diff --git a/06_numpy_intro.html b/06_numpy_intro.html index e4a21c3..8f3f5c4 100644 --- a/06_numpy_intro.html +++ b/06_numpy_intro.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + @@ -650,7 +665,9 @@

    Images are Numerical Data
    Requirement already satisfied: python-dateutil>=2.7 in /home/javi/anaconda3/lib/python3.11/site-packages (from matplotlib) (2.9.0.post0)
     
    Requirement already satisfied: six>=1.5 in /home/javi/anaconda3/lib/python3.11/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)
    diff --git a/_images/050342ad7de84c40a4f5b0c6b4dab40d296739d7f217feb8266f34cedda3e3ca.png b/_images/050342ad7de84c40a4f5b0c6b4dab40d296739d7f217feb8266f34cedda3e3ca.png
    deleted file mode 100644
    index 565171a..0000000
    Binary files a/_images/050342ad7de84c40a4f5b0c6b4dab40d296739d7f217feb8266f34cedda3e3ca.png and /dev/null differ
    diff --git a/_images/070678a7e031c9e174b949341b6769baad220cfe3b8ff26899a82d433503ae43.png b/_images/070678a7e031c9e174b949341b6769baad220cfe3b8ff26899a82d433503ae43.png
    deleted file mode 100644
    index 31946d9..0000000
    Binary files a/_images/070678a7e031c9e174b949341b6769baad220cfe3b8ff26899a82d433503ae43.png and /dev/null differ
    diff --git a/_images/09648ccee61f35c1d83771b6e7b95082eb478f1c18a3bf86c68555d25aa48eff.png b/_images/09648ccee61f35c1d83771b6e7b95082eb478f1c18a3bf86c68555d25aa48eff.png
    deleted file mode 100644
    index ef8465d..0000000
    Binary files a/_images/09648ccee61f35c1d83771b6e7b95082eb478f1c18a3bf86c68555d25aa48eff.png and /dev/null differ
    diff --git a/_images/19b4ef6aa7945c5b3eee41c25052b158df7cccdca6e1be627c555a7f2610a7cd.png b/_images/19b4ef6aa7945c5b3eee41c25052b158df7cccdca6e1be627c555a7f2610a7cd.png
    deleted file mode 100644
    index 38c3b46..0000000
    Binary files a/_images/19b4ef6aa7945c5b3eee41c25052b158df7cccdca6e1be627c555a7f2610a7cd.png and /dev/null differ
    diff --git a/_images/267a46e09f7430ad3fccb6b619c25d6382d080de21e885f22ad6dcdbd24172b9.png b/_images/267a46e09f7430ad3fccb6b619c25d6382d080de21e885f22ad6dcdbd24172b9.png
    new file mode 100644
    index 0000000..81bacc7
    Binary files /dev/null and b/_images/267a46e09f7430ad3fccb6b619c25d6382d080de21e885f22ad6dcdbd24172b9.png differ
    diff --git a/_images/31805950d8499b57c39bdfbc3a67021af2192f28a93c9217fee70eb158fe9027.png b/_images/31805950d8499b57c39bdfbc3a67021af2192f28a93c9217fee70eb158fe9027.png
    deleted file mode 100644
    index 0006053..0000000
    Binary files a/_images/31805950d8499b57c39bdfbc3a67021af2192f28a93c9217fee70eb158fe9027.png and /dev/null differ
    diff --git a/_images/404f063734e2f5dcb1228730ff1f99d7066229bac488649789a0c8d01fc3ca2b.png b/_images/404f063734e2f5dcb1228730ff1f99d7066229bac488649789a0c8d01fc3ca2b.png
    deleted file mode 100644
    index e8565c0..0000000
    Binary files a/_images/404f063734e2f5dcb1228730ff1f99d7066229bac488649789a0c8d01fc3ca2b.png and /dev/null differ
    diff --git a/_images/49235144743ad3e42d3413bbe691dbfc7596c45f6f5441d4b7ecdc76d50e9b2e.png b/_images/49235144743ad3e42d3413bbe691dbfc7596c45f6f5441d4b7ecdc76d50e9b2e.png
    deleted file mode 100644
    index 51e2136..0000000
    Binary files a/_images/49235144743ad3e42d3413bbe691dbfc7596c45f6f5441d4b7ecdc76d50e9b2e.png and /dev/null differ
    diff --git a/_images/49ed94f15827ce8ac14e383ab6e9d4653c651f6dfb2edba2708c8d0fc1abc493.png b/_images/49ed94f15827ce8ac14e383ab6e9d4653c651f6dfb2edba2708c8d0fc1abc493.png
    new file mode 100644
    index 0000000..dfa4f02
    Binary files /dev/null and b/_images/49ed94f15827ce8ac14e383ab6e9d4653c651f6dfb2edba2708c8d0fc1abc493.png differ
    diff --git a/_images/613f5dbe46144df9ed2c32f18ed370a394b35506cc1b89a60b2d71b52d5219c2.png b/_images/613f5dbe46144df9ed2c32f18ed370a394b35506cc1b89a60b2d71b52d5219c2.png
    deleted file mode 100644
    index 2142813..0000000
    Binary files a/_images/613f5dbe46144df9ed2c32f18ed370a394b35506cc1b89a60b2d71b52d5219c2.png and /dev/null differ
    diff --git a/_images/7de5d3b5336ce431ec4f22429a4787349037f1791de0ef710daae738cd2d7efe.png b/_images/7de5d3b5336ce431ec4f22429a4787349037f1791de0ef710daae738cd2d7efe.png
    deleted file mode 100644
    index 07787f5..0000000
    Binary files a/_images/7de5d3b5336ce431ec4f22429a4787349037f1791de0ef710daae738cd2d7efe.png and /dev/null differ
    diff --git a/_images/8393299fa27a42e0b7e0f92dbf4b389608087a22bb19b8d8552621c98c9857b5.png b/_images/8393299fa27a42e0b7e0f92dbf4b389608087a22bb19b8d8552621c98c9857b5.png
    new file mode 100644
    index 0000000..4c131c9
    Binary files /dev/null and b/_images/8393299fa27a42e0b7e0f92dbf4b389608087a22bb19b8d8552621c98c9857b5.png differ
    diff --git a/_images/83fb628c4f337b0bb1bd0b2d7c32d4f856a8dc627bacb76741eeba545ccd3a57.png b/_images/83fb628c4f337b0bb1bd0b2d7c32d4f856a8dc627bacb76741eeba545ccd3a57.png
    deleted file mode 100644
    index e8a76ab..0000000
    Binary files a/_images/83fb628c4f337b0bb1bd0b2d7c32d4f856a8dc627bacb76741eeba545ccd3a57.png and /dev/null differ
    diff --git a/_images/9c819e3921bf42578207b6dea8364dac88c5df9e193120f2117cdd9dcd90e51a.png b/_images/9c819e3921bf42578207b6dea8364dac88c5df9e193120f2117cdd9dcd90e51a.png
    deleted file mode 100644
    index 9f4aa29..0000000
    Binary files a/_images/9c819e3921bf42578207b6dea8364dac88c5df9e193120f2117cdd9dcd90e51a.png and /dev/null differ
    diff --git a/_images/c320e303b93814dfbe08651d9ac04d8277a3a49756eb213a92b93e18099005a3.png b/_images/c320e303b93814dfbe08651d9ac04d8277a3a49756eb213a92b93e18099005a3.png
    deleted file mode 100644
    index 0907007..0000000
    Binary files a/_images/c320e303b93814dfbe08651d9ac04d8277a3a49756eb213a92b93e18099005a3.png and /dev/null differ
    diff --git a/_images/e56d5aba8799217f6afe138ed710ed222a315c174f283c71639551057f692abb.png b/_images/e56d5aba8799217f6afe138ed710ed222a315c174f283c71639551057f692abb.png
    new file mode 100644
    index 0000000..360cc46
    Binary files /dev/null and b/_images/e56d5aba8799217f6afe138ed710ed222a315c174f283c71639551057f692abb.png differ
    diff --git a/_images/e7e3ff2b906c8e926c0e4d6ac6a81e8a3a0ba98ae4fc28c085a0fab1911aff6e.png b/_images/e7e3ff2b906c8e926c0e4d6ac6a81e8a3a0ba98ae4fc28c085a0fab1911aff6e.png
    deleted file mode 100644
    index fb12d92..0000000
    Binary files a/_images/e7e3ff2b906c8e926c0e4d6ac6a81e8a3a0ba98ae4fc28c085a0fab1911aff6e.png and /dev/null differ
    diff --git a/_images/f51cf89b081544448e064cb8ce537e13c1baa630e0be650380df0813287266cf.png b/_images/f51cf89b081544448e064cb8ce537e13c1baa630e0be650380df0813287266cf.png
    deleted file mode 100644
    index c80c2ca..0000000
    Binary files a/_images/f51cf89b081544448e064cb8ce537e13c1baa630e0be650380df0813287266cf.png and /dev/null differ
    diff --git a/_sources/chapters/module-4/046-PandasIII-Merging_Concatenating_Aggregating.ipynb b/_sources/chapters/module-4/046-PandasIII-Merging_Concatenating_Aggregating.ipynb
    deleted file mode 100644
    index fa058c4..0000000
    --- a/_sources/chapters/module-4/046-PandasIII-Merging_Concatenating_Aggregating.ipynb
    +++ /dev/null
    @@ -1,875 +0,0 @@
    -{
    - "cells": [
    -  {
    -   "cell_type": "code",
    -   "execution_count": 1,
    -   "id": "ca3e52c1-205a-4b79-a122-ca6de7694f08",
    -   "metadata": {},
    -   "outputs": [],
    -   "source": [
    -    "import pandas as pd\n",
    -    "import numpy as np"
    -   ]
    -  },
    -  {
    -   "cell_type": "code",
    -   "execution_count": 2,
    -   "id": "8d5c18d4-14ae-4298-bfe5-f36d6ebbfa7d",
    -   "metadata": {},
    -   "outputs": [
    -    {
    -     "data": {
    -      "text/html": [
    -       "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
    05.13.51.40.2setosa
    14.93.01.40.2setosa
    24.73.21.30.2setosa
    34.63.11.50.2setosa
    45.03.61.40.2setosa
    ..................
    1456.73.05.22.3virginica
    1466.32.55.01.9virginica
    1476.53.05.22.0virginica
    1486.23.45.42.3virginica
    1495.93.05.11.8virginica
    \n", - "

    150 rows × 5 columns

    \n", - "
    " - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "1 4.9 3.0 1.4 0.2 setosa\n", - "2 4.7 3.2 1.3 0.2 setosa\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa\n", - ".. ... ... ... ... ...\n", - "145 6.7 3.0 5.2 2.3 virginica\n", - "146 6.3 2.5 5.0 1.9 virginica\n", - "147 6.5 3.0 5.2 2.0 virginica\n", - "148 6.2 3.4 5.4 2.3 virginica\n", - "149 5.9 3.0 5.1 1.8 virginica\n", - "\n", - "[150 rows x 5 columns]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris_df = pd.read_csv(\"https://raw.githubusercontent.com/mwaskom/seaborn-data/refs/heads/master/iris.csv\")\n", - "iris_df" - ] - }, - { - "cell_type": "markdown", - "id": "383c6fe5-50d7-4b20-b761-cbe3db8c47fe", - "metadata": {}, - "source": [ - "## Concatenating and Merging\n", - "\n", - "### Concate: `pd.concat()` \n", - "\n", - "Concatenate pandas objects along an axis\n", - "\n", - "[Details](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html)" - ] - }, - { - "cell_type": "markdown", - "id": "23e8b17e-adab-4594-a8ad-2b72ad72eae0", - "metadata": {}, - "source": [ - "Create two dfs and vertically stack them" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "869e9f26-9576-4128-a6ab-f4bdb13cd8ed", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0 1 2 3\n", - "0 0.442947 -0.617434 0.401841 -0.990547\n", - "1 0.404872 -0.729196 0.834374 -1.633626\n", - "2 -0.727989 -0.455244 -0.107535 0.788234\n", - "---------------------------------------------\n", - " 0 1 2 3\n", - "0 1.887038 0.631577 -0.373963 -0.239185\n", - "1 0.810859 0.454026 -0.796657 0.866273\n", - "2 2.243792 -0.983704 -0.527390 0.155886\n", - "---------------------------------------------\n", - " 0 1 2 3\n", - "0 0.442947 -0.617434 0.401841 -0.990547\n", - "1 0.404872 -0.729196 0.834374 -1.633626\n", - "2 -0.727989 -0.455244 -0.107535 0.788234\n", - "0 1.887038 0.631577 -0.373963 -0.239185\n", - "1 0.810859 0.454026 -0.796657 0.866273\n", - "2 2.243792 -0.983704 -0.527390 0.155886\n" - ] - } - ], - "source": [ - "df1 = pd.DataFrame(np.random.randn(3, 4))\n", - "df2 = pd.DataFrame(np.random.randn(3, 4))\n", - "\n", - "print(df1)\n", - "print('-'*45)\n", - "print(df2)\n", - "\n", - "df3 = pd.concat([df1, df2], axis=0)\n", - "\n", - "print('-'*45)\n", - "print(df3)" - ] - }, - { - "cell_type": "markdown", - "id": "dff68262-90ba-4e21-9107-1695388d51f9", - "metadata": {}, - "source": [ - "**Concat columns** \n", - "This assumes that the indexes represent IDs of specific things or events" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "c6a7e550-9972-47ea-b271-32a490dcb5ff", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    foobar
    01230123
    00.442947-0.6174340.401841-0.9905471.8870380.631577-0.373963-0.239185
    10.404872-0.7291960.834374-1.6336260.8108590.454026-0.7966570.866273
    2-0.727989-0.455244-0.1075350.7882342.243792-0.983704-0.5273900.155886
    \n", - "
    " - ], - "text/plain": [ - " foo bar \\\n", - " 0 1 2 3 0 1 2 \n", - "0 0.442947 -0.617434 0.401841 -0.990547 1.887038 0.631577 -0.373963 \n", - "1 0.404872 -0.729196 0.834374 -1.633626 0.810859 0.454026 -0.796657 \n", - "2 -0.727989 -0.455244 -0.107535 0.788234 2.243792 -0.983704 -0.527390 \n", - "\n", - " \n", - " 3 \n", - "0 -0.239185 \n", - "1 0.866273 \n", - "2 0.155886 " - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df4 = pd.concat([df1,df2], axis = 1, keys = ['foo', 'bar'])\n", - "\n", - "df4" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "a5f24ba4-0f83-437d-94a6-53167ddff3be", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    0123
    00.442947-0.6174340.401841-0.990547
    10.404872-0.7291960.834374-1.633626
    2-0.727989-0.455244-0.1075350.788234
    \n", - "
    " - ], - "text/plain": [ - " 0 1 2 3\n", - "0 0.442947 -0.617434 0.401841 -0.990547\n", - "1 0.404872 -0.729196 0.834374 -1.633626\n", - "2 -0.727989 -0.455244 -0.107535 0.788234" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df4.foo" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "d954fa94-80b4-41f1-835e-cec68a473599", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    0123
    01.8870380.631577-0.373963-0.239185
    10.8108590.454026-0.7966570.866273
    22.243792-0.983704-0.5273900.155886
    \n", - "
    " - ], - "text/plain": [ - " 0 1 2 3\n", - "0 1.887038 0.631577 -0.373963 -0.239185\n", - "1 0.810859 0.454026 -0.796657 0.866273\n", - "2 2.243792 -0.983704 -0.527390 0.155886" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df4.bar" - ] - }, - { - "cell_type": "markdown", - "id": "f942b10c-0cde-4adb-a1e2-195144c6e169", - "metadata": {}, - "source": [ - "### merge: `merge()`\n", - "\n", - "SQL-style joining of tables (DataFrames)\n", - "\n", - "Important parameters include:\n", - "\n", - "- `how` : type of merge {'left', 'right', 'outer', 'inner', 'cross'}, default ‘inner’\n", - "- `on` : names to join on\n", - " \n", - "[Details](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html)" - ] - }, - { - "cell_type": "markdown", - "id": "df302e38-6caf-40dd-a2b9-ec2efa00917a", - "metadata": {}, - "source": [ - "**Very useful!**" - ] - }, - { - "cell_type": "markdown", - "id": "dfbdb7ee-aafd-4ff8-bc09-6da066178f15", - "metadata": {}, - "source": [ - "Create two tables, `left` and `right`. Then right join them on `key`. \n", - "Right join means include all records from table on right. \n", - "The `key` is used for matching up the records." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "77899cbc-dc68-411e-8ff2-69d2db87c9ba", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "---left\n", - " key lval\n", - "0 jamie 15\n", - "1 bill 22\n", - "\n", - "---right\n", - " key rval\n", - "0 jamie 4\n", - "1 bill 5\n", - "2 asher 8\n", - "\n", - "---joined\n", - " key lval rval\n", - "0 jamie 15.0 4\n", - "1 bill 22.0 5\n", - "2 asher NaN 8\n" - ] - } - ], - "source": [ - "left = pd.DataFrame({\"key\": [\"jamie\", \"bill\"], \"lval\": [15, 22]})\n", - "right = pd.DataFrame({\"key\": [\"jamie\", \"bill\", \"asher\"], \"rval\": [4, 5, 8]})\n", - "\n", - "joined = pd.merge(left, right, on=\"key\", how=\"right\")\n", - "\n", - "print('---left')\n", - "print(left)\n", - "print('\\n---right')\n", - "print(right)\n", - "print('\\n---joined')\n", - "print(joined)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "956199c0-ce5a-44e2-a0a2-89b33899d33d", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "0eb6b71a-25f1-44f1-a4af-ce6377732756", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "* Use **join** if you have shared indexes\n", - "* Use **merge** if you do not have shared indexes\n", - "* Use **concat** to combine based on shared indexes or columns" - ] - }, - { - "cell_type": "markdown", - "id": "08dd64e7-5ef2-43cf-9198-ff63dc38400c", - "metadata": {}, - "source": [ - "## Data Aggregation\n", - "\n", - "Involves one or more of:\n", - "\n", - "- splitting the data into groups\n", - "- applying a function to each group\n", - "- combining results" - ] - }, - { - "cell_type": "markdown", - "id": "cf1a6bc2-705f-44f9-8497-8a5fc53b948e", - "metadata": {}, - "source": [ - "### Aggregation by `.groupby()`\n", - "\n", - "Compute mean of each column, grouped (separately) by species" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "9fff6ac6-bd68-46af-90d2-cb994becb5f8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    sepal_lengthsepal_widthpetal_lengthpetal_width
    species
    setosa5.0063.4281.4620.246
    versicolor5.9362.7704.2601.326
    virginica6.5882.9745.5522.026
    \n", - "
    " - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width\n", - "species \n", - "setosa 5.006 3.428 1.462 0.246\n", - "versicolor 5.936 2.770 4.260 1.326\n", - "virginica 6.588 2.974 5.552 2.026" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris_df.groupby(\"species\").mean()" - ] - }, - { - "cell_type": "markdown", - "id": "c1f0f6a4-955a-45c0-bd8d-96948b8f04d4", - "metadata": {}, - "source": [ - "### `pd.pivot_table()`\n", - "\n", - "Apply a function `aggfunc` to selected values grouped by columns\n", - "\n", - "[Details](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html)" - ] - }, - { - "cell_type": "markdown", - "id": "48857f21-842c-4655-887f-2cb6bf441b19", - "metadata": {}, - "source": [ - "Compute mean sepal length for each species:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "779c5fbd-fce1-4a41-8f34-1c0642feb70a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    speciessetosaversicolorvirginica
