-
Notifications
You must be signed in to change notification settings - Fork 1
/
lessons_functional_forms2.html
566 lines (505 loc) · 23.5 KB
/
lessons_functional_forms2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Functional Forms</title>
<script src="libs/jquery-1.11.3/jquery.min.js"></script>
<script src="libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="libs/tocify-1.9.1/jquery.tocify.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" />
<script src="libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<link rel="stylesheet" href="libs/font-awesome-4.1.0/css/font-awesome.min.css"/>
<link rel="stylesheet" href="pols503.css"/>
<style type="text/css">code{white-space: pre;}</style>
<link rel="stylesheet"
href="libs/highlight/textmate.css"
type="text/css" />
<script src="libs/highlight/highlight.js"></script>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
window.setTimeout(function() {
hljs.initHighlighting();
}, 0);
}
</script>
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.tabbed-pane {
padding-top: 12px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 60px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 65px;
margin-top: -65px;
}
.section h2 {
padding-top: 65px;
margin-top: -65px;
}
.section h3 {
padding-top: 65px;
margin-top: -65px;
}
.section h4 {
padding-top: 65px;
margin-top: -65px;
}
.section h5 {
padding-top: 65px;
margin-top: -65px;
}
.section h6 {
padding-top: 65px;
margin-top: -65px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<div class="container-fluid main-container">
<!-- tabsets -->
<script src="libs/navigation-1.0/tabsets.js"></script>
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// establish options
var options = {
selectors: "h1,h2",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: "h1.title, .toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.9em;
padding-left: 5px;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button"
class="navbar-toggle collapsed"
data-toggle="collapse"
data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="https://UW-POLS503.github.io/pols_503_sp16">POLS/CS&SS 503</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li><a href="index.html">Home</a></li>
<li><a href="schedule.html">Schedule</a></li>
<li><a href="https://uw-pols503.github.io/pols503-notes/">Notes</a></li>
<!-- start assignments dropdown -->
<li class="dropdown">
<a href="assignments" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">Assignments <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu">
<!-- ADD NEW ASSIGNMENTS HERE -->
<li class="dropdown-header">Assignments</li>
<li><a href="https://github.com/UW-POLS503/Assignment_01">Assignment 1</a></li>
<li class="divider"></li>
<li class="dropdown-header">Project</li>
<li><a href="assignments_project_1.html">Project Assignment 1</a></li>
<li><a href="assignments_project_2.html">Project Assignment 2</a></li>
<li><a href="assignments_project_3.html">Project Assignment 3</a></li>
<li><a href="data_analysis_project_paper_guidelines.html">Final Project</a></li>
<li class="divider"></li>
<li class="dropdown-header">Peer Review</li>
<li><a href="assignments_peer_review_1.html">Peer Review 1</a></li>
<li><a href="assignments_peer_review_2.html">Peer Review 2</a></li>
</ul>
</li>
<!-- end assignments dropdown -->
<!-- start lessons dropdown -->
<li class="dropdown">
<a href="lessons" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">Lessons <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu">
<!-- ADD NEW LESSONS HERE -->
<li><a href="lessons_install_R.html">Installing R</a></li>
<li><a href="lessons_git.html">Getting Started with Git and GitHub</a></li>
<li><a href="lessons_writing_functions.html">Writing Functions</a></li>
<li><a href="lessons_loops_conditionals.html">Loops and Conditional Execution</a></li>
<li><a href="lessons_functional_forms2.html">Functional Forms</a></li>
<li><a href="lessons_imputation.html">Multiple Imputation</a></li>
<li><a href="lessons_weights.html">Weights</a></li>
<li><a href="lessons_categorical_covariates.html">Categorical covariates</a></li>
</ul>
</li>
<!-- end lessons dropdown -->
<!-- start references dropdown -->
<li class="dropdown">
<a href="references" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">References <span class="caret"></span></a>
<ul class="dropdown-menu" role="menu">
<!-- ADD NEW REFERENCE PAGES HERE -->
<li><a href="writing-advice.html">Writing Advice</a></li>
<li><a href="latex4research.html">LaTeX</a></li>
<li><a href="word4research.html">Word for Research</a></li>
