGDBpm1ZiIiIrKzwNK3b1/odDoUFRVh2LBhNz2murraMNi2WXO40ev1Jq+RiIiIbmRzXUKVlZVISkpCUlISgMZpyklJScjOzkZERAQmT56Mp59+Gt999x0uXryIo0ePYunSpfj5558BAA899BCOHTuGt99+GxkZGTh58iSmT5+O0NBQ9O3bV8J3RkREZL9sbtDt3r17MXLkyBuenzZtGj7//HPU19fjnXfewRdffIG8vDz4+Phg0KBB+Pvf/46YmBgAwMaNG7FixQqkp6fD2dkZgwcPxvLly9GzZ09zvx0iIiKCDQYWIiIisj021yVEREREtoeBhYiIiCyezcwS0uv1uHLlCtzc3CAIgtTlEBERUSuIooiKigoEBQXdMEv3ejYTWK5cuYKQkBCpyyAiIqI2yMnJQadOnW75fZsJLG5ubgAa37C7u7vE1RAREVFraDQahISEGD7Hb8VmAktzN5C7uzsDCxERkZW503AODrolIiIii8fAQkRERBaPgYWIiIgsns2MYSEiIvuj1+tRV1cndRl0Gw4ODoZNhNuDgYWIiKxSXV0dLl68CL1eL3UpdAceHh4ICAho1zppDCxERGR1RFFEfn4+5HI5QkJCbrvgGElHFEVUV1ejqKgIABAYGNjmazGwEBGR1WloaEB1dTWCgoLg7OwsdTl0G05OTgCAoqIi+Pn5tbl7iJGUiIisjk6nAwAolUqJK6HWaA6V9fX1bb4GAwsREVkt7h1nHTriPjGwEBERkcVjYCEiIiKLx8BCREREFo+B5Q60DTocu1QidRlERESSknqBPgaW26jUNmDAO7swcU0iCsprpS6HiIis3IgRIzBr1izMmTMHnp6e8Pf3x9q1a1FVVYXp06fDzc0N3bt3x/bt2w3nJCcn48EHH4Srqyv8/f0xdepUXLt2rV3XBIB9+/Zh4MCBUKlUCAwMxIIFC9DQ0NDiui+//DLmzJkDHx8fxMXF4ZlnnsEf/vCHFtepr6+Hn58fPv30UxP9X2vEwHIbrioFwv3dAAA7UgokroaIiG5FFEVU1zVI8hBF0aha169fDx8fHxw9ehSzZs3CjBkzMHHiRAwZMgQnT57E6NGjMXXqVFRXV6OsrAz33Xcf+vbti+PHjyM+Ph6FhYWYNGlSm68JAHl5eRg7diwGDBiA06dPY/Xq1fj000/xzjvv3HBdpVKJQ4cOYc2aNXjuuecQHx+P/Px8wzE//fQTqqur8fjjj7fx7rWOIBr7f9pCaTQaqNVqlJeXw93dvcOuu3Z/Fv6x7TyGdPPG188P6rDrEhFR29XW1uLixYvo0qULHB0dUV3XgF5/TZCklpS34+CsbN06rCNGjIBOp8OBAwcANK4no1ar8eijj+KLL74AABQUFCAwMBCJiYnYtWsXDhw4gISE395bbm4uQkJCkJaWhoiICKOvOWjQICxatAibN2/G+fPnDVOOP/74Y7z++usoLy+HTCbDiBEjoNFocPLkyRbvISoqCtOmTcNrr70GAHj44Yfh7e2NdevW3fJ9//5+Xa+1n99sYbmDuKgAAMCvF0tQUsUNtoiIqH3uuusuw5/lcjm8vb0RExNjeM7f3x9A48qwp0+fxi+//AJXV1fDo2fPngCACxcutOmaAHD+/HkMHjy4xfooQ4cORWVlJXJzcw3P9e/f/4b6n3vuOUM4KSwsxPbt2/HMM8+04f+Ecbg0/x109nZGr0B3pORrsOt8ISbFhkhdEhER/Y6Tgxwpb8dJ9trGcHBwaPG1IAgtnmsOEXq9HpWVlRg3bhyWL19+w3Wu35fHmGsaw8XF5Ybnnn76aSxYsACJiYk4fPgwunTpgmHDhhl13bZgYGmFMdEBSMnXID65gIGFiMgCCYLQ6m4Za9KvXz9s3rwZYWFhUCg67v1FRkZi8+bNEEXREGYOHToENzc3dOrU6bbnent7Y/z48Vi3bh0SExMxffr0Dqvrdtgl1Apjohu7hQ5mXENFbdv3QSAiIjLGzJkzUVJSgieffBLHjh3DhQsXkJCQgOnTpxv2U2qLl156CTk5OZg1axZSU1Pxww8/4K233sIrr7zSqp2vn3vuOaxfvx7nz5/HtGnT2lyHMRhYWiHczxVdfVxQp9Pjl7SrUpdDRER2IigoCIcOHYJOp8Po0aMRExODOXPmwMPDo1XB4laCg4Oxbds2HD16FL1798aLL76IZ599Fn/5y19adf6oUaMQGBiIuLg4BAUFtbkOY3CWUCstj0/F6r0X8FBMIFZN7tfh1yciota73awTMr3KykoEBwdj3bp1ePTRR+94PGcJmdGYptlCv6QVoba+7c1wRERE1kqv16OoqAiLFy+Gh4cHHn74YbO9NgNLK93VSY1AtSOq63Q4kHHtzicQERHZmOzsbPj7++Prr7/GZ5991qEDge+EgaWVBEEwrMkSn8xVb4mIyP6EhYVBFEXk5OTg/vvvN+trM7AY4cGm2UK7zheiXmfcXHYiIiJqOwYWI8SGecHbRYnymnr8msUdnImIpGYj80ZsXkfcJwYWI8hlAkZHNS5vHH8u/w5HExGRqcjljavL1tVxyxRr0Lzp4u9X5DWG7S0LaGJxUQHYcDQHCecK8fbD0ZDJhDufREREHUqhUMDZ2RlXr16Fg4NDu9YkIdMRRRHV1dUoKiqCh4eHIWi2BQOLkYZ084GbSoGrFVqcyilF/1AvqUsiIrI7giAgMDAQFy9exOXLl6Uuh+7Aw8MDAQEB7boGA4uRlAoZ7o/0w/dJVxCfXMDAQkQkEaVSifDwcHYLWTgHB4d2taw0Y2BpgzHRAY2B5VwB3hgb2WJ7biIiMh+ZTMaVbu0EO/3a4N4IXzg6yJBTUoOUfI3U5RAREdk8BpY2cFYqMDzCFwCQwEXkiIiITI6BpY3GNC0iF3+OgYWIiMjUGFja6L6e/lDIBKQXVuLC1UqpyyEiIrJpDCxtpHZywJDuPgCABLayEBERmRQDSzuMadoMkeNYiIiITIuBpR0e6OUPQQBO55Yjr6xG6nKIiIhsFgNLO/i6qTCgaeG4HewWIiIiMhkGlnaKa5ottJ3dQkRERCbDwNJOcU27Nx+7VIKrFVqJqyEiIrJNRgeWvLw8TJkyBd7e3nByckJMTAyOHz9+23O0Wi0WLVqE0NBQqFQqhIWF4bPPPrvpsRs3boQgCBg/fryxpUmik6czYoLVEEVg1/lCqcshIiKySUbtJVRaWoqhQ4di5MiR2L59O3x9fZGRkQFPT8/bnjdp0iQUFhbi008/Rffu3ZGfnw+9Xn/DcZcuXcK8efMwbNgw496FxMZEB+BsXjnikwvw5MDOUpdDRERkc4wKLMuXL0dISAjWrVtneK5Lly63PSc+Ph779u1DVlYWvLwaB6iGhYXdcJxOp8PkyZPx97//HQcOHEBZWZkxpUkqLioA7yak4fCFayivqYfayUHqkoiIiGyKUV1CW7duRWxsLCZOnAg/Pz/07dsXa9eubdU5K1asQHBwMCIiIjBv3jzU1LScBvz222/Dz88Pzz77rPHvQmLd/VzR3c8V9ToRv6QWSV0OERGRzTEqsGRlZWH16tUIDw9HQkICZsyYgdmzZ2P9+vW3PefgwYNITk7Gli1bsHLlSmzatAkvvfSS4ZiDBw/i008/vWP4uZ5Wq4VGo2nxkFLzInLxnC1ERETU4YwKLHq9Hv369cOSJUvQt29fvPDCC3j++eexZs2a254jCAK++uorDBw4EGPHjsUHH3yA9evXo6amBhUVFZg6dSrWrl0LHx+fVteydOlSqNVqwyMkJMSYt9LhmjdD3JtehJo6naS1EBER2RqjAktgYCB69erV4rnIyEhkZ2ff9pzg4GCo1eoW54iiiNzcXFy4cAGXLl3CuHHjoFAooFAo8MUXX2Dr1q1QKBS4cOHCTa+7cOFClJeXGx45OTnGvJUOFxXkjk6eTqit12Nf+lVJayEiIrI1RgWWoUOHIi0trcVz6enpCA0Nve05V65cQWVlZYtzZDIZOnXqhJ49e+Ls2bNISkoyPB5++GGMHDkSSUlJt2w5UalUcHd3b/GQkiAIv+0txFVviYiIOpRRgWXu3Lk4cuQIlixZgszMTHz99df45JNPMHPmTMMxCxcuxNNPP234+qmnnoK3tzemT5+OlJQU7N+/H/Pnz8czzzwDJycnODo6Ijo6usXDw8MDbm5uiI6OhlKp7Lh3a2LN3UK7zheiruHGadtERETUNkYFlgEDBmDLli3YsGEDoqOjsXjxYqxcuRKTJ082HJOfn9+ii8jV1RU7d+5EWVkZYmNjMXnyZIwbNw4ffvhhx70LC9Gvsyd83VSoqG1AYlax1OUQERHZDEEURVHqIjqCRqOBWq1GeXm5pN1Di7acxVe/ZuPJgZ2x9NEYyeogIiKyBq39/OZeQh2suVtoZ0oBdHqbyIJERESSY2DpYIO6esPdUYFrlXU4cblU6nKIiIhsAgNLB3OQyzCqV+MOzlxEjoiIqGMwsJjA9dObbWSIEBERkaQYWEzg3ghfODnIkVdWg+Q8abcMICIisgUMLCbg6CDHyJ6+AID4c/kSV0NERGT9GFhMJI6bIRIREXUYBhYTua+nH5RyGS5crUJmUYXU5RAREVk1BhYTcXN0wNDu3gDYykJERNReDCwm1LyI3HYGFiIionZhYDGhUZH+kAnAuSsa5JRUS10OERGR1WJgMSFvVxUGdvEC0LgmCxEREbUNA4uJjeFsISIionZjYDGx0U2B5UR2KYo0tRJXQ0REZJ0YWEwsyMMJvUM8IIrAjpRCqcshIiKySgwsZnD93kJERERkPAYWM4iLaty9OfFCMcqq6ySuhoiIyPowsJhBV19X9PB3Q4NexO7zRVKXQ0REZHUYWMwkrmkRuXh2CxERERmNgcVMHmwKLPvTr6JK2yBxNURERNaFgcVMega4IdTbGdoGPfalX5W6HCIiIqvCwGImgiBwETkiIqI2YmAxo+ZxLHtSi6Bt0ElcDRERkfVgYDGjPp084O+uQqW2AYczi6Uuh4iIyGowsJiRTCYgjt1CRERERmNgMbPmcSw7zxeiQaeXuBoiIiLrwMBiZgO7eMHD2QElVXU4dqlU6nKIiIisAgOLmSnkMjwQ2bhUP/cWIiIiah0GFgmMif5tHIteL0pcDRERkeVjYJHA0O4+cFHKUaCpxZm8cqnLISIisngMLBJwdJBjZE8/AJwtRERE1BoMLBL5rVsoH6LIbiEiIqLbYWCRyIgeflAqZLhUXI20wgqpyyEiIrJoDCwScVUpcG+4DwB2CxEREd0JA4uEuOotERFR6zCwSGhUpD/kMgGpBRW4dK1K6nKIiIgsFgOLhDxdlBjU1QsAF5EjIiK6HQYWiTXvLRTPwEJERHRLDCwSG90UWE5ll6GgvFbiaoiIiCwTA4vE/N0d0a+zBwBgRwpbWYiIiG6GgcUCXL+3EBEREd2IgcUCNE9v/vViCUqq6iSuhoiIyPIwsFiAUG8XRAa6Q6cXset8odTlEBERWRwGFgvxYFO3UAK7hYiIiG7AwGIhmsexHMi4hkptg8TVEBERWRYGFgsR7ueKrj4uqNPp8UtqkdTlEBERWRQGFgshCALiormIHBER0c0wsFiQ5lVvf0ktQm29TuJqiIiILAcDiwW5q5MagWpHVNfpcDDjmtTlEBERWQwGFgsiCIJhTRZ2CxEREf2GgcXCNM8W2nW+EPU6vcTVEBERWQYGFgszIMwL3i5KlFXX4+jFEqnLISIisggMLBZGLhPwQC9/ANxbiIiIqBkDiwVqnt6ccK4Aer0ocTVERETSY2CxQEO6ecNNpUBRhRanckqlLoeIiEhyDCwWSKWQ475IPwDsFiIiIgIYWCzWmOumN4siu4WIiMi+GR1Y8vLyMGXKFHh7e8PJyQkxMTE4fvz4bc/RarVYtGgRQkNDoVKpEBYWhs8++8zw/bVr12LYsGHw9PSEp6cnRo0ahaNHjxr/bmzI8B6+UClkyCmpQUq+RupyiIiIJKUw5uDS0lIMHToUI0eOxPbt2+Hr64uMjAx4enre9rxJkyahsLAQn376Kbp37478/Hzo9b+tMbJ37148+eSTGDJkCBwdHbF8+XKMHj0a586dQ3BwcNvemZVzViowPMIXO1IKkZBcgKggtdQlERERSUYQjehvWLBgAQ4dOoQDBw60+gXi4+PxxBNPICsrC15eXq06R6fTwdPTE//617/w9NNPt+ocjUYDtVqN8vJyuLu7t7o+S/bdyVy88s1pRPi7Ysfc4VKXQ0RE1OFa+/ltVJfQ1q1bERsbi4kTJ8LPzw99+/bF2rVrW3XOihUrEBwcjIiICMybNw81NTW3PKe6uhr19fW3DTharRYajabFw9bc39MfCpmA9MJKXLhaKXU5REREkjEqsGRlZWH16tUIDw9HQkICZsyYgdmzZ2P9+vW3PefgwYNITk7Gli1bsHLlSmzatAkvvfTSLc95/fXXERQUhFGjRt3ymKVLl0KtVhseISEhxrwVq6B2dsDgbt4AGtdkISIisldGdQkplUrExsbi8OHDhudmz56NY8eOITEx8abnjB49GgcOHEBBQQHU6sZxGN999x0mTJiAqqoqODk5tTh+2bJlWLFiBfbu3Yu77rrrlrVotVpotVrD1xqNBiEhITbVJQQAX/16GYu2JKN3JzV+ePkeqcshIiLqUCbpEgoMDESvXr1aPBcZGYns7OzbnhMcHGwIK83niKKI3NzcFse+9957WLZsGXbs2HHbsAIAKpUK7u7uLR626IFe/hAE4HRuOfLKbt2NRkREZMuMCixDhw5FWlpai+fS09MRGhp623OuXLmCysrKFufIZDJ06tTJ8NyKFSuwePFixMfHIzY21piybJqfmyNiQxtnYe1gtxAREdkpowLL3LlzceTIESxZsgSZmZn4+uuv8cknn2DmzJmGYxYuXNhiZs9TTz0Fb29vTJ8+HSkpKdi/fz/mz5+PZ555xtAdtHz5crz55pv47LPPEBYWhoKCAhQUFLQIOfYsrnkROa56S0REdsqowDJgwABs2bIFGzZsQHR0NBYvXoyVK1di8uTJhmPy8/NbdBG5urpi586dKCsrQ2xsLCZPnoxx48bhww8/NByzevVq1NXVYcKECQgMDDQ83nvvvQ54i9ZvTNNmiMculeBapfYORxMREdkeowbdWjJbXIfleuM+OoizeeVY9mgMnhjYWepyiIiIOoRJBt2SdJpbWeI5joWIiOwQA4uVaB7HcijzGjS19RJXQ0REZF4MLFaiu58ruvu5ol4n4pfUIqnLISIiMisGFisyhrOFiIjITjGwWJHmcSx7066ipk4ncTVERETmw8BiRaKC3BHs4YSaeh32Z1yVuhwiIiKzYWCxIoIgGFpZEtgtREREdoSBxco0B5ad5wtR16CXuBoiIiLzYGCxMv06e8LHVYWK2gYkZhVLXQ4REZFZMLBYGblMwOgofwCcLURERPaDgcUKNU9v3plSAJ3eJnZWICIiui0GFis0qKs33B0VuFZZhxOXS6Uuh4iIyOQYWKyQUiHDqEh2CxERkf1gYLFScc3Tm88VwEY23CYiIrolBhYrdW+4L5wc5Mgrq0FynkbqcoiIiEyKgcVKOSnlGNHDFwAQfy5f4mqIiIhMi4HFijUvIsdxLNaporZe6hKIiKwGA4sVG9nTDw5yAReuViGzqELqcsgIH+/NRMzfduDnM2wdIyJqDQYWK+bu6ICh3X0AsJXFmhRV1OKj3ZkAgE8OZElcDRGRdWBgsXLNi8jFn2NgsRar9mSipl4HADidU4a0AraOERHdCQOLlXuglz9kApCcp0FOSbXU5dAd5JRU4+uj2QCAMG9nAMC3x3OkLImIyCowsFg5b1cVBnbxAtC4JgtZtv/dnYF6nYih3b3x5h96AQC2nMrjzttERHfAwGIDmruFGFgsW0ZhBb47mQsAmB/XE8MjfOHrpkJxVR32pBZJXB0RkWVjYLEBo5sCy/HLpSiqqJW4GrqVD3amQy8Co3v5o0+IBxRyGR7r1wkAu4WIiO6EgcUGBHk4oXeIB0QR2JlSKHU5dBNncsuwPbkAggC8OrqH4fmJsY2B5Ze0IhRpGDaJiG6FgcVGGGYLcXqzRXo3IQ0A8Mc+wegR4GZ4vpuvK2JDPaEXge9O5UlVHhGRxWNgsRFxUY27NydeKEZ5NVdQtSSJF4pxIOMaFDIBc0ZF3PD9SbEhAIBvjudwI0sioltgYLERXX1d0cPfDQ16EbtT2S1kKURRxLsJqQCAJwd2RuemqczXG3tXIJwc5Mi6WoWT2aXmLpGIyCowsNiQOO4tZHH2pBbhZHYZHB1kmHVf95se46pS4KG7AgEA3xzLNWd5RERWg4HFhjSPY9mXfhVV2gaJqyG9XjSMXZk2JAx+7o63PLa5W+inM1d474iIboKBxYZEBrqhs5cztA167Eu/KnU5du/HM1eQWlABN5UCM4Z3u+2xA8I8EebtjKo6Hbad5YaIRES/x8BiQwRBwBh2C1mEep0e/9yZDgB44d6u8HBW3vZ4QRAwsamV5dvj7BYiIvo9BhYbE9fULbQntQjaBp3E1divb4/n4lJxNbxdlHjmni6tOuexfp0gE4Cjl0pw8VqViSskIrIuDCw2pm+IB/zcVKjUNuBwZrHU5dil2nodPtydAQCYObI7XFSKVp0XoHbE8AhfAMCmE1z5lojoegwsNkYmEwytLOwWksaXiZdRoKlFkNoRT93d2ahzm7uFNp3IhU7PNVmIiJoxsNig5nEsO88XokHHXYDNqaK2Hh/vzQQAzBkVAUcHuVHn3x/pB09nBxRqtNifwYHTRETNGFhs0MAuXvBwdkBJVR2OXeJCZOb06cGLKK2uR1dfFzzaL9jo81UKOcb3bTyPGyISEf2GgcUGOchlGBXZuFR/wjl2C5lLSVUd/nPgIgDg1Qd6QCFv24/XxP6N3UI7UwpRUlXXYfUREVkzBhYbdf1miHqOhTCL1XszUaltQFSQOx5s6pZri15B7ogJVqNeJ+J7bohIRASAgcVm3RPuA2elHAWaWpzJK5e6HJuXX16D9YmXAQDz43pAJhPadb1JsZ0AcENEIqJmDCw2ytFBjpE9/QBwtpA5fLg7E3UNegwM8zJMTW6Ph3sHQ6mQIbWgAueuaDqgQiIi68bAYsN+6xbK57/STejStSp80zRAdv6YHhCE9rWuAIDa2cEwPf0bDr4lImJgsWUje/pBKZfhUnE10gsrpS7HZn2wMx06vYiRPXwxIMyrw67b3C30/ak81NZz1WIism8MLDbMVaXAsHAfAOwWMpWUKxpsPX0FAPDq6B4deu0h3XwQ7OEETW0DdqQUdui1iYisDQOLjYtr3gyR05tN4v0daQCAP9wViOhgdYdeWy4T8Fj/xlYWrslCRPaOgcXGPRDpD7lMwPl8DS4Xc0O9jnTicgl2pxZBLhPwygMRJnmNiU2B5WDmNeSWVpvkNYiIrAEDi43zdFFiUNfGcRVcRK7jiKKIFfGNrSsT+nVCV19Xk7xOiJczhnTzhigCm09wTRYisl8MLHZgDDdD7HAHMq7h14slUMpl+POocJO+1qTmDRFP5nARQCKyWwwsdmB0U2A5mV2GvLIaiauxfqIo4t2ExtaVKYNCEeThZNLXGxMdADdHBXJKanDkYrFJX4uIyFIxsNgBf3dHDOzS2C306jdJ3MG5neKTC3A2rxwuSjlmjuxm8tdzdJBjXO8gAMC3x3NN/npERJaIgcVOLPljNFyUchzJKjG0DpDxdHoR7zXNDHr2ni7wdlWZ5XWbu4W2nc2HprbeLK9JRGRJGFjsRHc/N7w7sTcA4N/7s7D9bL7EFVmnLafycOFqFTycHfDcvV3N9rq9O6kR4e8KbYMePzat+0JEZE8YWOzI2JhAvND0ITvv29PILKqQuCLrom3Q4Z870wEAM4Z3g7ujg9leWxAEQyvLN+wWIiI7xMBiZ16L64FBXb1QVafDn748gUptg9QlWY2NR3OQV1YDPzcVnh4cZvbXH983GAqZgNM5ZUgrYNgkIvvCwGJnFHIZPnqyH/zdVbhwtQqvbTrNjRFbobquAR/tyQQAzL4/HE5Kudlr8HFV4f7Ixh24ufItEdkbBhY75OumwseT+8NBLmDb2QL858BFqUuyeOsOXcK1Si06ezkbumak0PzaW07loZ6zvYjIjhgdWPLy8jBlyhR4e3vDyckJMTExOH78+G3P0Wq1WLRoEUJDQ6FSqRAWFobPPvusxTHffvstevbsCUdHR8TExGDbtm3GlkZG6B/qib/+oRcAYFl8KhIvcH2PWymvrse/910AAMx9IBxKhXQ5f3iEL3zdVCiuqsOe1CLJ6iAiMjejfvOWlpZi6NChcHBwwPbt25GSkoL3338fnp6etz1v0qRJ2L17Nz799FOkpaVhw4YN6NHjt51tDx8+jCeffBLPPvssTp06hfHjx2P8+PFITk5u27uiVpkyKBSP9g2GTi9i1oaTKCivlboki/Tv/RegqW1AD383PNw7WNJaFHIZHu3XWAO7hYjIngiiEQMYFixYgEOHDuHAgQOtfoH4+Hg88cQTyMrKgpeX102Pefzxx1FVVYWffvrJ8NygQYPQp08frFmzplWvo9FooFarUV5eDnd391bXZ+9q6nT448eHkFpQgb6dPfB/LwyWtAXB0hRV1GL4ir2oqdfhk6n9DasGSymzqBKjPtgHuUxA4oL74OfuKHVJRERt1trPb6M+mbZu3YrY2FhMnDgRfn5+6Nu3L9auXduqc1asWIHg4GBERERg3rx5qKn5bYn4xMREjBo1qsV5cXFxSExMNKY8agMnpRz/ntofbo4KnMouwzs/p0hdkkVZtScTNfU69AnxwAO9/KUuBwDQ3c8V/UM9odOL+O4UN0QkIvtgVGDJysrC6tWrER4ejoSEBMyYMQOzZ8/G+vXrb3vOwYMHkZycjC1btmDlypXYtGkTXnrpJcMxBQUF8Pdv+WHg7++PgoJbb9an1Wqh0WhaPKhtQr1dsPLxPgCALxIv47uTXOcDAHJKqvH10WwAjdPBBUGQuKLfTIrtBAD45ngOZ3kRkV0wKrDo9Xr069cPS5YsQd++ffHCCy/g+eefv223jV6vhyAI+OqrrzBw4ECMHTsWH3zwAdavX9+ilcVYS5cuhVqtNjxCQqSbuWEL7o/0x+z7ugMA3thyFilXGABX7spAvU7EPd19MKS7j9TltPDQXUFwcpAj62oVTmaXSl0OEZHJGRVYAgMD0atXrxbPRUZGIjs7+7bnBAcHQ61WtzhHFEXk5jb+Sz4gIACFhYUtzissLERAwK3HCyxcuBDl5eWGR04OByC2159HRWB4hC9q6/V48b8nUF5tv3vWZBRWYMupxr+f8+J63OFo83NVKfDQXYEAuCEiEdkHowLL0KFDkZbWcuO89PR0hIaG3vacK1euoLKyssU5MpkMnTo1NmsPHjwYu3fvbnHezp07MXjw4FteV6VSwd3dvcWD2kcuE/C/T/RBJ08nZJdU45VvkqDX22d3wwc706EXgdG9/NEnxEPqcm5qYv/Gn58fT19BdR1XLCYi22ZUYJk7dy6OHDmCJUuWIDMzE19//TU++eQTzJw503DMwoUL8fTTTxu+fuqpp+Dt7Y3p06cjJSUF+/fvx/z58/HMM8/AyckJAPDnP/8Z8fHxeP/995Gamoq//e1vOH78OF5++eUOepvUWh7OSqyZ0h9KhQy7U4vwr18ypS7J7M7klmF7cgEEwTJbV5oN7OKFMG9nVNXpsO3srcd7ERHZAqMCy4ABA7BlyxZs2LAB0dHRWLx4MVauXInJkycbjsnPz2/RReTq6oqdO3eirKwMsbGxmDx5MsaNG4cPP/zQcMyQIUMM4ad3797YtGkTvv/+e0RHR3fAWyRjRQer8c74xv/3/9yVjr1p9rVA2bsJja2If+wTjAh/N4mruTVBEDDRsCEiu0SJyLYZtQ6LJeM6LB1v4XdnseFoNtRODvhp1j0I8XKWuiSTS7xQjCfXHoGDXMCeV0dY/HvOL6/B0GV7oBeBX+aNQBcfF6lLIiIyiknWYSH78reHe6F3JzXKa+ox46sTqK3XSV2SSYmiiHcTUgEATwzobPFhBQAC1U64N8IXALDpBFtZiMh2MbDQLakUcnw8pT+8XJRIztPgze+TbXrNjz2pRTiZXQZHBxlmNU3xtgbNGyJuOpELnZ0OkiYi28fAQrcV7OGEj57sC5kAfHsiFxuP2ea/4vV60TB25X+GdLGq5e7vj/SDp7MDCjVa7M+4KnU5REQmwcBCdzS0u49htsxbP5zD6ZwyaQsygR/PXEFqQQXcHBV4cXhXqcsxikohx/i+jRsibuKaLGTF6hr0SCuowI+nr+B/d2Xg6MUSqUsiC6KQugCyDjOGd0NSdhl2pBRixn9P4MdZ98DbVSV1WR2iXqfHBzvTAQB/urcrPJyVEldkvIn9Q7Du0CXsSClASVUdvFys7z2Q/dDpRWSXVCOtoALphb89sq5WoeG6bs11hx1wbNEoOMj5b2tiYKFWEgQB703qjUf+dQgXr1Vh9sZT+OKZuyGXWc7+Om317fFcXC6uhreLEtOHdpG6nDbpFeSO6GB3JOdp8ENSntW+D7Itoigir6wGGYWVSCusQHpBBdIKK5BZVAltg/6m57iqFIjwd0VGYSXKquvxa1YJ7gm3rK0xSBoMLNRq7o4OWDOlP8avOoRDmcV4f0caXhvTU+qy2qW2XocPd2cAAGaO7A4XlfX+SEyKDUFy3jn837Ec/M+QMIvarJFsmyiKuFqpRXpBYzDJKKxo+m8lKrU3X4VZpZAh3N8VEf5u6OHvhogAN0T4uyFI7QhBELBg8xlsPJaDhHMFDCwEgIGFjNQjwA3LJ9yF2RtO4eO9F9A7xANxUbfe88nSfZl4GQWaWgSpHTF5UGepy2mXh3sH4Z2fzyO1oALnrmgQHay+80lERiqrrkP671pMMgorUHqLvccUMgHdfF0bA4lf4397+LshxMv5ti20cVEBhsDy94ejILOB1lxqHwYWMtrDvYOQlF2Gzw5dxLxvTiP8ZVd09XWVuiyjVdTW4+O9jVsPzBkVAZVCLnFF7ePhrERcVAB+PH0F3xzPYWChdqnUNiDDML6kEumFFUgrqEBRhfamx8sEINTbBRH+ri1aTMK8XaBUGD8GZUh3b7iqFCiq0CIptwz9Onu29y2RlWNgoTZZOLYnzuaV4dilUrz43xP4fuZQOCut66/Tfw5cRGl1Pbr6uuDRfsFSl9MhJsV2wo+nr+D7U3l4Y2wkHB2sO4SR6dXW63DhanMgqTQMgM0trbnlOcEeTugR4Ibw5nDi74bufq4d+vdNpZBjZE8//Hj6ChKSCxhYiIGF2sZBLsOqp/rhoY8OIr2wEq9vPosPn+hjNeMmSqrq8J8DWQCAVx/oAYWNzEIY0s0HwR5OyCurwc6UQozrHSR1SWQh6nV6XLpW1aI7J72wApeKq3Cr9Qb93FSIaAokPQIax5uE+7vB1UxjvcY0tRgmnCvAggd7Ws3vFzINBhZqMz93R3w8uR+e/OQIfjx9BX1DPPDMPdYxO2X13kxU1ekQFeSOB6OtdwzO78llAh7rF4wP92Tim+M5DCx2SK8XkVN6/ZThxlaTC1crUa+7eTLxcHb4bfBr00DYCH83eEo8PX5ED18oFTJcKq5GWmEFegZwnzh7xsBC7TIgzAtvjI3E2z+lYMm284gOVmNgFy+py7qt/PIarE+8DACYH9fD5gbzTegfgg/3ZOJg5jXkldUg2MNJ6pLITDKLKjDts2PIK7t5d46LUo7w62blNAcUXzeVRbZeuKgUuDfcB7vOFyEhuZCBxc4xsFC7TR8ahlM5Zfjx9BXM/Pokfp51j0Uvbf/h7kzUNegxMMwLw5s2DrQlnb2dMbirNxKzirH5RC5m3x8udUlkBg06PV795jTyymqgVMgQ7tc4viT8uu6cYA8niwwmtzM6KgC7zhch/lwB/jyKf5ftGQMLtZsgCFj+WIxhiuPMr0/i6+cHWeTqlBevVeGb4437Ic0f08Pqfnm31qQBnZCYVYxvT+Tg5ZHdba4ViW70n4MXcTq3HO6OCux8ZTj8LfgfDcYYFekPuUzA+XwNsour0dnb8ndRJ9OwvE8UskrOSgVWT+kHN5UCxy6VYum2VKlLuql/7kyHTi9iZA9fDAiz7K6r9hgTFQg3lQI5JTU4crFY6nLIxDKLKg3bS7z5h142E1YAwMtFiYFNP6sJ5wokroakxMBCHaarryven9QbAPDZoYv4ISlP4opaSrmiwdbTVwDAsJmjrXJSyjGuT+OA22+5IaJN0+lFzN90GnUNeozo4YsJ/TtJXVKHG9M0MJ6Bxb4xsFCHGh0VgJdGdAMALNh8FmkFFRJX9Jv3d6QBAP5wVyCigmx/UbVJsSEAgG1n86GpvfkqpGT91h26iFPZZXBVKbDkjzE22c05OsofAHAiuxRFFbUSV0NSYWChDvfq6B64p7sPaup1ePG/Jyziw/LE5RLsTi2CXCbglQcipC7HLHp3UiPC3xXaBj1+Op0vdTlkAhevVeHdhMYgvuihSATZ6IywQLUTeod4QBSBnSmFUpdDEmFgoQ4nlwn43yf6IEjtiIvXqvDqN6ehv9XKVGYgiiJWxDf+Up/Yv5NVbiPQFoIgYGL/xlaW5oHGZDv0ehGvbzoDbYMe93T3wRMDQqQuyaTimlpZ4pPZLWSvGFjIJLxdVVg9pT+Uchl2phRizf4LktVyIOMafr1YAqVCZndTfMf3DYZCJiAppwzphZbTPUft90XiJRy9VAIXpRxLH7XNrqDrjWnaZDXxQjHKa6RvtSXzY2Ahk+kd4oG/PxIFAHgvIQ0HM66ZvQZRFA1N5lMHhdpsk/mt+LqpcF9PPwDAt2xlsRnZxdVY3tRquGBsJEK8bH+qb1dfV4T7uaJBL+KX1CKpyyEJMLCQST0xIASTYjtBLwKzN5665QqcphKfXICzeeVwUcoNg4HtTfPg2+9O5qFep5e4GmovvV7Ea5tPo6Zeh0FdvTB5YGepSzKbuKZWFnYL2ScGFjIpQRDw9iPRiA52R0lVHV767wnU1uvM8to6vYj3mmYGPXtPF3i7qszyupZmRA9f+LqpUFxVhz38l6nV++poNo5klcDJQY4Vj/W2q0UBm6c370u/ipo68/weIcvBwEIm5+ggx+rJ/eHh7IDTueX4+48pZnnd707m4sLVKng4O+C5e7ua5TUtkUIuw6P9ggGwW8ja5ZZWY9m28wCA18b0sLtVX6OC3BHs4YSaeh32Z1yVuhwyMwYWMosQL2f87xN9IQjAhqPZ+OaYaT84tQ06rNyVAQCYMbwb3B0dTPp6lq55ttAvaVe5joWVEkURC787i6o6HQaEeWLa4DCpSzI7QRAM3UJcRM7+MLCQ2QyP8MUroxrXQPnLD8lIzis32WttPJqDvLIa+LurMG1ImMlex1p093NFv84e0OlFbDlpWSsQU+v837EcHMi4BpVChhUT7Ksr6HrN05t3pRRyTJadYWAhs5o5sjvu7+mHugY9XvzvCZRW1XX4a1TXNeCjPZkAgFn3hcPRQd7hr2GNmgfffnM8B6Io3bo4ZLwrZTX4x8+NXUHz43qgi4+LxBVJJzbMC94uSmhqG/BrVonU5ZAZMbCQWclkAj54vA9CvZ2RW1qDP/9fEnQdvKjcukOXcK1Si85ezoYPaQIeuisQTg5yXLhahZPZZVKXQ63U3BVUoW1Av84emD60i9QlSUouE/BAr6ZF5M5xBWd7wsBCZqd2csDqyf3h6CDD/vSr+N9d6R127fLqevx7X+Mida88EAGlgn/Fm7k5OmBsTCAADr61JptO5GJf+lUom7qC5HbaFXS9uKbZQjvOFUq6ijaZF3+bkyR6Bblj6aMxAIAP92Ri9/mO2R/k3/svQFPbgB7+bhjXO6hDrmlLJsU27uT74+krqK5rkLgaupNCTS0W/9Q4q27uqAh097OPbSXuZEg3b7iqFCiq0OJUTpnU5ZCZMLCQZP7YtxOeHhwKAJjzf0m4dK2qXdcrqqjFukOXAADz4nrwX6I3MbCLF8K8nVFVp8O2s5xlYclEUcSiLWehqW1A705qPD/MvruCrqdSyA0rOO/gbCG7wcBCkvrLQ73Qr7MHKmob8OJ/T7RrMahVezJRU69DnxAPjIr068AqbYcgCJgYyw0RrcEPSVew63wRlPLGriCFnL+ur2dY9fZcAQeR2wn+BJCklAoZPp7cHz6uSqQWVOCNLWfb9Msnp6QaXx/NBgC8FtfD5jeCa49H+wVDJgBHL5a0u1WLTKOoohZ/+/EcAGD2/d3RI8BN4oosz4gevlAqZLhcXI00buxpFxhYSHIBakd89GQ/yGUCtpzKw3+PXDb6Git3ZaBeJ+Ke7j4Y0t3HBFXajkC1E4aF+wJoHNBJlkUURbz5fTLKqusRFeSOPw23zz2w7sRFpcC94Y0/69xbyD4wsJBFGNzNGwvG9AQAvP1TCk5cLm31uRmFFdhyqvGDd15cD5PUZ2uap3tvOpHb4dPKqX1+OpOPhHOFUMgEvDuhNxzYFXRLow2r3nbMoH2ybPxJIIvx3LAuGBsTgHqdiJe+OoGrFdpWnffBznToxcYVMPuEeJi2SBsxqpcfPJwdUKCpxQHuyWIxiiu1eGtrY1fQzJHd0SvIXeKKLNuoSH/IZQLO52uQXVwtdTlkYgwsZDEEQcCKCb3R3c8VhRotXv76JBrusPT2mdwybE8ugCAAr45m60prqRRyjO/TvCEiu4UsxV+3nkNJVR16Brhh5sjuUpdj8bxclBgY5gWAewvZAwYWsiiuKgXWTOkPF6Ucv14swYqEtNse/27T9//YJxgR/hyYaIzmbqEdKQUoMcEWCWSc+OR8/HwmH3KZgPcm9uaih600JpqbIdoL/kSQxenu54r3JvYGAHyyPwvbzt58+e3EC8U4kHENDnIBcx+IMGeJNqFXkDuig91RrxPxQxI3RJRSaVUd/vJ9MoDG3cWjg9USV2Q9Rjdthngiu5Q7kds4BhaySA/GBOJP93YFAMz/9jQyi1pOWxRFEe8mpAIAnhjQGSFezmav0RY0t7KwW0haf/vxHK5V1iHC3xWz7mdXkDEC1U7oHeIBUQR2pnDwrS1jYCGLNT+uBwZ19UJVnQ5/+vIEKrW/LSW/+3wRTmaXwdFBhln38Rd8Wz3cOwhKuQwp+Rok55VLXY5d2plSiB+SrkAmAO9O6A2VgruLGyuuqZWF05ttGwMLWSyFXIaPnuyHAHdHXLhahfnfnoYoitDrRby3o3Hsyv8M6QI/d0eJK7VeHs5KQ5M6N0Q0v/LqeizachYA8Py9XdGbs9zaZEzT9ObEC8Uor6mXuBoyFQYWsmi+biqsmtwPDnIB25MLsPZAFn48cwWpBRVwc1TgxeFdpS7R6jV3C32fdAW19W3fGoGM9/ZPKSiq0KKrrwvmjuI4rLbq6uuKcD9XNOhF7Ellt5CtYmAhi9c/1BN//UMvAMCy7al45+fzAIA/3dsVHs5KKUuzCUO7+yBI7YjymnqOATCjX9KKsPlkLoSmriBHB3YFtYdhtlAy/w7bKgYWsgpTBoXi0X7B0IvA1QotfFyVmD6Uu9d2BLlMwIT+nQBwQ0Rz0dTWY+Hmxq6gZ4d2Qf9QT4krsn7NmyHuTS9q1yaqZLkYWMgqCIKAf4yPQWRg48qfs+4Lh4tKIXFVtmNC/8ZuoYOZ15BXViNxNbbvHz+dR4GmFmHezlzwsINEBbkj2MMJtfV67OfqzTaJgYWshpNSjo0vDMLn0wfg6cGhUpdjUzp7O2NwV2+IIrCZGyKa1P70q/i/4zkQBGDFhN5wUrIrqCMIgmBoZUngbCGbxMBCVkXt5IARPfwgCILUpdicibGN3UKbTuRCzw0RTaJS24CF3zV2BU0bHIaBXbwkrsi2NI9j2XW+EPV32NaDrA8DCxEBAB6MDoSrSoHskmr8erFE6nJs0tJt55FXVoMQLye8NoZdQR2tf6gnvF2U0NQ24EhWsdTlUAdjYCEiAI1dbuN6BwHgmiymcDjzGr76NRsAsPyxu+Cs5BisjiaXCXigV+O6QtxbyPYwsBCRwaSmbqFtyfnQ1HIBro5SpW3A69+dAQBMGdQZQ7r5SFyR7Ypr6hbaca6QXZs2hoGFiAz6hHgg3M8VtfV6/HT65ptOkvHeTUhDTkkNgj2csODBSKnLsWlDunnDVaVAUYUWp3LKpC6HOhADCxEZCIJgWPmWa7J0jF+zivH54UsAgGWPxcCV0/FNSqWQ476efgCAHewWsikMLETUwvi+wVDIBCTllCGjsOLOJ9At1dTp8Nrmxq6gJwaEYFi4r8QV2Yfm6c3x5wogiuwWshUMLETUgq+byvAv1G+5Jku7vLcjDZeLqxGodsQbD7EryFxG9PCFUiHD5eJqpDF02wwGFiK6wcSmbqHvTuZyPYs2OnG5BJ8duggAWPJoDNwdHSSuyH64qBS4N7xxYHM8F5GzGUYHlry8PEyZMgXe3t5wcnJCTEwMjh8/fsvj9+7dC0EQbngUFPz2l0in0+HNN99Ely5d4OTkhG7dumHx4sVsyiOSyIgevvBxVeFaZR1+SS2SuhyrU1uvw/xNZyCKwIT+nTCyh5/UJdkdw6q357gZoq0wavRXaWkphg4dipEjR2L79u3w9fVFRkYGPD3vvHFXWloa3N3dDV/7+f32A7x8+XKsXr0a69evR1RUFI4fP47p06dDrVZj9uzZxpRIRB3AQS7DY/2C8e/9WfjmeC5GN/3yp9b55650ZF2tgp+bCm8+1EvqcuzSqEh/yGUCzudrkF1cjc7ezlKXRO1kVGBZvnw5QkJCsG7dOsNzXbq0bsdcPz8/eHh43PR7hw8fxiOPPIKHHnoIABAWFoYNGzbg6NGjxpRHRB1oYmwn/Ht/Fn5JK0JRRS383BylLskqnMouxdr9WQCAJX+MgdqZXUFS8HRR4u4uXjh8oRgJ5wrw/L1dpS6J2smoLqGtW7ciNjYWEydOhJ+fH/r27Yu1a9e26tw+ffogMDAQDzzwAA4dOtTie0OGDMHu3buRnp4OADh9+jQOHjyIBx988JbX02q10Gg0LR5E1HG6+7mhX2cP6PQitpzMk7ocq6Bt0OG1TWegF4HxfYIwqmnVVZLG9bOFyPoZFViysrKwevVqhIeHIyEhATNmzMDs2bOxfv36W54TGBiINWvWYPPmzdi8eTNCQkIwYsQInDx50nDMggUL8MQTT6Bnz55wcHBA3759MWfOHEyePPmW1126dCnUarXhERISYsxbIaJWuH5NFo4pu7MPd2cgo6gSPq4qvDUuSupy7N7oqMbAeDK7FEWaWomrofYSRCN+CymVSsTGxuLw4cOG52bPno1jx44hMTGx1S86fPhwdO7cGV9++SUAYOPGjZg/fz7effddREVFISkpCXPmzMEHH3yAadOm3fQaWq0WWq3W8LVGo0FISAjKy8tbjJUhorarqK3HwH/sRk29DptnDEH/0DuPV7NXZ3PLMf7jQ9DpRayZ0t+wczBJ65FVh3A6pwzvjI/GlEGhUpdDN6HRaKBWq+/4+W1UC0tgYCB69Wo5gCwyMhLZ2dlGFTdw4EBkZmYavp4/f76hlSUmJgZTp07F3LlzsXTp0lteQ6VSwd3dvcWDiDqWm6MDHoxp/ODddIIr395KXYMe8zedhk4v4g93BTKsWJAxhtlC7BaydkYFlqFDhyItLa3Fc+np6QgNNS61JiUlITAw0PB1dXU1ZLKWpcjlcuj1XP+BSGrN3UI/ns5HdV2DxNVYplW/ZCK1oALeLkr8/WF2BVmSuKZuocQLxSiv5oae1syowDJ37lwcOXIES5YsQWZmJr7++mt88sknmDlzpuGYhQsX4umnnzZ8vXLlSvzwww/IzMxEcnIy5syZgz179rQ4Z9y4cfjHP/6Bn3/+GZcuXcKWLVvwwQcf4I9//GMHvEUiao+7u3gh1NsZldoGbD/Lf6X+3rkr5Vj1S2OL8d8fiYK3q0riiuh6XX1dEe7niga9iD1pXJPFmhkVWAYMGIAtW7Zgw4YNiI6OxuLFi7Fy5coWg2Pz8/NbdBHV1dXh1VdfRUxMDIYPH47Tp09j165duP/++w3HfPTRR5gwYQJeeuklREZGYt68efjTn/6ExYsXd8BbJKL2EAQBE/t3AsANEX+vXqfH/G/PoEEvYkxUAB6KCbzzSWR2zV10XPXWuhk16NaStXbQDhEZL7+8BkOW7YEoAnvnjUCYj4vUJVmEj3Zn4P2d6fBwdsDOucPh68bWFUuUnFeOP3x0EI4OMpx6czSclHKpS6LrmGTQLRHZp0C1E+5t2ml4EzdEBACkFVTgwz0ZAIC/PxzFsGLBooLcEezhhNp6PfZnXJW6HGojBhYiapXmwbebTuRCp7eJhtk2a9A1zgqq14kYFemPh3sHSV0S3YYgCL/tLcRuIavFwEJErTKqlx88nB1QoKnFwcxrUpcjqbUHLuJMbjncHRVY8sdoCIIgdUl0B83jWHadL+QO5FaKgYWIWkWlkGN8n2AA9j34NrOoAv/c2biNyF/HRcHPnXssWYP+oZ7wdlFCU9uAI1nFUpdDbcDAQkStNjG2cbbQznOFKK2qk7ga89PpRczfdAZ1Oj1G9PDFY/2CpS6JWkkuEwxL9XMROevEwEJErRYVpEZUkDvqdHr8kGR/GyJ+dvAiTmWXwU2lwNJHY9gVZGVGN41j2XGuEHo7H4dljRhYiMgov22IaF+zhbKuVuK9HY0rff/lD5EIVDtJXBEZa0g3b7ipFCiq0OJUTpnU5ZCRGFiIyCiP9AmCUi5DSr4GyXnlUpdjFnq9iNc3n4G2QY9h4T6G0EbWRaWQY2RPPwDsFrJGDCxEZBQPZ6VhLMC3djL4dn3iJRy7VAoXpRzLHruLXUFWrHm2UMK5AtjIuql2g4GFiIzW3MLwfdIV1NbrJK7GtC4XV2F5fCoAYOHYSAR7sCvImg2P8IVSIcPl4mqkFlRIXQ4ZgYGFiIw2tLsPAtWOKK+px67ztruhnF4v4rVNZ1Bbr8fgrt54amBnqUuidnJRKXBvuA8AdgtZGwYWIjKaXCZggmFDRNsdfPvVr5fx68USODnIsfyxuyCTsSvIFjSvesvNEK0LAwsRtUlzYDmQcRVXymokrqbj5ZRUY+n2xq6gBQ/2RGdvZ4kroo4yKtIfcpmA1IIKXC6ukrocaiWF1AUQkXUK9XbBoK5eOJJVgvvf34fOXs4I9W58dPZ2QZi3M0K9XBDk4QiF3Lr+bSSKIhZ+dxbVdToM7OKFqYNCpS6JOpCnixJ3d/HC4QvFSDhXgBfu7SZ1SdQKDCxE1GZ/Gt4Np7LLUFOvQ1phBdIKbxzEqJAJCPZ0Qqi3C0INocalMdh4OcPRQS5B5be38VgODmZeg6ODDCvYFWST4qICmgJLIQOLlWBgIaI2G9nDD2f/Foe8shpcLq5Cdkk1LhdX43JxFS4XVyO7pBraBn3Tc9U3vYa/u+qmYSbUywVqZwczvyMgr6wG//j5PABg3ugeCPNxMXsNZHqjo/zx1tZzOHG5FEWaWu4JZQUYWIioXZQKGbr4uKDLTT7Y9XoRhRW1jeGluBqXS6pwqenPl4qrUFHbgEKNFoUaLY5eLLnhfLWTA8Kauph+H2j83FQdvh5Kc1dQpbYB/Tp7YPrQLh16fbIcgWon9A7xwOmcMuxIKcQUdvtZPAYWIjIZmUxAoNoJgWonDOrq3eJ7oiiirLoel0saW2QaQ0w1sksaW2eKKrQor6nH6dxynM69cUVdRwcZQr1c0Nnb+YYwE+zh1KZxM9+eyMX+9KtQKmRYMaE35OwKsmljogJwOqcMCecKGFisAAMLEUlCEAR4uijh6aJEnxCPG75fXddw0y6my8XVyCurQW29/pbjZuQyAZ08nX4bCOzlYgg0nb2c4aS8cdxMQXktFv+UAgB49YEIdPdz7fD3TJYlLsofy+NTkXihGOXV9ZJ0QVLrMbAQkUVyVirQM8AdPQPcb/hevU6PvNIaQ+tM8xiZ5taZ68fNHMi48dp+biqEeV/XOuPjgs0nclFR24DeIR54blhXM7xDklpXX1dE+LsivbASe9IK8ce+naQuiW6DgYWIrI6DXIYwH5emAbG+Lb6n14soqtD+FmRKfmuduXStCpraBhRVaFFUocXRSy3HzSjlMrw34S52BdmRuKgApBdmIj65gIHFwjGwEJFNkckEBKgdEaB2xN2/GzcDAGXVdbjcNOi3cSBw4yDgAk0tXri3K8L93SSomqQSFxWAj/ZkYl/6VdTU6W7aXUiWgYGFiOyKh7MSHs5K9L7JuBmyP1FB7gj2cEJeWQ32pV817OZMlse6lp8kIiLqQIIgGELKDm6GaNEYWIiIyK41b4a463wh6nV6iauhW2FgISIiu9Y/1BPeLkpoahtwJKtY6nLoFhhYiIjIrsllAkZH+QMA4pPZLWSpGFiIiMjujW7qFtqRUgi9XpS4GroZBhYiIrJ7Q7p5w02lwNUKLU7llEpdDt0EAwsREdk9lUKOkT39AAAJ5wolroZuhoGFiIgIMExvjk8ugCiyW8jSMLAQEREBGB7hC6VChuySaqQW3LipJkmLgYWIiAiAi0qBe8Mb96ZK4CJyFoeBhYiIqEkcpzdbLAYWIiKiJqMi/SGXCUgtqMDl4iqpy6HrMLAQERE18XRR4u4uXgDYLWRpGFiIiIiu0zxbiNObLQsDCxER0XVG92oMLCcul6JIUytxNdSMgYWIiOg6AWpH9AnxANC4VD9ZBgYWIiKi34mLau4W4jgWS8HAQkRE9DvN05sTLxSjvLpe4moIYGAhIiK6QVdfV0T4u6JBL2J3KruFLAEDCxER0U2wW8iyMLAQERHdRHNg2Zd+FTV1OomrIQYWIiKim4gKckewhxNq6/XYl35V6nLsHgMLERHRTQiCcN0icuwWkhoDCxER0S00dwvtPl+Iep1e4mrsGwMLERHRLfQP9YSPqxKa2gYcySqWuhy7xsBCRER0C3KZgAd6Na7JEp/MbiEpMbAQERHdRnO30I6UQuj1osTV2C8GFiIiotsY0s0HbioFrlZocSqnVOpy7BYDCxER0W0oFTLcF+kHAEg4x1VvpcLAQkREdAfN3ULxyQUQRXYLSYGBhYiI6A6GR/hCqZAhu6QaqQUVUpdjlxhYiIiI7sBFpcC94b4AOFtIKgwsRERErRAX1Ti9maveSsPowJKXl4cpU6bA29sbTk5OiImJwfHjx295/N69eyEIwg2PgoKWN9zY6xIREZnTqEh/yGUCUgsqcLm4Supy7I7CmINLS0sxdOhQjBw5Etu3b4evry8yMjLg6el5x3PT0tLg7u5u+NrPz69DrktERGQOni5K3N3FC4cvFCPhXAFeuLeb1CXZFaMCy/LlyxESEoJ169YZnuvSpUurzvXz84OHh0eHX5eIiMhcxkQH4PCFYsQnM7CYm1FdQlu3bkVsbCwmTpwIPz8/9O3bF2vXrm3VuX369EFgYCAeeOABHDp0qN3X1Wq10Gg0LR5ERESmNLpX4/Tmk9llKNLUSlyNfTEqsGRlZWH16tUIDw9HQkICZsyYgdmzZ2P9+vW3PCcwMBBr1qzB5s2bsXnzZoSEhGDEiBE4efJku667dOlSqNVqwyMkJMSYt0JERGS0ALUj+oR4AAASUriInDkJohEr4CiVSsTGxuLw4cOG52bPno1jx44hMTGx1S86fPhwdO7cGV9++WWbr6vVaqHVag1fazQahISEoLy8vMVYGSIioo60eu8FLI9PxbBwH3z57N1Sl2P1NBoN1Gr1HT+/jWphCQwMRK9evVo8FxkZiezsbKOKGzhwIDIzM9t1XZVKBXd39xYPIiIiU2ue3px4oRjl1fUSV2M/jAosQ4cORVpaWovn0tPTERoaatSLJiUlITAwsMOvS0REZGpdfV0R4e+KBr2I3ansFjIXowLL3LlzceTIESxZsgSZmZn4+uuv8cknn2DmzJmGYxYuXIinn37a8PXKlSvxww8/IDMzE8nJyZgzZw727NnT4pzWXJeIiMhSjGnaW4iLyJmPUYFlwIAB2LJlCzZs2IDo6GgsXrwYK1euxOTJkw3H5Ofnt+jKqaurw6uvvoqYmBgMHz4cp0+fxq5du3D//fcbdV0iIiJLMbopsOxLv4qaOp3E1dgHowbdWrLWDtohIiJqL1EUMWzFL8gtrcGaKf0xJjpA6pKslkkG3RIREREgCALi2C1kVgwsREREbdAcWHafL0Rdg17iamwfAwsREVEb9A/1hI+rEpraBhzJKpa6HJvHwEJERNQGcpmAB3o1rsnCbiHTY2AhIiJqo+ZuoR0phdDrbWIOi8ViYCEiImqjId184KZS4GqFFqdySqUux6YxsBAREbWRUiHDfZF+AID4ZHYLmRIDCxERUTv8Nr25EDaytJlFYmAhIiJqh+ERvlApZMguqcb5/Aqpy7FZDCxERETt4KJSYFi4LwDOFjIlBhYiIqJ2al6an4HFdBhYiIiI2mlUpB/kMgGpBRW4XFwldTk2iYGFiIionTyclRjU1QsAW1lMhYGFiIioAzTPFuL0ZtNgYCEiIuoAo3s1BpaT2WUo0tRKXI3tYWAhIiLqAAFqR/QJ8QAAJKQUSluMDWJgISIi6iCGvYU4jqXDMbAQERF1kLioxt2bEy8Uo7y6XuJqbAsDCxERUQfp6uuKCH9XNOhF7E5lt1BHYmAhIiLqQGM4W8gkGFiIiIg60OimwLI/4yqq6xokrqbtGnR65JfXICmnDPHJBfgi8ZKkmzsqJHtlIiIiGxQV5I5Onk7ILa3B/vSrGBMdKHVJLYiiCE1tA4o0tSjQ1KKgvBaFTX8u1Ggb/1xei2uVWuh/l08eigmEt6tKkroZWIiIiDqQIAiIiwrApwcvIuFcoVkDS12DHlcrtb+FkKb/Xh9ICsprUVOva9X1FDIBfm4q+Ksd4e/miIbfJxgzYmAhIiLqYGOiGwPLrvOFqGvQQ6lo3wgMURRRXlPfskWkXIvCiloUljeHkVpcq6xr9TXVTg4IcHeEn7sKAe6OCFA7wt/dEQHujf/1V6vg46KCTCa0q/aOwsBCRETUwfp19oSPqxLXKutwJKsY90b43vJYbYMORRptizDS2CKibRFGtA36Vr22g1yAn1tjAGkOHwFqVWMIuS6QOCnlHfV2zYKBhYiIqIPJZQIe6BWADUez8c3xHDTo9YbumMLfjR0pNWK9Fk9nh6YAcl1LyHWBJMDdEZ7OSotpFelIDCxEREQmEBfljw1Hs/HTmXz8dCb/tscqFbLGbhl3R/irHRHgfl2LSFM48XVTwdHBulpFOhIDCxERkQkM6eaDQV29kFlUaWj98Gv6r6FFpGkwq4ezAwTB9lpFOhIDCxERkQkoFTJsfGGw1GXYDC4cR0RERBaPgYWIiIgsHgMLERERWTwGFiIiIrJ4DCxERERk8RhYiIiIyOIxsBAREZHFY2AhIiIii8fAQkRERBaPgYWIiIgsHgMLERERWTwGFiIiIrJ4DCxERERk8RhYiIiIyOIppC6go4iiCADQaDQSV0JERESt1fy53fw5fis2E1gqKioAACEhIRJXQkRERMaqqKiAWq2+5fcF8U6Rxkro9XpcuXIFbm5uEARB6nIsjkajQUhICHJycuDu7i51OXaP98Py8J5YFt4Py2LK+yGKIioqKhAUFASZ7NYjVWymhUUmk6FTp05Sl2Hx3N3d+cNvQXg/LA/viWXh/bAsproft2tZacZBt0RERGTxGFiIiIjI4jGw2AmVSoW33noLKpVK6lIIvB+WiPfEsvB+WBZLuB82M+iWiIiIbBdbWIiIiMjiMbAQERGRxWNgISIiIovHwGJDVq1ahbCwMDg6OuLuu+/G0aNHb3ns2rVrMWzYMHh6esLT0xOjRo267fFkPGPux/U2btwIQRAwfvx40xZoh4y9J2VlZZg5cyYCAwOhUqkQERGBbdu2mala22fs/Vi5ciV69OgBJycnhISEYO7cuaitrTVTtbZt//79GDduHIKCgiAIAr7//vs7nrN3717069cPKpUK3bt3x+eff27aIkWyCRs3bhSVSqX42WefiefOnROff/550cPDQywsLLzp8U899ZS4atUq8dSpU+L58+fF//mf/xHVarWYm5tr5sptk7H3o9nFixfF4OBgcdiwYeIjjzxinmLthLH3RKvVirGxseLYsWPFgwcPihcvXhT37t0rJiUlmbly22Ts/fjqq69ElUolfvXVV+LFixfFhIQEMTAwUJw7d66ZK7dN27ZtExctWiR+9913IgBxy5Yttz0+KytLdHZ2Fl955RUxJSVF/Oijj0S5XC7Gx8ebrEYGFhsxcOBAcebMmYavdTqdGBQUJC5durRV5zc0NIhubm7i+vXrTVWiXWnL/WhoaBCHDBki/uc//xGnTZvGwNLBjL0nq1evFrt27SrW1dWZq0S7Yuz9mDlzpnjfffe1eO6VV14Rhw4datI67VFrAstrr70mRkVFtXju8ccfF+Pi4kxWF7uEbEBdXR1OnDiBUaNGGZ6TyWQYNWoUEhMTW3WN6upq1NfXw8vLy1Rl2o223o+3334bfn5+ePbZZ81Rpl1pyz3ZunUrBg8ejJkzZ8Lf3x/R0dFYsmQJdDqducq2WW25H0OGDMGJEycM3UZZWVnYtm0bxo4da5aaqaXExMQW9w8A4uLiWv2Z0xY2s5eQPbt27Rp0Oh38/f1bPO/v74/U1NRWXeP1119HUFDQDX8ByXhtuR8HDx7Ep59+iqSkJDNUaH/ack+ysrKwZ88eTJ48Gdu2bUNmZiZeeukl1NfX46233jJH2TarLffjqaeewrVr13DPPfdAFEU0NDTgxRdfxBtvvGGOkul3CgoKbnr/NBoNampq4OTk1OGvyRYWwrJly7Bx40Zs2bIFjo6OUpdjdyoqKjB16lSsXbsWPj4+UpdDTfR6Pfz8/PDJJ5+gf//+ePzxx7Fo0SKsWbNG6tLs0t69e7FkyRJ8/PHHOHnyJL777jv8/PPPWLx4sdSlkZmwhcUG+Pj4QC6Xo7CwsMXzhYWFCAgIuO257733HpYtW4Zdu3bhrrvuMmWZdsPY+3HhwgVcunQJ48aNMzyn1+sBAAqFAmlpaejWrZtpi7ZxbfkZCQwMhIODA+RyueG5yMhIFBQUoK6uDkql0qQ127K23I8333wTU6dOxXPPPQcAiImJQVVVFV544QUsWrQIMhn//W1OAQEBN71/7u7uJmldAdjCYhOUSiX69++P3bt3G57T6/XYvXs3Bg8efMvzVqxYgcWLFyM+Ph6xsbHmKNUuGHs/evbsibNnzyIpKcnwePjhhzFy5EgkJSUhJCTEnOXbpLb8jAwdOhSZmZmG8AgA6enpCAwMZFhpp7bcj+rq6htCSXOYFLnDjNkNHjy4xf0DgJ07d972M6fdTDacl8xq48aNokqlEj///HMxJSVFfOGFF0QPDw+xoKBAFEVRnDp1qrhgwQLD8cuWLROVSqW4adMmMT8/3/CoqKiQ6i3YFGPvx+9xllDHM/aeZGdni25ubuLLL78spqWliT/99JPo5+cnvvPOO1K9BZti7P146623RDc3N3HDhg1iVlaWuGPHDrFbt27ipEmTpHoLNqWiokI8deqUeOrUKRGA+MEHH4inTp0SL1++LIqiKC5YsECcOnWq4fjmac3z588Xz58/L65atYrTmqn1PvroI7Fz586iUqkUBw4cKB45csTwveHDh4vTpk0zfB0aGioCuOHx1ltvmb9wG2XM/fg9BhbTMPaeHD58WLz77rtFlUoldu3aVfzHP/4hNjQ0mLlq22XM/aivrxf/9re/id26dRMdHR3FkJAQ8aWXXhJLS0vNX7gN+uWXX276mdB8D6ZNmyYOHz78hnP69OkjKpVKsWvXruK6detMWiN3ayYiIiKLxzEsREREZPEYWIiIiMjiMbAQERGRxWNgISIiIovHwEJEREQWj4GFiIiILB4DCxEREVk8BhYiIiKyeAwsRGR2e/fuhSAIKCsrk7oUIrISDCxEZHZDhgxBfn4+1Gp1q8+prq7GwoUL0a1bNzg6OsLX1xfDhw/HDz/8YMJKichSKKQugIjsj1KpREBAgFHnvPjii/j111/x0UcfoVevXiguLsbhw4dRXFxsoiqJyJKwhYWI2m3EiBGYNWsW5syZA09PT/j7+2Pt2rWoqqrC9OnT4ebmhu7du2P79u0AbuwS+vzzz+Hh4YGEhARERkbC1dUVY8aMQX5+vuE1tm7dijfeeANjx45FWFgY+vfvj1mzZuGZZ54xHCMIAr7//vsWtXl4eODzzz8HAFy6dAmCIGDjxo0YMmQIHB0dER0djX379pn0/w8RtR8DCxF1iPXr18PHxwdHjx7FrFmzMGPGDEycOBFDhgzByZMnMXr0aEydOhXV1dU3Pb+6uhrvvfcevvzyS+zfvx/Z2dmYN2+e4fsBAQHYtm0bKioq2l3r/Pnz8eqrr+LUqVMYPHgwxo0bx5YaIgvHwEJEHaJ37974y1/+gvDwcCxcuBCOjo7w8fHB888/j/DwcPz1r39FcXExzpw5c9Pz6+vrsWbNGsTGxqJfv354+eWXsXv3bsP3P/nkExw+fBje3t4YMGAA5s6di0OHDrWp1pdffhmPPfYYIiMjsXr1aqjVanz66adtuhYRmQcDCxF1iLvuusvwZ7lcDm9vb8TExBie8/f3BwAUFRXd9HxnZ2d069bN8HVgYGCLY++9915kZWVh9+7dmDBhAs6dO4dhw4Zh8eLFRtc6ePBgw58VCgViY2Nx/vx5o69DRObDwEJEHcLBwaHF14IgtHhOEAQAgF6vb/X5oijecMywYcPw+uuvY8eOHXj77bexePFi1NXV3fKc+vr6tr0hIrIoDCxEZLV69eqFhoYG1NbWAgB8fX1bDNTNyMi46ZiZI0eOGP7c0NCAEydOIDIy0vQFE1GbcVozEVmFESNG4Mknn0RsbCy8vb2RkpKCN954AyNHjoS7uzsA4L777sO//vUvDB48GDqdDq+//voNLTcAsGrVKoSHhyMyMhL//Oc/UVpa2mK2ERFZHrawEJFViIuLw/r16zF69GhERkZi1qxZiIuLwzfffGM45v3330dISAiGDRuGp556CvPmzYOzs/MN11q2bBmWLVuG3r174+DBg9i6dSt8fHzM+XaIyEiC+PsOXyIiG3Xp0iV06dIFp06dQp8+faQuh4iMwBYWIiIisngMLERERGTx2CVEREREFo8tLERERGTxGFiIiIjI4jGwEBERkcVjYCEiIiKLx8BCREREFo+BhYiIiCweAwsRERFZPAYWIiIisngMLERERGTx/h/KlZHKdCi39QAAAABJRU5ErkJggg==\n" }, "metadata": {} }, @@ -844,44 +794,59 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 21, "metadata": { "id": "XqXEszHJqiHr", "colab": { - "base_uri": "https://localhost:8080/", - "height": 332 + "base_uri": "https://localhost:8080/" }, - "outputId": "9c9840aa-3a03-434f-e011-e4f0b06ba418" + "outputId": "5cd10697-1188-46ba-b8bf-9be15802d7b7" }, "outputs": [ { - "output_type": "error", - "ename": "ImportError", - "evalue": "cannot import name 'generateLatexFileFromDataFrame' from 'PAMI.extras.graph' (/usr/local/lib/python3.10/dist-packages/PAMI/extras/graph/__init__.py)", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mPAMI\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgraph\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgenerateLatexFileFromDataFrame\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mgdf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mgdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerateLatexCode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mImportError\u001b[0m: cannot import name 'generateLatexFileFromDataFrame' from 'PAMI.extras.graph' (/usr/local/lib/python3.10/dist-packages/PAMI/extras/graph/__init__.py)", - "", - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0;32m\nNOTE: If your import is failing due to a missing package, you can\nmanually install dependencies using either !pip or !apt.\n\nTo view examples of installing some common dependencies, click the\n\"Open Examples\" button below.\n\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n" - ], - "errorDetails": { - "actions": [ - { - "action": "open_url", - "actionText": "Open Examples", - "url": "/notebooks/snippets/importing_libraries.ipynb" - } - ] - } + "output_type": "stream", + "name": "stdout", + "text": [ + "\\begin{axis}[\n", + "\txlabel={\\Huge{minSup}},\n", + "\tylabel={\\Huge{patterns}},\n", + "\txmin=0.1, xmax=1.0,]\n", + "\\addplot+ [red]\n", + "\tcoordinates {\n", + "(0.1,22827)\n", + "(0.2,14423)\n", + "(0.3,9883)\n", + "(0.4,7005)\n", + "(0.5,4947)\n", + "(0.6,3581)\n", + "(0.7,2814)\n", + "(0.8,2166)\n", + "(0.9,1475)\n", + "(1.0,798)\n", + "\t}; \\addlegendentry{CFPGrowthPlus}\n", + "\\end{axis}\n", + "LaTeX file saved as patternsCFPGrowthPlus.tex\n" + ] } ], "source": [ - "from PAMI.extras.graph import generateLatexFileFromDataFrame as gdf\n", - "gdf.generateLatexCode(result)" + "from PAMI.extras.graph import DF2Tex as tex\n", + "obj = tex.DF2Tex()\n", + "obj.generateLatexCode(result, \"minSup\", \"patterns\", \"algorithm\")\n", + "obj.print_latex()\n", + "obj.save(\"patternsCFPGrowthPlus.tex\")" ], "id": "XqXEszHJqiHr" + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "aqZqEd1Sz5LU" + }, + "id": "aqZqEd1Sz5LU", + "execution_count": null, + "outputs": [] } ], "metadata": {