    sepal_length5.0065.9366.588
    \n", - "
    " - ], - "text/plain": [ - "species setosa versicolor virginica\n", - "sepal_length 5.006 5.936 6.588" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.pivot_table(iris_df, values=\"sepal_length\", columns=[\"species\"], aggfunc = np.mean)" - ] - }, - { - "cell_type": "markdown", - "id": "0b711382-80e5-43ac-8d51-a886cc6e2bd0", - "metadata": {}, - "source": [ - "## Reshaping Data" - ] - }, - { - "cell_type": "markdown", - "id": "af439e07-55b8-47cc-b462-85b899074128", - "metadata": {}, - "source": [ - "## `.reshape()`\n", - "\n", - "Changes the object's shape\n", - "\n", - "We illustrate creating pandas Series, extracting array of length 6, and reshaping to 3x2 array." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "be6f85d4-571e-4ea6-9962-436bb80a92c0", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "orig data: [1 1 2 3 5 8]\n", - "orig type: \n", - "orig shape: (6,)\n", - "\n", - " reshaped vals:\n", - "[[1 1]\n", - " [2 3]\n", - " [5 8]]\n", - "\n", - " new type: \n", - "new shape: (3, 2)\n" - ] - } - ], - "source": [ - "# create a series\n", - "ser = pd.Series([1, 1, 2, 3, 5, 8])\n", - "\n", - "# extract values\n", - "vals = ser.values\n", - "\n", - "print('orig data:', vals)\n", - "print('orig type:', type(vals))\n", - "print('orig shape:', vals.shape)\n", - "\n", - "# reshaping series\n", - "reshaped_vals = vals.reshape((3, 2))\n", - "\n", - "print('\\n reshaped vals:')\n", - "print(reshaped_vals)\n", - "print('\\n new type:', type(reshaped_vals))\n", - "print('new shape:', reshaped_vals.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9fdf231e-2c24-4277-bd7d-8882104f016a", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/_sources/chapters/wrap-up.ipynb b/_sources/chapters/wrap-up.ipynb new file mode 100644 index 0000000..e7dd136 --- /dev/null +++ b/_sources/chapters/wrap-up.ipynb @@ -0,0 +1,593 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d5ee9563-eb6c-46f1-af44-7dac2a01bc88", + "metadata": {}, + "source": [ + "# Wrapping up\n", + "\n", + "Throughout this course, we have covered the most important foundational programming skills a future Data Scientist needs, with a particular emphasis on Python.\n", + "\n", + "For both languages, we explored their syntax, different data types, and how to work with data structures. We also delved into implementing loops, functions, and even classes (which is uncommon in beginner programming courses). Additionally, we discussed basic data science operations in both languages, particularly focusing on how to inspect and interact with raw data.\n", + "\n", + "Now, coming to the question of **Python vs. R**: which one should you choose? It’s entirely up to you—both are excellent tools, as we have emphasized throughout the course. Keep in mind that you can essentially achieve the same results in one language as in the other. For example, when it comes to data manipulation, see this comparison: [Python vs R](https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_r.html).\n", + "\n", + "Here is my personal perspective though:\n", + "\n", + "- **Python**: Ideal for programmatic scenarios such as developing complex libraries, thanks to its versatility, simple syntax, and readability. Moreover, for machine learning and deep learning applications, Python remains the top choice.\n", + " \n", + "- **R**: Best suited for advanced statistical analysis, such as mixed linear modeling, factor analysis, mediation analysis, and Bayesian statistics. In addition, while I do not use it as often as I should, `ggplot2` can produce exceptionally high-quality graphs—so be sure to consider this in the future!" + ] + }, + { + "cell_type": "markdown", + "id": "5c0a9698-4972-4c13-9094-594ece61ff19", + "metadata": {}, + "source": [ + "## Looking Ahead\n", + "\n", + "There are certain things we have not covered in this course that a Data Scientist should likely master in the future. Here are some examples:\n", + "\n", + "### Visualization\n", + "\n", + "Clear and effective visualization is crucial for communicating with data. \n", + "\n", + "Here are a few examples:\n", + "\n", + "- **Python**: `matplotlib`, `seaborn`\n", + "- **R**: `ggplot2`\n", + "- **Cross-platform**: `plotly`, `shiny`" + ] + }, + { + "cell_type": "markdown", + "id": "798f9f74-440d-48d1-b3ea-665f8b7350b3", + "metadata": {}, + "source": [ + "**Matplotlib**" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "3ce65aba-b814-4fb9-9535-d0eebe4f5e83", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.style.use('classic')\n", + "%matplotlib inline\n", + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "b90a9671-5e14-4b47-ace2-5a9538d61886", + "metadata": {}, + "outputs": [], + "source": [ + "# Create some data\n", + "rng = np.random.RandomState(0) # creates a random range seeded from 0\n", + "x = np.linspace(0, 10, 500) # creates evenly spaced numbers of a specified interval\n", + "y = np.cumsum(rng.randn(500, 6), 0) # creates the sum of random numbers within a range." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "6217776d-f106-4533-944a-d85d16a63f2b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGpCAYAAABIy6ZbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOzdd5ydZZn4/8/pvZ8zvc8kk0lPSCGhhYAgAgqCsnbFuuuuu5bVZUW3gLK/r7uuva2irouIICIg0hMCBEjvyUym9zm993Oe3x9nMslkapKZzCS5368XL80pz7lPmedc57qv+7plW7ZskRAEQRAEQZhn5HM9AEEQBEEQhPGIIEUQBEEQhHlJBCmCIAiCIMxLIkgRBEEQBGFeEkGKIAiCIAjzkghSBEEQBEGYl0SQIgiCIAjCvCSCFEEQBEEQ5iXlbD/At7/9bXbv3s0999zD0qVLARgYGOAXv/gFra2tWCwWbr/9djZt2jTbQxEEQRAE4QIyq0HKK6+8QjqdHnVZNpvlW9/6FtXV1dx33320tbXx4IMP4nQ6R4IYQRAEQRCEWZvu8Xg8/OEPf+CTn/zkqMv379+P3+/nU5/6FJWVlWzatIkNGzbw/PPPz9ZQBEEQBEG4AM1KkJLP5/npT3/KHXfcgcPhGHVdW1sbdXV16HS6kcuWLFlCW1vbbAxFEARBEIQL1KwEKX/5y1/QaDRcc801Y64Lh8OYzeZRl5nNZsLh8GwMRRAEQRCEC9SM16T09fXxzDPPcP/99497vSSd2abL+XyeQCCAVqtFJpPNxBAFQRAEQZhlkiSRTCax2WzI5WeXE5nxIKW1tZVQKMTnPve5UZf/x3/8Bxs2bMDlcjEwMDDquvGyKycEAoExxxIEQRAE4cLwve99b0zpx3TNeJCyZs0a6urqRl32T//0T3z84x9n+fLldHZ28swzz5BMJtFqtQAcOXKE+vr6cY934ja7du3CaDTO9HCFM/TAAw9wzz33zPUwBMR7MZ+I92L+EO/F/BGNRlmzZs3I9/jZmPEgxWAwYDAYxlzucrlwOBxYLBbsdjs/+9nPePe7301rayvbt2/ny1/+8rjHOzHFYzQaMZlMMz1c4Qyp1WrxPswT4r2YP8R7MX+I92L+OZdSjfPecVapVPKlL32JcDjMvffey+OPP87dd98teqQIgiAIgjDKrHecBXjooYdG/busrIx77733fDy0MMNEZ+D5Q7wX84d4L+YP8V5cXMTePcIZESeA+UO8F/OHeC/mD/FeXFxEkCIIgiAIwrx0XqZ7ZlsymSSTycz1MARBmAEqleqcVgMIgnDxuOCDlGQyyYYNG3C73XM9FEEQZkBRURFvvPGGCFQEQbjwg5RMJoPb7Wbnzp1i2ZkgXOAikQhr164lk8mIIEUQhAs/SDnBZDKJIEUQBEEQLiKicFYQBEEQhHlJBCmCIAiCIMxLIkgRBEEQBGFeEkHKPPelL32J8vJy7r///rkeykVnx44dfPKTn2TVqlXU1NSwdOlSPvCBD/DEE08gSdJcD++C9sgjj1BeXj7uf01NTXM9PEEQLhAXTeHsxSiRSPD0008D8Pjjj3PPPfegUCjmeFQXh5/85Cfcf//9XHXVVXzta1+jrKyMQCDAli1b+PznP09xcTEbNmyY62Fe8H76059SWlo66jKlUpx2BEGYHnG2mMeeffZZIpEImzdv5uWXX2bbtm1ce+21cz2sC9727du5//77+djHPsZ999036rqbbrqJT37yk8jlIsk4E5YsWUJtbe1cD0MQhAuUOBPPY48++ihWq5XvfOc7aLVaHn300bke0kXhRz/6ETabbcJNLhcsWEB9ff15HpUgCIJwOhGkzFODg4O8+uqr3HrrrTgcDm644Qaee+45wuHwXA/tgpbNZnnjjTe4+uqr0Wg0cz2ci14ulyObzY76L5/Pz/WwBEG4QFxS0z2SJJFIZWft+DqNEplMNiPH+sMf/kA+n+fOO+8E4M477+TJJ5/kqaee4gMf+MCMPMZMkySJXCIxa8dX6HTn/PoGAgGSySQVFRUzNKrzS5Ik0rP4GVbP4GcY4Jprrhlz2Y033siDDz44Y48hCMLF65IKUhKpLHd99ZlZO/4j33gHeq1qRo712GOPUVtby5o1a4DC9uNFRUU8+uij8zZIySUSvPW+D83a8dc//BuUev2sHf9CkE5l+f+++tysHf8r37gRzQx9hgF+8YtfjCmctVgsM3Z8QRAubpdUkKLTKHnkG++Y1ePPhH379tHS0sJnP/tZQqHQyOU33ngjv/nNb+jo6JiXxYgKnY71D/9mVo9/rmw2G1qtlr6+vhkY0fmn1ij5yjdunNXjz6TGxsZ5+VkVBOHCcEkFKTKZbMYyHbPpRIHsD3/4Q374wx+Ouf6xxx7jH//xH8/3sKYkk8nmfaZDqVSyYcMGtm3bRiqVuuDqUmQy2YxmOgRBEOYzUTg7z6TTaf70pz+xZs0aHn300TH/LVmyhMcee0w0GzsHf/M3f4Pf7+eb3/zmuNcfP36ctra28zwqQRAE4XSXVCblQvDiiy8SCAT4yEc+wsaNG8dc/8EPfpB77rmHN954Y9zrhalt3LiRe++9l/vvv5/W1lbuvPNOysrKCAaDbN26lUceeYSHHnpILEOeAYcPH8bv94+5fMWKFaKpmyAIUxJniXnm0UcfxWw2c9NNN417/W233ca//du/8fvf/14EKefgM5/5DKtWreJ//ud/+Nd//VeCwSAmk4mVK1fy3e9+l8svv3yuh3hR+PSnPz3u5QcPHsRut5/n0QiCcKERQco888tf/nLS681ms5iKmCHr169n/fr1cz2Mi9Jdd93FXXfdNdfDEAThAidqUgRBEARBOGttgRiZ3Ow0aRRBiiAIgiDMkngmyw93t7G1yzPXQ5kVA9Ek/98bzdz3+jHCqcyMH18EKYIgCIIwC7J5ie/vaqMzGGfnQGCuhzMrnmsf4vJyO8UGDY8enfn+UyJIEQRBEIRZ8Gz7IMlsnn9Y10BbIEYym5vrIc2oQ54wOwcCvKO+hPctrmTvUJDuUHxGH0MEKYIgCIIwC456I1xfU0S5SYddp6LZF53rIY1y0B0ikTm7wCmcyvA/ezv40NIqSoxa7Do1a0ttbOvxzugYRZAiCIIgCDNMkiR6wnEqzYXtPC4vd/CL/Z38cHcbzb7IHI+uMBX1070d7B0KTuv2nnhqVBPRJ1r6Wegwcnn5yVYCV1c5eavfTyQ9c5ugiiBFEARBEGaYN5EmnZMoM2kBeOeCUv52TR2ZnMTuweDcDg7oDMZI5fJ0TmN6Ji9J3PfaMZr9hUxQMptje6+PdzeWj7pdjUXPMpeF/3qzhdQMrfYRQYogCIIgzLCecJxSoxal/OTX7EK7idUlVgajyTkcWcExXwSNQk5nMDblbX2JNIlsjuP+KP93qJvXe3049RpKjdpRt5PJZHx8RQ2xTI6u0NTHnQ7RzE0QBEEQZlh3OEGVeezO7cUGDUOx1ByMqJARkctkABz1RbimysnLXR6y+fyoYOp0fZEEANt6vASTGRQyGZuqnePeViGXUWnW0RtOUOo4953rRSZFEARBEGZYWyBGjdUw5vISoxZ/Mj1j0yFn4pvbm/nezlYGo0naAlE217jQKOQ8fLiXg+7QhBvX9kYSlBq1BJMZFtqN5CWJJU7zhI9TbtLROxzYnKsZz6Q8+eSTbNu2DZ/Ph1qtZuHChbz//e+ntLQUgIGBAX7xi1/Q2tqKxWLh9ttvZ9OmTTM9jAvaI488whe+8IWRf8vlcoqKili3bh3/+I//SF1d3RyO7sJ3+uur0+lwOBwsXbqUd73rXdxyyy3IJ/lVIUzt9Nf4VA8//DBXX331eR6RIJw/mVyetkCU9y+pGHOdWa1Ep5TjjiWpNOtnfSyPHOllfZmNMpOO7lCcKrOe/95xnGqLAYdOw1+vrmNHf4Cf7evgM6vqWOIaG3z0RRKsL7PxYoebdy4oRa9SUG6aOEtSYdLx8gw1r5vxIKW4uJiPfvSjFBUVkUgkePzxx/nWt77Ft7/9bbLZLN/61reorq7mvvvuo62tjQcffBCn08nSpUtneigXvJ/+9KeUlpaSz+fp7OzkO9/5DnfddRcvv/wyJpNprod3wTvx+qbTafr6+njppZf47Gc/y0MPPcSvfvUrdLpzT1Ve6k68xqdauHDhHI1GEGbXnsEgiWwOl16NXqWgxKAdcxuZTEaRQctgLHVegpSdA35imSybq13olAo+sbKGf331CNfXFgHQ6DDR6DCRyOboDMUnCFKSXF7m4BublqBXTR02VJh19EUS5CfIzJyJGQ9STt+w7Y477uCee+4hFArR2tqK3+/nG9/4BjqdjsrKSo4ePcrzzz8vgpRxLFmyhNraWgDWrl1LcXEx73vf+9i1axfXXnvtHI/uwnfq6wtw5513csstt/DpT3+ab3zjG9x///1zOLqLw+mvsSBczHb0+9k9GKTcpGWh3YRsuP7jdGVGLb3hBGtLbbM6nkwuTyiVZc9gkGqLngqzjhKjls+vW0CNZXSAVGnW0TXOSp9MLs9QLEmFWTutAAWg2KBFLoMtM5BNmdWcdjqdZtu2bZSWlmIymWhra6Ourm7UL9QlS5aIXX2n6UT2JJOZ+f0RhIKbb76Zt7/97fz2t78lkZiZOVVBEC4N/kSat9cVs7bUxk31xRPebpHDxGFveNbH40ukUcpluPQa/tw6ONKzpdFhQqNUjLptxQR1JAOxJBqFHLtWPe3HVcplfH7dAl7v8Z3bE2CWgpQ9e/Zw9913c/fdd7Nv3z6+/OUvI5fLCYfDmM2jU0lms5lwePbfrAtRLpcjm82SSqU4fvw4//Ef/0FRUREbN26c66Fd1DZv3kwqlWL//v1zPZQL3onP8In/crmLqy24IJzKn0yzstjKzQ2lk07lLHWZ6Q7FZ2VDvlHjSaSxa9V8cGkV0XSWiknqSCrNetyxFKnh1v1/aunHl0jTF0lQbtJNmBWaSK3VwFevWHRO44dZWoK8ePFivvnNbxIKhXjmmWf4wQ9+wNe//vUJK4en44EHHkCtLkRymzZtOqtiW0mSSGRnb326Tqk94zdyMtdcc82of5eUlPCrX/0Ko9E4Y48xkyRJIpmdvYp1rVI+o6/vRMrKygAYGhqa9cc6U5Ikkc/N3vJFuUIzq5/htWvX8sQTT8zY8QVhvjgxteLQTZ1xMGtUVJn1vNXv5221E2dczpUvmcahU1NvM/D5dQ3UjrPa6ASLRolRraQnnKDGauAvbUP4EmnMGuWkRbKn27p1K1u3bgUKsynnalaCFK1WS0lJCSUlJdTX1/OpT32K/fv3Y7FYGBgYGHXb8bIr47nnnnvOuVg0kU3y0cfHX3EwE3717m+jV81cseUvfvELSktLkSSJoaEhfvnLX/LBD36Qxx9/nAULFszY48yUZDbP516YvezD9962Ap1KMfUNz9GJYPp8BERnKp9Lse/lr83a8Vduvg+Fcmyx39k68Rk+wWCY+CQpCBeyQLIwtWLWTO9r9bbGUn62twOrVj1hbcqrPV4qTLpJg4vJeOPpkaCpaZIlw1A43zU5TBz0hDCqC89h50AAm1bN24aLbKfj1CRCJBLh17/+9VmN/YTz0sxNkiQUCgX19fU888wzJJNJtNrCifDIkSPU19efj2GgU2r51bu/PavHn0mNjY2jig6vvvpq1q5dy3/913/xk5/8ZEYfayZolXK+97YVs3r886Gvr7DdeHHx7P3COVtyhYaVm++b1ePPpNM/w4JwsfIlMti06pFmaVNZ6rKwscJBRzA2bpCSyeV57GgfS4vMFOs1LHKaWWg/syy6P5Gm2Dj9v+mVxRaebh2kzmqgxKDhpvoSfn2wa0yR7fk040HKww8/zJo1a7BarYTDYZ588klMJhMLFy5ErVZjt9v52c9+xrvf/W5aW1vZvn07X/7yl2d6GOOSyWQzmuk433Q6HdXV1Rw9enSuhzIumUx2XjIds+3ll19Gq9WyfPnyuR7KGDKZbEYzHYIgzAx/Io1dpzqj+1g1KrrCY1fU5CWJg54wOUli/1CITD6PXC474yDFm0ix2DX9GYilLgu/2N/FAXeYYqOW9eV2VpZY0Sjmrm/UjAcpPp+P7373u0QiEUwmE4sWLeKf//mf0esLkdiXvvQlHnzwQe69917MZjN33323WH48TYlEgs7OThobG+d6KBetZ555hueff567775b9EkRBGHafMn0Ga2AAbBp1ex3h8Zc/uM97ewfCnFTfQlv9vnxJ9MEk2dWZHti88CPWKY/VaRTKVheZOb1Xi831hUyyXMZoMAsBCl/+7d/O+n1ZWVl3HvvvTP9sBelw4cP4/f7kSQJt9vNL3/5S4LBIB/72MfmemgXhROvbyaToa+vjxdffJGnn36aq666in/+53+e6+EJgnAB6QnHqTvD2hGbTkXgtOAjkclx0B3mc2sbWGg3ssRl5pA7RF/0zFoitPgiWDUqig1nNoW7qdrF3qEQxeM0opsLYoPBeezTn/70yP93OBw0Njby0EMPiW0EZsiJ11er1eJwOFi2bBk/+tGPuOWWW+Zl0awgCPNTNi9xzBfhlobSqW98CqtGTTCZHrXx30FPiBKDhqXDnV8X2o3E0lkOTbOvykudbhY7TRz0hFnqMp/xuWyRw8Qyl5l62/wochdByjx01113cdddd831MC5a4vWdfeI1Fi4lHcEYKrl8pFnadNm0KnISRNJZLBoVkiTxeq+PVSXWMbebbLrniZZ+VhRZqLbo+VNLP4NRO/vdIT60tOqMn4tcJuNzaxvO+H6zRQQpgiAIgnAODrpDNDlN017Zc4JKIceoVhJMZrBoVGzr8dIfTfKplaNXxFm1aiLpLJlcHtVpNSKpXJ7n24fI5PLIZTIS2Tyv9ngxqVUsnmLZ8YVAbPUqCIIgCGcpk8vzWq+PDeWOs7q/VaPiwf2dvNHn4/l2N+9ZVI5BPTp/YNYoUcggOE6H2mZfhExeosUf5ZgvwlKXGZ1SwRWVDhTyC3/aWmRSBEEQBOEsvdnvx6RWssR5ds1GbVoVzb4Ijx7tI5nNsaLIMuY2cpkMi0ZNIJnBpR9dCHvAHWJVsYX97hAyYE2pjdsWlp1xwex8JTIpgiAIgnCW3ur3c3WV86yL7d/dWM69Vy4im5dY4jKP2fjvBJtWRSBRaDP/+LE+/tI2SF4qZFA2Vjiwa9Ukc3k2VjiotujRTnCcC43IpAiCIAjCGTruj+JPpmn1R7l7ec1ZH6diuNj2PU3llBonXvZbbdHT7I+wrszGth4vOUlCq1AwGE1SbdHz16vrsOnUIy3tLxYX17MRBEEQhPPgiZZ+WvxRqi167NPYVHAqV1U6J71+bamNH+xuY3N1EelcnrfVFvNC5xBGtRKrRoXtDBvJXSjEdI8gCIIgnIFIKkNrIMq7G8u4ub7kvDxmnc2ARiHniZZ+qi16lrrMeOJpKs26i7qv00WTSYlEInM9BEEQzpH4OxYuBPvdIarMem46TwEKFIpnb11Qyq8PdnNjXRG1Vj1qhZwq89xt/nc+XPBBikqloqioiLVr1871UARBmAFFRUWoVGe2UZsgnE8H3WFWFI9dhTPbrqx0Es/kWOIyo5TLubrSOdKZ9mJ1wQcpWq2WN954g0zmzDZfEgRhflKpVGi182PfEEE4XS4vcdQX4ab64jl5/BvqTj7uXYsr5mQM59MFH6RAIVARJzVBEARhtnUEYyhkUGW5uKdZ5gtROCsIgiAI03TYG6bJaT7jFvjC2RFBiiAIgiAAgWSagWhy0tsc9oZZcpHXgcwnIkgRBEEQBODFDje/O9Iz4fWxdJbOYPysW+ALZ+6iqEkRBEEQhHPVH03SHoyRl6Qx0zn+RJpXuj2UmbRYL9LGafORyKQIgiAIAjAQTZLM5umNJMZc9/ujvWzv80/ZGVaYWSJIEQRBEC55yWwOX6LQwbXVHx11XTyTZb87xBfWLeC6mqI5GuGlSQQpgiAIwiUjnikEI6cbiCYxqhSsKrbSGoiNuu7NPj/lJt2kGwAKs0MEKYIgCMIlY2uXh5/uaR9zeV8kQalRR4PNQFvgZCal2Rfh8eZ+3rWg9HwOUxgmghRBEAThkjEUS9IRiuNLpEYuO+aL8LsjvVxWaqXWaiCYyuBLpGnxR/n+rjbet7iSZUXnvw2+IIIUQRAE4RLijqdQyGTsHgiOXLZ3MMiGcjvX1RShVSqoNOlpDUR5udPN5hoXV1Q65m7AlzgRpAiCIAiXDE88xZpSK4e94ZHL3PEUZSbdyL8b7AaOeSM0+yIsFxmUOSWCFEEQBOGiJ0kSsXSWUCrLmlIbPeGTy4zdsRTFes3IvzeWO9je5yOTl6ixGOZiuMIw0cxNEARBuOg9dXyAV3t96JRyFjlMRNNZQqkMBpUSbyJFkeFkkFJl0bPUZUaSQCkXe/TMJRGkCIIgCBe1VDbHy10eMnmJEoMGrVKBS69h72AQnUqBXCbDrhvdRfbuFTVkcvk5GrFwgghSBEEQhIvai50eHDo1m6uLGIwVNhCsNOv47eHCPj3FBs2YNvgGlRJU532owmlEkCIIgiBctDqCMZ5pG+RL6xdQaz1ZX1JnNeCJp9CpFGgVijkcoTAZEaQIgiAIF63XenxcUeEYFaAAXF9bxOYaF7FMjkQmN0ejE6YiVvcIgiAIF52uUJzn2oc44AmxcpxlxHKZDKVcjkWjokS0u5+3ZjyT8qc//YkdO3YwMDCATqdj+fLlvO9978NsNo/cZmBggF/84he0trZisVi4/fbb2bRp00wPRRAE4bxpDUQpN+rQqcTUwXxwwB3iyeMDaBRyFtiNcz0c4SzNeCalubmZm266ifvvv58vfOEL9PX18f3vf3/k+mw2y7e+9S1MJhP33Xcft99+Ow8++CCHDh2a6aEIgiCcF3lJ4oe72tgzGJzroQjDfIk0FSYd11Q5USnEpMGFasbfuS9/+ctceeWVlJWVUV9fz4c+9CGOHDlCPB4HYP/+/fj9fj71qU9RWVnJpk2b2LBhA88///xMD0UQBOG8aA/EiGZyDMQSU994nkhmc/xwd9tFu8zWn0izucbFe5oq5noowjmY9fAyEomgUqnQaAqNctra2qirq0OnO9mCeMmSJbS1tc32UARBEGbFAXcIpVxGfyQ510OZtv3uEPuGQgzFLpwxnwlfIo3jtN4nwoVnVoOUTCbDH//4R6666ioUw0u8wuHwqPoUALPZTDgcHu8QgiAI894Rb4T1ZfaRHhyzxRNPIUnSjBxrz/AGe30XUGA1XXlJwp8UQcrFYNaClHw+z49+9CMAPvCBD4xcPlN/YIIgCPNBXpIYiCZYV2bDG0+TnqXpk7wk8a+vHh2158zZSGRy/MML+9k7FKTOaqA/euFMUU1XOJUlm5ewa0WQcqGblT4p+Xyen/zkJ/T39/O1r30Nrfbk8i6LxcLAwMCo24+XXTndAw88gFpd+MBt2rRJrAYSBGFe8CfSZCWJhXYjWqWcoViSSrN+xh8nmMyQzuUZiCapspz98QdiSWQyGV9cv4CecIJjvsgMjvLMRNJZDrhDXFHhmNHj+hJpLBqlKJidA1u3bmXr1q0ApNPpcz7ejAcpkiTx85//nNbWVr7+9a9jNI5e+lVfX88zzzxDMpkcCV6OHDlCfX39pMe95557MJlMMz1cQRCEczIYS1Kk16CUy2mwGXm2bYjNNUVUW3Qo5TP3JelNFE7451pDMhhNUmbU0ugwkZMkXu5yz8TwzsoRb5iHDnWzrtQ2owGFL5EasxePcH6cmkSIRCL8+te/PqfjzXiY+eCDD7Jnzx4++9nPAhAMBgkGg+TzhRToihUrsNvt/OxnP6O3t5etW7eyfft2brjhhpkeiiAIwqwbiCZHmoF9dHk13eE433qzhWfbh2b0cbzxFABDsdQ5HWcwmqTEUBhvhUmHP5HmsGduagLdsRSZvERXOD7hbYLJNHvPcGl3byRBqUE0aLsYzHgm5eWXXwbg61//+qjLv/Od7+ByuVAqlXzpS1/iwQcf5N5778VsNnP33XezdOnSmR6KIAjCrBuIJke+EM0aFf9+9WJa/FF+uLuNTVUujOpzP8164im8iTQ6peKcg5SBWJKFw83NzBoVH11eww92t/Gf1y0rbKp3HrmHn8txf5QG2/gN1x463ENfJMmqEisALf4ouwYCvH9J5YTHbfXH2FBhn/HxCuffjH8iH3rooSlvU1ZWxr333jvTDy0IgnBeBZNpjvmivHNBychlMpmMRocJl17DEW+YdWXn9mUpSRL//tpR9EoFTQ4TR3xhJElCdtquvdM1GE1yTZVz5N+Xl9t5unWAVn+UFcXWcxrrmRqKJ6m16Gn2RbmmKoc7lqTmlD12Wv1RDnkKzzcvSchlMnb0+3mr389fLa4Ys3MxQDafpzMU40PLqs7nUxFmiagqEgRBOE02L025ElGSJL63q41aq57LSmxjri8xavHEz71wMJ7Nkczm8SczLHaZSGbzhFLZszpWJJXBE09RfNpUyEK7kRZ/9JzHeqbcsRQ31hXTFYpx7yuH+dabLUTSJ5/bAXeINSU2JCCQTCNJEoc8YZLZPIPR8WtzukIJNAo5JQbNeXoWwmwSQYogCMJpfrynjeemqCnpDMXxxFN8eGnVuEWfRXoNnvi5Tc1AYVWPfDhhUGrUUWnWccwXpsUfJX8GLR0i6Szf3tHKqhIrztOKShfaTTSf5yAlls4Sy+Rocpr5yoZGbm4ood5m5LGjvWzp8nDUG6HZH6XJacKmVXPEG+Ghwz2EUxmqzXo6QoU6lnAqQ/MpK5Ra/BEa7MazzjQJ88v5nYAUBEGYB7pDcUwaJbYJ+mh0hRK0B2JsqnahVY6/YeBrPT7WltrQTHC9U6+ZkexEIJmhSK/hhrpiaix6Liux8tTxQdzxFJ9f18Bi5+TtG6CQGfrOjuMUGzR8fEXtmC/wRoeRXx7oJJbJnpe6lGZfhO/ubMWkVqJXKdCrFJQYtVRb9Dx0qIdIOstjvl6yksSnHDW4+jQ8fXwAhVzOdTVF5CSJ7b0+NAo5vkSaLV0eHti0BJlMxiFPmHVlYzNbwoVJZFIEQbjkPN7czyvd3nGvi2eyhFIZ9CrlhBsGdgRjvNnnY3N10YSP4ZqhTEogmcamVXNVpRO1Qs5lJTbc8RRapXzaq3KO+yOEUhk+sbIWpXxshsGmVVNq0HLEe356przW42NVsZVPrKgZdXmDzci/XNXE59Y2cF1NEU6dBodOg1Onxp/McHNDCXcsKmepy4wvkeaxY330RRL4EmmGYinimRxtgShLXZbz8jyE2SeCFEEQLjnBZJqBCdrBD0STWDRKGh3GcVfS7B0M8v1dbbyjoZQKs26cIxQU6dUEk5lz3sAvmMxg1apG/l1i1PKx5dW8b3Elhz1hktkc+4eCE9bQ+BNp9gwGWVVsHTdAOWFZkYWD7tA5jXU6Utkce4eC3FhXzGLXxFmg2xrL+KcNC4FCVgpgsdM0/L9mvn5lE/5EmmZfBKVcxlFvhCPeMEUGrWiHfxERQYogCJecQCpDfzRBNF1on36q/miSUqMOh06DNzE6SJEkiYeP9HDrglLeUV886WNYNCpUchnuaWRT8pLE/+zrwJ8YW2h7epACsLHCwcpiC4OxJJ9/8QA/2N1OX2Rse/t4Jss9Ww/xSreXVVOs3FlWZOGQJ3xGdS5n46gvgkWjonKSAA9ALpNh0hSed6lRQ4VJN2p67sQUkT+ZYX2ZnQOeEDsHAlw2vFRZuDiIIEUQhEtKKpcnnsnhjqf47x3HefRo76jrB6JJSo1anDo1vtOCBnc8RSSd5YoKx5SFmTKZjAqznn9/7Sj7hoI8sL2ZjmBs3Nse8oTZ0R+ge5ymZieme06nVyn52pVN/NtVi6k063CPs5JoIJpCr1TwnqZyGh2Td+yutxqQy+DYLE/5tAaiNDrOrLB1ZbGVL1++cMzlNRY9armMdy0spcUfZf9Q8JyXfAvziwhSBEG4pASTaRQyGSq5nN5Igtd6fSPLXgPJNPuGQlSadTj0arynffEf9UaotxlQT7OF+5cvX8gdjeX8fF8n7cHYhPvkvNDhRkahSHbMeFMZbKdlUk4oN+koMmgmrH8ZiiUpM+l4W20xikmmegAUchnry+y83ueb+omdg9ZAjHrr+I3bJiKXydCpxhYo11kNlJsLGZYbaouosugpNYpOsxcTEaQIgnBJOTF9UmbUsrzIQr3VwLbhItqf7+ukwWZgY7kDp05NKDW6puSoL8KiKTISp1LIZVxb7cKsUVJr0dMZGpspiWeyNPsiLC+yEEiOzYYEEmmsmvGDlBNODVJyeYnfHOwmmc2NaoE/HRvKHewbDJ5zHc1EMrk8XaE49TbD1DeehisqHPzN6joA3rmglC+uH5ttES5sIkgRBOGSEkgWMhOba4p4e10Jm6qdvNrjZSCaoD0Y466mChRyGWaNCqVcNjLlE89kOegOTVnbcTqVQs59Vy/h9sYyusYJUlr8UYoNGmqsegKJ0ZmUUCpDLJMb2RtoIi69eiRIOeqLsK3HS7MvwkAsSYlx+k3Nyk1a1ErFuNNOM6EjFEenVFA8Q43WVAo51uGpMJlMhuYC3vU4Hk2TzeTmehjzzoX7jgqCIJyFYDKNVavi8nI79TYDy4usZPN5frqng5XFFgzDe+3IZTIcOjXeRJpkNse2bi8VZh3lpskLPsejkMuotujxJdJEUqMDkWPD2RmbVj0mk9ITTuDSaybs1XJCIZNSuO+Ofj8KWSFYOdNMikwmo9aipyM4O0HK/qEgy1xm0WhtHI/8cieP/WbPlJ2OLzUiSBEE4ZISTGWwak4WoirlMj6xspZFThM315eMum21Rc+fWvq5Z8sh/tDcz7XVrrN+XL1KSYlBw/HAyeJZSZI46o3Q6DBh16rwn1aT0hOOT7kKBgpBij+RIjm8vPeG2mL2DobwxNNnXKNRZzXQHowRz+Q45Jl8SfKZrASSJIm9Q8GRjQKFkwK+OH09Qfq6gzQfOrfds3e81sHPv/MqPZ2BGRrd3BJBiiAIl4ztvT629/rG9DdZ5DDxV4srqTDrR13+4WXVVFv03Lmogp/etIoN5Y5zevxVxVb2DJ788mgPxggk0yx1mUcyKaf+ku4NJ6YVpNi1apRyOU8dH8CsVnFjXTHhdKH52YkeI9NVazVw2BPmq1sP8d2dbfgS4y+hHogm+eJLB4llRu8jlMrmeLnTPWZpd3c4QTiVnVaH3EvN4X391C90sWBREYN90+9V8/rLrfT3BNn7Vjc+TxRJknjluRbS6RzNhwZnccTnjwhSBEG4ZLzQ4eb2heVsLJ/eMlWNQs4Hl1ZxRaVj3B13z9TqEiv73aGRwtSXOz1srHCgVSqwaVVk8xLRU+oSeiIJKk8LnMajkMu4usrJ8x1u1pXZMKiVfPu65dy6oPSMx1hvM9DkNHH3ihoa7UYOuMfvanvcHyWazrK1yzP68kCMh4/08qPdbaMCrufah9hY4Zj2yqhLSesxN4uWlWAwa4hFp9elOJfL8+qLrRw7OMiWZ5tpPjREwBcnncpx+dW1dLXP7iqt80V8WgRBuCTEMzn6IglWlVjnrCai2qLHoFJyxBtBkiQOekIj2RmNsrCHTWC4UDedK+z0WzHNGpgbaouxalSsH+4TMt6S3enQKhV8ZnUdy4osk3ahbQ/GqDbrebnTM2raxx1LstBupDucYPfwtgLuWHK4y+zE2whcqnK5PP09QSqqbRiNaqKR6QUpvZ0B0qkszYcGiYZT+NxR+roCFJebqVvoYqAnRCZ94RfiiiBFEIRLQkcwhkOnHtO99XySyWRcVmJl92CAQDJDMpun7JSaEZtWNVI82xdJYFApJuyRcjqrVsX/t3nplCuBzsTyIjPHfBHCqbH9WzqCMd7RUEwmL9ETPtnt1h1PUWXW866FpTx5fACAbT1eVhZbcOhmZlXPxcQ9EEGhkOMsMmIwaYhFxi5DH09bswdnsRHPUGETS487Sl93kIoqKxabDqNJQ2/3hV+XIoIUQRAuCa2B6Iz15zgXq0ts7B8KjazcUZ0y/VGoSykEBD3hBBVm/RllfWZiSupUpUYdi51mnm4dXd+QyOQYiCaptxlpdBg54j05JeSOpSjSa1hdYmUgmiSYTLO918/Vlc4ZHdvFoq87QHmVFZlcVghSoinCoQSJcToIn5DJ5Di4p48rr2tAoZBTUm7GOxSlq81HRbUNmUyGs9hIwDs7q7TOJxGkCIJw0ZMkiX1DIZocc1+0WWvVo1XKebHTTZlpdNbDrlXjH86k9EamVzQ72961sJRt3d5RDd5aA1GcejUWjYrFTvOo3ZOHYimKDBoMKiUuvZq/tA2hVsinbMt/qepu91NebQPAaNQQjaR48nf7+dH/e2XcuhJJktjyl2YMJg3LVpVTWmlh5bpKkokMPm+MBYsLU2pGs5ZIePxNNC8kIkgRBOGi1xaM4UukWVNqneuhIJfJWF9u55gvMmqqB05M95zIpMSnXY8ymypMOpRy2agdoY/6IiMBX6PdSFsgSl6SyOUlfIlCkAJQZdaPTPXMdJbnYpBJ52g54qZxSWGzSoNJQyado687SOOSYn73i514hkZvpfDsHw9zZH8/t753OTK5jPd/Yh1rNtZgtmppWlaKZnh60GjSEA1Pr75lPhNBynkQS8fZ039wrochCJckSZJ4tm2IDeV2NFM0RTtfNg4Xy5YZRwchJ5Yh54brPKqmsbJntslkMsqMWvqiJ+tOjnjDNDkLmZFig5a8BN54erjrrQz7cBfYaouebF5ieZFlLoY+77UcHsJk1lBaUXh9dDoVcrmMVCrLDe9cTMOiIg7t7R91n/YWDzffuZzi0kKQqB2+z5qNNVx+Td3I7UwWLVGRSRGmY0//IX688//mehiCcEl6qz9AezDGzQ0lU9/4PCkxannXwlIWOUdPgdh0KgKJDN3hOAq5bMx00FwpM+nojxS+8MKpDP2R5Mj0jUIuo9igYSCa4PVeH4udppHNDOusBnRKBQvtZ7ah4KWi+fAgS1aWjdQdyeQyDEY1docetUZJRbV1VN+UfF4i6E9gd44NXq+8rmEk2AEwmTVEprlSaD4TQcp5MBh1E0qGCSdndwt0QRDGernTzW0LyzBPsUnf+XZLQymW08Z0IpPS4o+ywGacN1MkZUYt/cOZlPZgjBKjFtPw9gEApUYtxwMxtnR5uLnhZG+WhXYj/351E0q5+KoZj98Xx1UyOlA1mDQUDWdJisstDPadLEqOhJLk83mstqkzbEaTlmhIZFKEaRiMFpoddYf6p7ilIAgzKZzK0BmKs7L4wphusGlVZPISewaD8yr7UGbScdQb4Z+3Hua4P0qNZfSXZJlRy8udbqot+lErqGQy2cgGgMJYIX8cq330lJ/RpKGotBC4lJSZiYSSIw3e/L4YFpsehXLqr26TpVCEK+Uv7L2ARJByHgxGPchlcnpEkCII59Vhb5gqi37eZVEmolUqMKoKuxAvK5r7lUgn1AwHH5lcnm093jFBSqlJRyYvcU2VWGY8XZl0jlg0PSYr8rZbF7P2ihqgUG9itev5y+OH6O8JEvDGsDmmV6dkNGvJ5yXikyxlvhCIIOU8GIx6WFK0QAQpgnAeSZLEG73+C65o8ysbGvnP65ZRapz7lT0nGNVKPr9uAevKbCSzeWqso/vN1Fj0VJh0rCq2zs0ALyAntgoIBuKo1Ar0xtGZJleJCYPxZNO7ZZeVEwokeOqR/fg8sXHrUcajUinQaJVELvAVPiJImWWxdJxIKsra8pV0BXvnejiCcMnYMxikN5Lgupqz37l4LpQYtRhUyqlvOAfWlNpQy2VUnrY02qXX8C9XNY1qTCeMlsvmeehnb7FrexcAQX8Cq003ZbO+a9/eyEc+u4FsNs/O1zuxOabfkNBk0RIOJqa+4Rk4tLePbOb8tdsXn6hZNhT1YFQbWFu+grZAtyieFYTzZHufjxvriuftF/6FqNZq4IFrl4pg5Cw8+8Rh2po9DPQUVuuEAnEs9ullRZRKBR/72yu44Z1LWLxi+ptG1i1wcmhP31mN93S/+8VOejr8PP7QXno6z1+7ffFJm2XdoX7KTcU49DbqbFXsEv1SBOG86IskqbbMfZ+Ri82FUt8zn+x9q5ujBwe45oaFBPyFVvUnMinTpTeqWbOxGus0AxuAdVfVcvTAIKHAmWdTDuzqHSnYjcfStBwZ4slH9oMEAV/sjI93tkSQMsva/d3U26sBWFexkhfbXsUTm9sttPsjQ7T7u/HHgwxFPVPfQRAuMIlMDl8iTfk86NgqXNqkvMRrL7Vy021Lqa63ExwOUjyDEezO2d1Lyu40sGhZCVuebT6j+0l5iacfPcBzTxwGYKi/sAza54khk4H/PO4JJIKUWdYW6KJuOEi5ru4KXAYH//T8A/jic7c75Z+OPs9DBx7ndwef5Ec7/nfOxiEIs6UvmsCiUY7q5SEIc6Gz3UcqmWXRshKsdj3hYIJ0Kktnm4/ahbO/Gur6W5o4emCAvjPYETkcSpLL5Wk5MsRAb4jB/jD1i1zoDWoWLSsZCbTOBxGkzKJsPkdnsJeG4SDFpDHy+Y2fYE35Cv5n98NzNq4WXzvHPG3sGzzMUU8rveGBORuLIMy0bd1enmjpH9NyXhDmwoGdvSy7rByFUo7ZWiiUPbinD61ORVHJ7G+6aLHpuGxDNdu3tAHwxtY2fJ7opPfxeQr9WBY0FdN8eJChvhDlVVb+/mvXsXRVOQGfCFLOq4GIe+T/S5J01kuFd/cf5P/2Pz7y795QP0q5ghJT0ajb3bxwM4fdLeTz+dMPMeui6Rj94SHUSjWxTIL1FavY2vHmeR+HcHHobvfz8jPH5noYo7zV76fZFxVTPcKcy+XyNB8eYsnKMgDkchkWm46dr3XSsMg15cqembL+qlpaDrvxeaJs+UszLzx1dNLb+70xHC4DDU1FHD/ipr8nREmZBZVKgc2hx++NjSylnm2zEqTs3LmTb37zm3ziE5/gAx/4ALnc6OVKAwMD3H///Xz0ox/l7//+79m6detsDGNaekMDfOEv/0YyU2gfvH/wKF95/gGyuewZHeeYp5VvvfYTtrRvH7msI9BDjbUCuWz0y1xuLkGS8gxE3acfZta1+jopMji4rGwZi10NrC5dynFfx3kfh3Bx6O7w89pLrSNz1vPBQDTJx1dUc1N98VwPRbjEdbX5UKrklFdaRy6z2vX4vDHWXVl73sZhsemoa3Sy5S/NyBVyOo57OXZwcMLb+70x7E4DDY0uBnpD5HJ5quvtANgcelLJLI88uIvYedgbaFaClFQqxeLFi7n11lvHXJfNZvnWt76FyWTivvvu4/bbb+fBBx/k0KFDszGUKfVHhshJedoC3QBs795FNp+ddgDhTwT59d7HeLb1FdZVrCSSjpHLF4Ky7lA/1ZaKMfdRyBVUWyt4pfNNnjr24sw9mWk47utggaOW9yy5mQ+vvJNaWxWdgR7y0vnP6ggXvlgkhUIhZ9sLLXM9FAAiqQyRdJYVRVaxCkWYc8ePuGlcUoJMfjJjsnRVGe+6awXFZee3o/CCpmKO7B+gotrGbe9byR9/u5e3trVzcHcv6dToH+V+Twy7y4DBpOEddyzlw3+9AZ2+0HROo1VRu8BJd4ef3q7Zr62clSDlyiuv5LbbbmPBggVjrtu/fz9+v59PfepTVFZWsmnTJjZs2MDzzz8/G0OZ0lDUCxS+vDO5DDv69qFX6cZM+UiSRGtPkEBk9IZNe/oP8eeWl9jevYvbFt0AQCRdWJ7VHeqlylo+7uPW2ip54uhzPHHsufOWNgPoCQ1Qba2g2Oii0lJGhaWUTD6Le/h1EC4OsUiK7VvayOelKeefz0UknGTlugqaDw/R1e6js3Xqz1E2myOVPLNM5XQNxJLYtSp0KsWsHF8QThfwxUcVkkqShHswQjiYYLA/THmVddTtV62vYunq8b8XZtOCpkLZQXm1lablpXzwU+t57aVWnvjdfo4fHf2j3OeJjqw8WrOxBstpS6U/9JnLqW904RmavXPLCee9JqWtrY26ujp0upNPesmSJbS1tZ3voQAwFPOgUahp9XXyyKGnKDY4WVu+gp7Q6GLSA61evvi9bXzmP14iFD2Z4mr1dbCmfAXvWnQDdfZqdCot4WQESZLoDPZRZSkb93HrbNXolFqi6Rj+RHA2n+IoPaF+Ki0nmwEp5QoqLaW0B3rO2xiE2ddyZIgXnz7KC08d4f9++tao66S8RDx6bvt55HJ50qks0UiKiho7VbV2/vdHb/Din0/Wp/T3BOkYJ2jZvqWd3/9q1zk9/kT6I8l51U5euPj9+bGDvPJ8IZP43J8O8937X+Jn397GtheO4x2K4CyeHxtFWmw6ahc4qRteUVRZa+cL//o2lq0qw3tKsJFMZPB5Y5RWTL6dhLPYiGdw9puTnvcgJRwOYzaPTnOZzWbC4bmZ0x6KellbvoLd/Qd4ofVV/n7D3VRayugJFzIp+XyeZm8b+4972LS6gkU1dv64tZWhqIfvv/lLmr3tbKq5nA+suL3wXDQmwqkIoWSYSCo6YZByRdUa/m3zFyk3ldAxywHCy+2v88Vn72N79y4Gom4qThtTrbWSzqAIUi4mvV0BZDJ4a1sH4WCCfO7kdF5rs4df/XD7JPeenHsgzE++9QqP/LIwJ200abjyugU0Li3BMxhBykt0HPfyyx9s58VxCvQG+0J0HPeOOjHOlIFoklKjdsaPKwjjCQUStB/3jNRktR51s3RVOVde10Bbs4dYNI2zaH4EKVDIgFTXOUb+LZPJcBab8LpP/i32dgWw2fUYTZrxDjGiqMSEZ2j8IEXKS7z+cuuMtM8/70HK+ZzamI6hqIera9bz2fUf4bs3/xtl5hIqLaUc87Ty8IE/cdTbyr9v+Q77W90sq3fyvhsaeWZ7B6+07+DVrh30RQZZ4DhZAGXRmAilInSH+ik2ONGqxj9hapRqamwV1NgqeeTgk9y39TvTfm3yUp50LjPt53hw6BgquZIf7fhf1AoVTr1t1PXFRhfemH/axxPmv96uIBs21VNeZUUCoqcUuHkGI3g9UTLTOIEEfDGaDw+Rz+WJRVNIksRTjx7Aatcz0BsiEk5hNGuoW+jkjg+uJpfNEwom2PpcC6vXVzLYHx4z3+0eiGC2atnzVvdMP20GY0lKjJOfXAUBYM+b3Tzzh3PrAH5wTx8OpwHPYJRwMIHPG+OKzfWsvryKUCCB0axBq5vftVHOIiPeU4KNno4AlbX2Ke/nKjbhHYqSz4/93mo+PMhLfz5Gf2/onMd33jsdWSwWBgZGT6WMl1053QMPPIBaXSjc2bRpE5s2bTqrx8/n8zzd8hLJbIo7Ft+EJ+aj1FREsfHkJmSNjnouK1vOH48+i0KuIJPP0jo0yPKGdZiMMiyVXra193Bl1VoCyRA23cm0mFljJJSMEEnFKDeXTDmeWmslr3XtQBNVc8RznCVFCwFo8bazb/AI7116y5j7PHnsBVr9nXzpik9P6zm3+3q4rvJtPJN8GrvOSmtPiGQ6y/KGwnO2aM0cHJpfy0iFs5dMZPAMRfjQZy7n+lua+Pa/vUA4lMRsLUyD+L0xkAq9EEomKd6LhJP8+kdvEIumaVpWQk9ngGtuWEgkmOR9X1jHf/7r8yAx8otLoZRjdxk4sLuPwb4Qf3X3GlqOuOntCo6kmDOZHH5fjLfdunjG9hQ51VAsRbFBZFKEqXW2ehk8x1VpLYeH2LCpjuf+dITdb3ZTUmpGp1ejA0xmDY55lEWZiLPYiNcTI5+XkMtl9HT6R5ZMT8bm1JOXJIL++KjOuVu3buX7336IRCxNl+/Zcx7feQ9S6uvreeaZZ0gmk2i1hZPJkSNHqK+vn/R+99xzDybTuTe+6Q0P8Mihp8jlczS5GgBw6E9GjaFoCotRx1+v+xCH3c282lmYz3e68hTZ9Tx2+BlC9rcgBfet/NyoAAXArDURTkWJpxOUmqZeAnlF1RqMaj0DUTffe+NBNlRdxkdXvYdtXW9xYPDoSJAiSRKpXBq1XMULrdswaab34c/kMgzG3Lz+VpR3XL2ZSCrKj/6wH5dVNxKkWLUmQsn5s4RUODdd7f5R6VrziZ1QqwsZNL+3UNjtHYpMGqQ0HxrCYtVRXmXlyP4BjGYNTz96gNvetxK9UY3NricUSKDXn9xq3lVs4tUXjnPZhip0ejWVNTZ6OvwjQYp3KIpWq6JpWQkvPX2UTCaHaoaKXDO5PP5EmmKDyKQIUxvsD+NzR8lmcihVClLJLJlMbsppjhMS8TR9PUHe85HL2Lejl52vdbJyXeXI9eXVNkzm+f9ZtDv0SMPBhs1RyJDe8M7FU95PoZDjdBnHtPffuOFKti2IsmZjNaFwhGdf+OM5jW9Wpnui0SidnZ0MDQ0B0N3dTWdnJ8lkkhUrVmC32/nZz35Gb28vW7duZfv27dxwww2zMZQxPHE/JUYX1ZZynm5+iXp7DUp54STZ0R/iE994gUy2kAavs1UzFPOCJKO+Xkkik+SZlpd5/+L3ku1ahE4xdt8Fs8ZIOBmhPzJE2TSCFLveyrV1G7lzyc18bPV7eaXzTfb0H+Lg0DE8MR/Z4eXMv9r7KA9s+yEHho7ijQcIpaZXsNQXHoS8kvaONDcvuI7F2ito6w0xeErHQKvWTHCaxxPmv+aDgzQuPZnFM1t1hIMnV6X5PTFsDv2Ulfl+b4yScgs3vHMJd354NTe+awkLlxSzZFXhV5arxITBpBm1vLKoxIRKreDqtxUygjUNDlqPnVw54B4I4yoxYbHp0BnUDMxAOvgETzyFSiHHKpYeC1PIpHP43FHkcvnI38Erz7fw8++8Ou2i8rZmD0UlJkwWLRU1NhxFBq65YeHI9dff0sTGaxtmZfwzSa6QU1xqpq8rQCiQIJ3OTbvY11lsHHMeCQUSqNQK6hY6cfef+9/3rAQpu3fv5qtf/So///nPAbj33nv56le/Snt7O0qlki996UuEw2HuvfdeHn/8ce6++26WLl06G0MZZTDqwRPz4TI4qHfUsHfgEIuLTi6TbukOkkznaBs+cdbZqwDIR23YnDkePfxnKi2lvHPJNRhijXT0FbIPA94Y2w8UCm0tmkImpT8yRJl5+s2k1AoVl1eu5n3L3sWPd/zvyNJob9xPq6+Tl9tfp9nbxl+Ob2F12VLCqei0alja/T3kYkYyWYmOgTCv7O1lTVMxA76THQMtWjPRVGwkIBLmp6A/znN/OjyyM+l48rk8zYcHWXRqkGLREg4VgpRMOkc4lGThkuIpC1d9nigOlwGLTceiZaU0LS/lvR9dM9Ils6jENOaX4porqvnAp9ajNxayK03LSxnsD48U5h3ZP0B1vR2ZTEZ5lZW+GeyzMBRLUaTXnLcunsKFa2ggjE6vprzaOlL02tXmI5+Xpr0Z3963ekb+zq57xyLu/tsr0GhPTk7YnYYxS3fnq4VLijl2aBD3YASny4BSOb3spmuc4tlQMIHFpqOk3ILXc+67Jc/KdM8111zDNddcM+H1ZWVl3HvvvbPx0BPqDPTylRe+yTXVl1Okd1Brq+TFtldZ7DoZ+bb1BQE42ulnUY2dOlsVMuToUmU0B5rx9Pl54PqvIJfLqa+w0NobxKhX8Q/f3opCIWfDslLMGhOeuA9v3D+tTMrp3lZ/FX3hQXrDA3jjfgYjHo55j7Oh8jK6gr3sHTjMvdd8jt39B0lmU+hUWg63++geinDThpoxx3u1fQ+KpJPFDU6Odvg50OrlM7cvZ/exIQKRFHazFovGhIREOBXBrrOe5SsszKZ0Ksv//fRNQEZbs4e/+fKmUdcd3tfPqvVVI4VqFTUni6PNVh39PUEA3IMR1BoFdQtdPP3ogZFU93j8nhhrr6iZcEwLFhePKQo0GDUYTilc1enVNC4p5vk/HaamwUnHcS+3vnd5YYzVNno6A2w4g9dhPL1dAVQqBUOJpJjqEaalpzNASbkZh8vIUH+YZCLDYF+I625u4tjBQfJ5CRmMyhLCyYUf7S1eBnpDvOcjlwGFeqwLWdOyErZvacNZZMJ1BvsJuYqNtBweIpvNjQQ2oUACi1WHxaZjYVPRFEeY2oX9yp6BPQMHkSSJnX37KDI6aHTWoVaoaHTWjdymrTdIbZmZo52FlS6LixbyjtL3YFU66Y8Mccfim0aaszVUWmntDXLguIcFVTYSqSzBaAqXwU5XsA+dUotVe+YdBWUyGR9b/V6+es3fUWIsYjDqps3fRb29mpWlSyg2OFla3IhCJh+Z8nn2jU6e3Da2z4wvHuCo/xh12mUsa3Dy59fbCYRTLF/gxGHRMTBcm6BUKDGqDYSSYspnvhroC5FJ5/jo327EOxQlkz6Z9eru8PPUoweIRlKEgwlsDj3yU06uJzIpg30hfv3D7SxdVU59owuDUc0br7SP+3j5XJ7AaQVxp6ussbHx2slryQCuvakRi01HW7OHK69fgNFcqEWrXeCgs9U37uqAM/HaS63sfqNLFM0K05KIp3n9pVYu21BN/SIXB/f20XJkCLvTQHW9Hb8vxusvt/LLH2wnmx2dXd72/HH+/NhB3trWzvqra+f9yp3pcpWYsNn17Hitg6LS6X9vuUpMuAci/OfXXxiZug0FCpkUmUzGbe9fdc5ju2SClL39h9AoCpvquQwOyswl/OTWB9ANLxHO5vJ09Ie5+Yo6jnT4SGVyKOUKDNlyyvWVvH/5bdy26MaR4zVUWDneE6C1N8SSOgdOi5Z+T4xGZz3/sOHjvGfpzeeUdpbL5JQYXQxGPbT5u6m3V3Nz43V88YpPI5fJCwW6yQj5vMTeFje97iiR+Oi51G2db2GlnMaSMm69so58HhbV2NCqlZQ6DCNBCoBFFM/OayF/ApvTgMGoRqmUEwomRq4L+uMgFVYaRMIpTObRX9Q2pwHvUJRjhwq1Kre8ZzlyuYyb3r2M115qpeXI0Jipw1AwARJYZyBd7XAZufnO5XzoM5dz9dtOTq+WVlgBzrkuZag/TMAfxx1PTTuTsvO1zml1xxXmXle7jycf2T9j7St2v9FNUamJRctKWNBUhKvYxBMP72P5mgrsTgPxaJrjR9wM9IbY+uzo7R56OgPs39lLe4uXFWvGbnlyoZLJZNzy3uWk0zmKS6efSbE7DchkoFDIOHKgsGo3FEyMrCScCZdEkBJPJ2jxd3DjgsIUlEtfaGZj1Jz8ldg9GEGpkHPd2kqK7Xoefq6wJNcXTOCymLmt6Ubk8pMv17J6J0O+OG8dHqShwkKZy0ifJ4pMJuPyytXc0nj9OY+7xOhib/8hEtkk1dZyzBojNbbCH4ZluGlce3+ITDaPrdrDj994eNT9j3qOo4gVUe4yotUo+fon1vPxdxZqf0ocegZ8J4MUq9ZMUAQp81YwEMc6/OvEbNURCpwMUgK+OAqlnObDg0RCyZFMxQmlFRZkMti9vYuqupMr2SprbNz6nuX84Td7+P0vdzHQG+LFpwvN13zDxbVyxeydIuRyGTUNDjqOn32wkExkCAUSBH1xhsJx7EoFB/f0TRn4vPVqOy1Hzv8Gn8KZ2/KXZvbt6KGrzcdgX4idr3We0/HaWzwsXlGGTCYr/Np/30o++jcbuer6BYXlw3oVvV0Brr9lEbu2d5JMnOxJ5R4Io9WrqKy1Y7Xrz/GZzS8V1TY++Q9XsmDx9MsUFAo5f/3la3jHHcs4vLePh3++g76uwIz8uDnhkghSesL9WDVm1pWvBKDIWAhSktkcvzvSgyRJHGr3sqjWTjCV4a/vWMGftrWTyebwhhI4x4kKDToV65eWEomnaaiwUe4y0j/De6RcUb0WpUJJtaUclWJ0WtGsMRFKRtjb7GbFAheaoiHaAl0j1+elPC2+DsJuAxVFhci4oshEw/Cv12KHHnfg5AofiwhS5rWgP4Fl+KRosekKS4qHBXxxFq8opavNTzScxGQZnU2Qy2XUN7qIRdNU141u0rR0dTl/+0/X0nLUzfYtbezbUeg83N3up+y0PUdmQ91CJ+0tnrO+/2B/GLlCRtAfR7Hfx++/9RpP/HYv27dMvM1GNJzE743jn0ZRXyKeZs+b3aP2ZhHOn/6eIIN9YdZfXcszfzjEI7/cxbN/OjwqSD8TmUyOns4AtQtOdl212HSjgne7q5AdWH15NcWlZvYONx2MRVJEIyk+9On1I3VVF5uScsuoqeLpsDkMLGgqIh7L4PfG8HvjmEWQUtg7ZLr6woWVNnX2aj695gMYVIWTfWsgykudHnojCQ61+TBVmbj3lcMUuQzoNAo6+sP4QkkclvHnua9fV4XTosVp1VLmMtDvPfdK5lOZNUb+ffMX+YeNnxh7nbbQ2Xb3MTfLFtiIygYIpUIj8/u9oQFy+RxBj4bycRoK2U1aAuGTy1JtWgvdp22qKMwfQX985NeJxaobM92zYFERmXSW/p7QmOkegIamInR6Fa7isalck0VLabmZw/v6icfSxKNp2po9NDS6xtx2ptUucNLTERhVY3MmhvrDVNc5yOUk9J4kt71/Je/7xDo6jnuRJqh16e7wg+xkv5jJ/PZ/drD12Wb+8Js9o7YWEM6P/p4glbU2rrt5EcvXVLBwcRGNS4r582MHOH7UjZSXRmU6ThWLpEYKxk/o6QigN6gnrbVyOA24igtL6ddsrGb/zl6gsCLI5tBTVGqe9P6XIrVGyRf+5Xru/twVVFTbcM1gE7sLMkiJJzN88F+eHbXR32T6wgOUm0tQyhVcV3/lSK1IZ7Dw6+iQO8yR3gDt+QxWrZp9QyEWVNlo6Q7gCyVwWsaPClc3FvHjr1yHTCYbme6ZaQa1nhLj2C8Li8bE3v7DtGr/zJ+9v0SpUJBXJHhtX6GL5zFvG+XGCswGLWaDesz9bWYt/vDJ1++GhqvZN3CYbZ1vjbmtMPdCgcRIetls1RIOFAJMSZII+OI4i41Y7Xq87uiY6R6AJSvL+PDfbBizWuGEhqYilCo5eqOarvZCWr3uPAQpdqcBo1lD+3HvmCLF6Th+xE11vR2NUY0sJ9G4pITaBU6y2TxDA2GOH3WPWSLZ0xGgfqGLgC8+adHuYF8I92CET3/xauKxNEcPDJ7x+IRzE/DFsdn1KJUKrryugZvevYzNNy1Co1Xx2P/u5s9/OMjPvr1t3D1i9u/q5elHD4y6rLPVS+0C56T1gmWVVmoaCpmWxqUlBPxxhvrD9HUHKZ6k+eGlTq1RotOruftzV2CYZkO86bggg5TOgTDRRIZe9/SCgr7IEOWmsS3qO0IxSgwadvcHyBuV1FoNXF9TxK6BAAsrbRzt8BOIpHBMEKQAaDWFVdzFdj1D/vh525vIojXR7GvDkCnj3UvezsdW3wUyif97cT+5XJ4Wbzs2eSnlrvEjWrtZi/+UTEqpqYj3L7+N51pfOS/jF6Yvn5eGg5ThTIrtZCYlmciQSmax2vUjWZLxulwqhhs2TWTVuipufNcSikpMvLG1ndIKy6ilxLNFJpNRu8DJI7/cyfe/uYXeM+ib0nHcS193gDUba1Aa1ajsWjRaJQqFnNoFDv7wmz08/PMdvP7y6Kkfz1CUhUuKkSRp0mmDfTt6WLyiFINJQ1WdHY9brH4734L+xJjaD2exkTs+tJrqOjt73upGkmDn9q4x9w0FEgwNREbtHdXR6qW2wTHmtqdad1Utb7+9ULun1ihpXFLM048e4LWXWkd1lBXOjwsySGnvKxTFDUxzeqU/PDhmHx1JkugMxrmloZSeaAJzlZllRWaWusy0+KMsqLSw61ihY65tGq2Ni2x6Uukckfj0N/47F6tLl9KouIoNRddwQ8PVbK7biFFtICOPsXVPL83eNvJRGzUTRP42s4ZYIkPqlF8ga8qX0+bvoj88SDxzdnO+wsyLhJJIkoR5OFgudJAtvD/eoSh6gxqtTjXSJXK86Z5sPk93eOK6CotNx2UbqnEWGentCrBsdfksPJPxXf22BXzoM5fTtKyEN7aOvyR6PLu2d7Huylr0BjWSQYnllM/6re9ZwRWbG3jHHUtpa/bgHYry3J8O09PhJxIqBHxWux6/N8Zbr3bQ3T56g81YNMXeHT2s2VgDgNWuJ+i/+P8mEvE0P/7WK+x4rWNeTG8F/fGR4Px0b7t1Me9491KuvamRw3vH7gMVCiaQ8tJIEXUqmaG/J0RNg/OMxnDDu5bQsKiId/3VChaeQVGpMDMu7CDFN3WQksllGIp5xwQp/dEksUyWlcUW7FkZOa2CxU4zdp2anCRRV2PjhvXV3LyxFuU0VjjoNEpMetWoYtTZVGUtJ9BRwvJT/uDsOiurl1p45WAb7riP1mYZa5vG/6OyGDTI5bJRdSm5lIpqcyVffO5+fnfwyVl/DsL0BANxTBbtSMMou1NPwB8nm81x/Jh7ZF8cZ5ERuVyGfpzpvZc7Pfx/25uJpbNjrjvViWMsPY9BitWup7bBSXW9g8Bpf9P5XH7c+jMpL9HZ6qVhuFmUbKmTpquqRq7XG9WsXFfJqnVVZNJZfv7d1ziyr5+jBwcLmy1adDiKDLgHwrz+UivHj41e6fPG1naq6x2UDxcP2+x6Ar6Lv3jWO1TYzXfna538+Fuv8OLTR8+o/m+mFYKU8VfRuEpMrNlYg6vYhM8TG7uMPpBArVGw581uWo+56Wwr7Gl1pl1gjSYN19y4kMUrpt50T5h5F2aQ0h+iocIyrUxKR6AHo0o/ppPqU8cHuLLSiUapINUTpU6rpdKsQ62Qo1cpiGZyrFlfwSdvXzbtcblsejyBOLm8xJA/Ti6Xp2tgdlbMBCMpeoYiLK0/NUixoNSlcad6KdGXEAzlWb5g/LoCuVyG1aghcEpdyq//fAR1oJElroUMRsTyzPkidFrK22rXo1YrcQ9EaD40ROOSQgBeUW2jqs4+pu4kL0ls6fKgkMt5rdc36WM1NBVx/S1N52Wq53R2lwG/d/SU6bNPHObPjx4cc9uhwQi5XJ6yysIGn0Eph2ucaVmFUk7DoiIaFrnYsKmeof4wqWQWk0XLgqZi3nilnWgkReC0c0l3h59lq05+KRUyKRd/kBLwxSkqMfGZL13DNTcupO2Ym2f/eAhJksimY7Tt+/V5m9JOJTMk4hlsjsmX+tqdBlLJLHve7OZ3D+4cKaYNBRI0LSvlyP4BHv+/vex8rZNFy6bemV6YXy64IGVfi5uugQhXrihnwDt1TcpRTyuLXA2jCqUGokkOuEPcWFPM719sobM7yIeWViIfvo1No2LXYJAf7G7nuztbSU2zoM9l1eEOJHj6tXb+/r+28NxbXfztf27hZ0+MPcmeq4NtXqpLzaOKYu06K4HsAAHTXoplDSxvcKKZZIdZu0WLP3KyAPNgm4/wgI1bGq/DE/NPeD/h/DrRI+UEmUxGWaWFg3v68HmiNDQVAlFnsZEP//XYJvOtgRipXJ4PLKlka5eH/CRfMnangcuvqZvw+tlks+tJp7LEo2nyeYlMOsfBPX0c3t8/qq4AoPO4l6o6B4rhLGcwlcGqGZtBArjtfSu544OrsTn09HYFUCrl6PQqFq8oJR5Lo1TJx2RJYpEUxlNW9dkceiLh5FkV915I/L4YNqcBhVLO0lXl/NXH13Hs0BA7XuskEmgj6D5ENh0hnQxx+PX/RJJmL8sS8CfQaJVTdnXVaJUYTRp2vd5Jy+EhHv3f3fzqB9tJJjJcd/MivvCv12Nz6Olq87H+qtpZG68wOy6oICWVzvLdn73F3bcsZvWiIga8Y1N8pzvqbaXJNXonyp39fpa5LERCSR5+vpmldQ7KnCcLTK1aNc2+CHVWA3kJfrynY1rjK7LrGfDGeGJrK6lMjv/7y1GuXlXOizu6zrn19+kOtnpZ3jA6S2LXW9nn3UvW78IQXUTNFO2NT12GPOSP4w0m6BmK4NA7cMd90/7F9GKHm5c6ReZltpzaI+WE0korO17rpGlZKRrt5CdxTzxFmUnLZaU2spLEQff87Iej1igxmTX4vTG2PNvMf//7ixiMGmwOPYdOqzk4tQAymc2RzOaxTfA6KFUKZHIZNoeeTDqHyaJFJitMi624rII1G2vwn3IukSSJaCSF8ZQVCkaTBoVCftb9Oc6Xwf4wP3jg5Wnv5Hu6oC8+KnNhsel470fXsOUvzex5fQcAyZibVNxDMjZEMnb2PW4mI0kSB3b14iw2Tqtzt81pYGgggt6gpvnQIB53FJVagcGkQadX87Z3Lub6WxZhmqCdhDB/XVBBSt9AhFpJhi6SpsRhIJbMEo5N/MeYl/I0e1ppcp1sxS1JEjsHAqwts+EPJyl16vn3T28c1cDGqlXRFYpTZdbx16vraPZHGIwmx3uIUYpsOl7c2Y1Oq+KWK+uIxDN84O2LSGfyM16rcqDVO6oeBeCq6vX8/eUfJ921mOauICVTpEltZs3ICp9DbT4aqwqb0uUSGjK5zLSbu+0aCPDIkV5a/DO/BFsY3SPlhLIKC1JeYt00fhn6E2nsWjVKuYxrqpxs7Z6dL5aZYHMa8PvitB51U7vAweZ3NHLV9Qt49onDI43m8rk8XW3+kQLIQDKDSi5DP0nWEApNp6CwhPuEW+9awTU3LCSVzJIYLnpPp3Jk0rlRQYpMLsNq083rupRcNs8jD+7E743jPct2CH5fHPtp543KGhuf/adN5NKDgIxkzE06WagLjIW6z3XY49r9RhcH9/Txrr9aOa3bO4b7ltz2/pXcfOcyauodIx2aAWrqHay/em4yhMK5uaCClO6eIDngrVc6yKay2EyaSYtnPTEfyWyKGuvJPRaOeCOEU1mWFVkIhJPYTGMja6tWhQQUG7ToVQqaHCb2DgWnHJ9reIXPJ965lBsvr+adV9dR5jRSUWSc0doUXyjBgDfKkrrRS+lKTUVcUb0Gs0FNz1CEEsfkDYdcNh1Dw/PsRzp8LK13UFlsot+dwKa14IlNXr8AhaCvP5qgxqrngPvc9mARxndqj5QTahc4ufamRiqqrVPe35dI49AVpkLWldo45ouQngcrN8Zjdxro6wrgHghz07uXsXhFGUtWlvG2WxdzYHehqVZ/bwi5XDbSsyKYTGPVqqf8xa1SKzCaNGNWP2m0SgxG9UjRbjSSRKGQj5lmcJWYznmfoeloPeYmk87xwlNHCAUSvPJcy4QNy07VPtzArrzaOibjM916moAvjm2cRmVGowqrJYLaUEsy5iGTKpzPTgQp+VwGX//uaT3G1GOI8cJTR7njg6twTrMpmM2px2TW0LCoiNWXV7N8TQWlFZYZGY8wty6oIGVoIIykVeAsMtDbGaDUaZi0eHYo6sVpcKCQF35h5SWJ3x/t5ZYFJWgUcvyRJPZxlmtaNYWT04nNylaVWNk7GJxyfEtqHdx96xJWLyqiosjEJ99VKLqtLjXTOThzQcrBVi91FVYME8zVnnhOUwUpNSVmOoeDp+buAI3VdqpLTHQOhHEZHLhjU++pEkhmSOXyLHaaCSXPz/Lr86F7MExuhqfozsbJHimjgxStTsVV1y+YVircn0hjHw5SXHoNRpWSjuDMdkeeKXULnex+sxtnsWlUJqO6zk5fd5B8Lk/HcS81DY6R7GcwlZlwqud0Nod+3M3PbI5C0S5QmOoxa8a8tvWNLlqPzVwWKh5Nj5lSHewP89v/2cHj/7eHN7a28/DPd/DK8y20Hpt6OvXo/gGaVpRis+tHBSlvbG3je994mUho8mxwOpUlFklhtWsJug+NHmukDwkFOapJxtxkUmFUGgvxUCG7FfYfp/PQ74iHe6f79CfU2eobbqg2/aXCCxYXc8Xmk9P6K9ZUzMgOvMLcu6CCFL8nhkqvpqLGRs80ghR3zEex4eQHvTeSwJ9Mc211oZYjEE5hGydIOXHCKzEWrltdbKU/mqQtMHkK1WrScPumhjGX15Sa6ewfG6R0h+L8bG8HmTP8VXug1cuKSf6AHRYtCrkM5xTzr7VlFnrdUULRwkqhxmobi2sd7GvxYFJaaPMMTHr/Q54wW7s9FOk1OHVqQqn5F6T0uiNksjmS6Szfe2Qv3uDUNQWDvhh/959beOrVdgLhJP/x6528cXDy12K2eAYjhR4p1rOfS/cn0zi0hSBFJpOxwG6keZ5OzS1dVc7GTXVj+rS4ik3I5TIG+kKFJmvLS0euCyYzIz8sptK0onSkm+ipSsrN9A03kotFUuN2zGxYVERvV4BEPE0qmTmnVS6JeJrvP/AyO1/vJBYt7Alz/OgQz/7xECXlZpoPD7FwSTHuoQhGs4aejokL2SVJ4oWnjnB4fz+LV5QVmv0NTy/HY2lefPooGq1yyqkqnyeGRqtELgVo2/drMqmTzevCvlYy2RIiUQOJ4SDF4lpCPNJPLpsczqjIGOw892aQAX8cu/PMNu8rKTNPa+pTuPAo53oAZyISTGCwaKmotrH7zW5Km5z0Dk18snXHvBQZTp6Q+iIJyk06lMO7GfvDSRbX2sfcz6FTo5bLRlLkBrWSzTUuHjnSy5pSG5l8npsbSsfcbyI1pWa27O4Zc3mzP8LOgQBGtZL3L5l+J8ODbV4+8+6JN7iym7UU2fQjKx8m4rLp0KkVvLyrB6dVh92sZf3SEn78+AEsyhRt5hY+smbi+2/pcnPAHeayEitWrYrgPAtSJEniy99/jZpSM3I57D9eqOPZdNnY1zqRyqIb7h789GsdVJWY+b9nj/KHLcepKTXznw/t5r/+/uopi5FnUiqZ4XcP7uTya+qmfC8nIknSqEwKwEK7kd3TyAzOletubhpzmUwuo6LGxrNPHCafl2haUcpLnW7kyPDEU9imWAFywuUT1CXUN7pGdoCOhkcXzZ5gsekoKjbyvW+8TCqZ5T0fuYym5dM/D5wwNBBm1+td6PQqXvrzMZ5/8gj5nITNoaeyxsbbbl3MK8+3cMXmBq66voGAN87rk2yYGIumeWNrO+//5Doqa2wM9YcZ7Cu08B/oDWG16zGatQQDcaoYe747weeJ4iwykooXMqiJ6AAqTaGLccTfilxThdunRe8IEZcPINetIx7XEPS0Ewt2U1R1JZ6e7eSyaRTK0SutpHyOeHQAg7lizOOeLuCNi/bzwogLKkhJRdO46uxU1Nh4+rGDXLmhip2Hhya8vTvqpcZ28gupJ5RAnZWQJAmZTDZhTUq5Sce/Xr14ZEkywNvriomlczT7I7T4ozTaTTTYpzdfWl1qps8TI5PNoVIq6A3Hea3XRy4vUWPRs38oOO0gxe2P4wkkWFw7cWtnu0U7ZdEsFH5V15RZeGZ7BwuHi2ZtJi1NNXbagz6Shi5+s+9xzBoj72q6YexYYikcOjUNNiNWjYrgNKd7Xu/xUWbSUmud/iZdO44MsqDCOm7m61S7jg6xoNKKxahhwBsjkcpS6jSg1yrRa1V0D41tbS5JEp964EW+dvd6yl1Gnn+ri3//1AZyeYlkOsvKhUXc94s32X/cQ3WJadIplnxe4pEXW7hzcwMq5eSFnFPpOO5FpVZw/S1jv7SnK5LOkslL2E4JUirNep5unZvM0LlYe0UN+3b0cNX1C1Ao5OwaCDAUS5HN5/n7tWMzmGeipsFJwB8n4IuPWdlzqvd/cj3RSIotzzafVd+UXDbPr36wHYNRwx0fuozeTj9VdQ4cLgMqtWLks/WOOwpTxRabDotVxx9/u5dkIjPuclzPYASrXU/DoqKR+5yY7hnoDVFSbkGpkk/ZMdfrjuIoMpKMF6aWosFOwr5WyuqvJxrswGjbwNFjIRZUFZGMDZGIgc9vxdN/jES4h4qF7yDoPkQ02IHF2Tjq2AH3IToO/pZlV/4Tap1t0nEEfDHRz0QYccFM92TSOfKpHEUlJuxOQ6HXgUw26c7D7piPIoOTaCLD3/3nFt5sc/PWrj72NBf+CP2R1Lg1KTKZDJd+9ElKr1LyoWVV/N2aBq6tcvGX9ulvNuayFjIWPcNZn/ZgnNd6fAzFUqwstuJPZkiMs0HWeA61+2iotI786h/PtZdV8t7rF07rePXlFhKpLHedcvsP3dTEF26/FjQxXm7bTn9kbCCYlyS8iTT/sLaB62pcWDQqEtkcqSmmrrL5PI8e6+WhQz1IksSewSBDscnnyiPxNP/vN7t4cefkKwmS6SwP/Hon3//9PiRJork7QH2Fhb9770o+/s6lNNXYx93vKRRNE4ykONjq5ZntHdSVW1hUY2dJnYPLFhWjkMtYWu/k9f39fPjfnuPJbRP/qnUH4vz2uWPsazn32oXONh+1DY5p1Z1MxJ9IY1Qr0ZySiXHo1IRS2TOeZpxrCxcX896PrmHh4mJyeYnucIKcJFFi0FJ3BgHveDRaJZU1NtqaPZMGKSaLltIKCza7nmhkehucnqqzzYdareCzX9lEeZWV9VfXUVphQa1RTvg+G81aXMUmjh8dvy7FPRjBVXJKCwWbjmCg0BRvsC9EaYUFq01PaIqgyueO4Swykox5kMlVuLteY6hzC12HH0OtteIorsDviWG01gAwMJDDF7AQ8+8BQGcsxeRoIOI7PubYJy4b7Jp6Oihw2jJo4dJ2wQQpPZ1+cnIoHf4lW1xmRkpkiSXS/NMPXyN+yq/4ZDrL/Q++xWDUQ5HBQZ87wkA2QzCTZVGxmV//+Uhh99hwclr78pxufbmdZl902nPSMpmMqhIznQOFlQHBZJpULs/xQJQ6qwGjWsngFF/UJ/R5olNOOZS7jKM60U7mfTc08v0vXUtt2clK+CV1Di5fVIMGE7FsjEhq7Bd7IJkmL0k49YVVFQa1EoVMNqZ49qh39PLto94IaoWcQDLNzoEAvz7Qxb6hyVdMPPdmF7lcngPHC2no7/xuDwdbxxb17mvxYDGqae4KsPPoEM1dgZFl1QCVxSa6B8dmUk7sXr3/uIcnt7Vz5+YFY26zrN7B0U4/JXY9v32+mV1HTwZup372TmRqth8490xFV6uP6vrJN0Obij+Zxn5aUalZU3ivAhdwofNANIkM+Nyaej68rOqcArkT6huLaGt2E/DFp+ynYTRriIbPPEhpPjRI49KSCXejnsjS1eUc3D1+UapnMEJRiWnk3xabjlw2z74dPfR1BwtBil1HcJweL6fuz+PzRHG4DCRjHiyuJnLZBCqNBf/gXoqqrqS41Ew2mycnK2Q5ejqSSPIq0rkyFq75NDK5ArN9AWFfC5IkkYx56Dj4MJKUJ+w/TmntZvz9uydtAJdMFLrM2sdZYSRcmi6YIKXzuJcw4BiuzC8pMxP0xvjhlzcTiad589DJzEbPUIS3jvYSTcXoPpjk8FAI23InCq2Sf7htOW5/nL0tHjLZ/LiZlKnYtWpSuTzxSbpPpnN52gIxukNxfnOwu1A8O1D4AjtRu5HNSxQZNJQZtQxMow8LwKA3RvEEe1mcDaNePe6UF0CpvhyZJB8JUiSpMFWWzecZihamek7U98hlMiyasXUpT7T080bfyaK/3YNB1pbaeOfCUn55oIt4NjflNNGr+/q4Y/MCjnT4iMbTvLKnl9+/2DLmdm8dGuSK5WXcelUdj29p5UCrZ2QaCwpByoAvRiY7+iQ54I1i0CrZ2+LBZtZw2XDa/FT1FVaaauz83XtX8r4bGvnl04fp6A8RT2b4yL89N7KUu2cwgsum463DA2e150kmk+OlZ46x5dlmhgYjVNedY5CSyIzUVp0gl8mw61T4EmfX8Gs+6AzFqLboqbcZqTDPzN9DfaOL9hYvPZ1+FjSN/QycymjSnFEmJZ3KFrJ7h4doXHrmUxlLV5XRftyLd5wavEIm5WSQotYoueNDq0d2fy6rtIzb1r+73c9//esLRCMppLyEzxMrBClxD/aSFSCTU7figxhtdTjK1qBUKahb6KSvz4RKV0ciIWPR8jq6+9eO1JpYnIvIZhMMdb2Cu/s1/AN78PS8SToZpLj6agASkf4Jn2fAF0enV03ZZVa4dFwwNSn7DwyQr7ESkhVO/MVlZg7s7uXGIhObVlewbW8vm9cU6jp6hqI4SzJk4lZee6oV2VIHequaL2xuwqbXcPmyUn702H7KnIZJp00molMp0CnlBBJpDKrx77+1y8MfW/pZYDNy1BfhbcVmDh8tTAEEkxnUchl5CiuJSgxa+qcbpPhjbDiLYr2zUe7czFBkAb50hF/u7ySQzFBi1DIUS9IdilNlGf3lYNWqCCVPfvFl8xLd4fioL8mBaJLra1xcVmpjR3+ASDpLMDVJQ768RK87yhffv5oX3uriD1taMerUHOnw0TUYprrETCab481Dg7y6v4//+Jsrcdl0PPJCM7XlFtYtOfmF4LLqUCnlDHijVJWczEb1e2OsX1rKa/v7uXPz+Mt6lQo5/+/vrgKg1GnkWKefL353Gx9+x2KS6RxHOnwU2/V0D0XYfFklT2xro9cTpbrkzAoA24652bejh/pGF7e/b+W4q0zOhO+0otkT7Do1/uTMBilbd/ewp9nNF95/2Ywedzy9kQRVMxScnFBSZkatVlBa6Rh3mfKpjGYt0fDUf7M9HX4sdh3/89+vsXRVGelUlpqzyI5Z7Xo2XlvPL773GkaThnQ6x8f+diMWm25MJgVg8YqyURviWe06QsEE+bxUCJ4l+ONv95LN5jl+ZIiS8kIm1WTOkc8msTgXjdSPNK7965HjLFxczCvPt5BK1vL225uw2HTs23FyGlah0lG/4kO07PoZUj6Lyb6AnmN/xFWxAYVKh9FaS8Tfhn6CAlqfOzpunxbh0nXBBCnpaBpZpZEf7eng/21eSnGZmcEnw0iSxNWrKnjo2WPEkxn0WhW97gglFTkMijpyQPZ4ANflZVQPf6levbKCl3b28PWPrz/rNLFVq8afzFAxzneQJEm81utDp1Rw1Beh3KgloZXT3hdCkiSCqQxNTjPueAq5TEapUcsR7/T6qAx445TYJ/4jzksSeUkayXCci2hehcpSTFpy0hmKo1MqeL3Hi1qpICdJFJ1Wt2PRKEdlUvoiCbJ5CXf85C/OwHDjLblMxpfWL+Ct/gCvnNIBtT0Yw6XXYFIXPpreYIJsLk+p08h1a6v4w8vHuXp1BUiwZVcPH71lCV//2Rt0D0b4/F+tpqHSCsADn72SiiLjqCBULpdRUWSkZ2h0kNLnidJYZeeu6xdSOo0TpEop5ysfXsv9D741ktE51unn2ssq6XVHWLOomKpiE90DkTMOUpoPD7H8snLeduviM7rfRPyJNPW2sc/JrlXPeCZlb4uHvc2ekcL02RRMZs65DuV0MrmMq65fQMk0moBNlUn582MHqaq18eTvD6BSKcjl8ry1rYMlK8tGdrM+U5tvWkT9Qhe5XJ5Xnmuh5fAQi5aVkE5lp2x6ZrYWuq/2dPj57c93sGx1ORqtktWXV9FyeIi+7iBLV5WRTflRa23IFWrU4wS3jUtLaGv2sOyyChqXFBMJJ/H74qOKeg2WKhrX/jWBoQO4Kjcw1PkK5QtvLrxu9joigXaKa64Zd5zuwQjFpwVcwqXtgpnuyStkbG4swahW4omnKCoxIUkSfd1Biu169FolbcN9DnrdUdCFcMqKQK9ClpMoScvY8mwzUl5i5UIX3/jrjaxdfPYV5HatmsAEv0R7wgkCyTR/v7aBd9QXc1N9CQdCUbJODX880kcwmeGGumI+vaqwrr/JaeKYL8Jz7UP8+kDXhI8ZS2SIxNOTrtx5pcvLD3a1n/XzOiGbz9MbSaBMpMlkmrl3YyNf3rCQDy2r5qPLqmlCTXJgdNFykUHDYPTkibszFBt5v6AQQIVOabwlk8mwaUevCnroUDdvnTI91OuOUurQo1LKuePaBRj1alY0uLh6VTmv7O0jk81zrNPPf37uaq445Zfjwiob+nEafFUWm+hxn6xL8YUSdA2EKXMZKHNNb5+QE9YuLiYST7Os3smxrgD5vETPUISKYiPVJScb+MWTGQ60eqasYcrnJY4fcbNwSfG0xzAebzDBr/98hFwujy+ZHjPdA4XiWf8MBykt3QGC0RSe87C/TSiVwTzN3ihnYt1VtVSN05bgdEazhkQ8M+6Gg5IkcXBPL3/87T6qau1U19v5q7vXojeoWbzi3LKg1fUO6ha6aFpeyvFjbtyDkcJCgim2BFAo5JRVWnl9SxuZdI49b3az/qpaGpeW0HrMw/5dvVy2odCoTWsYf+d0AL1BzZ0fvozG4c+oyazFatPR1x0cfTtzOeULbkKttVK56F3I5YUfC2b7AiL+VnLZ8T977oEIRaUiSBFOumAyKRmDkssrHBz2RYZ/HRpZtb6KN7a2856PXEaZVccT/7ODPy2w0zYUwWj3YsguRmcFf0ZO+KiHV4NJGhYVUVljG7M535my61T4J2hV3R9NUmHSUW3RU23Rj3w5PxZM8lyXmzzg0quxDTfYKjfpWOIy89ixPjQKOR9aVsUBd4jWQIw7FxWaWqUzOQ61eTHqVBj14+/2CuCOpzjsDY/0hDlbfZEkKrmcpWotLya287OnFlFT5OTmKwqB1W+O7ae1J8h1S8tHCnnLTTpe6T5Z0Nrqj7GmxMrWbi+xTGE1SV4qTAudcKKO5cQXuCeeHlnt09Id4HCHj4qiwknLoFPxw3/cjNmgJi9JpNI5Xt7VjVwun3adTmWRia7h4GHQF+Nz/7WVcpeBBcMZmDOxpqlwon73tQ3c9+BbPPJCMya9mooiE9WlZg61eWnrDfLPP36dZDrHVz+6btT00+k8QxEymRyV1ZMv0ZzKH7e28uSr7eTyEn5dbsLpnrbAuXedzeYl0rkcUlaizxPFadVxvCdI0QzWTY0nnMpiPoup2pliMGqQySAWSWM5bV+laDhFOp1j5dpK1l5ZM9Ke/W/vuXbGai0aFhXx8jPHqKyxjapHmUxljY3tW9pYsbYCrU7F0tXlqFQKPvw3G0gmMpRVWuk55kEzSZAynopqG72dAeobJ77fiZoXu6sUtc5O0H0QR9nYaUH3YFg0ZRNGuWAyKVa7nmKDFvvwNAsUGjO1HB4iFEjglMmRJGhr8ZIPJfAlPSiSGgw2HXGjimgwiVqj5NgMdQ61TpJJCSTTIwEIFAoVb6grZklOiVoCGWBWjz5ZvWdROe9fUokEdATj/N+hbnYNBEau/9O2Nu7/5Y5RWZRXuj083jx6d9hQKoNSLmNr17ktge0Mxaix6Llz0yLIy3luVwsHWgvHzOclugbCLKlz8MetrSP3KTfp6I8kkCSJnnCcPYMBNtcUFbIpsRSBZAazWjlqKsqmVZHNS0QzOWKZHIlsjqFYIfPyg0f38fsXW6g4JZVtNWmQy2UoFXLWNBXxx62tVBUbR20QOZnKYhM9wytwfvyHA2xaXcF/f34TDsuZB3QOi44ffOla1jQV846NNfz2+WbufudSVEo51SUmWroD3P/LHdy5eQGfefdyfv6nQ5O22vcORnGVmJCfZeM2KGRtXtjRzefft5pn3+ogks5ytMWLN5jgdy80j9zOqdOMmoY7Wy91uvnezjaO9wRw2fRctqiIlu7A1Hc8R+F0BsssZFKmSy6XoTdqiIxTl+L1RLFYdbzzr1aM2j9mJotBHUUGrHY9O17rPKMgBaChsYgb37UE1XD2pbLGNlIonIx70OonLxoee1w7vV2Tv+edbT5+9P+28seH9uEsW4Ovf9eY26SSWYL+BMUikyKc4oIJUtYsLPzhOHQn59ItNh21Cxwc3NOHPJYhhUSNQkE9SlQJHalIHr1DR1SnQK1R8rZbmzh2cBBJkgiHEux8vfOsx2PXqiYsPAwkM9jHOSEtrLKT8iXRKxUoTvtSLTJoubbaRZVZx68OdGJUK/En0iMbwe06OsTb1lXx7msLy2PbAjEePtzLjv7RJ4dQKsPqYisHPeFzatt93B+l1mrAbtZhVBvYuMpJd6CfoaiHQX+MbE7ig29v4q1DA2SGU96lBi2pXB5fIs1Dh3u4rqaIUqMWl16NO54aE7wBaJQKdEoFoWR6ZFroRJDi9sdRK+VUT7DkenVjEX2e2Kj6kqlUFhvpc0eJxNPsbXHzVzc0Tn2nSZwY26duW8Z3Pn8NG5cV0vk1pWYCkRSXLy3hzs0LuGFdFcFoatKNJt1DEVzF02sQOJG9LR5cNh2b11Tynrc3IeUk/vdPhzjQ6uXRF1tGgqRykxZfIk3ylOmKTDbPoy+18PDzzRMdfoydAwHagjGO9AapL7ewvMHJm4cGZnXfo1QuTzKbx6ye20Sw0TT+MmSfO4bDdW7v41RkMhkr11USj6YpKp5ukGJHrVFQVT/xdNZU0z3jHre2sE1JdpJeT96hKBabjuNH3Vhci4kGO8mkwvj6TgYrnqEIeqP6nIvFhYvLBROkuIZT/vbT5tKXX1bB9i1tpCNpesgjy0nI5ODKlBMOJlFZNKxaXMw//vsNLF9TQTSSor3Fy8/+61X+8vghYtGz+zVp16rxxFLjnoz9ibFfxgDXrCqnRqclMjRxmr3GYmAwluKupkrUCjnuWIpoPM2xrgDvv3ERV60spz+S4Ie723hHfTG+RJpoOjty/3Aqw5pSG6FUBk/87GoOcnmJg54wy4sKvwIdRgtLFxnx2l/lqWMv0tkfpqrYxKIaG0a9mj3H3Dz83DFe3tlNsUHL7470EkhkuLmhMLXh0mvwxAuZlPHal1u1KgLJDO54YVmzP5nGH00RS2b50Veu45pV468EWNVYhEwG1WdQaFfqMJCXJLbt7aPYrj+rJejjkclk1FdYR2pabGYtP/zHa/nUbcuQyWQoFHIWVlk51jXxHiyewQiuaX7hTORIh4+lw8uWFy10UmTUEEtmOdrpJ53NM+AtLGE1a1SY1Eo6/FGODu8L89r+Ph7f0srjW46TnWT5dCiVodkXwRtP0RtOUG3W0xKOUeY0sHF5Gdm8xL//4k0efWnsMvGZEE5lkMsK21XMJatNN27X2UJ7+dlfobJiTQVKpZzi8ukF6Xqjmi/+6w1jdoE+IZ/LkE4EzjhIKS4zYzRpaJ6k+7fPG6Wqzk46lUWusiKTKehve4HOw78nnQwi5XMMdHdRMtwOP5dNEnQfQspPr8mlcPG6cIKU4V+YjtOWTjYuLaGu0cm1dywmbO+jcW05JUs0mGNOwsEEURXUukwolHJUKgUNi1z86Xf7hhsc6XEPjG3uNR31diMapYInWsau+R8vYwCg16r43C3LcO/z0NId4Lk3xxbJLnKYaHKYWOQwUmIoLPfd2+KhqtiE0ajmkSO93P/6Ma6qdHLrglJceg1doZMnylAqg0uvoc5q4Jjv7J5bayCKQiaj1lqYWjKpDbzc8xKo4/QEh+joD1NTZkYmk7FhWSk7jw6xbV8ff9zaSplOQ084zkeXV6MZbgtfpNfgiacnfF1sw1kpTzxFg82AVimneSCIUaei2K6fcCrHYtSwYVkpS86gl4hCIaepxsHvX2xmUc3UBZLnoqrEPKoQd1G1nWOdEwcp3qHoqM6h09HRH+KRF09mPo50+Gka3jKhKxSn1mrAYdGONJ/rOuXzXmbS8uTOLv7t52+QzeVp7wtx5cpylAo5//vMUe79yevjPuar3V7+92A3+4ZCLLQb2VBhx5MrbD+gVMj50E1N9LmjM9J1dzzhVAaTWjVq24q5YHcZ8I/T8drnjs56JgXAYNLwD1+7fsqVPadSqScusE3FfcgVKlSaqVc3nUomk7FibQX7d028A7LPE6Oi2oZMLiMezaA3l+Pr3w2At3cH/sF9EPs9ZZWF4C7oPkTbvl/Tuu9XZzQW4eJzwQQpJ7aqP3XpZDqXwZfy8Zz597Qod6FuOMjKTQ5kjiT0mrHa9YRkjFrdsGhpCdFwijUbqykqNTE0Sfp9MhqFnI8sq2ZL19hVG/5kZkyXzxOMOhVlTgM/+sN+fj/OL80VxRa+sL7Qq6PYoGEwlmTX0SEuW1TES51ujvkifPWKRdzeWFbYe8eiHwlSUrk8iWwei1bFEqeZXQMBsnmJWCY75nEms3coyPIiy8iXgEljpDc8gDbYxEDEw85j/TTWFE5kyxuc7DwySJ8nSiCS4oXHjrAwJqPJeTIjcCKT4k+Mv1tthUlHdyiBJ5bCpddQrNfS4Y9Nq/jyno+so7H6zIKNd15dhz+coukcghRJknj6+MAZtZZfVGPn2ARz99lsDp83Nq1MyqAvxuf/eysD3hhf+cGrI8vvk6ks7X2hkU0zu8Jxqi16yl1GvMEEBq2SzlM+78U6DUf6g6SzeY52+OkcCFNXZmZxrYMnXmnlYKt3VDfdE9qCMdzxFG/2+VnqMlNnNZBSyUbqpTatruDTty8jHJudZnHhVBbLHBbNnuBwGfB5RgcpUl6ivzd03jbI0xsnLqI/U8m4G63edVbLx5euKqO92cNAb4jf/OTNMefEEy33DQY10UgKvbkcKZ+huOYaPL1vMdB5ALk8g8tRaMqZjHkw2uqI+FtFNuUSd8EEKSfYdWrimRy+eIyPP/GPfPPVH4LMyV9aX0Iuk+NLu4kZAyDJuOW9y/EnR3fcXLikhMuvqWNBUxFFpaZpZ1JS45ysq8w60rn8qPbi6VyeaDo77oqKExoqrLT1hvAG4pOm1YuNWgajKfY0u7msqZiD7jCba1yjVu1UW/R0hAonylAyg0IGBpWCa6qcdIXi/Mu2I3z+hQP8+2tH2d7rm/J5ZvN53uoPsL7s5Be4U2/jqup1VKkWE0wF6NW8TkB3CCi00A9GUpQ6DHz4HYu5rKmYQ6e1rC/Sa3DHUvRGEpQPd7d97OXj7DhcOCHVWA10heJ0hxOUGbVUmnV0hxNn1Vn31KDBl0iPW5ezbnEJ6xaXsGrhmRUIniqSzvKn4wPTbsIHhWXRA94YsXFWhQ31h9FolFimaCIG0NwVoLU3xKMvtbCo2o7NpKGjP8yhTh+OajNFtsLr1hmKU2PVj/R+WbukZGRlE0BXRwC9Tcc1qyrYcWSQroEwNaUWltTZUasU2C06DreP/szkJYn2YAyNQk5XOE5ni49inRrkMoJy2NFfyBSZDWrCsXMvzB3PbC0/PlN2l3FMJmWgL0Qum6e82jo3gzoHydiZr+w5weYwYLXreObxg3Qc9zLYd/Jzls3mCAbiOFwGDCYNsUgKvbkCmVyFs2Iz8ViGZOQIff1F5BNvEvI2k4y5sbiakMkUJGPj71kkXBoumCBl/5e+QiYSQa+Us9qW538PdpHP51AqFoPyOu5Y/B6urF5LZ7CXgORl48ftVNU5CKbS2E+ZYtBoldzwzsXIFXKKS8y4p5FJef3lVr57/8tj2pyrFHKc+kK2I5svXBdIplHKZRgnmS9vqLSiVMiRy2WT9pQoMWjoCsZIZ3JUlpnpCMVY5hqdim2wGWgNxArFwMMnb/nwXjp3NpVTbzPwjU1LaLSbeLNv4qkGKEwP/O5ILxqFnEbHyRTyB5bfzmfXfYRrljYgSaCwDdIfLayS0mtV1FdYWVRj5+Yravn07cto7wsRPeWL2GXQEExlGIwmR3Y+fnFHF99/dB/RRIYai57ucJyBaJIlLjO1VgOeVPqMg5Tv7mzls8/tY0e/n+5QnHtfOcyeweCY28nlMr728fXTatw2kRMrY9zT3HMJCl/cJr2agXGmCNpbvNQ0OKa1p8uJ1Ukv7exm5cIi6sqttPUFeaPDi6LWRCaXJ5jMEEpmqDIXMikAVywv43h3AEmS+MsbnRw6MAQGJauXFPPSzh4CkRTVpSauvaySf/zAZVy2qIgDpwWcQ7EUmVyejRUOFHmJp188zoHjXnLxLH9sH2Brl3f4uWoIx8YPEs9VOJ0dafY3lxxOA6FAgswpBaNtzR5qFzhRnMMKrblyNkWzp6pb6KKvK4hao6TllPqUvu4gKpUCk1mLwVhogmd1LaZ22fvYu3MAr78aUNLevYzi6ivpOPAQieggOkMJOlMp8UjfxA86iaD7CF2HHz3r5yPMD3P2l/Tkk0/y2c9+lo997GP813/9F8FgcNLbJ/r6SA656Tz0W9ZFHsEd8mI1XE5KWohOqWB56VoW2GvpDPTgifkoczg56AmhVynHrYMAKK20MNQfYetzzROeTL1DUV55voV8Ps9g39iN8EoMGl7u9HDPlsOkcnk6g3GcOvWk8+WXLy3lIzc3UWTTM+ibuIi22KDFHUtx2aJi9rlDVJh0o3qMQCGTks7mGIwlCaVGL8u8qtLJ3StqcOk1rCy2TLnk9MVON0e9EW5pKBk1frlcjlwu54b1NZSYXEiyPP3hkyehv7qhkXdsrAEKy3JLHAZeeKuLZKowzWQe3oXXrlNj1qhIprP0e2OYDWpe3NGFU6dGp1LQ5DShVympseqJkMc1jazCqdqDMTbXuHjsWB8/2N2GUa3k8DQ7+Z6pEyuR3GdYnFzmNNDvHbv/SsdxL3ULp/cF0T0UwWnVkZdg5UIX9RUW2npDdPqiIJPRE0nwREs/9TYDWqWCiiIjDouW1Y1FRBMZfv9iC79++jBf+8Aaqq160iYlS+rsFNn16LUqbGYt65eWsmphEW8cHBi111G7P0qZUcvGMhuxjjD15RZ+8vgBVJk8sUyOcLoQnJoNarI5iUTqzKYap8MTS43boO58M5o1qNQKAqcEne0tnkn7hcxnyZgHreHss4t1C13IZHDNjQtpHs6SBnwxHv75Tq68rgGZXIbRpCYWTaFQarEWLWX39i6qm66lbsUH+fDfXEVxzTXI5ApScS9aQxF6cznx8NkFKWFfC96+HQx2bMHT+9ZZPy9hbs1JkPLKK6/wxBNP8NGPfpR/+Zd/IZFI8P3vf3/S+yj0BhL+fgKDB1Dr7CwzeEnTxLU1LmoseryJFDW2CtoC3fgSQWw6O78/2sdtC0vHLPc9we408MHPrGfHqx20HTk67m26O3xUVNuoaXDS1TY2E1Fq1LLfHSKYyvBc+xCPN/fz9rrJO9mWOg3cdk0DJQ4Dg+OsDuj3RPnj1lasKgU5GaxdXcYfm/u5dcHYbpVKuZxam4Ef7W7np3s7xgQxJxQbtKOWNI+nN5zgjkXlXFk58Q7K5eYiSo1FDMY8ZIfnitctLhlVF/LOq+t59KUWnnqt0PlWJpPh1KtH2ph3D0Yw6dVct6aKA61eZDIZy1xmNpQXjlGk1ZCXQO/UTfuXeCqbI57J8Y76EipMOq6vKeLDS6vOunh4Ku7hqQzPGfYaKXUaxmRSMukcPR0B6hZOb+fq7sEwt19TT125hZpSM/XlVo52+kfG8kRzPwfdIT413NF4dWMR9316I2qVgssWFfPQc8e4622NLKlzcFWFk23dXv7hr1bx1Y+uG/U4ly8tQatW8OfXT3Ywfv34EK3HfTQ3e8Gb4l8/uYHLFhVTbzVg16oJDwcleq0ShVw243UpkiRxzBdhoX3ue2nIZDKcRUb6e07+eAn6E2dUyDpfSJI03CPl7AOsBU1FvO8T61i1rpKgP0HHcS8dx72UVVq46vpC64QT0z0ArcfcJJMZFq+sxl6yBLvTgEwmx+JajEyuRK2zojeVE59kQ8LJJCL9KNVG+o4/g69vx1k/L2FuzUmQ8vzzz/P2t7+dtWvXUlNTw6c+9SmOHTtGZ2fnhPfR11WTCA2g1tkwmCuwyfpZr9nPzfXFhcLMWIpqawUuvZ1razcSy2hIZLJcNckXLkB1nYP1V1oI9v6KfL5wgs1kchwY3ha9rztIWaWV6noHXW1jazpKjIUaixtqi3jq+AB1Nj0bKqZXkFns0DM0TiblL2908uBTh/nct7ZAJs/+WIx6m4GVxdZxj9NoNxHL5Pji+gW8b3HluLexaJSoFfJxv1SPeMLs7PczMNwpdzKXV67mrmXvRI4Md8w77m1uvqKWt2+oGdkZGApLqxc5Cl8sHf1hakrNLG9wcrjdRy4v8YmVtawbroM51OZFimV4pHOQPzRP71dUIFloYmdSK/nc2gZuqCtmgd2IP5GZNJB4vddHKDX5LszjccdTw6uWzixIKWRSRr/nXe0+jGYNtkm2