<li><a href="Rmarkdown.html">R Markdown</a></li>
<li><a href="stata_to_R.html">Moving from Stata to R</a></li>
<li><a href="submitting-assign.html"> Submitting Assignments</a></li>
</ul>
</li>
<!-- end references dropdown -->
</ul>
<ul class="nav navbar-nav navbar-right">
<li><a href="https://github.com/UW-POLS503/pols_503_sp16/issues">Report Bug</a></li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title">Functional Forms</h1>
</div>
<div id="learning-objectives" class="section level2">
<h2>Learning Objectives</h2>
<ul>
<li>Learning about multiple ways of transforming your covariates and specifing your models.</li>
</ul>
</div>
<div id="required-packages-and-datasets" class="section level2">
<h2>Required Packages and Datasets</h2>
<p>Install the packages if you still don’t have them (e.g. <code>install.packages(gapminder)</code>). If you don’t have the <code>uwpols501</code> package, you need to install it from GitHub. Install & load the <code>devtools</code> package first, and then execute <code>install_github("UW-POLS501/r-uwpols501")</code>.</p>
<pre class="r"><code>library(dplyr)
library(uwpols501)
library(gapminder)
library(broom)
library(ggplot2)
data(gapminder)
data(turnout)</code></pre>
<p>Also go to the following link to download a WDI dataset from 1980 to 2010. <code>https://www.dropbox.com/s/qqb3vg66hxqfqzb/wdi_co2_gdp_1980_2010.csv?dl=0</code></p>
<p>Load the <code>wdi</code> dataset.</p>
<pre class="r"><code>wdi <- read.csv("data/wdi_co2_gdp_1980_2010.csv")</code></pre>
</div>
<div id="intro" class="section level2">
<h2>Intro</h2>
<p>I use as a source of inspiration in this lesson Chris Adolph’s POLS-503 <a href="http://faculty.washington.edu/cadolph/503/topic5.pw.pdf">notes</a>.</p>
<p>In a linear model, any unit change of a given covariate has always the same effect on the outcome variable. If the coefficient for that covariate is for example 0.54, it doesn’t matter if the unit change is from 1 to 2 or from 100,001 to 100,002. The expected effect on the outcome variable is always the same: 0.54 increase in the units of the dependent variable.</p>
<p>However, theoretically we may sometimes think that the way a covariate affects the response variable is not linear. For example, is the relationship between <code>income</code> and <code>life expectancy</code> linear? Or Acemoglu and Robinson (2006) argue that the relationship between <code>inequality</code> and <code>democratization</code> follows a U-shape. How do we deal with this non-linear relationships? Can we still use a linear models to estimate them?</p>
<p><span class="math inline">\(y = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2}... + \epsilon\)</span></p>
</div>
<div id="logrithmic-transformations" class="section level2">
<h2>Logrithmic Transformations</h2>
<p>Think a little bit more about the relationship between Life Expectancy and GDP per capita. This relation is probably not linear. As the GDP per capita of a country increases, on average its citizens have more resources, better nutrition, etc., so you would expect the Life Expectancy of that country to increase. However, at least with the technology and medicines that are currently available, at a certain point Life Expectancy cannot keep increasing at the same rate or it cannot increase at all.</p>
<p>Load the <code>gapminder</code> dataset from the <code>gapminder</code> package. Estimate a model that portrays <code>lifeExp</code> as a linear function of <code>gdpPercap</code>.</p>
<p><span class="math inline">\(lifeExp = \beta_{0} + \beta_{1}gdpPercap + \epsilon\)</span></p>
<pre class="r"><code>mod1a <- lm(lifeExp ~ gdpPercap, data = gapminder)</code></pre>
<p>Plot the <code>lifeExp</code> that we would predict using this model against the covariate <code>gdpPercap</code>.</p>
<pre class="r"><code>mod1a_augm <- augment(mod1a, gapminder)
ggplot(mod1a_augm, aes(x = gdpPercap, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-4-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<p>Uau! This model predicts that the Life Expectancy in Kuwait is 140 years!</p>
<p>Plot now the outcome variable <code>lifeExp</code> against the response variable <code>gdpPercap</code>.</p>
<pre class="r"><code>ggplot(gapminder, aes(y = lifeExp, x = gdpPercap)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-5-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<p>This graphs clearly shows that in the beginning, a unit increase on <code>gdpPercap</code> matters a lot in explaining <code>lifeExp</code>. However, at some point, extra units increase do not make much of a difference. We call this type of relation a <em>Logarithmic Relation</em>. How can we specify this logarithmic relation in a linear model?</p>
<p>If we believe that there is a <em>logarithmic</em> relation between the outcome variable and a covariate, this is the same as saying that there is a <em>linear</em> relation between the outcome variable and the <span class="math inline">\(log\)</span> of the covariate. Thus, we just need to transform the covariate of interest by calculating its <span class="math inline">\(log\)</span> and then add the resulting variable to the linear model.</p>
<p>To show this, include a new variable to the <code>gapminder</code> dataset: the <em>log</em> of <code>gdpPercap</code>.</p>
<pre class="r"><code>gapminder <- mutate(gapminder, log_gdpPercap = log(gdpPercap))</code></pre>
<p>Compare the distribution of <code>gdpPercap</code> and <code>log_gdpPercap</code> by looking at their <code>quantiles()</code>.</p>
<pre class="r"><code>data.frame(qGdp = quantile(gapminder$gdpPercap),
qLogGdp = quantile(gapminder$log_gdpPercap))</code></pre>
<pre><code>## qGdp qLogGdp
## 0% 241.1659 5.485485
## 25% 1202.0603 7.091792
## 50% 3531.8470 8.169576
## 75% 9325.4623 9.140504
## 100% 113523.1329 11.639762</code></pre>
<p>Plot <code>lifeExp</code> against this new variable. Observe how there is a linear relation between the outcome and the <em>log</em> of the covariate. Observe also that <code>log_gdpPercap</code> is not expressed on the original units ($ per capita) anymore but in <em>log</em> $ per capita.</p>
<pre class="r"><code>ggplot(gapminder, aes(x = log_gdpPercap, y = lifeExp)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-8-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<p>Estimate a model now that portrays <code>lifeExp</code> as a linear function of the <em>log</em> of <code>gdpPercap</code>.</p>
<p><span class="math inline">\(lifeExp = \beta_{0} + \beta_{1}log(gdpPercap) + \epsilon\)</span></p>
<pre class="r"><code>mod1b <- lm(lifeExp ~ log_gdpPercap, data = gapminder)</code></pre>
<p>Plot <code>mod1b</code>’s predicted values of <code>lifeExp</code> against <code>gdpPercap</code>.</p>
<pre class="r"><code>mod1b_augm <- augment(mod1b, gapminder)
ggplot(mod1b_augm, aes(y = .fitted, x = gdpPercap)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-10-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<p>That makes a lot more sense!</p>
<p>Finally let’s see how well each model does in predicting the actual <code>lifeExp</code> values.</p>
<pre class="r"><code>ggplot(mod1a_augm, aes(x = lifeExp, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-11-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<pre class="r"><code>ggplot(mod1b_augm, aes(x = lifeExp, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-11-2.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<div id="challenge-1" class="panel panel-primary">
<div class="panel-heading">
<h3 class="panel-title">
Challenge
</h3>
</div>
<div class="panel-body">
<p>How would you create a dataset that contains the actual and predicted values of both models? Having such dataset would facilitate creating a side-by-side plot using the <code>facet_wrap</code> of <code>ggplot</code>.</p>
</div>
</div>
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">
<a data-toggle="collapse" href="#solution-1">Solution</a>
</h3>
</div>
<div id="solution-1" class="panel-collapse collapse">
<pre class="r"><code>predictions <- NULL
models_list <- list(mod1a, mod1b)
for (i in 1:length(models_list)) {
m <- models_list[[i]]
new_data <- data.frame(actual = m$model$lifeExp,
predicted = m$fitted.values,
model = i)
predictions <- rbind(predictions, new_data)
}</code></pre>
<pre class="r"><code>ggplot(predictions, aes(x = actual, y = predicted)) +
geom_point() +
facet_wrap(~model)</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-13-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="challenge-2" class="panel panel-primary">
<div class="panel-heading">
<h3 class="panel-title">
Challenge
</h3>
</div>
<div class="panel-body">
<ol style="list-style-type: decimal">
<li>Look at the regression table for <code>mod1b</code>. How would you interpret the coefficients?</li>
<li>Can you think of any covariate that you use in your own projects that has a <em>logarithmic relation</em> with the outcome variable you study? Describe that relationship.</li>
</ol>
</div>
</div>
</div>
<div id="squared-terms" class="section level2">
<h2>Squared Terms</h2>
<p>Sometimes we believe that there is a U-shaped relation between a covariate and the dependent variable. For example, some scholars such as <a href="http://www.sterndavidi.com/publications_type.html">David I. Stern</a> argue that there is an <a href="https://en.wikipedia.org/wiki/Kuznets_curve#Environmental_Kuznets_curve">Environmental Kuznets Curve</a>. This means that there is an inverted U-shaped relation between environmental quality and economic growth.</p>
<p>As we discussed in the beginning, sometimes there is a squared relation between a covariate and our dependent variable of interest (e.g. <a href="https://en.wikipedia.org/wiki/Kuznets_curve">Kuznets curve</a>).</p>
<p><img src="img/env_curve.png" alt="Source: Wikipedia" /></p>
<p>How do we incorporate this theoretical expectation into a linera model? Using a <em>squared term</em>!</p>
<p>Estimate the following models:</p>
<ol style="list-style-type: decimal">
<li><span class="math inline">\(CO2emissions = \beta_{0} + \beta_{1}gdpCapita + \epsilon\)</span></li>
<li><span class="math inline">\(CO2emissions = \beta_{0} + \beta_{1}log(gdpCapita) + \epsilon\)</span></li>
<li><span class="math inline">\(CO2emissions = \beta_{0} + \beta_{1}gdpCapita + \beta_{2}gdpCapita^{2} + \epsilon\)</span></li>
</ol>
<p>Estimate the models and use the <code>augment</code> function to add the predicted values of <code>co2</code> to the dataset.</p>
<pre class="r"><code>mod2a <- lm(co2 ~ gdpCapita, wdi)
mod2b <- lm(co2 ~ gdpCapita + I(gdpCapita^2), wdi)
mod2c <- lm(co2 ~ log(gdpCapita), wdi)
mod2a_aug <- augment(mod2a, wdi)
mod2b_aug <- augment(mod2b, wdi)
mod2c_aug <- augment(mod2c, wdi)</code></pre>
<p>For the 3 models, plot the predicted values of <code>co2</code>against <code>gdpCapita</code>.</p>
<pre class="r"><code>ggplot(mod2a_aug, aes(x = gdpCapita, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-15-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<pre class="r"><code>ggplot(mod2b_aug, aes(x = gdpCapita, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-15-2.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<pre class="r"><code>ggplot(mod2c_aug, aes(x = gdpCapita, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-15-3.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<p>For the 3 models, plot the actual v. predicted values of <code>co2</code>.</p>
<pre class="r"><code>ggplot(mod2a_aug, aes(x = co2, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-16-1.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<pre class="r"><code>ggplot(mod2b_aug, aes(x = co2, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-16-2.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<pre class="r"><code>ggplot(mod2c_aug, aes(x = co2, y = .fitted)) +
geom_point()</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-16-3.png" title="" alt="" width="480" style="display: block; margin: auto;" /></p>
<div id="challenge-3" class="panel panel-primary">
<div class="panel-heading">
<h3 class="panel-title">
Challenge
</h3>
</div>
<div class="panel-body">
<p>How would you create a dataset that contains the actual and predicted values of <code>co2</code>, and <code>gdpCapita</code> for the 3 models ? And how would you replicate the 2 types of plots we just used using the <code>facet_wrap</code>?</p>
</div>
</div>
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">
<a data-toggle="collapse" href="#solution-2">Solution</a>
</h3>
</div>
<div id="solution-2" class="panel-collapse collapse">
<pre class="r"><code>predictions2 <- NULL
models_list2 <- list(mod2a, mod2b, mod2c)
for (i in 1:length(models_list2)) {
m <- models_list2[[i]]
new_data <- data.frame(actual_co2 = m$model$co2,
predicted_co2 = m$fitted.values,
model = i)
predictions2 <- rbind(predictions2, new_data)
}
predictions2$gdpCapita <- mod2a$model$gdpCapita</code></pre>
<pre class="r"><code>ggplot(predictions2, aes(x = gdpCapita, y = predicted_co2)) +
geom_point() +
facet_wrap(~model)</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-18-1.png" title="" alt="" width="480" /></p>
<pre class="r"><code>ggplot(predictions2, aes(x = actual_co2, y = predicted_co2)) +
geom_point() +
facet_wrap(~model)</code></pre>
<p><img src="lessons_functional_forms2_files/figure-html/unnamed-chunk-18-2.png" title="" alt="" width="480" /></p>
</div>
</div>
</div>
<!-- some extra javascript for older browsers -->
<script type="text/javascript" src="libs/polyfill.js"></script>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
$(document).ready(function () {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>