Ozghk80x4I2xYVkZ3/3CJuRyGSsWOLGbtSh0SowqJUd9Ea6vLRrJICoUciqHC3IvX1aKXqvixsurAVhbZiOSztIVTeKT5fjJnpMBiUIh5wNvb+KpV9tHgsX+SJJcLMNPHj/A+9++CItRw9+9dyVffscy7tm4kEQ2RyaXRyaTDdelzGyQMhRLEctkaRhnP6K5sPryKl5/uZV8Lo8kScQiqQuyz0c2HSGfTaI5hyBFoZTTsKgIrU7Fhk11bHm2mb7uIOVV1pHbGE0ajh/18JNvvcJzTxzhqusaUCpHrziyl6zAaK1BJpOjN5URD/chSRP/uMqkooS8o3v7SFKeeKSfuuUfpKrp3aSTY7PgwoXhvAcpmUyGrq4uFi8+uYFaUVERLpeLtra2Ce8XXBgmEu1HZyhGayjGEB9kVe4IUsKNU6/Gk0ihVWr4jxvu4dNrP0BbME6D3TitZYqNTTpkMonB3h6efGQ/B3b18sTD+0insvR3B6motlJdZ6e7w0/+tL4odVYDDTYDdy4q5zvXL+fTq+qmvTSyxG5g0Dc2k7KvxcPf3LGcv33PSuqdJg57IxMGKAA31hXzL1c10egwTViwe2K10NA4NRRv9Pv530PdKOWFjMdkNtVuYGPVZZSaiukPD054O5dNjyeQ4Md/2M+fX+/go8urubqqEDB2DoSoKTVTW25BRmEZ7ale29/Hep2Bf7uqiVe6vbQGxk6PnC6QzGDTqketTNAqFfz/7J13eF13ff9f5+69h6SrvWXJK952nDghmywgzLB3S+FXSlsKLQVaWmihjFL2Hi17BMggO3ESO97blqw9ru7ee53fH1eWLEuyJFteiV/Pw8OTe8/53nPle855n894f1x6FSOxmX9jKBfZ/vjwEF/Z3Ut2gV06qYn6A38qS6fdMBlROZOhaGrWKFClTUv/WJQfP3Rssmh64GSAxhbbgroqhj1x1EoZNlNZHI/EUhwLJ/i3v9iCq9rIuiozCokwpzi/frWLb3z0xsm5RgqphG21Nn5+fJSfHhlhnydCfMJ3J5UvYKnUEk3m+NGDx/jUd3aQKBV51cYGvvUPN3H7pvrJdQVBwKCUI8Bkyke/hCJltzvEi2MhjgfjNJt1yC+Tmo9V62solUQO7xsjly1QKJTQXYEiJZP0o1CZkMqWJo22/tp6vO4YJw57pokUrV5JJJRCrpCi0SpYO5EmPh2DtZXWte8DQKVzIpYKZNNz19MFx/fQu+97xENl9+tCPj3hsVJAa6rDaO8gn41d7RK6QrnoZ3oikUAURQyG6S16er2eWGzu+gG5TkpaNo5Ka0elc6ItlW8OqfhY+Yn2tIthKl/gZChBs3lhYVeJUH6y3f/CQQ7sGuHRPxwDEUaHIvg8capqTVRUGRDFchfG6bj0aj66qQ1holh1MVQ7dPS7o7j9CR7ZMciRvgCf+s4Ohj0xrl3lYt2yCqon7NqX2eYObyukkgVZhDu1qkk319PxJjJkCiVcevWCBVaV3slYbKZ503jcRzQTw2FW4wunONIf5M87B9m+f4zekQgAg+PlSIpUIrCixc4Lh6bCuflCiZ1HPFy3ykWVXs0Kh5HuBaRsyh4sM/8GNrWSwBx1I+5EBqVUSjJX5GRofiG0zxPmbx4/yN7xML5kllLRTSSbnyFwQukcn3n+BIPR1IwW5Sq7jsHxGL964iQvTuTtB3oWXo9ydCBIW70FQRA4GUrw2Re6+cHBQfojScLZPNfX2vjEtR1zFm4LgoBZP93M69ZGJ1uqrdzbVoVLr+b4RB3Pfk+Ubx0YZFWrnd881cv+Hh8opKxvss/aHi4RBAxKGdFTtUhn6fB5fNcQP37o2IK+M8D2kSBPDPk44o+e9Vy42EilEq6/pZVnHu0hFskglUpQqi59Ue9iySR959zZMxtKlZzOlVWkU3mqpkVSVMhkEt7wrnW880Nb5p0ILZHIUOsqzlqXkkl4UOuc9B34MYnIEGM9D9J/8CeodBVIJDLkSgMIArns1WjKlchFP5vOtdr/J78+gkYLemuUG2+8BZsMBLmGVGwMW1UX/lSWsXgatUzKx58ut8fe0Tx3bUguE2Xw6C9oWvlWcumyd0U44KaiqgufN46zUs/eHYMYTGoME0KhtsHMUH9w2jwOgEK+OO8U0tlY0WIjFMvwX/+3lwF3jJUtdgbcMbqabOgnIhoVWhUOjRKb5vyfzsqRlPJNQxRFBEFAFEU8ybKJWo1h4d00taYqhqLTLxyFUpHPPvs/rK9ejVNejS/tpZTSUSqJfOH/9mIzqfnqR7Yx6I5Rf1dZpN51bSP//sNdvPYVraiVMg6e9KNRyWirLc8ZcenUjMbnn6pbjqTMIlI0CgJzTPsdjaWpMajRyKW442m67HN7W6TzRb57YJCNLivf3D+AUpLiD8d/jsP0Tn5y4DHetupGZBIZxwPxSV+a33W7GYgm+ey2rknRUO3Q0dlopa5Cz5+e66ej2oR3PEZ9y/yGdNFElqP9U46yz48Gua7Whl4h4weHhsgVS9g0SpSLjDIoZVJubSwPSwymcxz1x1hfZSGSzRHPFdi0zEEomqGpycIBclSZ5v6d6BVyYtmp4tm5IikD7ti0duizUSyV255zxRJSicB97bM7EF8quq5x8cyjPezfNYJWpzgnn5FLzbnM7JmPtVvq8I7HJq+fAPVNFt794a1odQu/nmkMLtLxMeIKLWHvIWo7Xg1AsZAjn42STnipaLyJQi7Byb3fQRSLNK58CzJ5+SFVECQolAZy6QhK9YU1cLwKPP300zz99NMA5HLnH0m96CJFr9cjCMKMqEk8Hp8RXTmdd7/mVajNw7Ss+wtUehePPPocnQ2bSIVOUtesJFcq8entx7mt0YlDq6Ldqqd2jpuuKJYIje8lHjyJb/gFcpkwIEenSXPdHV2YLGp2PNPPi9sHWLupbnK/uiYrB3eNEAmmuPXeTuKxDOMjUR7+7RE+9I83LnownEohY/2yCrYfGJt0Bf3yh6+noWpKBG10WWixLE0hnlWtoDec5JE+D4F0jjd31RLLFUgXinxwbTMK6cIvrvWmGnYM75322rODO/Ek/AxFRjma7UG0FpCkV3DH1gYqLFq2HxjjJw8dJ5XJT9ZIdDVZqXbo+PjXn+Nv37yW5w6OsWVF1eSF3qVX86L77K3T8VxhzlEENo2Sw77Zn6BG42mq9WpUMumsfieFksjnXujmtR0uIpk8No2caOIJMpkojTY1Veo2xtMhnh7qYUttIyNxA786MUaNQU2lTsXxiQiQO5GeLPTUqOR87gPXEk1k+buvbudj//Ek7VbNvBft5w+6+fxP96CQS7hhUx3ZQpE942H+bmMrVToVkUyegYh00QLlTDpter5/cAhRFIlk8ghARiPlCx+6jh2jQbz93rNG24xK+WTxrEGr5MRQmGMDQSx2LYF0ji67gZIoEk5kCUYX1r49Gk8jEQQqdCpKokilbmlGGSwFpVKB4WO/prHJymBv4IqsR4Fyusdoa1/SNatqTLznw1unvSaRSnAsYowFgFrvIjS+j3ioj3TCg7NuG6nYCIV8ivGBJynmkqh1TtS6lUilSjIpP2bnimlrKFRmctnI+X6lqyyAbdu2sW3bNqB8X//Rj350XutddJEil8upq6vj2LFjdHV1AeDz+fD7/TQ1Nc25n8u5nNHu48TWywkn/PwmLXJTxUpODD2LSgr/ffNKvn1ggEcHfNza6ORVbVWzrpOOe+je/TUEiQxr1Tq8Q8+gUBrRmBoxJX246kxIpRKclQYQobXTOblvU7uDF57q48DuUTLpPEcPjGOyqIlFMwwNhGhoXlh3xuncvrkeqUSgpcbEg88P0OgyTnsS0ylkZ/VcWQzWiblHI/E0PaEE94sinkQGi0qBZpGRoHpzNWNxL7lCDsVEHnvX2EE2VK/mmP8k6XwGmUmBrSTy+lvrMaj0KOQSvv27w1TadKgmvpMgCHz6vZv48s/384dn+9h11Ms/vXOqy8SlL48GKJRK06Ynn87nXugmkM7y+o6ZT9g2tWLO4taReIoNVRYUUslkiuN0+iMJRuMpvrrnBE6tBl/sAAZzns/f8mYqdHae7H+eHxw8hlTq4Jh/iMeGLHTaDBwNxHjHijqS+QIHvFHc8cyMbhSjTsm3/uEVfOPL2zkwGiGayGKcQ6hkcgV++OBRljfb6A0l+FG/m6RCwKJWUGtQIwgC93fVzrrvYmk260gVirgTGSLZPNdUmNjjCfPaDhePDfm4tvbsv3GDUjYtkvLIjkEi8Syt11azezzM2kozB7wRUJYIRuePkAF0B+M0mcuF1xfCd+Vc8Q0/T8izn2R0BJu5kb27XTS3L2004mIgiiKZpA9n3db5N74EmJ0r8I+8QD4bAwRGTvyedMKD0b6MfCaCIEhRasq/S6tr7axryFVGcunIxTvoqywZl6T67Oabb+bPf/4zu3fvZmhoiO985zu0tbVRX18/5z5qq43CEwHGkyEGwiPUm6tR65woVCb8IzuQSyWsrzRTFMXJLpLTEUWRqP843qFnUGkdKFRmajvuRSZTk06MY63owGTKcuo+WFVrQq2RU980FYavqDLwt/9yC2s21XLi8ADXXOMnEc/StbqKE4fmLiI9G8ubbHzk/jXcsaWBz37g2gsaKrZMzD3yJ7NEMnm+tX+A7xwYpGIRoddTWNVmtHI1w1E3oigiiiLjMS9batcSzyZQSOUgTxNxPsmTAy8AsLbDSa5Qov4My3CNSs4tG+p4bNcwgsC0dmarWoFMIsEzh7NrKF2e+SOTSLCqZ34Pm0Y5q/NsSRQZiaap0atx6VS4E5kZ2xzxxVjt1BNN7WU4msCsjPGRze+lQlfO3Xc52igW/WgULo76AphVCl6/rBoBaLHouLnBSa1Bw/gcx57PFQmNx5Fb1HTPYZefyRb42Neew2HW8Kn3bOLNr1lOoSTy6xNjbHZZlvz3IpdKaLPoOOqPEc3kWVNpxqCQ8ZXdveSKIjfUnb1uwaCUT3ZL1Tj1uOw6hj0xDvmiuOQKToyEeXNnLRm1lHS+NKvt/ikKJZEj/hh/6vVwbbWVWxud3NZ09vb+i4Uoioz3P47OWEfLNe9CxiBSSQHdOZxLl5JCLsmBJ/+JXDp0Xh4pFxK5Ukf7+g/Qtu4v0RqqiQaOk8uESUQGkCn0KDU2JJKzP8gpVOaJiPlVrjQuiUjZtm0bd999Nz/84Q/55Cc/iVKp5EMf+tBZ95EbjSiyRbxHD9EfHqbeVIMgSKjteBVjfX8mny1P7V1XaZ61PTEVG6F3//cJuvdQu+w1dGz8EBKpAnPlKgBMjk4AEpFBABwVev76n2+aUWsiCAIbr29k6/UFnNbjfPDj21i5robjh8cpzdEhks0U6D7ioVQS6T7q5cFfH56xjUwqWfRE3lQyx1BfcEbH0VyYVQoKJZGReBqdXMp+b4Rms5ZO2+LnjAiCQL25mj3uQ3ziiS/wu+OP4E0GaLTU4dTZabM1ohVtFIQs0Uw57WE1qml0GWmonPl5K5ptSCQCazuc03xtBEGgxaLj8ztP0htO0BtKsN8TmZw+3RdOUGNQ86/XLWO5Y+a6NrWCfEmcLOY8hTueoSiK1Bg0OLUq8qUSgQkxs88TplAqcdgfw6HJI+MkpfyveduqW6eJAofOxruvuZWCqGE0IaHBpKVSp+LftnVin6ghqtSp5hQpkXAamUxCW7ON43MMHtx7wkc6W+BT79mEVCLgTmWo1KkolkQ2uC5Mfr3TXo4GRbJ5zEo52+rseBIZPrCmcd6uGqNSNilSNq2o5F/+cjNZRflvlu+PcfKZEZq0Kkq5EkqzkkBk7mjK73vcfO/AALc3OVlTaV66L7gE5DIRCvkUVc23YrC2IlfbaWkaXtJZOheDVHwMqUxNbcerFz1Y8GIilatR6yvQmmpBkCBT6EjH3dQtezU17ffOu79KYyU94ZJ9lSuLS1aGfs8993DPPfcseHu5QU9JrcD0td9z7P6VrF93MwAGawtGWzv9h/4PuULLu5a/blZL6nioD4OtncrGV6DRT6WCrJXXEBrfj1xpwOJcSWh832SPvlwuLec9+5/AWrkajaGcTtAbVJiNbtLxIjJJmoYWGxJBoLfbT+uyqfRQsVgiEkrRfcTL4386jtmqIRHPUiiU2Hpz87SCsoWSSuTwe+PUNlp44ak+Xni6j+WrXbzq/tUzti2VRMSSOFlBr5BK0CtkxHMF7mqvJFsscft5PJne1nID39z1E0Qg2BdGKkiwacw0W+qoM1Xz6va7eGboeWLZqe6cv3/LWozaqQt5IpdEJVWikMt41fXNrJqly+UDaxr5yeFhdrnD7B0PkyuVuKelipsaHJwMJ2mx6OZsvZZLJZiUcnypzDSju5OhBE1mLVKJgBSBVoueXe4wuWKRh/q8vGlZDe5EmjWOBM2WOj629a+QzJJuurFxDXt93XQHG3FMlEDZTytyrjqLSEnEsuj0StrqLTyxZ2TWbfZ1+1i3rAK5TEIsm2cwkuJ1HS60irmdlM+XNoue33W7yZfKwypvMNvZ7LKiXkBKsFKnmrTG/+nREQKpLJYaA9VKJS/2j1Bl1/Lg84NkfCl0dXq8kTS1FbOL5KP+GPd31bL2MhMoAKnoCGqdE4m0/G/QsOJNpGJfQdD4gY5Le3CLIB0fR2uswV6z6VIfyoIw2pdRzGfIZWNE/UfRm5uQyue/jhrtyxg6/ltymQgKlenCH+hVlozLw2xgAQhSKZLP/Q2+Gj1C9xAN5inTspq2uygVcyQiQ4Q9ByZfz6amzMbioT4M1lZ0pvpp66q0DpZv/RiCIMFStYbA6IscfvbfJkP/Ifc+wp4DnNj1dbKpsplbOu4hk/AgU+jIpIJIJAKr1tewd8fQtLX7uv18+4vb2bdzmDte08Ut93Ty+neso67RwvFzTA/t3zXMj76+g4d+c5i+bj/XvqKZE0c85PPFGbOFnn+ylz/84uC016xqBWqZhBvq7OclUADWuVbyjbv+nU9s+38EU2Eq9A4kgoS/WPcW7my7iTZHHY2WGmLZqfZel12H7jQvli+98B0e7XsWgPtva6ezcWaXi0wiYYXDyAujQQolkde0uXjRHSJbLHHIF6VlnlbzRrOWk6HE5HwlgJPhxLT9bqq382DvOM+OBFnlNPKHk24ajFp8iXGqDVWzCpRT3NZYgSBIiKYHZ7xXqVcRyebpDc18iksmsqi0cobYQ89waIZdviiK7Dvh5Zo2B0PRFH/7xGF8qSyNZt2C2+vPhSq9CqlEoCSCaWIW1EIECkCtQYMvlaU3lGDveJj+SBKpVUV0LI5SIeW+G1t5/pCb+EAUpUbOM+MzDRIjmTzD0RRj8TStS1Q0vtQkYyNoDVN1QHpjBf5gNQpJ/1n2uvxIxcdR62Y6WV+u6Ez11C57NRpDFXKlcUECBUCu1GOwNBMaP3BhD/AqS84VI1IAqk2V9NhEGgMiNcapaIhcaaBj44eobLwR/+hOoCwkjjz3nxRyScRSkURkEL1l7sJcAJ2pjs5rP0o+G6OQKz/9B8f3Udl0M5bKVYz2PAjAWO/D2KrXo9ZVkk2XL7JrNtUxMhDmyP6pttxYJEM+VyQaSdO12kVbp5PGVhsdyyvpPjK3SBFLItnM7DNPgr4kK9ZWc3D3KD5PnE3XN6LRKvjR117gZ9/dPW3bnmNeBnsD02otLGoFNo1yyWoZFDIFdSYXWrmaSr1j8jWZpHxTMyj10yIppyOKIn2hYY77e+f9nDarnlyxRKfdwLoqM6PxNF/d3YtZJWd1hems+3ZY9Rz0RfmHp47QHyl74pwMJ2g+7Qa43GFkbaWZ/7e2iRvq7CTyRbocBkZibmqMZ7+Id9kNrHPmOeadOR9EK5dhVcv45yd/wLOD099PxLOESgEeHXycdRuk/Mt3X6RneCpvPh5MEk3m6Gy00h2MU2fUcFdzxQUfricRBFrMOrRy6aJN0wxKOSalnB8fGWaTy0qdQUNJKnBw3zgbuypprjYyHkiikkqpzUvpTWfwRdPEJ7xskvkCn9/Zw2d3dOPUKi+LacezkYqNojFOL9RuW70JoTR4VnfUS4VYKhIY3TXD0CydcKPWXzki5RQmeyf2ms2L2sdatRb/6I6rpm5XGFeUSKnUO0k02Kn0ZGCW+g9LxWpSsVHy2Rhh70FAJJ3wkE0HEcUial05clDKz12sp9LYkKtMZJIBsqkA6bgbs3MFrubbiId6GTzySxLhfiqbbkGpsU5Ga/RGFXe+djmP/O7oZEQjHsvQ2unkvrdcg0o9dbG1V+iIhObOxe/ZMcQvf7hn1vcC/gRNrTZWra+hutaEWqOgdZmDgC/ByGCI8dFyu20mncc9EiURzxINpxkfjdLX7ceiUmCfKDDd8XQfP/7GDlLn6QoqESS02ZupNsyMzBiUummRFIAD40c5MH4MfzJIKp+mO9A3b9eGTiGj0axlTYUJrVzGfe0uagwa3ru6YV4DunarnoFIimi2wGgsTSJXIJLJU2OYegqTCALvXFlPvUlLi1mHXiFjlcPIaHScasPZL+KCIHD/8uUMRoaJpGe2OxvkGbTKWr6792ek8lP/7sFwFHfOzeaaNcgdo2xeUcnHvv48+UL5IjrmS1Bp06KQSzkZTrC20szdrbN3rS01LRbdggwCZ6PWqGY8kWFztZU1lWY6zDo+8Y71/OVrVuJy6FHIpZh0Smp0KvLJPP/vey/w7d+X67Qe7fdhVStYV2k+q8vypSabCs6Yc9PSuRIQiQVPnvf6Y72PUMjNPXx0sfhHdjB07FfEQlPHlk54ySR8aK5AkaIxuKhsvHFR+5idKxAQCHn2X6CjusqF4IoSKQqpnH9583+gstnxPPTIjPelcjUKlYlM0k/YewiJRE464SGXDqNQmREECanhEXa/493ko3O7D6o0NrIpP9HACXTmRmRyDXKlgZqOewl7D9G06u3IFbppIgWgY3klMrmEvm4/AIlYBmeVgbau6TdvrV5JNpMgHiqPAcjnivi9U9GGg7tHCM9ilw8Q9CWwOnTcem85dQRw7U0tvPl9G1m1robdzw0CMNgbwGrXUlltZHQwzO7nB3n+yV6ur7VNmtwN9AbxexP85if7yGUL5M5jYu17176JO9tumvH6KZFySoQ82vssX9rxXb764g/42q4fUalzEM8m8Cdnhv3P5O83tnLNRNTkFfUOXr+sekF1GU6tknqjBpdehSeZYSyexqySo5XPHpGQSyV8/sblmFQi0Wwc1yzi60y0Cg1mtRFPwj/jvVxhHJOmCbPayDFfz+Tr3mAEtVbGfV2vZO/4Yd5wSysSgcnZPuOBJE6blicGffQuwkF5KdhcbeUNy87NNK3WoMGpVdJo0nBzg4MPbmhh3bIKJBIBqUSgocqAUafgrq2NrK+00LDMxvB4+fc/EkuxymnknSvrefUcNgKXGrFUJJeNojjDGEyQSKlqupmho7+ke/c3znl6b7GQwdP/BLFgz6zvi2IJ7+AzlIrzP1yIosh432OM9T6M1lRHaLx8g86kAhzf+RXsNZtRqOc3EnwpIEik2Gu3TP4NrnJlcEWJFACJVErj+97N8P/9nPwsNvpKrZ1YsJtMKoDVtY50YpxsJoJCbQLA/8yzFOIJ/Nufn/MzlBobmVSAaKAbo61t8nVr5TWs3PbJybRRWcxM3VwFiUDXahf7dg5TLBRJJmLoDTNbErU6JTVVQ5zc+12y6TCH9/bxw/95gbCvj8ETO3GPRInHMsQiaY4dLFvGl4olAr4E6VQeq12LVCqZ7CTQG1RU15lpX15Bf48fURQZ6g9R12ilut7M8ECIseEI46NRnFoldcZyhadnLMrdr1+B3xPnS//yOE8+fGKR/xpTWNQmdIqZXVUGpZ58Mc9I1E0yl+LR3md579o38Zfr38pxfy8ttgYazLWcCMw9t+kUEkE4pzSVIAh8fHMbW2tseCdEimueQYpSiYAn7seo1KNVLMyJ16mz4TtDbImiiCd2jEROyXLHMg56pqZtR6NJzCY9VTpn2TwtG8Xl0DHqK0eexgNJCnYlD/S4KYoidedQaH2u6BUyOs6h6wvghjo771vdgCAISAQB2RlTyBtdRkx6JWa9ilu6qkgIIqP+BKWSiDuRoWri3+ZydW49Za+uUM78+9hrtmCv2USpkCXiOzLvWrFAN4X89KhqOl6uX0pEh2bbBU//E4z2/Il4eP76l3R8DM/gMzSvfie17a8i4jtCqZjHM/AUlooV1LTffdn+nS8EGn0VmeTMB4mrXL5ccSIFwLRiObrWFsZniaaoNHaC7n1o9FVojbWTkRSlyowoigSeex7z2jX4n3p6zvVVGhvphGeyI+h0JNKpELjGUEMm6SObnqojWLOpDr8nzu9/+gdq7Y+jn2grTsXd9B34IaViHpVKSo3Lg1Su49gLXyAf/QVatZe+/d/C0/8nVqypolgosfuFIX794310H/Gw89kBvvWFZ9EZlChnsX8HqK4zk4hniYTK6R1XrYnmdgfHD43j98bJZQuTEZpEPEsilqW2wcqr3rya2kbLWVNQ54pGoUYiSPjs9q/x88N/YCTmpsPewurKTmoMlTSaa2mzNdETuLAFh4IgUKFV4UlkGYtn5hUpAO64d7LOZiE4tDa8Z0RSDnqOky34UUilVBnbOOSdEimpRB6n1YxEIsGiNhFIhqi26xmdiKqNhJN4JSU+uqmN/7hh+ZxmdpcbBqX8rCMWbt9Uzx2bGwCoMagpiCKiQsJoIEEwncN1GTnKzkYuHUahNCJIZhYTC4JAZeNN2Go2Eg/3M3D455Oi40yKhQy9+39A7/7vT0vtpOJjCIKUZGR4xj6lYp7x/idQ6ypJRmfvCDudsPcwRnsHeksTan0VIJCKjRJy76WiYXHpkpcCKq2dXCa8oCjUVS4Proyr3iy4XnUP4w8+TOmM2QAqrZ18NorWVIdaV0E64SWXDqFQW/A8/GeK2RxNf/k+Er19FFKzp1SUGjuxwAlUWsdZDY4UKiMGWzuBsamCSLNVwzs+uIVcegylMoVaXa5/ifqPEfEdZeTE70lE+hAkYHS9kcqmmxFIcc2qQcY8jUileW6+sxqlSsZQXxCLTcufHzhKzzEvGq287IQ7B3KFlKoaE4O9AcZHo1TVGGlsKTsxGgwqKlxGPGPlp0DPWBSLTYNSJaOh2cbKtdUkYguzKV8MEkGCXqkjmArzZP/zmFVGLGoTEkHCJ2/8G25u2kqbrZHuQB/f2/tzjngXHs1ZrPuoU6skkM4yFE1RrZ//Rjge91Gpd8673SkcWiveZDn9lyvk+Nijn+Mbu3/MfZ2vpMmsBcGOPxnimK+HDz30SfIpqHWU17dpzARTYWqcU5EUbzqHSSHDpVcvuLvmSqChysjqtvJ5JZNIqDdqsa62883Dg+gVMvSXabHsKbLp0LwzYPTmRhLhgfL4jdDsUcJY8CQKtRm5Qsvh7Z8lFiwXkKdiY5idK0jFxygVp9fPlX1NVFhd60gtUKSYHcuBsoBSae2EfUeQyjWXrXnbhUSm0CORqciclqa/yuXNFStSTKtWIpHJiJ3onvb6qWI2nbEOlc4Jokg02I2kqGDwBz+i/e8/gtJqRW40kB5zz7Y0GoMLnamB5tVvnzcUaqteT8i9b9prOr0Sm6UclZAKXvLZGMnIMFbXeoLj+4n6TxBPOMlmNTjrricQtCOXxbntda9Hb64hEx9Gb1DhHomw4boG8rkiw/0h3v5XW7jvrdec9XhqGy3s2j5QPjanHolUQtdqF9X1ZipcBtwjp0RKjArXlHmTzqAiHpvdPv58MSr1GJQ6SmKJZmv95OsGpQ65VE6rrZHhqJtHe59dUKfPKT711Bd5cbScX16IYLGoFUgFAV8qu6B5SOOLjKQ4dXb8ySDumIfhqBtPwsdNjddya/P1NJl1DMeyLHe28fVdPyaSViLJy6m0letdbBoLgVSIaoeeUV+cQrFEQixRpbt4KZ5LRbtVh1wqIZTN41AryOTOvTbqYnDqoedsKDV2ZAotUrmG1BwmYtHAcUz2TppWvZ2a9rvpP/hjMkk/ydgoJmcXMrmWZHR6NCUZGUJrqkNrrCEZHT7r7z6fjZNN+THYWk87LhsR72HUuoWL75cSgiCg0tjJJH2X+lCuskCuWJEiCALGFV1ED013bz31dKA11iGRyDDa2ynmU+RGg6hrajAsKxstqV0u0qOjs66tUBlpW/+XCzL90RnryGXCFAvToxAGQ4JEUk1g6E8cff4LJKJD2FzrkMnVBMZ2kStWcHDPKF//j6fp7XNiqdyIUm1GZ2ogERlAb1RRKorYnTpWrK3G5tRhtmrmTPWcYv3WelLJHJXVRiQTtQA3vrKdO1+7gvpmGyePeRFFkeH+INX1UyZZeoOKZDyLuED32sVgUOpY7mxnmaOVNuvMNnCL2oRNawGBWQtPZ0MURQbCIzxy8mkA/umJz/P0wI6z7iMRBN7YWcPHN7fNaqF/JuNxH1WLiqTYOBkc5K8f/jTPDe+m0VLLa7vuRCaV0WzW0h1KoFSsI5iRU6+7EQGQqMtiyaYti5TaCj3Dnjj/9+cTKHRy6i0z63xeatzRXMkGmYrg0SD7dozy3Qfmr+W4lGTTYRTqsxvMCYJA27q/oLr1zjnTPfFgL4aJmjebaz3WqjV07/oaxXwKvbkJg7V5WjcOQCIyhM5Uh0bvolBIk8tE5jyGdMKDQm1BKpuKGqo05XTHqU7HlyMqrZ1EqP+sf7urXD5csSIFwLhiOdFDRyimp2opFGozbes/gFJTftIx2ctDDNMnRzF2LZvcTl3tIj16btX3pyNTaMsWzYkp35NCLolMmsLjq6WQTyFX6ikVsmj0LvSWJkrFLKK0ip6jXoL+JCXBScPy1wCUn5Bio5MFtxablq03tfDat65Z0PEYjGre8hebuOnOKddLuVyKSi2nrdNJJJzGMxZjeCA8bS6R3qCkVBLPux15NlZWLOPauvV8ZMt7ub1l26zbvHH53byq47YFi5RYNk6mkKU70M8R7wl6g4P8aP+viGZmFlOfztYaGxULqHkoloq4497FiRSdlUKpgFwi48n+56k7zUejwaSl1axDLTej19xCLCAiamT4JyzkrWozgVSYGqeeN9/ewVN7RqiuNS2oduZKRyYReP1NbXzl7Zt417UtDHtm99W5XMimA/Ome6D8wKQ11JBJemd4p5SKeXKZyLSUi6vlDvTWFppWvR2ZQovB0kosML3DJxkdLj+ASeUo1VYySe+cn59OeFBrp/9+VdpypFn1Mo2kAKh1FfhHdzB8/HeX+lCusgCuaJFiWrGCeHc3L97/NrLBqa6K011ljfZ2zBWriB/swdDZOfm6utpFaglECoBa6ySTmLpYpGKjyJVm6tu30rLmvdR3vQF7zSYkUjkGSysKtQWVxkKpJHLdzS3TBIVK4yCbCqA3KpHJJOgNKlRqOfZFjDe3OXRU18180lMoZbR1Onn4d0eQSIRp9S2yCSETj5dTPuOjUTzus9/wF8o9Hbewpmo5GrkamXT2tt9r69azzrVywSLFk/BjVhnZUL2Kr734Y1qsDbTaGnl4IrJyvgyER5BJZVQZFn4xN6uMvGXla3jVstvIFLLUmaZEikIq4S/WNPIXa1r59h2buK/SjtaumRyceCqSAvCqbc187xO3EC0UqLzMi0iXCpVCRpVdR32lnvHA0vmDLDXFQo5UdHSGc/VcqLR2xFKRoaO/JujeOylWcpkwgkSK/LQOIYlUTuOK+9Eay27aemsLqdjoZFFtMZ8mn41Omq+ptPazdqpkEl7U+ukRE+WESDlTvLyccNRuoab9VVcjKVcIV7RIUdptrPzSF9A21BM5cHDWbaQyFTX1d5MZHcOwbKpTp5zuWRqRopoo0D1FIjKE3lLPhuvbMFib0RprqGkvzymyVK6mde370U60Dy9f46JrtWvqO2mslIp59PoSFpsWQbK07YHbbmsjFk5T12iZsbbOoCQeLd80H/rNYXZP1LZcLJw6G/FsglRu/i4jbyJAhd7OXW03E0yHWVHRzitbX8HjfdvJFec261soR309dNhbkAgLP0UEQeCu9ptYXVmO3p0uUs7EPx7HWqHHk8xM7KsnlLHys6PlOoNwJke+VMKpvbKm6p4vVXYdkUSWZHr6v2GpJFKYY4DnxSQR6UeuNKDULMxbRJBIMTmXI4oFxnofYaznIaBsBqdUW89a86ZQGdFbmnD3PQaUvU2kcg0yeblzqixS5q6tSCc8qM5I66g0dhRqy8s63SORKtAaa66KlCuEK1qkAOgaGzBds3pOkQKQ8XiQG43I9VPRCE1NDZnxcYrZ8y8WVeucpBPjFHJJkrFREtFBtMb6WbcVJNJy7YleiVojx2KbXnMgkcpRqExU1wpcd0vLeR/bmVhsWt7z4a3c8ZrlM97TG1QkYhm84zHGhiNEwkvfknw2dAoteoV2QdEUT8KHU2un0VLLq5fdxta6DSx3tqOWqzl0mhfJuXLMf5JO+7n9/RtMNbxpxb1ntdP3umO4XEY8iQy94QTfORhGpWjlqSE/oUwOdzyDQ6O8YtqOlwq9RoFeI58xx+injxzntR97kD9uX7pWdVEsERh9kXTcg7vvMWKB7nn3iQd70VsX97toXHE/DcvfROua9xIYe5HA6K6ySFmA0Kld9hoCY7vKVgepwDSXW5XGQXaOSIooiqST3hkRE6lMyfKtH1vwzJuXKgqViWI+NaN76iqXHy+JK6B59SqiBw8hlmZ/0sr6fCgd07s0lA47cpORePfsro6LQWduIBEZ5ODTn6Z719dIhgfRmevPuk99s42b71o265OUUmtDLouzbOWFcdzU6pXojTPTCDqDkicfOsF3vrgdi01LLHJxRQpAhc6OOz7/8EVP3E+FvnzBfsPye6jUOxAEgSZLHcPRc4+Q7RzZx56xgxzz9bDc2T7/DrMgkUi4t+NWpBLprDOYCoUiAV+ClgYr/lSW/z0ywi0NTj59/WoKxRDdwfA0U7OXG1U2HW7/9JTPgDuGzaQi4dmOd/CZJfmcsZ4HGTr+W9z9j+EdfIbQacNJ5yIRHURvbjynz1Np7TStejsj3Q8Q8uxHuQCnV5XGhs5URzzURyblR6W1TVsvk5pdpGRTAcRi/mVde3I2ZAotgiC9Gk25Ariwk8ouErrWFkq5PMnBIXSNZZOoUj7PyM9/SeD5F7Bffx1Kx/Q5G4IgYFzeRfTwEUwrZkYVFoNaV8HKbZ+mWEjh6X+S4Pi+ecOpRrOaVetrZn1PpbHP+YR0Ial0GUknc9x81zJE4Ltf2o4oihfVkXKZo5X940e5tm79Wbcbi3lY61ox4/VaYxUj0dlby+dDFEX+e+cPKJQKvHnlq6k1uebfaQ58nji/++k+vONxnFUG3vFXm1Eoy6dbKJBCKpNQX2ng7WIdjw34uKXBgVYhQybEOOrzI5cZqHqZ1KOcSaVdOzka4BRj/gTrllWgL+0hFZ9/FMJCiIVOUtlwI+P9jwPCnH4mp1OOgNjm3W4u9JYmHLVb8Qw8gaVy9YL20ZnqSUQGQRSniQ6V1kE+G6NYyEzr4IFyga3GUI1E8pK4xC85giBBrjKSy0Qni4lPkU2HKBVzV2xKLBbsQaV1olAZ59/4CuAlEUmRyGQYujqJ7NtPcMdOxGKR45/5LOG9+ynEE4R27UblnOl3YVw+s4X5XJHKFChUJlytd9C8+p0Ii6hlOJNyH//FFykbr2/kTe/ZgL1Cj9mioVAokUpcXGfGjTXXsMd9iPwsYdj/3vkDDntP4En4GY65Z4101BirGInO3vI5H+l8hkKpwNfv+jfubr/5nNYAKBZK/OhrL9DS6eTD/3wT2Uyeof7Q5PshfwKrXYsgCGx0WfnEtR1oJyYbW9Uig7EU7kT6ZVM0eyYuu25auqdQLOENpVjT7sCkjJGfY6r2YhDFEpmkH0vlapQaO1bXOnLZKLkJ9+hSqTBLR06OQi6xoM6es+GouxZBIkepXpjY0ZkbSIQHypGU09I9MoUWucpUFjBnkIwOoTXVntdxvtRRqEzks5EZr492/4HxiTqgK5Hh47+j/+CPXzLTnl8SIgXAvHolI7/6DSc+93mCO18kdqKbrn//V3StLST7B2ZEUqDcwpw42UshsXTdBFKZCr3l3MLBp1Drq0jGRhftqLqUyBVSNDrFRa9LaTTXolNo+ZtH/nXSAwXKUY69Y4d4YXgvzw3tYnVFJ3rlTEO2GmMVY3EPhXM4QWPZOFKJFOs8HhjzkUxmSafybLulFb1RRWOrnf6eKdEZ9Cex2mc3k6s1aAimBdzxDAfcZ/d9uZSUxBLp/NI7FOcyUVxmEbd/SqR4QymkEoE2lxS1vEAmff5dZ7l0GFEsoVRbaVxxP67mW9HoXZPzcPoP/oQj2z9HKj4Vlcumw0gkcmSK8xv0KFfo6Nj4/zAssLZFa6wll4mQjo9PdvacwmTvnHVGUDJSblW+ytwolOVIyunkMhEi/uNLIoQvBWKpSDYdIpMKLGh21JXAS0akmFatopTJIFWr8T76OLrGBmQaNbqmsmBQOWZGUlQOB+qaasL79s1471KiNVZTyCfJZcLzbzxB2HuI0e4/LulxmMxqouHZRwdcKARB4O+2vJ/Xdr6SXxz5IwfGjwLgT4VIFzLsHz/CE33Pc33Dxln3d2itSAUJPz/8AIns4sRnNBvHqNSfd3orncyjVMmQSMunV1Obnf6eKRvukD85o2D6FMsdDqT4yReLPN738KK/w8Xiib7n+eij/06huHTusLFgD0ef/0+MhR24/UkyuQKZbAG3P0GFVUsh7aFYEiZvIJ6Bp+k7+JNps7MWSibpQ6WxIUikaAwu5EoDWmP1pPFaOuFBFItE/ccYO/kwh7d/Fv/I8yjUliVJf6p1zlln/8yGVKaiafXb6dj04RmpCZOji7DnEMd2fJFcJkLfgbJrbSoxjs50VaScDbnKNPHvPBUxC43vRyZTTw6RPJNTD46BsV2M9z95SR8kZyObDiEIEgzW1peM9f9LRqSoXVWs+soXsW+7jsiBg2ibys6mp0TKmYWzp7BuWE9w566LdpwLQSJVoNG7Zg3jzkUyMkzIc2BJTxqDSU00svRPy/NRb67muvoNrKpYRn+4bAs+HBnDqbMTzyUxq42sc62cdV+JIOHOtpvYPrSLXWNzd3zNRiybwDBLdGaxpFM5NNqpuon6ZivhQJKx4fLNNBhIYrXPLlKarXWEE49QyD4AlA3lLkeO+nvwJPz8uXdpilihLLSVGivkPCTSef77Fwf49Pd2MuZP0lpZIjC2m3DOilhKI4olwt5D5FJBjj73HwTGds+65njfYwTde2e8nk56Z8yuUWkrSCc8lEoFcukwBlsbmWSAkOcAMrmGwOiu8071nCsm+7JZrez15ga0xloKuRTewWeJ+A7Tf+gnaA3VC3LMfjljsneQCPczeOSXk6/FQ32YK1aSz8ZmvZaOnXyIYzu+yMjx3+MfeZ7Dz/4bvuEXLuZhn5VsKoBSbUWlsZFNBeff4QrgJSNSALT1dZOiRNc88f8tLUhUqlnTPQCWDesJ792HWLy88nc6Uz2j3X+i/+BPFrR9LhMhn42RSy/dD7Oy2sj+ncPEohe/ywfKNvO+ZPn7DEfHaLbU8cbld/O+dfef1b/kDcvv5rq6DXQH5i+EPJ1oJo5RtXDTvLlIp/KoNVPjC9QaBZtuaOKR3x1FFEWC/iSWOURKhc7Ox6/7AFtqO2mzNV22IuVkoJ/bW27ggROPzlo/dC5k0yHMzlXkMyGcJgnPH3IzNDpOZuxXXOt8HIlUjlfchIBILh0hFR+jcdVbcbXeQdh7aNY1w97DhD3TxerA4Z/j7n0U1RntuWpdBemkl1w6jCBI0JubSCfc5NJhKhpuQBSLKDSXRqTMhSCR0rLm3VgqVuEf3YFEqiQdH8dSsbCi3JczOnMDLWveS9h7kGIhgyiWSESHMDtXIpYKFAvTr3ulYp7A6IuotA6qmm9l2eaPYHJ0kggv7jqzlBTyqWm1J+UOMDtKtZXsEt4LLiUvKZECTEVQGiciKDYr63/4XaTK2U2xtPV1UCrNOWzwUmF2LkdrrCXsO0IhP5VyyaYCdO/+BkPHfj1t+1OtdInw4JIdw5YbmqiuM/PD/9lBOHhx0z5QNnfzT0wVHoqMUWt0cWfbTWc1STtFm62JnsDiPDVi2Th65fmLlFQyh1o7vQNlyw1NeMdjjAyEScazc0ZSALqc7bxzzetxGSoYj19+g9BC6QiBVJjXd92FRq7m+eE9S7JuLh1Ga6xGoTLT4cojEeCDN4eocehYcf0/0rjizdRWN5AryokGjiFX6FCozOhM9SSjw8RDfaRi5XlcicggqdgY6aSXRGSAYiGHWCpSyKcJew7garkdW/X0DjK1zkk+UxY/CrUFldZOOj6OVKbCZO9EKlNfskjKfOjMjYilAhUNN2C0dWCumD3SeJXpqHVOVBo7Ed/RcqpPFNGZ65FIleSz02ufIr4jyBQ6Gpbfj7P+emRyDTpz4zmlG8+VkRMPEPZONXv0HfgxgbGpTEAm6UepsaPQWK5GUi5XtHW11L/9rairp9pHpeq5/SYEqRRtQwOJvvnVcNrt5sDf/N2SHOd86MzlKcxqXQXRwInJ10Oeg2SSPuLB6dOCc5kIOlMD8cjSmV1JpBLuet0KqutMbH/s5Pw7LDEOrRVvIkA8m+Cg5xgdizBXa7M14o57iWcT8288QSxTrkk5X9KpPGr19EGQCqWMukYrj/7xGM4qA2rN/G20VXoHQ9ExDowfO+9jWgpEUeSRk0/zb898lRpjFRqFmluar2P70ItLsHaJXDqMQm1BY6yh1RbkmiYlysIAaze/AcXEv0tHg5VYWkbQcxitsQ5BEFDrqygVc/Qd+BEDh3+GKJYYOvprevf/AKlMhQgcee5zjPc/QcR3GLW+Emfd1hmCozyHS0/UdwylxjrZaqyaqB+pabsbo63jzEO/LNCZ60GQYLS103zNO5Evwe/45YK5YiVh72ESkQF0prpye7LSMEOkRAMnsFSsnFaTpFSbF1U7eL5EAyfwDDw1+d/ZVGCydV4US6Rio6i0NpRqK/ls7CVhVveSEymCVIrrVfcgLMKpU9vUQKJvfgv41MgYyb5+Com5b3yiKE4beHi+mOydRH1TN6lsOojRvmyil7/8AxRLRfLZGLbq9UT9J2a0Tp4PgkRgxdpqBvsuvip3aG0EUmF+dfRB2myNtNtnTlCeC71SR7WxkkPehbvPRrNLk+5JJafXpJyiocWGezhC+/KF+S9U6Z3scx/m35/96oJGBVxonh18kd8de4RXtt7IX214GwBNlrpzbvk+nXINQAmFyoStah0unY87Gh5HZ27gwcHd/PjAbwBwmNVkikpSkX6MExOEJRIZGn0VUpmSUjHPyInfk02HyGdjaA3V6E0NiGKRiP8YQffes/qTaPSVRPzHUGlsyOQapHLNpGur1bV2snA1HM9cFjb9p5DJNXRu+Ts0hnP39nm5YrS1EQ/1EvEdxWBtBUCu1DPe9ziegacnt0tEBtGeUYysUFko5BKUihfequFU504qPkYqNjp53Y+H+xBFEd/Qdgr5FGbHcuRKPYJEelEF1IXiJSdSzgVdUxPJ/vkjELlQ2evibKmh2LFjHPzbf1iyY9NbmqYV0GZTQXSmeqQy5eTcjtyE4j+VS01GR5bs8wFq6i1EI2kioYub8rFqyq3Aj/Y+yxuX37Po/bfUruXZwYUXRS9l4exskZLG1vKT+UJFSp2pGqvajF6hZSCytP+m58L+8SPc3LyVGxu3UG8uGxG6DBVEMjGSufP7bWRTQRQqIxKJjJTKgvWat9Gx6cPUd76Ok8EBnhp4gUKxgCAIyBR6iigwV6wmnI4Sy8SxutZR1XI79V2vI+jei9nRhdHWjtZYR33X61m28a9Jx90ko8NYK+eeKF7ddjeCRDo1LVhjm9W19VPf2cn2A0sz+2upUJ2HydzLGbW+ColERjzUi9G+DAC50kAiMkDUX35AzGfjE+nI6SJFptAiSOQXJeWTTYcQEDA7lxPxHSt3IAkCxUKGbCqAb/h5atruQSpXIwiS8pTsl0CHz1WRQrkDKNk/MKet/ilOiZTUyOic26TH3GQ8nnnXWigag4t8NjYZesymQyg1VlRaJ+mJMe25TBi5yohEKsdo7yDqP7okn30KpUpGVY1xmiHZxUAqkWLTmOl0tEzeFBfDdXUbOOQ9TiQ91U74scc+N2etSiwTx7BU6R6tfMbrzioD9793A44FTrS2a618/a5/o93eTF9oaPL1eDbB/x68uGPmS2KJw75uVjinpzt0Ci1GlYGx2PyjDOYil4kQ8R1BMZF++dnhB/jyC99DpatAoTbjjntJ5dJ8e8//cczXg1pfSV+0EalMwf8e/B0/Pfg77NUbsVZeg97STMfG/4er9ZU0rHgzFY03IlNoUajNaAzVmBydyBRz1wOpdU46t/wdVle5XqWu83XYqtZO2yaTLTDojjLivTK9NK4yHUGQoLe2oNTYJ8WpQmlAIpGTTnoRRZFkdAiV1oHsjJlHgiCUUz4XQ6SkAig1VvTmJhKRgXJ6VGlAa6wj6N5DLhOZ5tGlMVSRWuIH1kvBVZECqGuqKRUKxLt76PnyV+ds452KpMz9BJX1+RELBfKR2fvsF4tUpkKldZCMjlAqFchnouUWM52TTMKLf2QHYz0PTlogl82djpJNhUjG5hZTi6Wm3sLY0MUPHW6pXcdrO+88p31tWgvN5jr2jZdNjYqlIv3hYZ4dnL2GIpqNL00kJTl7JEUQBJra7Ivy2Tg1j+iQ5zgP9ZR9GQ55j/OHE4+dk2HduTIUGaNQLNBkmem9UW2oYPQ8RIpn8Gl8w8+j1jkplUoc9p7Alwywf/wohVIRXyLA3e03c9x/kkd7n6Wm5SYeOFhJqSQyEnVzwHOU0mkpTpXWgUJlRCpTTLOFr132alwtd8x7PHKFjmJJwoPPDxDOaGcM4+sbi1ISYTxweXrYXGXxOGqvxdVy2+R/W13raFz1Nor5FPlsFN/IC3PObFKoLRclrZJJBVBqbOhMDSQjQ2TTQRQqM2ZHF96hZ1HrK6eNR5gcp3AaqdjYFVenclWkULbV19bXMfrr3+J/6mmSA4OzbpcLhlBXV5MePYtI8ZfDa9nA0oXZtMZqYsGTpKIjCBIpcqUeja4Sz+DTuHv/jFpXidlRnj9ksLWSTYfoO/ADxvseX7JjcFTo8V+CJ8c3rriHdnvzOe+/oqKDgxNTkcPpKKIosnN0H8UzbvC5Qo5IJoZNe/7dG2e2IJ8vjeZaDnmP86MDv+bJ/ufpDvQjIhJKXTzReNh7nE5HK9JZDMhchgpGY+del5KOj1O37DXUtN1DX7gcMbq99QZeHNmPLxlAIkh44/J7eNvq1zISG6ehykihWGLIG2U07iGaiTMcmT/1ojVUz9md8+zgixzzTQ0b/cwPXuQ7vz/M47uGZ2zbMxxGIZfOmC90lSsXnakOs3NqFphaV4HR1oZCbaH/4E8o5JK4Wm6fdV+VxoZ3aDsj3X+c5lC81GQnxiKodA4EiYyI7xgKtQmTczliqYjOVD9te+1E19t4/+MMHPo/4qE+und9bc52/cuVqyJlAm1jI+E9ZdOn8N7ZHWhzoRCmlctJjY6RC4c5+dWvzUj9ZP3+if9fOpGiMzXgH3me7t3fQKm2IggSbDUbWbbxr+m89qPUdd6Hs/564JQtfzPphIdCbuGdLfNhr9Dh9yzdeheLlRXLOOw9QalUIpAKYVYZERA4GZxeKO1LBlFI5ZiXYChXKjV74ey50mFv4a2rXsPfbXkfPz74Gw56ynnyQGr29Ft3oI9v7lqYv85COeQ5MedU6GpD5Tmne0RRJB13ozFUI0ikHPF20+Voo9pQiS8ZYDzuo0JnRyKRUGOsLPvGCCJttWZ29w5SEkusruzkgOf8OqAe7X2Wzz/3TXzJIId7A3QPhnj7nZ0c7Z9eMC6KIkf7g2zsrGA8kLjsHEevsrSotU6S0WHqlt03I6J2iqrmW6lo2EYyOoR/5MKNsigPtyxf/422dqL+YyhUZhQqIyZH14zOM7WuAgQJ/pGdIAj07PkWpVJ+sk3/SuGqSJlA11SenmzdtPEsIiWMccVyMh4PkYOHCDz7HEf+8RNkgyHGfv8HoCxOZHrdkkZSrK51rLrhX6huuwuToxModzSo9ZUzcqQAzrrrMDlXkM8tXeTD5tCTSuZIJrJLtubFoMlSR0ks8eLYfgKpEA6tlSZr/bQaDwBPwo9Tt7hUzGyMj0YnIilLJ1KUMgV3tt3EWtdKltlbGI/7sGssBGaJpEQzMb6843s8M7iT0hLVReWKeY4HellRMXv7rctQwdgskZRiPj1vrj6XCVMs5iaLU70JPy6DE4fWij8ZxB3zUmkov2fXWpEJUjxxHx31Fg6PDlClc9Bqa1xQJOVsBFNhNHI1T/Y/zwPP9nHn1kbWL3PSMxwhly9H3YolkW///jDdQ2Hue0UL6WyRSPzKOh+usjg0BhdGWwda49w1cVKZCptrPZaKayb9qi4EuWxs0kW4uu1OpHI1SrUVgKZVb8Von/4QIQgSatruomXNu6nvej322s04665b8saKC81VkTKBrqUZQSaj7q33k+g5STY4/QmqlMtRiMfRt7YikcsJ79mLZeN6xFKJ/m9+m6Gf/C/FbJZcMIi+vX1JIymCIEEqV+Os2zpnyPF0DNYWqppuppBbunC0UiXDYFLh91xZxYJSiZT3r3szX3/xx+xxH8aqtdBormUgPP1E9Sb8VOhmdyVeKEF/gu//9/M0t9vRG2c3Dzxf3rLqNVxXv4E2ezP+5PTfaCKb5NNPfZk2WxMiEFiiYr6eQB96hZYq/cwuFyiLFH8yRK4wvQ1zvP9x+g//jGhm7oGA6bgbtdYxWTsSzkSxqE3YtVYC6TADkRGqDeWhehJBQrWhkuGoG6szT3/qGC5jJVV6J2Pxc6+JKZaKhDIRrq1bT3egjyFPjOWNNiptWnQaOSdHIgB8+3eH2N/t5/Mf2kpDlRGrUcXju4dJZ5duftGlJpMt8JWf7+exF4fm3/hlQGXjTTSufMuCtlWoTeckUkRRXFBELp+JIlcagHL30bJNf4Ol6pqz7mNzrUetq0AQJNS234vVtZ5UfOyKmpB8VaRMoGts5JqvfQV1VRWGrk4Czz437f1cOIwglSI3GVG7qgjv3Y+mpgbT6lWEdu1GLBSIHjyEWCphaG8jduQoI7+ccoWNd/dw/N//46LZ78sVekrF7JL279sr9Pi9V17KZ2PNNax1rWDHyF5sGguN5hoGwtNrDU5FUs6HA7tHaety8sZ3rUcmW9jwuMVSpXfyVxvePmsk5U89j2NU6fnQhndg11jwJfxzrLI4DnnLqR5BECjkUzOexMwqI2q5apqFvyiKhL2HiEeG+PrOH865diI8gFTjmExdhVIRLGoTVrUZCQL73YenFevWGKvoCfTxqOf3ZCUROiwdVBsqcce804pnF0M4HQURNtWs4WRwAF84QZVdx1d2fA9bfYgBd7kI/sWjHj7w2pVUWMvdQdeudPHbp3p5au8II9442fzleeEPLmKsxe5jXg70+Pjm7w4zOH7+06avdASJFIl0YfVlCtW5iZSho7/EO3j2GVilYp5iIY1cOZWOPtWyvxhUWjuCIJ3sDIXydO+l9NZaapZUpBw/fpz//M//5P3vfz/3338/Hs/Mp5tIJMIXv/hF3vGOd/CBD3yABx54YCkP4bxQVZT9Kxzbrsf39PQfTXJgEFVlBYJEgrraRTGVQl3twnzNagSZDG1TI4HnXkBhNqOqcJIcGGD4f39Gxlv+MXgefZzQi7vwPPLni/JdpHI1CBLyS1iXYnPoCPquPJECsLqyC1EUsWnMNJrrGI17yBTKofqHep6kJ9B/XpEUsSRyaPcIq9YvvlX6XLBrLdNqUlK5NA+ffJrXd92FRCLBobPhTZxfNM+b8PNo77Mc9pyYbD0Oju2md9/3polfQRAmimenzvdUbIRiIUNOLBGJDM4QEKVinj8fe5jhwWf53+FD/Gh/WdCH0mWRIpFIsGksJPNpmsxTIuWW5ut4tG87qUIKZ+AWjLlGKnR28qUCoVTknL5nIBXGpDZQa6pCJsiR6ZNYjSr6w8PkNG6C0QyxZI5gNEND1dRN4t33dPHKLQ2cGAzxiW+9wAuHLq/RGgDJdJ53/9tj+BbocfTcoTFu3lDHxq4Knt57ZaUFLjUKlYlSIUMxvzjjxXTCQ8gze4nBKfLZKIIgRabQnM8hIggStMYakpGpSNnJvd8mFug5y16XliUVKdlslsbGRl73utfNuc1Xv/pVEokEn/zkJ3n729/OH/7wB55++umlPIzzxrJxA+nRMWLHTzD0k/9FLBYJ7d6LeU05tKZ2lV0dNdUubFs2s+wTH8e4vAv/M89i2bAe44rl1L/zbZjXrWH0178l8NzzhF58Eder72XkV79FLJVI9PbR/53vXbDvIAgSZHLtWYtni4XcoiItZquG8EU2dFsqVlV2IiBg01gwq43oFFpGo+OIoshPD/6OgcjIOYkUURR54qETjI1EyGYLNLZcHEMtm8ZCIBmiJJYYibrZNXaACp19shPKqbXhTZ6fSDns7eZ7e39Of2SY5c6yu2syNkohnyTo3jMRpi6Lj9M7fPaMHeSFI79F1FfjKYJTIs4YlDhy4gGso0+Sk8iprVrNcGSMfDE/MeXaBJRrUEwqA2b1lDBottbzF+vewruueQPLGhwcHwwhk8pw6myztkH/7NADfGXH98jk557mHUiGsKnNSAQJFapqTM4ECCL+VIgYbvzRFIPjURxmNbozxh2011vYeWScYDSD23/5dfuM+RMUiiK9o5GzbpfLF/nPn+xh9zEvW1ZWse2aap7ZP3a1MHgRSGVqJFIluczi7Cey6RDp+DjZ04zXxFKRgcM/4/jO/yYRHiCXjZVdZM8yWHWhnN6aLIoiuXSYTHJpB5lG/cc59sJ/MXT0N+e91pKKlFWrVnHfffexfPnyWd8fHh7mxIkTvOc976G+vp5169Zx++238+c/X5zowkKRadSYVq6g+/P/xeivf4v7jw8S3rsP89qyU6WmphokElSVlUgUCkyrVpYHGgoCVXe9ErnBgOueu3HefDO+p55h8Ec/RapSUfumNyAW8sS7e/A9+RTjDz5MLnTh2kjlCh35OWbXBMf3cfCpf+bQM/9KcPzsKv4UZqvmkgwaXAoMSh1vXfUa2myNCIJQLsxMBUnkkhRKBd6y8jW02mb3QTgbiViW55/o5amHu6muMyORXpwMapXeiSfpZ+fIfv7uz//GY33bWedaNfm+U2c/70hKLBtHKpFSZ3RhmhAKqdgoRnsnIc9Bwp6DHNn+OTJJHzWGKva6D+NPBnlhaA+y+Bh9BQGp3sVylZqBgWcZO/kwUA4vB8f38mxRib7pdl7T+Uo8CT+ehB+JIJmcn+TQWmk0184oZt5av5711avoqLdwfKAcTXLpZy/e7Q70sWfsEA+ceGzW7/ijB4/xpd+8QD5driHSiU4k+gjhdJRSqUSRAuNxDwPuGPWVMzu/WmvNpLPlNI8nmKR/LEomd/nUqIz5y+d//9jZb5wnRyIc6vXz4TdcQ12FgVWtdsKxDL7wpR/HcKUgCAIKlQn/6A4S4fnHrAAUCxmK+RRaY+1kZ1A64aH/8P+Rio2hNdUy2vMn8pnYZD3K+aIzN0weXzGfQhSLszrTJqMj51QukEn66Dv4Y2yuDciUcxsnLpSLWpPS19eHxWKhsrJy8rXOzk5GRkbI5S787IPFYNm4nlwwRPXr7itHUwoFDMvKIW9DRweVd9yGRD71VGVes5qWD30Atatq8jXrhnVs/NlPWPPN/2Hll76ARC7Hsn49wR07Ce3eg1StJvDChWtZkyl0c0ZSov7jVDTcQO2y1zBy/Pdk02Hi4f45RQ2A2aIlEkwhlmZ/uioVS5f1k9cr216BfsKszaoxE0yFCaejqOUq7mq/CZVs8cWup0TbwMkANQ0Xb0KuXWvFojbx66MPIooiJ4MDrK2a8nlw6mz4zlOkRDIxbm2+nk/e8GGg3K2TTQWwVq4mlw6TTnjI5+KMnHiAVzRtodpQwX9u/wbeYA9KQeRR70kqazejl4DKuwff8POEPYcIjL2I3trGi/EQdRWdmFQGdAoNBz3HMauMSCbmbt3QuJk7226a8/iWNVjoG4uQzRdZ5mhh99jBGdv4UyE21azhsPfELCvA4b4AOmOBVFzGr57oob9bSlrmw5sIYFGbqNbVEMi7GXBHaaiaeZMwaBVUO3Qsb7LhDiT4l+/t5PmDl0/aZ8yfQCoR6JtHpHQPheiot7B1dTlKLJdJqa3Q0zdPBOYq01GoTPhHXpj1wS8RGSSdmB6xyKZDSKRK6pa9Fv/IDo7t+CLHd34FqVROy5p342q+jUzST8izf1o9yvmgNdaSy0TIZSLks+VGiGxyev2ad/AZTrz4VY7t+NKMQYvz4e59FGvVGhx11+Jqvm3+HebhooqUWCyGwTD9RNfr9YiiSDx+eXWN2DZvpvbNb6L2TW9g489/yppvfwOJrFykpLCYaXzPu6ZtL9PpcNx4w4x1JHJ5ueBWP/F0eMP1jD/0CPlojJo3vA7fk09fsBu7XKmb1oYsiiW8Q88SdO8lk/CiMbgwO1ei1ldxZPu/07vv+7j7HplzPZNFTaFYIjFL22WxWOKHX9/Bw789ckG+y1Jjmyg8DWei5+WNEg4mUarKv4vaxosnUgRBYLmzndHYOK/pvJ21VSuoM00Nl6vQOXDHvef124pl4phUBrQKDYV8Cs/QM8iVRjTGGnLZKNl0EJ2pgUzSj0au5n3r3kwgHcYhZvEJCqLZJJ0VnWjqb2RHDqpa7sAz+BTRQA9xpQm1TIVVbUYQBGpNLg56jk5L7bTZmuiaSDPNhtOiQa9R0DsS4fr6jZwMDTISnRIIpVKJUCrM9Q0b6Q0Nkp4l5ROMpNFbcoT8En71xEnqTDUUyXPIexy71kKl3kGyGKVnOEJT9ey/k0++eyNvfWUH/WNRgtHMZVVw6vYnWd3moH8sctbtuofDtNaap73W6DLOG4G5ynSUGiuCRDbrjd3d+2cCozunvZZLh1Gqzaj1FdQvfyOO2mtZef0/U9/1BhQqE1KZCnvNZqL+Y8hVSxNJkcpUaI21RHzHyGfL/76nR1JEUcTd9xgta96NXGkg5Dmw4LULuSRh7yEqGl6xJMcKsKDS4O9973s8+eSTc77f0dHBP/3TP827zuX8lH0mMp2Wmte+BgBBLp8WNTkfjMu76PrXT5F2u7Ft3sTYb35HaNcerBvWLcn6p3NmJMU3/DxjJx9GpbGRSQVQaZ0IgkDjijeVuzYiw4Q8++deTy7FYFARDqbQG1XT3nv+yV4y6TwH94zStdp1UW/Y54JNY+ZEoI9wOjrtxrhYQsEU7V0V6AxKaurM8++whKxwtvNU/wvc0XIjujPCqi6Dk2wxRyAVQilVsGNkH7e2XL+o9U+fCh0aP0Bg9EWcddejUBpBFElGh7G51hMP9VIqFVDJlLyicQsm336kWicN6NEptXQ13sjXjj6OW1BTirsRxRLfHDlBnbVpMpVTZ3TxWN92Vld2Lfj4BEGgo8HCsYEgnY2tbHCtYvvQLt7QdTc/P/IHLGoTJVGkzdqIXWvluL+Xa6qm1i+WRELpGJnCGJlAA1atgn9+5yY+9dROnhnYSaejFafWTkk+yMhwnGUN1lmPo8KqRadRUCiWr2+D7osrUkRR5Bu/OcTb71yGRlW+TmWyBVRKGWO+BHdf18j+bh8j3jg1ztnnRvUMhXnlloZprzW5TOzr9l3w438p4Wq5A62pDt/gs9NeF0tFktFhJJLp95FsOjQ5s8rsnL1MwlF7Ld6hZ8rn3RJhq96Ad+hZnHXXodI6ySS9FAtZpDIl+WyUUjGHztSApWIlIc9BnHXXLWjdWKgXta4CpXrproULEilveMMbuPfee+d8X77AG7jRaCQWm34Cx+NxBEFArz/70LXPfvazKBRlg6xt27axbdu2BX3m5Yihox1DR9l4p/q1r2b017+5ICJFqbYSGNuNWCoiSKQkwgPYazbjG3oWQSJDqSlfdOVKA3KlgUIuQTZ99iGCJquGh357mJYOBzfe0T55k+k+4uX6m1sJBZM89qdjvPODW87bGO1Ccnq657wiKYEk9go9W29qoVjIcPDpz9Cx8a8nZyldSK6pWs4HNrxthkABkEvlVOodDEfdFEtFfrj/l2yoXsV43EerpRbpAlJb0cyUSMmm/FgqVlHRsK28vtJALh1CZ6pDECTkMhFUGhuv67qL488fx16/hQ51uRBZIpGwpW4dD/Vv53atk0jMzb0rXo3ptCfDeztupYRIs6V+UX+DjnorB0+WQ9XLHC28MLyXXxz5I3888Rg6pQ6z2ohMKqPN1khvaHCaSInEMwhmN622RtJOF8saLAiCwF1tN/Gfz30Du9aKy+hAps7gqjRg1M39N9Op5Ri0Cmor9EseSTnY4+f4UIh7r29CpZh5yQ5EMjy8Y5CNXZVc0+4gmsjyzs88xobOCkb9CZprTNywpoZfP3mSD79xpq9GNJElEM3QXG2a9nqjy8ivnuhBFMXL+ly+nJDKlKg0tvKE4tNIJ8YpFXNk09O9jXLp0JyjGk4hV+qobX8VGmP1kh2npWIlo91/JOI9jFpfST4bJZ0YR2eqJ5PwotRYJwbWdjJ84gHyuQRyxfxzzWLBHo715/nlo58CWJIyjgWle7RaLVardc7/nZnCmYumpiZCodC01uSjR49SU1MzKUDm4mMf+xif+tSn+NSnPnVFC5QzsV+3lURv3wzzuKXA5lqPWMrjHd4OlE8Ug7UFldY50S8//Z+/PCgrclajH7tThyjC0QNuvv3F7fR1+8llC3jcMWoazGzY2kAkmOLk8elPYFH/8Rn52EuJVT0lUkznEUkJh1KYreW2wFRsjEIuQSx4cdr5VDIl19VvmPP9WqOLkaibUDpCUSzxhee/zc93fIujz39+QWZO0UwM40Sx3qnhZqc45XypUFvKv5tU+fcrKeUpZCI4bK3Um6cuqq/uuA1fMsjvvYMobJ3c2XYT19atn3zfpDbyzmtef9bvMxvLGiycGAxRKok0WcpOws8N7+ZVy24jmolh15RvAIqinuHQ1HXnm7t+wgPHH0NROcIrGrfwN2+6htfd1ArAmqrlXFe3gVZbA3atFYkyTVfT7FGU09nYVcnrb2olksgSjs/dTbQQPvo/29nf7SOVyfPJ7+zggWf6ONBTFmOFYolYcuriPzheviGeHC0X4e884qHKpsWoU/CaG5qpduh57U0tPLt/dFaHXG8ohUmnnIzCnKKp2kgynWfUl6A0Rx3aVWYiVxop5BKUSlMF1InIEEq1lWwqONkRVyoViAZOoDHMLz5s1evR6Kvm3W6hSKQKjPYOooETKJQGbNUb6T/4E1JxN+mkD5XWAZS9WNS6CuKhvgWtGw/2cMtt907eqz/2sY+d/7Ge9wqnkclkGBwcZGxiSrDb7WZwcJBEopxyqK2tpb29ne9+97sMDQ2xZ88eHn74YW699dalPIwrCrnRiKG9jfDuvUu+tkQqp6btbrwDT1PIJcmmgqh1leitzeW5DmdwKpx4tha6m+9axnv++lre8+GttHU6efDXhxkZDKPXKzGY1CiUMjZc18jOZ/qn7TfW+2eCY7uX9gueBzaNhWgmjj8VxHKOIkUURcLBKZFyyuQsFuyZLEhbavLZGMVChsDo7JOcT6fWWMVwZIxQOgJAT7AfrZgjn40S8Z29dqhQKhLPJU+LpAQmx9hD2V0TBBRKI0q1ZTICl467UahMyBTTozs6pZZPbvsw79j2d2xd+46Ff+F5aHQZyRVKjPri1BirKIhFIukod7behFKqmBwYefh4ipPecr2KLxHgmaEXeWToYaQSgS21a6mwaidv0oIg8Fcb387qyi4cWislaZZNKxzzHssHX7eKVa0OKqwaBsbOPZoSS+Y4NhDiyz/fz47D41RYtWxZWcXR/iAHe/y85ZOPcP8/P8xzB8vX2cHxGIIAvRPOuM8fHOPGtTW871UreNOt7UglAlU2HbVOA4d6Zxr8+cIp7OaZ4zVUChkrWuz87NFu3vWZR0llrqzpuZeKcsRBmHYNSIQHsFSuRkQkl4kiiiU8/U8gCFIsFasuyXEarK2AiFxpwNVyB/aazfTs/gYR3xFU2il3ab25kUS4f+6FJigWcuQykQWJrsWwpCKlv7+ff/zHf+Tzn/88AP/1X//FP/7jP7J379QN+IMf/CBqtZpPfepTfP/73+euu+56SUVGzgXzurWEdu+5IGvrra3IlQZGe/6IVK4u/yCbbqW67e4Z2woSKQqVieHjv5lsFz0ThVKGTC5FrVFw3S2tyGQSHvrNYarrp3KQ12yoZXQwjHci7F0q5kgnxknFz2++ylJiUhmQCAJ9oSFM55CaKRZKPPSbw8hkEuwTef5kbASjrYOI9zCHnvnXRfslzEcyOsLh7Z/FM/AUQ8d+M+lzc2qq6ZnRkRpjFcNRN5FUiBscjTRZ6qhWaRGlCnwjL5z1s+ITXV5GpR6xVCSbDs2IpMiVBgSJFKXGMhnGjgZ60BrrZl3TojHRYF5aszuZVEJrrYmjAyFkEikNphqWOVrQKNS02hqxaSyUSiI+DySK5X+PR/ueZb1rFSt0m6nOb5h1svMpDEo9SqkCi23hkYT2unKdzLky4o1jMaioduj41u8OsbrVTmejlRePePjXH7zIu+7u5O/fspav/eog8VSOwfEYK1vsnByJMOyJcaQ/yOYVM5+6V7TYOHgyQKFYIl8o+6LsOurBF0rjMM9uErZumZPtB8YIRDPs7/ZzciTM85ehad3lxKlJ9aeKUkWxRCx0EoOtDYXKRDYVYPDILwi491Df+TqEs/z+LiQGa7koXa40IAgClY2vwF6zmUS4H7VuSpTrTA0LaqnOZcJIJHKk8vMznDuTxXnqzsOyZcv43//937NuYzKZ+MhHPrKUH3vFo2tuumBOtIIg4Gq5nd79P0BnLnuESOVq5jotlGorsWAP8VAfRls7OnPDHFuCRCJw39vWsOPpPjpWTLWVa3QKOlZUcmTfGJn2PAH3SRBFUrGxyya/LZFI6HK2ldteFxlJCbj38/tfxikV4R1/tQWFsnwapaIj1C57NQq1hYj/KKn42IJrU0RRxDf8HMGx3TSueisqzUxTuERkALFUwDNQLmJPJ9wkoyOMdv8Ba9U6EpEBuq796OT2tSYXY3EPzTKBNaR4/02f4cknP01Q60AWdxMP9aG3NM34nNHoOD8//Ae0Cg0yqYxM0o8gSCZTPAAKlWUyl65UW0lEBiciPDtoWr10kZKFsGl5JX96rp9b1tdyY+MWdBOunO+85vWoZSo8wSSpuAK1kCJXzLN//Civ67qT4yEFFv3ZPU0EQcCuteJLBqk2Vp5121Msb7bx+K7y2IWfPnKcV6ytpdK2cL+IEW+c2go9b7tjGR/+8jOsarXTUGVkPJjkxrU13LS+LAJ/+9RJdh/zMjQe474bW/jKL/bzL997kVduacBpmXmjWNli5z9/softB0b5x3ds4MUj47xwyM36zopZtwfY0FnBk3tGaKwy8v0/HiGWzJHLF/nhP9+K2aCadZ+rlFM++YmHlHR8HLFURGuoQaWx4R18hmR0mM4tf7tk3ifndow6bK4NaAxTXYGVTTeTy0TQmaeuCzpzA+mEh0I+hewsAiSXDqOY6NZbSq7O7rkMUDkdZP2BCzbXx2jvoGnVW3HUbpl3W6XGgsZQQ0XDDXgGniKd8M5q9HMKR4Wee96witZl04fPNbbaGOoL8dBvj9B77DCZfAXFYvaCTQkNjO4ik1xcJ8I/bP0Af73p3bRZF27ilkuHGTryf1AK8arXqfH1/5RCPkU2HSaXjaIz1lHbcS96UwPp+MKfOGPBHsb7H0etq6Bv/w9m7YRLRoYx2NqRq0zoTA2kYmP4R3agMzcSdO8hmwpQOM2S2zExNTif8iMp5Sjkk+gpMphJ46jbirvv0Vk/Z6/7MLvGDkyaqmWSXpRq67QaJmvVNdR1vhYoj4RPx8cJje9HqbGjM80tbC8Et29qoFgUeXTXMDc2bmZ99Sqg7IJr0Zg4ORJBI9MhliQMhEcYjY7TZmtixJvAapz/RuvU2fAkFv7bWtFs4+RImBODIX7xWA9PLdJe/lQXTnONic994FrWdjhxWDS8elszb71jahL1umUVPLJjkDF/kq4mG5/9wLVsW1PNm25tn3XdrkYrjS4jMqmE5w66qa8yUFuhZ/cx75yRFKtRzRc+dB23bKgjEM3wT+/YQKPLOFmsPB9Dnhgf+/pz82/4EkOhMk4Wz8aCPegtTQgSKZaqNYhikbrO+y6pQDlFXed9k/UnABKJjIblb5zWnSNX6lGqLSSjw7MtMUkuE572ILNUXBUplwFKW/mp+UIUz57C5Oias8XtdJx111Pf9XqsVWuJBXvo3f99xnsfXfTn1TVZGRsOE/Qn6FwuY2RYhVJtJzi2m2JhZvFeJp2nWFz8kKuw5xBjJx9m+MTvOfHiVxclVKQSKZtr1yCTTgUUR3seIneW6cGxUC8Ay1cqGD7+S9IJL7FAN1H/MfTmxvLMJECtryIVm1+klEoFxvsew9P/BI6aLdR1vpZM0j/NZ+FUAV4iOoSz7nqWb/0YOnM9vqHtFPMpWq55F51b/haZXDvNWlsiSKg2VmKeOMtTsVGkxQxHIh7sNVtIx8dnLYgbjo6xurKLGxs3I4olxvufmPHbkcpUkzUqGkM12XSQiO8IJnvHRY+UyWUS7rm+iSd3z34R7R2NsKmrEjGr5snendg1Vn715yF6hsNcv3r+/Hm1oZKR6Ew327lwWjRYjWr+48e7MeuV7Ov2IYoiqUx+mij0hlKzFqQOn9Yq3NloRTrhYvyOuzqxGqdqR9Z2ODk+GGLbNdXYTGra6yy8+bYO1MrZA+QqpYzPfeBa2ust7Djsptqhp6PeQqFYmjOScormGhM//fRtrGy1s7LFzoEFipR9J3wc7Q+SL1y+A+wuBAq1efJcTMXHJlOg1spraF37PszOFWfb/bJDY6whFRs96za5TASFaultGK6KlMsAQSpFabPif2Y73V/4IqX8pStQU2ntqHVOlBorGkM1+Ux0XgU9GyaLBoNJTX2TDbksjUprJZ3vJOTZT9+BHxINJ8idNuL+1z/ey6E9Zz8JZmP05INEfEdoWvlWtKZ6ooHuRa9xikI+jXfwKUZPPjjt2E7HN3oMAIslhEyuxepaS8R/jIj/KEb7ssntNIaqBUVSUtERxvufIBV3Y6/ZhEQqn8hb+xFLRYaO/Zr9j3+87PyYiaI1ViMIEtR6F9l0kKrmW5FIFai0DpRa2zSRAuUOH5tUgiBIifqOIZEqiRULjCVDOOuvw937MP5kgCf6pp52R6JubmzczN3ttxDxHaWQS1LRcOOc30Gm0KJQW4gFe9CZFz9aYCnY1FXJyZEI/lls3E8MhljeZENe1LFzdA8xv45Bd4zPvH/z5ETjs1FjrGI0uvComCAIfPLdG9m8ooqPvnUdJ4fDvOffH+f1//gQe0/48IZSFEsiH/7SM7x4dOa8oRFvnNo5/ExOp7naxO2b63nz7bNHTuairsJANJGj2qGjY8L7ZbbC2TPRa8odmKta7ezv9tE7EuFvv/Is+07M/WBwbCCIKEIg8vKy19caakhGy9ezXDqypL4hlwKtoXry+8zFqXTPUnNVpFwmKB0O3A/8kcBzL7D3fR/g5H9/7VIfEjXtd9O0+h1k00EKucUPT7tmYy1rNtWSz8Yw22x4Ay46Nv4/8tkYzz74W/a9OCV+Ar4EwUUOaBNFkXw2RtOqt2G0t6M1TFf7+Wx8UQaCmaQXqUxNxHeU73zpjwz0Tt3wC/kUYqlIItxLvmghFelFqbWVC2V9R0mEBzCdJlLU+iqy6RAHnvokxcLc7ajJ6DAGWxurbvg08on0ikprJ5P0Ew2cIOo/QfvGD1HRcCPNq9+BVFZOTxgszThqt2KrnmrZVWlsZM6wt64xVGCRSNBbWwmO70NnqmOZo4WfHPwt/9O7i2Q6zIsHf8739/2CdD5DsVRkLOahxlguvEzH3egtjfOOq9caqhEEKVpj7QL/2udOanSU1Oj0ImyTXklno5UXDk8XE9l8kd7RCJ2NVlzFtYgxJ4p4DZ96zybqKhcWbq82VDISKw+jTOXSlErzRwVqnHrec+9yOhutrOlwcuvGOu68toFHXxzig194kp88dIx4KsfeE9Pb8pPpPMFoZk7TtdORSAT+8jUrp0VXFsKp713t0NHZYEUuk8wbSTmdriYbZoOKf/j6cygVUj7zgxfJ5WemqkVR5NhACInAgqcwv1TQGmtIx92UivmJCIPpUh/SeaExVM8bScleTfe8tFE5HBTicZr+4r1U3HYL0cOHL/UhoTXWYrS1odTYJttrz0Y0cIJUbOrmsfWmFtqXV5DPxjBZ7fi9CZ58uJ+8sAaT7iRBXzmlUSgUiUUzRBZ5ISvmU4ilwuRMi9NPJFEscXznl4kFZp/ZMhvphAeNsRqVthKlLMRzj/eSjA5TLOQ49MxnOLLjW2TSArbqNRTySVQaO1pjDfaaTbSt/YtJczwotyF2XftRBEFyVn+YZGwErbF2WoW/Umsnk/IT8hzAWnUNWkM1loqVGO1T9QgyhZaa9run1YkoNfbJSEom6Wfw6C9p0loQETDZ2ykVszjqtrLC2cFh7wnqLPX8IRJCExtEIkjYP34ET8IPgkDFRConk/Kj1Mzffqsx1qAx1swrZpaCvq9/i2P/8hm6/+vLuP/00OTr166smjE35+RwGINWgdOi4Z51q1mnu5WP3/dK5LKFX/pchgrS+QzhTJTPbf8azwzunH+n0/jnd23kta9oZesqFzsOj5POFnng2X60avlkKugUI744Jp0Sg/bsvlHnQ/2kSNFjN6v5wSdumeGRcjZkUgkfedMarmlz8Il3bkCrknNyov35dMb8CdLZAh0NVjwvM5GiUFuRyJSkYqPks7GXgEhxkc/GJjsWY8GeyW5CUSwxdvJhMgnv1XTPSxmls3wjsGzYgOPGG8j6A5c07XM6WmMtgbFd08yJzqRUKjB45Jf4hqcXyZWKWUqlPFang4A3zsE9ozz5WB6JpEQ2WW5ri4bTILJokZLLRpHIVJPuqRqDi0zST7GQKQ+/y8aIhxdmQgRlkaLWViBVODAaknhG/Zx48X/wDT2DIAhkE4PI9NdhqyjXMSg1ZUO8mra70JpmRhCUGuuk5fRcJKMjaI3T23JVGjup6ChR/zHMC/RQKKTSFDxxosFuevd9H+/QMwTHdiOOPI3F3oHO3IjJ0YXB2sb19Rv5m83v4b1r30RX/VaMEoG7Wq7nDyce44f7f0WjuXZyyF8m6Z/mjzIXjprNNK5484KO9XzIeDzEu3uQ6/UEX9hB9OChyfc2La+ieziMP5zmZ38+wZN7hjk6EKSjwYogCGxd7eKDr1tFo2tx3VxKmQKHzsZwxM1AeISj/nMz62urs2AzqnjdTa0UiiXu3NJANJ5lzJ/g6b0jjHjjjHjmtq5fKqodOl69rXmy4+hsTrpzUePU8/G3r0ellNHRYOH4YNknxxNM8pGvPMOYP8HgeIy6SgMuuw5f+OUlUgRBmJiPU/YjuhyKZM8HqUyF3tyIf+QFcukwJ/d+l/hEW7J/ZAfB8X0YrK2o9QvrgFsMS9qCfJVzR11ZiaauFoXJiFgqIchkZLw+NNWu+Xe+wLiab6P3wI8Y63mQmvZ7Zrwf9h4iNH6AYiFN/AzTn3w2hiCRYa+wkk7lkUolFIsl/KEKFNJyuiccTCEIEAktLm+dz8RQnHbyK1RG5Er9xLRRD4IgJREZXPB6mYQXS8VqkskIZvMQWpMAiHiHn0Otb+L3v7fwt/9yA/lMOaWi0s5sEz4Ttc5BZo5ISiGfIpcOzTA/UmntJCID6C3NqHWVlPJ5Qrt2Y9uyedp26XEPJ7/033R95lP0f+s7+Pe8QMVHbieT9hMNHMdatYaw9zBNq9+BUm2hadXbANAo1GysKduj37fy1Rx65ijXVbSRLBaQS2Xc3XYzUH5Cyi5QpEikChTSC/f0fwr/s89hvmY1rX/7YaIHDzHwvR9OvmfSK+lqtPLDB4/y3EE3FoMKhUzCa1/Rct6f22Cu4bnhXWSLOboD/TwzsBOrxkSXc+H1IFKJwNc/+gpUCik9Q2E2r6hib7ePwfEY//PrgxSLIu315gXVo5wPMqmEd9zVuWTrddRbONpfLvo/eDLA4HicT357BzeuraHWqcdhUTPqnXu6+ksVnake/8gLk35CVzqu1lfSvfsb5DJhQCSdcKMz1zPW+whNK96MwTb3MNDz4Wok5TLBumUTnf/yKQAEiQSV00nGM7Oo7lKgUJup7biXoHsPpeLMWQz+kR3kMmHqlt03OQL8FPlsDLnSgFIlx2hWU9tooabejMnWhlEfIJcrEA6mqKwxkUrm5ixYnY18NjpjfLm9ZhPu3j8T8R7GVr2BVHSUUnFhEal0woNaV0G2YEanjVNTkyGfl1PMpyiIdvQGIzKZFIWq7A+iWkAaRKV1kk76yKZmzkTKJgPIFLoZ3gMavQuDrZ2G5fcjCALhvfvo/s//Ij02PZURP3GCeHc3x/713wnv3YdKZ8WQaKS+6/WYK1ZR1/l6urZ+7KyzQQRBQKOvRJqL8Y5rXse9tavxn/gtpWKeWLCHUqkwzcTtUpMcHELf0Y5UqUTX3EzG66WYneoWe++9y+keCvOKtTVIJAIKuZQb1py/gVyXo40Xhvfi1NrwJQJ8e+//8Z/PfZMD48cWtY5aKUMQBP71/ZtpdBmpsGg4Phgimyty++Z6jvQFL7hIWWo6G63sPu7lY19/jhODIW7bWEcwmmHXMQ81Tj1OswbvyyzdA2CwtpRTPWrTpT6UJUFrrKGq6WZC4/snbAfcJML9SKVK9NbWC/a5V0XKZYJEJkNhmrrhqiqdZDyXz6wbrbEOudI46W56OumEh5r2e7BWrUGjd01ra81n45MFoY5KPQ0tNt747vVsvnkrKlUWv3uUcDCFq8aIQildVMonNyGATsdZdz3FQhaJVEFl401IZaoFOd3mcwkKuQQqnYNUSodcloVCLyPucutgPGHCXlH+HlKZgtZ1f4FK5zzbkkBZpMSDJzny3GdndN5k00GU6pkzYWQKLS3XvAu5sjzQK7R7DwgCvqeenrZdcnAIVVUV8Z6TLPvEx7Ft3UJo9160xhoaV5QFzkKGgqn1laTj5RbbRGSQiO8Ig0d+Tu++76FQm5FILp+Aa9bnR+UoR3bkZhMyrZb0yFRBX12lgW989Eb+8r6V/N39a/j7t6ydbOE9H5Y72ymUCrTbm6k3VXNb8/WsruxiMLI4D5QzqbRp2d/tw2ZU8dobW5DLJNQusKD3cqGlxsRXP7INtz/JM/tH6Wy00lxtpG80Sq1TT5Vdx4g3/rJrQ9YYqpHKVFd8PcrpVDTcQMemD1PZeDOpuIeo/zhGe/sFtR24KlIuU1QVFZORlFI+Ty6ytBbri0UQBEyOrhm+Gqdu7qdmARltbdPmwuSzMeSK8kX33jeuYuN1DajUchRKNYmUlaDnOKFAEpNVi8ms4fB+94KjKflsdIajq0Qqp+vav6d17fuQK/VoTfUkwoPTtvENPUchPyWG3H2PkQj1o1CZkcpUxOMiydwqpDIFbSuv48iJVYyOKidFCpTnWSzkxFTrnIgT8zGiZxTxZhcwAVUslQjv3kvVPXfhf2b7tPdSg0NU3f1KNvzkB+jbWrFsWE94z15So2OMPfCHeY9t6hgriYf7KBaykz4zYe8hatruwdV8+4LXuRhkfT6UjnIESxAENLU1pIanCwW5TIpMKqG93rJk9R0VOjtWjZlao4t/3PYh7l/xKuxaK/7k+XkbOS1aRrwJKmxazAYV//N3N9DZMP8ww8sJQRCorTBww5pq8oUSrbXmydbmGqee5moTeo2CnUcW7jXzUkAQJOgtzZOR15cKGn0VakMVmYSHiO8IRtviWuAXy1WRcpmiqqgg4y6f1L4nnqLnv750iY8INKc9cZ+iXNFtmmyNtVSuJuo/PikC8qdFO9QaBTL5VG5WIq8j7DlBf7efplYbq9bXcOyAm8f/dHxBx5PPzIyknInOVD+tLkUURUZPPkh8wpStVMwz3vcY4wNPTEZGErEMEvUGlm36G5avawdZI8cP+XCcww1PrtSz4rp/wll/PVH/9O+VTYdQaM5+AUsNj1DMZnHdezdZn49iZqqdOTk0jLa+HsnEBHFdcxOqCidH/umTDH7/R+QikQUdo9m5HLnSwMCh/yWT9GGv2Yy1ah2OumuxVK5a1Pe9kBSzWfLR6KRIAVDX1JAaOb9oxkIQBIEPrH8rW+vWYVDqkEgkOJZApFTayqm+ygm/liqbDonk0o+NOBdu2VjH2g4nVqOKZQ0WFDIJDosGiUTglo11PLpz6FIf4kWntuM1VDRsu9SHseQo1RakMhU6cyOGqyLl5YmusYFEbx+iKJIcGppRj3ApUOsrSSe90wbZpRMeVKdNVFZpHaj1VUR8R4FTKZnZb+6tK9eiVHipqjXgqDSw8fpG3vCudRzYNYJ7JEIhn6KYT+Mf2YF/dOe07qKTe79DNHB81hk3p6Mz15OMDE62eRZyccRSYbKYNZPyAyLpuHsyGhSPZdEbyh0PgiBwx6u7kMkkOF3nFoaXK/UYbR3Ew/2k41N1RrlUcN5IStrtRu2qQm4yIVEqyfrKRbv5aJR8OIymbqqrSBAEKl95B4V4HFVVFeE9C5usLZEqqO96A9FgN+n4ODbXeuq7XncO3/TCkvX5kSgUyI1T/w5qV9XkuZH1+8nHzn368Hx0OdsxnTbnyTEx0+d8OGUmt5jZPpcrVTYdn3z3RgRBYE27k0+8awPSCcG1tsNJ93BoUb5FLwXkypk1Zy8FBEHC8us+TsPyN17wdPBVkXKZomtuopBMknGPkx4dIxcKXfKW5FMFlNHA8clC0GR0ePLmfgqdqY50omx+lYgMop1jdHdFTSNSqZzNW6fqJuxOPde+ws4Tv/sVB5/+Nw489c/4hp9jvO9xgmO7J7dLRkdoXfv+eSvKNYZqioUM2VT55p5Nl487PdEWnEn6kUjLguTU90jEMuhOG55mr9DzkU/fgs0xf33HXKi0diobbqR799cZOfFAuXMmHZq1JuV0MuMe1JWVCIKA0mEn4yunY1IjoyjtNmSa6RdAx43bWP0/X8Zx4zZCuxY+WVuhMqLRV1Eq5VFq5u/mudAEX9yN97HHKSQSJAeHEEulyVTP6Wm2UyIl0d/Pgb/+WwZ/9NOLdowOrRV/6vxuvFajGplUeEmIlNORyySsap2KeNlNatLZIsnMwgvjr3J5I7kI3XxwVaRctkgUCvStLcSOHyc9OgaiOPkUfakQBEl5AN6BH9Oz91vEgj2EvYewudZN206hNpNLh8sD73KJOa3SBUGCtaIVg36q8yUVG0MvfYDW1gjB+AaWb/04HZs+jLVqLcloOVxcyKcoFtJo9DPH0Z+JRCLDYGsj6C5HFcpzeYRJg7VM0ofJvgylxobWWINYEolFM+jPGDynVJ3/00Jl0800rXobQfdekpEhcpnIAiIp46gqy+JJ5bCT9funXq+a+f0FiQR1ZSXGrk7iPScXdXxGe8dE6u7iXHzORmjnTvq//T0OffTjHPzI3zP8s1+Q8flQOacLKLWriozHw/BPf4amvo7w3n0X7WndprGQL+aJZs49eiOVCLxySyMd9YurWyjl8+z/0IcZ/e3vr4johFYtR6OSvezs8a9y/lwVKZcxhmUdhHbvJRcKITeZyHgvfbeP1lSHydGFRu/i5N7v4Ky7ftoUTQCFykw2HS7PcjHVn9WFVK2vInVancvw8d/irNuKtf5tnDium+wu0ZpqJ11vs+kQUrlmcpjffDjrrsM/soNiIUs2HUJrrCGbLM/GySR9qHROuq79KCqtg2gkTaFQwmK7MCFavaUJg62V0ZMPIlNokavmNhYrJJNkxqdEitJunxSqGbcb9Swi5RRyk4lCLLaoG5jNtQFXyysXvP1S4/nzoxz66MeJ95wk4/Ei1WpRWCw0f+D9RA8eIuPxTqtHgbJTM0B4/wHq3/pmSpkMyf6Bi3K8CpkCk8pw3imfd9/TtWhr+9jRY+QjEUZ+8SuSA4Pn9fkXC5tJjf9lZup2lfPn8uktvMoMrJs3Mfq3H0VuNKJrarwsWpJrWu8CQYIgCIiiOGuHi1JtJpcJEw/1orec3UhLraskNL4fKHcKJaMjNK16OyVRTTSSJhJKYbJo0BprySR9ZQO01Oytu3OhMzeiMVTTvftrKFRm9JZmUnE36cQ4mYR32kRSvzeO1aZFJrtw5ktGWweDR35OVfNt02ztT2fkV79h5Be/QiKXT4oRpcNBoq9slpd2uzF2dc35GXKjEbFYpJhMItMtLE2lUBkvaaFs5MAhMl4vo7/6DRmvl7a/+xsMHe2k3eMkv/FtSrk8VffcOW0fQSpFVeEkF46ga27CtGoFkf0H0DVdnEGHLkMFfaEhWm0Xd7BiaPceLBs3kB4dI9k/gK6x4aJ+/rlgN6mvRlKusmiuRlIuY3RNjbjuvRtdcyNKp+OyiKQIEumkMJmrBVehtlDMp4iH+tCbz37x1OgryaT8k+ZhGn0VcqUepUpGZbWRkYFyKkiu0KFQW0iEB8u1HJqFixRBEGi+5p0olCai/mMo1VYcNZvp2fNt8rk4OlPd5LZ+TwJ7xbnXniwEo60dvaUZe82mWd9Pj7kZ+cWvMLS3UUylpkdSTqV7xsZRVc1tQS1VqxDkcvLRC1dIutSkhodx3LCNeM9JcsEQ6qrKcvqqqhJBJiM5MIBp5coZ+6mrqjB2LkOQStG1tJDo75+5+AXi+vqNPNa3/aKnXMJ79mJZtxZtfT3JwcGL+tnnis2kZtgT5/lDl74J4CpXDldFymVO3VvfTPvHPoqq4vIydzsbUpkaiVRJqZibYfl+JnKVCalUQSbpI+I7Oq2dze7UTZuMbHNtwN33SHno3Ty1HGcikcio6bgXQSJDqbHgan0lFQ030r7+g9PamP3eOLYLbUuu0NK69n1zVv3HT/aibain6S/fh3HFcuTGckpI5XSQGR+nkEqT8XhQu+ZO9wiCgNxoJB+9tP46C6WUy5F2j2O//jrykUi5i8dkAsp1NrqmRjT1dSgsMweYOW+9mcq7ymkqbX0dqaHhGdtcKDbXrCGSibHXPdPk8EKRj0bJeLwYOpehbai7YtI9drOaR3YO8rkf7V4yoZLJFnAHFme5f7g3wNN7L3zb+lWWhqsi5TJHEITJkH/GfWU8gQiCgEJtRmNwzTsVVxAENIZqho//jnjwJDbX+sn3LDYtocCUSHHWX4dYKhJ0711UuucUSrWFZZs/gs7ciCBIqGjYhvIMnxK/J35OfihLSXKgHL5XV1XR9a+fmoxY6Zqb0NTWcuSf/hlEcbIeYy7kRsMVE0lJj7mRqlRo6mpROh2oKpzTInWWDetwbLt+1n0ta9dgWrEcAE1dHWn3+DSr/AuJQqbg7atfy9de/BGHvQufuH0+JAcGUTodyDQaNPX1JPsHOPmV/6GQOr9USj4W5+RXv37B/nZ2k5pCUWRjVwU/+OPRJVnzqX2j/MP/PEcuX5x/Y8AbSvFvP9zF9/94lGLp8i84vspVkXLFoK6uJu0eRywu7GS81ChVZnSm+gVtW9/1elQ6Jw0r3jRNNJwpUiQSGe0bPkht+z0Y7R3ndFwqjW3OOpDRoTC+8TiVNYubkrvUJPsH0M5SYyBIpbT/w99jXnMNTR94P4L07HUzV1IkJTk0jKa2BkEQ0DU2oHROHzlQddeduF41c7jlmSisFqRqdbkj7iJxXf0GXr/8bj7/3DfZM3bwgn9ecnAIbX09AJraGsRCAd9TT5McOL+C4dHf/Bbf40/geeTPk6+JxSK+J59eknRWlU2HUafgPfcsxxtKkVnEnK65GPHGCcezPLF7YdGzB57tY3WrnZIocqz//Aqer3JxuCpSrhBUDjsIAunxy2Po4HxUt92Js37bgrZVqEzUd752hr1yWaSkKBSmhJlUpsJes3lOg7j5+PWP9xI4bSJrqVji4d8eYWw4zC9/uIcbX9mO5RJ6VoiiOCFSZi/ElBv01N3/RpyvuHHeteQGwwU1N1tKEr19aOvLtUG2rddi3bjhnNYRBGEi5XNx3U1va9nGbS3b2DGy74J/VnJgEG1DPQBSpZK13/0mxuVd52X4mPH58Dz0CLX3v5Gx3/wesVSes5MaHuHkV75K9PCReVaYn7Y6M9/+2E3YzWq0Khnu0x5AzpUxX4LORiu/e7qP0hyRkd6RCP/+w1184ad72XlknJvW17J5eRXbD148IXuVc+eqSLlCEKRSNNUu0iMjl9zUbSGotI5zFhKnsNg0ZNJ5vv4fz3Bo7+j8O8yDKIr0HPNy/PBUy/POZwfYu3OIH3z1BSqqDGzYemm7JHKBIIVUCk3t+U/ulZuM5C/xzKeFEtm/H9OqclGsbctmnDfNL8LmwrhiOeMP/Rn/M9svalHp2qoV7Bs/QrG0dNFOURQ59NGPs+vt754smk4ODk5GUqAcMVO7XKTHzv2mO/KzX2DdvJGqu+8kH41SSJQFRGai5X3sN7879y8xgSAIaFRyBEHA5dAx6otzsMfPx77+3KLX6huN8IftfYz64rzuplYyuQL7e3wzttu+f4yPfu05bCY1+7q9JNN5VjTbWbvMycGeS+s7dZWFcVWkXEGoq130f/t7dH/+i5f6UC4KSpUcrU5BJJTi6IHzr8fJZYsU8iX6ussXJ1EUee6JXl739rWsu7aeV9634oJO81wIqdFRVE4HUqXyvNcqR1Iuf5GS8frIjHswrlwx/8YLwPWqeyimU/R88ct4H318SdZcCM2WemSClO5A3/wbL5DU8AjJgUEkchmp0bFygfHoGNrG+mnbnT4eYLHkYzF8Tz9L7ZvegFSlQqJQTP5usj4f2oZ6IgcOLunDkcuuY8yX4GePdXOkL0givfC1SyWRr/7qAD/80zF84TQNlQZu21TPzx/tJl+YLhB3Hhnnvhuaee+9y/mLV6/knuuakMskLGuw4gkmCUavtkRf7lwVKVcQ6upqcqEQmfGXzzTRqloTW25sYqAngM8TJ7OIi9mZJBNZEGBkMEwmnScWyZDNFmhssXHrPZ0YzYsz1FoqxFKJ8L6yV0x6zI262rUk65ZrUi7/dE943370He0zLP7PFalSyfJ//1fq3vYWUiPnH4FbKBKJhGuqlrNnbOk6fSIHDmLsWoaqooJcMEhyYBCpWj3D1O58REp6dAyF2YRqog6oXHA9IVL8fvTt7SAI5Bc4sHIhuBw6nto7Sv9YFItBycnh8IL3ffGoh2gih8uuQ6uSYdIredW2ZoolkW/97vDkdqIocrgvQFdzeZzH1tUu3nRrOaWsU8tpdBk50ne1LuVy56pIuYJwbLuO6tfdRzbw8jmx3viu9dx4RztGs5pv/9ezfP6fH2V4IDRju0KhyHe+tJ3Robkvdol4Fr1BhdWuZbA3gHc8VjZuk18447aFEO85ybFPf4ZcJEp6dAy1a6lEimFJbyxLhftPD9H/3e9P/nfs2HGMy+c2pjsX5EYj+rbWJS+g9T72OJGDc4uQta4V7HEfWjLflOjBQxhXrkBhsZALhkj09qJraZ4R8VO7XGS9XkqFxRejpsfHUVVOee7IDFPiNuvzoap0IjcZyYUWLiTmo9quZzyY5P2vXkFno42ekYWvfbgvwMbOCm5eX0tthQFBEFArZfzt/Wt4YvcI4Xh5Urg7kCSRztNWO7NtHaCrycah3sCSfJ+rXDiuipQrCFVFBVV330kxlaKQevnYSwuC8P/bu+/4tqtz8eMfLWtZ25blveIVZ09CAoRNGGWU9U+k+QAAYHlJREFUFihQuBRo6aCDllsKBX60QEt3ubellKQXKKV0sNoCCSthZO/EiR3vPWRLsoY1bEm/P5QocWzHdiLHTnLerxevNl99x4kdW4/Oec7zcNtXl/C9H11K6Yw0WhqG/kLb/HED7S299HSNXDPB5wmSrFNSWJJKTaWdrnYP1vTJ3W4MxJMSfbW1+Ftbj1n/ZDySCwsJ2rtx7tiZkPslSue77+HYfLhZpKeqCl1JccKfo8mOzTwO+E48QRNin8wbX/wL+/7fj0cMVGamldLjd9HqGZzg/uq+t2n3DM2ZOJZwIEDv3gqMc+aQZDET7HHgqa4leVrhkHOVqSlIk5Lw1TfQ8PyLREKhMT8n0NaO+ogg5cit64GubpSpqSSZTISciQtS5pdZ+eEdi7lgQTbFOUYONLrGfO3++h7K8s1csayAh+44nGCdkZrMjAILD/7+U37x0jZ2HrBTmmsmaYQPIWfPzODTXa0EQqLp4VQmgpRTjDw5GalSSahn6GzC6SxZr0KpkmOyaHH2DH7TCfj7+eT9GgwmNV7PyDUefN4g2uQkCktSqa2y09XunjJBikQux1tTG1vuSdBMSpLZRO6tX6Bh1f8l5H6J0NfSgr+1jaC9m2BPDyGXi2CXHV3RsdsnHA+FXo9cr0/YbEqgvZ0Bn4+0Sy6i+9MNg17z1tUz0NeHSq6kyJxHdffg7cD/qnyX53f+Y1zPc27dhjI1FU1ONkqLhVBPD97qanRF04acK5FKMc6dQ8Ofnqf11dfj3bLHwt/eEa9qDLGv24Dbjb+9I9Z5egKCFFWSnEXlsWeW5JipbBxbN2l/cIC6NjdleRZkUgl67eBmmJ+7qIi8dAMf72zlP5/WsXT2yAF/aZ4Js0HNelEBd0oTQcopRiKRkGSxEOw+M6cpzSkaHN2HZ5EC/n4+fq8aa7qOkvI0fN6RP0F6PUG0OiW5hRZ8niDV+7uw2vQjnn8yRPr78eyvxHr+cly79xDq6UlYkAJgPmsxfc0tgwp0RUIh6lf9H/seezxhzxkr+7qPMc2fhzYvF8/+SjxV1agzM5EnT8y2b012Fn0tsbyUaCQS31p7PNz7K0kumoZpwXx6dw2uh1L11M+p/f0fAMjSpw+aSfEGffj6/ezrOsCB7rGX7Ld/9Akp5yw9+DNvxtfQiL+1bcRZJ/OiBbgr9gEw4PaM+TmB9nbUR7RYUBgNuPdXsv0rX2PA40GVZkVhMiV0uedI07KNBPvDNHWOPuYDTU7MehWpI+SPzZqWyv23LmBmYQrt3T7OmTPyz5JEImH5vCw2Vwyt5F3Z4GDLvlOj3MPpTgQppyBlSuxT1ZnIlKLF2RMLUnzeIL97ai17d7Rx4eWlaHVKfMeaSfGE0CYrUShk3Hz3YhYuzSNv2vgr1yZSX1MzErmc1PPPxb23AsPMGSgMiQucksyx4maBtliydbC7h53f+R69eytwbt9BoLMT187YG240HJ7Q4m+RgQE6330P26UXoy8ro2fTFro++DDh+ShHUmdlxmdudnzj27T969/HfS/3vkr0ZaUYZpQT7O6J1yyKhEIEOrtwbNpCb0UFmXobLb2Hk9s7vHZ0ymTOzVvMh/UbhtzX3x8YciwyMIBrx04sS84CIMliIdTdjSY3J94m4Wim+fORyOXI1Gr6PWMLUqLRKP629iEzKe6KfbHl5Ws+g1ynI8lsot/pGtM9x0shl1KWa+bVD2t44a1YkBWORGnp8gypCru/wUFZ3ugtMa49fxrXnDdtyEzL0WwWzbA7fNbtaOHdzaMXiHt5TRUvrz45lYbPVCJIOQUpUyxnVPLskcwWLb3OPta8uY8/Pb2e7DwT3/rhhWTnm9EmK0dd7knWxbb25hZauODyUlTqY5ftn2h9jY1ocnPQFReTd8ftlP3wBwndBi2RSGKzCc2xXiWtr76OOj2d2T/7CerMDKp+9isqn/oF0XCY7k83sOu+++NVjXs2baHqF79K2Fi6P/kUmVKJcc5s0q+6nN7de/DsryTnps8n7BlHU9lsBDo6qP/T8wz4vLi27zyu+4RcLnrWb8C8cAEylQp9+XQcGzcBsY7UMqUS6wXL6f54PZl6G63uw5/CO312bNoUzs1dzIbmbYTCg3eofW/1j4fMsPjqG5AoFGiyY72vlJZYMH2o/P9wFHodC1c9S3LRNAbGGKT07toda7FwVE5KJBRCXz6d/P+6LTaTk+DlnqPNmGbhg63NvPlxHZFIlLXbmrnnpx/w8B/WDzpvrEHKvBIrt10xfdTzzHoVDvfQILHL4cfRO/T40SrqutkrKtdOKBGknIKSUlIIjTNI8VQdmHIJlMdDb1AhlUnZtqGRZRdO4zM3zI6/qWt1ytg24xF43bHlnqnE19iENi8XqUJB5tVXJaQ+ytHU2Vn0bNjEgV/+hs73PyDr89cjkcnQl0/HW11N2OfDU3UAz4EDBO3duHbHtnG2/vPV+PLBiYiGwzi3bafu2efIueXmWGfj9HRm/fRxyh97eMSZgURQp9sIdHTS19hIxpVX4K6sigdhQbud2j/8Eff+0T8JN7/8CoZZM9FPj7VjSLvoAjrWvEc0GqWvqQV1dhbmRQtxbNlKps5Gl6+H0EBs6bHT201acipFlnwMSt2gZoShgRBdvh6aewfnRXgPHEBXXIREGvsVrTDoQSrFcIwgJXaeAblOR/8Ylnsi/f3s/9Wvyb/zvwb9u1PoYzN5hyoAA7EgxTFxeXDnzM5kxZI8wuEIXc4+NlV0sGRmOvVth7fQRyJRqhoclOWPr7noscSClOCQfJguZx89wwQvR2ts91Df1nvSu2CfSUSQcgpSp6ePqx192O+n8qlf0H4CU91ThUQqwWTRsHBpHnMWZaNUHZ4JSdYlHXO5x+sJxGdSpoq+xiY0uTkT+gxNdjY96zcQ7O4m7eIL44mXhhkzUBiNpCxbinPbdrw1tSitqXS++z6eA9V4a+sIOZwnXMSr4501HPjVb8i+4XOknrM0flxlsw2qnDoRVDYb/tY2/G3tsfwOqRRfQ6xkfu3v/0DXex8M2mk0nGgkQvenG8i85jPxY5YlZzHg8eDauYu+5mY0WVkYZs5gwOtF2eFEJVfSdnA3T4fXTlpyKhKJhHPyFvFRw6b4fbr6euLnHOLauQvn9p3oSkvixyQyGaX3fzdelfdYFHrdiDMpkWiE9U3bCEfCVOzdRMDrQXb2vMHXHwwaNUcGKeaJnUnJSE3mq9fPJiM1mZoWF9ururhiaT6evlC8x09TZ2z5Jz89ccuhJr2KgXAET9/gf+N2Zx9Od2DYUvv/+bSeVz+sxukJ4PIG8fn76XaNHtAIx0eeyJt98MEHfPTRR7S0tCCXyyktLeULX/gC1iMKD7lcLlatWsWePXvQaDRccsklXH316I3DhMPMZy2i9g9/xFsz/HbEo3W+9z7hvj78badHEbjrbpmH2TK08Jc2WUmfL0QkEkUqHbxk4vUEcTn92DInN1E2Go3Su2dvfNq+r7GJ7M9fP6HP1OblItNqKf3+/Sj0h3czpSxdgr68DHfFfpr+8jIhh5OS736byqd+Qai7G9uKy+h4+x2CdjvqjOPfFu1rbCLtkovJvPozo5+cYCpbGpFAAKlKhdJqRVdagnvfPrQF+XiqazEvXjhqETRffQPRcBhd8eEdSFKFgqzrr6Pu2ZUoUywY585BqlBgmjsHx5atZKdk0OhqIc+URafXTnlqLNn1nNxF/HPf27gDHvQqHV3ewUFKNBxm/+M/IRIKkX7l5YPGYVkytn5Gcp1uxPyRvZ1V/HrDc3xh1jV07tiALVlKtaOe1OTDuVmHcqK0RwTPSSkW+l29REIhpEnHzvM4Ebk2Pa9+WINBm8SsaSkkKWTYXX6y03Rs3NvOjMIUZLLEfbZWK+VoVHIc7kA8f8Xr78cXiAVGvb4gJp1q0DWVjQ56PUEKMg2kmTUkKWTUt/eOmMwrnJiEzqRUVlZyzjnn8PDDD/ODH/yA/v5+nnrqKQaOKDD09NNP4/V6eeSRR7j99tt58803Wbt2bSKHcdqTazSknncuHavXjOn8QGcXhlkzCXbZj6vY01Rjy9AT9bqHdIRO1imJRqHPN3SHT2NtD2npetSaifsFOxZBu52KHz5K0G4n5Ool5HCgyZnYmRTD7FnMf+Z/BgUoEPt0rrRYsJx9FlKFAiQSTPPnkXrOUrx19WReezVKayqBzvHV9zhasLMTlS1t9BMngEytRmE0osnOQiKRoJ8eC8pCPQ4GvF4sS5aMGqS4du7CMLN8SNfpjKuuQJ1uI9jdE0/+NS9agHPLVoos+VT31BOJRmhytZJliOV8pCWnkqmzUXmwdH6Xrxu5VB4PUoLd3UTDYWb+5HGMx9kmQKHXjZg4+17dJ8xKK+Ove96kr70NaaolPpZDlGlplP/o0UHLcIcSsE+kieFY5Np0VDe7uPrcQiQSCVaTmi5nHwPhCG+vb2DF2XkJf6ZZr+K9zU2s3tgAxGZRtCo5Ok0SPcPkpTh6AzR3eWlo95CXric/Q09d64knnHf0+PD0jb2+zZkioUHKV7/6VS688EJycnLIycnhzjvvpL29nba22D/spqYmKisrueuuu8jLy2PhwoWsWLGC1atXj3Jn4WgpZ58V35VxSM+GjXS+/8GQc/t7e2MzLhJJvEnZqW7vQ4/QtXbdoGNyhQylSj7skk9jbQ95hZO7kweI17fxVNfg2LyF5OKiCdt+e4hEIonnGQxHKpcz7etfJeMzVyKRyci97VZKv/89lBYzKquV4AkGKYGOznjJ9cmgSrehyY41bNRPL8O9bz/e2jo0WZloC/IIdHQMCXiP5K6owDBraMAgkcmY/vCDzP/90/ElNNP8eXjr6imqdlPXXk1LbzsD0Qh5xqz4dek6azwo6fL1UJJSQIfXHstvaW5BlW5DX1Yaz0cZL7lOx8Aw3a99oT62tO7iZsMiVl7zMz6TshBzVu6QpF2JRDIkQTeegN3UfFxjGqvCLCMpBhWXLskDwGrS0OX089raGpQKGfNLE//vyKxX8e9P6nh3U2w3T5ejj1STBoth+KTanl4/3S4/u6rtFGYZKck1sX+YKtjj9b//2MV/Pq0f/cQzzITmpHgORvNabeyXcG1tLWazmfQjMsnLy8tpbm4mNI4KiQLoSooJdvfEgw77Rx9z4Fe/pe7ZlQx4B1dd7Xf1kmQyoUqzEmg/9ff+h1wuAm1tuIZJBE7WKfEM84ulsbaH3CkQpBzaleWtrqHn0/WknL1kkkcUoyspJvfmmwBIMhoxL5gPgDLNOq7CYEeLhsME7fZJm0kBMM6ehWF27E1XVzSNAZ+Pnk/Xoy3IR3VwKfpYwbu/vRPNGPspKQwG0i6+CPm7myl7p5Kd7RUUW/KQSQ/PwqTrrHQczFfp8nYzw1pCcCCIK+A+WHH4xOrkKHSHZ1KOzCeq6DpAjsxE26M/Q+b0EOzswppXRIOrJZ7keyzqI3aJTZT5pVZ+998XojxYJTbVpGbNxgb++UE1939xATJp4huAmvUqwpEo9e1uwpEonc4+rCZNLKn24EzK+t1tfLC1mWg0Gp9d2VbZyZyiVGZPS6Wivof+gfHX4PnTvyr46QtbcLoD1LX20tI5csXsM9WEBSnRaJS///3vzJo1C8vB7XNutxv9UZ/odDod0Wg0HtAIYyNTq0kuLKC3Yj+R/n4aX/gz0752D8nTCul4Z/AyUH9vLwqjAVVG+imTl3JktvzRyZue/ZVIk5Jw7dw9pDiX0aLB5RjcMsDnCWLv8pJbmLhdAccr1NMDUimOzVvo3VuBZYoEKSM50ZmUYE8P0WgUZUpKAkc1Pjk33YB1+XkASJOS0BUXYf/oYwwzYks4Klsazm07BhW8OyQajRLq7iZpHOOf9tUvM/eXP8PqiuBY9TIlpgIA6v/0PH0trdiSU+lwd7H/iZ/ibm4iy5CORWOizdMZ6910gg0m5TodAx4v/b29bLrldno2bARgT2clM7WxpUVvbR2Bjg4s2fkoZAo6faMXh9TkZE/4TMqhPjyHpJrU1LT08vmLipmWZZyQZ5r1KlKMaohGae/2sq2yi5JcExaDKh6QvLa2hnc2NOALDBAIhcm16VAr5RTnGMmx6VAnyTkwjiaJAIHgAG+tr6fN7uP3r+7G7QvRahfvg0cbU+LsypUr+eCDocsIh5SVlfHQQw8NOvbSSy/R3NzMI488Ej8mtmkllr58Ou69FYT9fqQqFSnLzibs99OzYSNZ118XP6/f1YvCYEBlS48X9Uokf3sHMrWKJKPxuK5vevkV9OXTB00xV/7kZ6ScvYSUc5ay+/s/IOfGz2O94HwgVvkz5dxz6NmwAW9t3aAy4ZYULT32wWXzG+umRj4KxGZSDOXT6d2zl6zrr0OVZh39okmksqXRvX7jcV8f6OhEZU0dks8xmQrvuZtwMBRPOk+eVkjdH1cSDgbJuu6aQef297qJhEIoU8cXZCl0OrIe/h6yx35Ohl1KNBym4613iIbD2D6zDNXuWhyb2jFoMilNKSTXmEWDs5mcllbSLr4wfp9oNDruujmxIMWDY/MWZEolB379NAvKp7Ons5KbtPMZALw1tQQ6u1Cn27B1p9LhtZNtOHZytCY7e8gHoIlmNWlQK2VcclbehD1jbkkqaRYN721uYuPeDnZX27n383NYs7GR2tZeenr9VDU5kcukdPb4UCXJKM4xYbNo40m8M6fFmhWWF4x9tnZjRQdWs4ZbVpTy2MpNJMmltNq9x/U9P52NKUi58cYbueaaa0Z8XaEYXBDrlVdeYePGjTz88MOYTIc7UBoMBtxHrZV6PB4kEgk63bF7qDz55JMkHcwqX758OcuXLx/L0E9rqecsY88DD+HYuo2CO/8rlgiZmjKo0Fs0HKbf4yHJaECTnUn3J+uPccfjU/u7Z9Dm5ZL/pf86rusdW7YR7uuLBykhhxPHps30NTaiMOgJdnbhq28ADu6O2b2HjKuvIhIK0rNhI9rcHKRJSbS+/iY6ZR7N7YM/ETfUTI18FICQowfjvLlkXnfNmLaTTjZNXi7+5uZ4zsZ4gg1ffQMtf/8nyknMRxnO0YnKRd+6F01uLp6qA0PODdrtKAz646pfU14yH8WCs1B19xG024mEQnR/9Am5l1/AzM2d+JVSrrYsxKDSk2/MpsHZTEpzS3y5JzQQ4t63HuH753yNLL0NuSz26/oXnz7LQGQAi8ZEklRBpt7G8vwl8SUlhU5HNBym8/0PyfjMlfRs3ETrp5/Q5ukkS2egAeh6733kWg1KqxVbcuqYmh9qcnMJdHQy0NeHXDN0d91EWFxuI92iJXkCiy7OKbYypxhqW3p5eU0Vi8ptWAxqLjkrly//5H1+/8/dlOWZabV72byvE4tBzecvKh60PXlalpHKxvHlpXy6q5Vz52YyqyiVJIWMeSWpbKrowOEOYDGcujuF1q5dG98Mk4g0jjEFKVqtNp5XMpp//vOfrF27loceemjQ1mOAwsJCHA4HHR0d2GyxMswVFRVkZ2fHA5CRPPDAA6MGMmea5GmFpJ53Lp4DB+LLBrEgpRtfYxP9Tifa/DyIRJDr9Whyc+l76a8JHUPY78e9b/+gZZfxfhLodznx1h5O3uvZuAldcTEhRw9Vv/g1CqMxPs3cu2cvQXs3lrMWI9dqqX3mWbo++JCCO++g8c9/QXLR9Tjcgz/1NtU5WH5Z4rvsHo9QtwPlWRZM8+ZO9lDG5FB33MaXXsZXW0f5/3t4zNd2r99A2O8n94u3TNTwEkIikaArLqL93/8Z8lpsqSf1uO+tycnBW1tLX3ML6swMouEIdd9+EHuaEkN+AeGu2AeKPFMWe6u2MOD1xuvmrG/ehsPv4qPGTXzcsIn7ln6ZXGMmm1p2cPOsa/GEfITCIV7d/w49fiefn3EVADKtBuO8ubh27GTa179KNBqlbcOnWBdZkPmDyLRa+nvd5Nx8E1K5PLb85B09oT6WSJ2Kp7LqpP371agUlI6hwmwiXLAgmxSjmmvPi82wWQxqbrmslK37O7nz6hm88u4BPt7ZisWgwmYZ/H6YY9OxZlPjmJ8VDkfYU9PNDReVoFTIWDg9jfJ8C/Vtblq6vKd0kHLkJILH4+H5558/ofsltE7Km2++yb///W++9a1vodVqcblcACQnJyOXy8nJyaG0tJTnnnuOW2+9Fbvdzttvv82tt96ayGGcUQrvuZuwPxDfCZCUkkIkEKDt9TfwNTZT/K2vI1OrkSmVaHKy6e/tJeTqRaZWEQ1HkGuG/jB0vvsera+9gSo9nYK77kCmVoNUimKYILF3z95Ygaz6hnhwUvmTn8VKn6+4dNTxRyMR+l29hPv8RCMRml56mfa33yH35i9gXrQAx9btKPQ66p/7EwBtb/4L2+WXIVOrMc6dQyQYItLfT9PLfyPa30+0chfOpCXxWikD/WHsXV7SJ2g9e7yCPT0kWabGrM5YSGQyNHm5tP/rP8h1yeO6NtjZhXnRwmOWcp8qkgsLCDldtL72BqaF89FkxXbjBLrs417qOZImJ5uuD9bS19yCJjeXaV+/B29tHa2RemZ2J+F5Zy0A+cZs+pvbUGWkI1PF6nK8V/sJ08x5vH3gA8LRCGtqP+K6sstQypL4TOnF8Q8CFxYs5YF3f8oFBUtJ0ZiRSCSUP/IQ/R5P7Gf2rMU0/vUV8s8/j/5uN4aZM4gEAtgO/nym66x82nTsgnaH6KdPx12x75QJssejvMAyZLnmmvNiPYAAzl+QzVMvbGFa1tAKyTk2He09PvoHwijko8821rb2IpFIyM+M3et7tyxAKokl49Y0u/h0dxsLStPinaLPZAkNUt5//31CoRBPPfXUoOMPPvgg06fH+ih84xvfYOXKlTz66KOo1WquuuoqsXRzAiQy2aAtrHKNBplWg3PbDvo9HvytbfF6B3KNBqU1FXfFPpr/9nd0JSVM++qXB92vr6WFuj+uovCeu3Fu207tM38kGg4jkUqH/RTds2kzqecvp+u993Ht2EmwuxvHxk0kHbHM1/DCn0kuLCRl6dAk0QGvl2g4TKS/n54NG2l789+UPfh9DLNmIpFKSV9xKQNeLyGHg36PB09VNdmf/xwQK6g14/HHCHR2UvnETzHMmomropJIwWI2PfgEJpMKzVU3kJQkQ29UDXn2yRYNh+l3OlGmnDpBCoA2Pw/vgep4ArNUMbap90BnJ6b580Y/cQqQqdVosrNo+L8X8DU2UfytbwAQtHefYJCSQ6C9HV9dHZrsLORaLcZZM7memXhrarF3vAxAqtaCzR0llBb7uYlEItQ6Gnjk/O/w8Ac/Z0XR+bxX9wnz0mfEA5FDco1ZpOus1DubSdEcnnU49KFCnZVJRCohPxzbmqxMTaHgzjvi58WWe8ZWmkBfPp3O994/7q/HqWzprAye/Nqy+M6jI6Ua1SgVUlq6vORnjN7mYecBOzOnpcR3Kx363xVL8vjFX7bhD4bRKOUiSCHBQcpvfvObUc8xGo3cd999iXyscBRlSgp9jU1I5HK6128YVJRJk5tD9a9/i0ytItg5tEV5x9urSVm2FOv5yzHOmc3WO78Sm6WRSnFXVqE/olR30N5N90efMPsXP8V74AD7HnscuU6HypZGsPvwbgH33n2E/f5hg5SQ04VUpUKTnU31b/4H22WXDMnVkCcnk2Qx495bwYDbjTrrcM0JbV4u6ox0pElJmBctIDowgF4O7/bNZrm3Gtfv/oxON41Qj2PSg4O+pmYkMhlJ5snfZTQe2vx8lGlWQg4ngc5OksyW+AxcNBolGg4jlQ/9VRLo7EI5xRODj5T7xVvodzqpe+5PhO+5G5lSSdBuj/frOR7K1BQkCgXOrdsxf21wxVhVui22C+fgjMe8iJWN0hZe/s/D3LPoVsLRCIXmHL666IuclT2Pne0VbGzeTorWNOQ5OYYMmlytLMwcmuckkUjw6BVkBJLod3ehzhycIGvTWenpcxIK95MkO3YAaphZTu3v/8CAz4dMo8Hf3IImJ/s4vjKnpun5w/8OkUgkZKfpaOrwjClIqajrYeH0oblai8ptzCm20tThwe4c2p35TCR695yGDm33TDlnGY5NW1AYD2/71hUXo87OouDLdw3bMCzYZY/lsRBrKpZ67jmknr+ctIsvpOu9wzu8Bvr81PzuGUwLF6DJycG0cAFZn/ssi1/8E3l33E7oiCAl2NODv6V12LH2O50kmYwUf+deyn7w3yPmLyQXFtL57vsoU1OGLFFJk5IouPtLpCxdiq60hMXd75Ha34ni/KvozylB22fHvu6jMX3tEiEcGL6PR9eHa7EsOWvMMxFThfWC5ZT/v4dRWVNp+vPL7Pn+D+I79bre/5Bd3/7ukO274WCQfqdzyu9eOpJ5wXysF11IktmMc+t2opEInqqq+M/D8ZBIpWRddw0Z13wGy1mLBr0m12pRGAz4autoefV1lLVtnHP2VUgkEra07MKg0qOQKVievwSVXEmeKZtdHfuwaIYGubnGLBp7h/8Z29G+l25NFJMvQr/bPaSwn0llIEmmoMs7+jZkVVoamuwsHFu20btnLzu/870RC+F56+rZ+Z37z5hdnTlpepo6x9DYMRKlqslJae7Q76NEIuEHty/ipktK6HL2DXP1mUcEKaehpJQUVLY0cm+9mYyrrsB64QXx1zKvu4bZP/sJqvR0gj3DBCndg6e3p339Hgq/fCfGObPpraiIH6/7w7NEQiEKv3I3ALk33xQvBqZMTSFoj/3Ci4bDhBwO/K3D/wINuVwkmUyoMzIwzpk94hu4cc4snNu2o84e/lNb2sUXkWQ2oSstIdzWTIpegr3LR8CQQdaM/FGbyCVKX3MLm26+jdrf/2HQL+9oOIx93cdYL1h+UsaRSDKlEnV6Osq0NHo2baavsSleSM+1axf+1jaa/jI4ITtotyNNSkJxnNvSJ4vkYGuA3j178NU3EAkET2gmBSD7hs+Rc+Pnh/23nX7FCiqf+jnt//4PebfdyvwLPkOBKYeKrgOkqAfPmOQZswiGQ4OWdA7JMWTQ7Bpasr7Ta+dnn/yBvMIZyB0eBtxu5Ee3R5BIDibPjq0ejuXsJfSs34Bz23ai/f2DdhMeqeuDtfhqa/HV1g37+ukmy5pMq330Ymytdi/9AxHyMkauAn2o0q4ggpTTkjrdhragAKXFTO6tN2NZfPgTnFQuP9izxUzY5xvyCTho7x5UeEsikyGRydCXlRLo6CTY4yAcCNCzYRMFd90xpB8MgDIllQGvl7DfT8jlgkgk1iulz09fU/Ogirj9rt4xvZEZZsemsTXZWcc8T1cSW46yZhjpbHPT1uyiYFEZngPVsbFMsMYXX8KyZDG9e/dR87/P0PTXvxENh3Hu2IlEJov3eDkVqaypEIlgXryQA7/8DU1//Rue/ZWknn/ekO27wc4ulFbrKVnvwVBehrtiH86t22KB8zBLWYmS+dlrMc2fT+l/f4+0iy9CIpORrrPS4GrBojkqSDHF/u2naIZZ7jFm0ubtHFQ5diASZm39Ruakl1NSNh9/ewf9bk+8geCR0nRj2+EDkLL0bFw7dmJf9zEAgfahtZei4TDdn3xKUkrKSfuAMNkyUpNpG0OQUtXooCjbiPwYjRKtZjVOTyBexdbpCRDsH7l1w+lMBCmnofQrL2faN752zHPkej0SuXzQkk84GGTA4xk2UVCu1aLNz+PAL39N1c9+iTI1FU1u7pDzAOS6ZKRKJcHuHkLdPSiMRuS6ZDreWc2u++6n+ZW/x88NHVzuGY06MwNlasqo699JRgPa/DyyZubT3tKLTC4lb0YOuuKieOVNiBWQ6+8de1MwX0PDkOq2Rxvw+nBs2kzef91O6QP346mqovWfr+FraKTrgw+xnn/elCpqNl7KtDRkWi0l93+Xom99g5Z/vEqwx4F5wYIhX0t/W/uklsI/EfrpZfQ1t9Cx5j3MRy3RJJpULqfkvm+hKzm8Rd6WbCVKdGiQYoz92x9uJsWiNmFU6dnfXQNAYCDIHa/dx5tV73JB/hJU6ekEOjpiyz26oUGKLdk6plopEPtZzL7hcwx4PCQXFxHoGJzb1uJuZ+WbvyUSCpF78404tmwd031PdbGZFB9NHW7au30jnre3roeSnKGB5pFMOhUyqYRuV2w25fFVm1mzMbbFORwef/n9U5kIUk5DUoVi2K3FR5JIJCSZTYMa3nV/9DHSpCTkIzSjS7vowtgsSzRK+hUrRvyULJFIUKZYcGzajKe6BmWKBXVGJk1//gsp5yyjZ8PG+Dp1v8s1ppkUiUTC9IcfIuWcZaOeO+fXvyB3ySwkUgllM9ORSCWkLj8X+9pYXkq/20PzX/+Ga/feUe8F4Nq9h53fvI+uDz485nn+9nbkej1KixlNVibz/ve36Mun49y6DcfmraSev3xMz5uqjHNmk3X9dUjl8lj+xvLz0ObmorKl0d87uEhj794K9GWlkzTSE6MwGGJBcYqF1DH8e0s0W3KsLsvRwYhRpefc3MXkGoeWzZdIJCzOmsuG5u0ANLpaSJIpuG3OZ5mbPiOWzG7vJhIKDfvzlp6cSnNvG6u2vcIjH/yScOTwp3ZHn4vvvvNjnP7DgWjmZ69l/jP/Q3JhIYGOWD+w4ECINyvX8Kftf6Oheg/qzAz0M8rxNTQOamtxtEg0Qoeni/7wyOecCmwWDQMDYX7ywhb++m7VsOd4/f18uquNc+Ycu/WBVCohxaimy9GHyxPkQLOThnY3kUiU+//nYz7cNrHtCaaSiZvHFKa8JLM5PpPS9ua/Y1uHUywjBh/pl19G+uWXjeneytRUGl98CYlCgWneXNIuvhCZWo2upJjNt92Bt7oGXXER/rb2MVdeHc8uArlcRkl5GrMXHpwiX3o29c/9iUBHB77GWLfTvoYGOGfpqPeq/f2zmBbOp/HFv5CybGm8jsXRAu0dQ2YPdKUltLz6Otr8vDE3qZuqkgvySS7Ij/85/0u3E3K5kCYpCft8RAYGkMrlRAYG6N29h+zPXz+Joz0x077xtdjOnEmY+ToUpBw9kyKRSPj6WbePeN2S7Hn8/JM/cNf8m6h3NlNozuWSaQd7FqWkkP25z6Ivnz7sEq1NZ6Wyu5a+/gCtng7sfY74OCq6DtDU28rzO/7Ot86+Mz4WZWoqqvQ0PPsriUajVFZt4y8Vb6BWqJjuDSNNMaFMTUWalIS/tRVtXt6Q5/aH+/nNhlVsad2FQaXjofPuJWeYIOxUoJDLsJo1NHd6GQgPnyz87qZGctP1TMs2jno/q0lDh8NHjztANArNnR42VbRzoMnF9qouzp9/ZuyqEjMpZ7Akizk+k+KrrY31KElQI7j0K1aQf9eXiPb3o0yxYF64AMOMcqQKBeYFC+jZuIl+twdvTS2GWbMS8syjff72BWQc/GWg0OvRTy/DuW077op9SJVKfPWjt0Uf6Osj0NZG0Te/gVyrwbVj14jnBjo64hVaD9GXlhAJBE7JhNnRyNRq1Onp8Te9AXdsZ4P3QDVShfyEdsVMNn1pCcpJKrqnUyajVyZjSx7fz2JJSqxSaq2jkTpnE/mmw29iEqmUnC/ciHH28D9rmXobSrmSry66FZs2lXZPbAknEo1Q1V3L4qy5rG/ehjc0eBlDZbPhb++gZ8NGPI/+mpmWIv74mZ+S4pcyYNIhkUjQ5ubQ1zj8J/8trbtodLXw3DVPcUHB2fxi/bOn9G6gjNRkrGYNHT0+XJ7B+X67qu28tLqSmy8d2wzjrGkpbNzbwca97SycnkZTh5tXP6xhQVka++rHV4L/VCaClDNYktlMX0srA31+/G3taAsLEhakmBctJOPKy9GVlaI8qj2CacF8XNt34Nq5E21uDkrLyakbYpw7B+eOXfTu2Yv1/PPw1Y9exjrU3Y1UpUKenIxpwXwcW7eNeG6gvQNV+uDiS8nFxehKiklZNvqMzalKqlAcLLUeWw5w7tiJYfbseBVkYXwkEgm/XPEIBebhc75GIpVIKUkppKq7jnpnM/mmnNEvOsio0rPy6qcoMOeSrovlp9Q6Gvnymw+wrW0PZ+fMx6q1UOdoGnSdNjcHf2sbjc+/iCQ0QFFDH7u++k3Mvih+Q6zfkTo7m76mpuEeS6W9lrkZM9Apk7m2bAXdfU7aPEPrN50q5hZbuebcQrKsuiG9fN5aX8815xUyt2Rs2/LPn5/Njqoutld1ccdV5fQFB6hudvGV62bR7eyjp/fM2P0jfoucwawXLKfn0/U0Pv8CCqOR4u98k8xrr07oM8oe/H68/PYhxrmz8TU20f7vtzGexPLaxjmzcW7bTrC7h8zrro1VsT2q4eXRDu12kkgkmBbMj227HOGTXqBjaJAi16iZ9dSTw7YUOJ0oDPp4kOLasQvT3DmTO6BTnF45vhYEh5SmFrKpZQct7nYKTeMLcpLksf5p6TorbZ5OXtj5D5Kkcnr8TkpSCplmzqPG0TDoGpXNxrSv34NEJsOTYcT2URWBjg7M7V48utiWa21uTrz31tGqumspPTgDpJQnMcNazPa2seWKHctAJExf6OS/iV9zXiFXnVPA7GkpvPJuVTzxFcDu9JOfPnqht0OsZg3zS9O44aJisqw6bGYtc0uspJk15GUY2FUdK/NQUddDrzc4yt1OXSJIOYMlFxRQ+sD9dL73AcnTCtBkZSW8eqRCpxvSQVah06GfXkZkYICMK69I6POORZuXi8pqpeCuO1ClWVFarfHuyiMJdnfHK9Xqy0oJ9/Xhbx7+F66/vR2V7cwsY63Q6+l3u2NLeLW1p0SH59NRaco0DvTUsTBzNina45uhTNdZ2dC0jZbedp685AHuW3o3ZrWRaZZ8qnuGLpFal5/HvN89TXu6CpnLi1SlQhqJ4lDHgnlNTvawQUpfv5+G3haKUwrix+alz2R1zVo2NI88YzkW71Sv5UfrRq+APlFuv6qczFQdj//fZgYO7saxu/ykmsbXOPDB/1rE5y6M7fw6e1Y6l5+dB8RmWf7zaR3evhCPrdx4WifSiiDlDGecPYvpDz9I5jWJnUEZTdmD32fWU0+QZD72VrxEkkilzPvdb0k99xwAtPm5owcp9m6UqbEEQqlCQXJhAd6a2iHnhVy99Lt6UWdkDHntTKAwGOjvdePatRtNTvZJ/b4KhxWYcii3FvOFmcf/85yuS8MT8rGi+Hz0ymQWZ8VmO2MzKSMvkTboYzuCMq+9mqhUQldSrGaLOjODQFdXrD9Xn5MXd/6Tiq4D3Pn6/Vg1lkG7mM4vOJtluYt4dutfiETHv9U2Go0SCvezs72CWkcjDc6Wcd8jEZQKGd+8cQ4DAxGee2Mvof4wLk+QVOP4ghSp9PAmhtuvLGfh9NiHoEsW59Bq9/HYyk34gwPUNMdmMffUduPpCw17r1OVCFIEjLNnYZhRflKfKddoJrRI1kiO3K2hzc8fY5ByOE9HW1g4bJDi3LIFXXHRsDsnzgSHlnt6Pl2PedHCyR7OGUsuk/PI+d/Gpjv+dgTZhgxsyanxnUGH5Bgz6A248QaH1gDxBn1Up0L2l7+E7bJLiV6wGEcwtpSaZDaDVMKv//NLdnXs419V7/HMlj9zefH5/PTSHwy6T5JMwfXlV9Af7h82N6XL18Pa+g0jjv0/Bz7gv1c/wX57NcWWAtbWrz+eL0FCKOQyHvyvRWzc285L71Qil0kxJCtHv3AMNCoFD9y2kMzUZL5waSk1LU7cvhD/77mN/Pvj06vCrwhShDOWNi8PX0PDMc8JdneTdERjwuRpsSAl0Dm48FXPpi1n9JuzQq8n0N6BY+s2Us87Z7KHI5wAvTKZ317x2JC8GI1CjUGpo32Y8vnt3i7UWh05l19OktGA+Yar6e5zAhCKhulNltFeX8WW1l2oFSrsvh4uL7oAjWLozIJcKmOaOY8D3UPfbLe07OTlPW8MO+5INMLq6rU4A70YVHquKbuUnR37judLkDA2i5bPnl/E2xsaSDWpB82MnKjZRal888a5XHpWLm3dPv723gGkEgkb93Yk7BlTgQhShDOWNj8Xf0srkf7+EZNhQ92Hl3sgFqR4qmvYdvc9+BpiU9+RUIjeXbvP7CDFaKBn4yY0Odloso7dukA4ddl0w1embe5tJ8dweKkzx5BBt8+BO+ilousAXn0SBWE929v2cuvsz/L9c76KWWMc8TnFKQVUHQxSvEEflfbY7GWLuwOnvxeXf2i16L2dVQTCIR674D6+NP9GilMKaPd04Q6OXqp+Is0uSsEfHBj3Us9YmXQqzHoVb62v5/5bF9DY4abTcfo0JxRBinDGUlqtSJVKOte8y7a7voK3bnBS4IDXR9DejfqIHTvqjHQsZy1GnZWFe99+AHz1DUiVStSj9BU6naWedx7F376XsgcfmOyhCBMoPdk6bCPCpt5WsvWHgxSdMpksvY1Kew0t7nYkqWayQyqiRJluLWJO+rGXl0tTCtlvrwbg/3b8PV4/pcUd6xNU5xyaKLq1bTeLs+aQY8xkfsZM9Mpk0nXWYZN9T6bsNB0mnXLcSbPjceuKMn78lbNZUJbGgrI0Xhmh4u2pSAQpwhlLIpVScNcd1D27kv5e96DePgCOzZvR5OUOmkmRSKWU/vd3STlnKe79sSDFW1NDctG0U7KZXqIo9DpSli09aTVvhMlh06WOMJPSRo5xcNJ4WWoR+w8GKer0dEzeKGqFKl7J9ljKUouw9znY2LydTS076Ov30+ruoMXdTrrOSr1zaN2V3R37mW2bPuhYrG7M0Byyk0kikbCgLI0s68Tlq124MIfp+bFl6S9fO4v1u9vYW9s9Yc87mUSQIpzRrOcvZ8YTj5F/15dwbts+6LXuT9aTsvTsYa/Tl5Xi2rGLHfd+G/vHn5I8rfAkjFYQJle6zkqHZ2i35ObeNrINg4OU0tRp7Os6QGtvO6bsXBQdDh6cfycMhEcs7naIWqGixFLA7ze/yIWFyyhNKeTTpq34Qn0sy1lI3VFBSrfPQYfXTnlq8aDj5dZitrXuHnE5t8nVys72ic9b+dr1s7lu+bQJfw5AqknNsjmZbKo4PXJTRJAinPEM5eVYzlqEr76B9rffIRqJ4Nq5i96KfaSM0NtHV1xEdGAAiVSKZ38luuKikzxqQTj50pPTaPN0DmpA6A56cQXcQ4KU2bYyWj0d1LmayZy/GH1xEZ4nfkf1b/+HvQ//v1GfNds2nVA4xJXFF1JuLebd2o9I1VooshTQ0ts+6NyKrgMUmnPRJA1eUjkray7OgJt9B5eOjvZO9Vr+vOvVsf71j5tMJk1o0uxoZk1LYXeNmEkRhNOGQq+n6Jtfp+mll3Ht3MWBX/02VvTNOvxWTplazaIX/8T0Rx9GV1KCrqR42PME4XSSY8hAKU8a9Kbf5GohVWMeslNHp0xmef4SItEImeZMSu7/Lsa5s3Fs3Ey/00U4eOwqqRcUnM03zvovUrRmzs1dzLKchdww4yoy9Gl0+roZOCJQanG3k2scmhOWJE/igoKlrK5ZN+wz9nfX0NTbSnff6dULZ+a0FBraenH7QtidfsKRU7cfkghSBOEg6/LzMM2fT+vrbxIdGMB6/vJjni9VKEgyGpj11BMo9PqTMkZBmExSqZSzsuaxvulwRdg6ZzP55uH7BF1deglXFF+IQqaI5YB9+S4WrHoWaVISwa7By0aRUIjeior4nw0qPXMkNpr++jdStGZun/d5zs1bTIrahEwipct7+PpWTyeZusEdyA9ZnncW29r20NcfK1EfiUQIhftxBzy0uTvJ1qeflCWfk8mkU1GQaeCbv/iQO368hk92tk72kI6bCFIE4QiGGdPp3bUbw6yZgwq/CYIQc3bOfDa37CASiVWErXc2UTBCM8NUrYUvzvls/M8SiQSFTofSaiXYNTgB17ltO3t/8DDdn3waP9b6+ps0v/wKrt174sekUik2nZW2IxJ429wdZOqHb0mRZUgnI9nK1tbdALxV/QE/+eh/qeyuJUtvY2nuQna2Hw6O/l31Ps9u/ctYvxxT1o++spSvf34Oy+dlDWl2eCoRQYogHEFfHtsdYJwzfEt7QTjTFVnyCUcjNLhi24DrnE3km8bX80uVlkrgqCAl5HCiMJmo+d9n6Pd4CAcCdH/yKZalZ9P055cHnXuoCSLEmgl2eu1kjDCTArAkZz6bWnYAsfyVvV1V/GX36yzMmsPc9Bns7tzPQHgAgL2dlWxo3hbLtRmmHstIGp5/kZ3f/u4xO6WfTMlqBfNL05hfaqW6yTXZwzluIkgRhCOo0tNJOXcZ5oVnbmE2QTgWmVTG9NQi9nRW0dfvp93TRf4IMykjUVrTCB5VtTnkcmFeMB9dcRGtr71Bz/qNqKypTPvql/HW1uJva6N3bwUHfvVbMnRp8a3QXV47UqlsUA+go01PLeJATz3RaJQD3XXkGrMIhkNcU3YpecYsVHIlld21RKNRap1N9IX8/PfqJ3hu+19H/bu0v/0OO78Ta9SqLyul9Z+vUfvMH2l+5e/j+ppMlOIcE7WtvfQPjL8X0lQgghRBOIJEIqHkvm+LBnmCcAwz0krY21VFo6sFk9qAUTW+nCyldehMSr/ThcJkJOeWL9D+77do+9e/sV54AfLkZEwL5mNf9zHemlp6d+8hQ5cWn0lpcXeQkWxFKh357SzflIMn6GVPZyWBgSA/XP5NHrvgPlRyJRKJhDnp5exo30uP34k76OGs7Hm4Q15qehqG3CsaDtP57ns4Nm8BYqUKtLnZzPjRo2R+9lrclVV0vf8Bji1bx/U1mSjpKVpUSTJ++7cddB2jEm1Ll4dfvbx9ylWrFUGKIAiCMC4zrCVU2muo7qkf9ywKgCotDW9NLT0bNhJyHuzx43KSZDSiK5qGcc5sfA2NpC4/F4CUpWfj2LyFoN1OyOEgXWWOBykHeupHTNw9RClPIteQyev7V1NgykGvTCZVe7gn19z0cna2V1DnaCJbn8Htcz/H4xd+D2eglzf2r+Hxdb9ld0eseGPTX/5K89/+QdXPf0VvRQXemloyrr4KbV4uSouF5IJ8kswmvLV1DHiHNmM82SQSCXdcVU63y8+qf1eMeN4jf9zI1v2dvLc5VoPmlfeqjhnUnCwiSBEEQRDGJduQgUqh4t3aTygYZz4KxHK/9NOn0/jSy+x96BEgNpNyaAYz/47bKLj7TpKMRgC0ebn4W9viO4IsARm9ATd9IT8VnVXMtJaO+sxCSx57u6q4ouTCIa/NSiuj1dPJu7UfUZJSgEltIM+UTbY+g7/sfp3gQIh/Vb0HgGPrNvJu/yLZn7+eqp/9CgBN9uGvQfaNn6fwni+jTrfRWzE1dg1dvDiX+74wny37Omlsdw953eUJ0uXo44uXT+fjna14+0K89E4l//efyR+/CFIEQRCEcZFIJMywFtPptR/XTEqS0UDxt77BzCd+hL+llQGfj5DTieJgUKKy2UhfcWn8fFW6jUh/P56qWE8amdODTplMjaOBOlcT5Wmj1yk6N3cxN828mrOy5w15TZukoSSlgN0dlVxRfEH8+DRzLjZdKrfMvo46RyMhl4u+pmYMM8qxXb6CSChI8rTCQTsBzQsXYJwzG8OsmfTu2TPkWZMlxaimPN9MRX3PkNfq2nqxWTScNzeT7l4//1lfj0mnZFNFB00dQ4Oak0k+qU8XBEEQTkkzrCV82rR13Dt7jqTQ61GYTPgaGul39ZJkMg57nlShQGVNJdDRicJoJNDZSUaylTU1H5GRnIZZPfx1RypNLaQ0deT2FcvzlpBrzCLjiK3Mnym9mIsHziXbkEFfv5/mbZvQ5uagMBgAyP7c9UiTFMPezzBrJs1//duo4zqZcmx6mjo8g469t7mJurZeCjINqJRyzp2TySvvHuC8uVk4PAF2HrCTY5u8OlBiJkUQBEEYt7kZM1iQORuL+sSSzLV5ubj3VhANh+MzKcNRZcTK7uvLywh2dpGuT2Nz606W5i44oecfcn7B2dwx74ZBxzL0NgqM2cgjkGPIpHPn9niZAoDMa68m/YrLh72fYcYM+ppbCLnGvo15ouXYdIOClEBogP/9x07+9XEdBZmxwOuqcwroH4gwPd/MjAILe+uGzrycTCJIEQRBEMbNrDZy/7KvnHD3b01uDq6du5Cp1chUqhHPU2dmIE1KInnaNAKdXWTo0pBKpFxQMHx/rePla2waVOuk+W//YMPnv8CiygD+ugaSi8bWp0uh16HNzaV3z95BxxuefxH7R58kdMxjlWPT0dR5ePmmssFBsiYJrVpBaU5sC3d+hoH/unI6i8ptTM+3sK++Z8QGjSeDCFIEQRCESaPNy8VdWYXSmnrM89SZGSitqaisqQTt3cyxlfP5GVeOaalnPJpe+gv7f/QEB371G/paWvEeqEY/vQzrrhYU7Y5xdTzXlZXgPXAg/ue+lhZaX38T9/79CR3zWOWk6ej1huj1xvom7a7pZl6JlVUPXczs4sNf/+vOL8KQrKQ4x0hfYIBWu3dSxgsiJ0UQBEGYROaFC8i/43bMi45dQNFy1mKSzBbkWg39vb3kmbLIMw1tKngiBrw+nNt2MP2Rh+h4Zw0Nq/6PvqYm8u+6E/dPnyIkjaJKH778/nDUGen07t5L6+tv4ty2nUBHB3KtlqB9cjoUa1QKUoxqGjvczJqWyu7qbi5bkodGNXxejUIuozjHREVdD1lW3UkebUxCg5R169bx9ttvY7fbkUgk5Ofnc+ONN1JYeDjydLlcrFq1ij179qDRaLjkkku4+uqrEzkMQRAE4RQhT04m46orRj0vyWTCsnghfc0t9PdOTJ5Hz6ZNaHJzMc2bi8JoZM/3HyQSDKIvK0FXWsr+7hq6+nqw6Ybvjn40VXo6nWveo9/jQZWWhu2yS0ECLX/7x4SMfyxKc01U1DlItyRT0+JiQdnI7QQAZhRYqKjr4dKz8k7OAI+S0CDFaDRyww03kJ6eTjgc5p133uGnP/0pv/71r9FoNAA8/fTTRKNRHnnkEex2O8888wwGg4Hly5cnciiCIAjCaUhhMBAJBgkHAsfMYTkevvoG9NPLgNgylFShQKZRo9DrybhiBR9ve5VaZ+PYgxRbGoGOTiQKOQV3f4nkggK8dfWTNpMCMLsolbXbW1AlyZg5LQWjTnnM86cXWPjw780naXRDJTQnZfbs2cydOxebzUZmZiZf+MIX8Pl8tLW1AdDU1ERlZSV33XUXeXl5LFy4kBUrVrB69epEDkMQBEE4TcmTtSCVnvBsimv3HrrWfjToWLCzC1VaLACRSKXoy6ejzc0FYlVvlWfPZ0Pz9ngH6NGo0tKI9PcT9gdQZ2YCoExNYcDrZaDPf0LjP16zi1KpanTw9oYGzp2TOer5pbkmunsDtHUPzksJ9pycXT8Tljg7MDDAhx9+SHJyMhkHt47V1tZiNptJT0+Pn1deXk5zczOhUGiihiIIgiCcJiRSKQqDnv4T2NobDgSo/vXTtL3570HHA11dKK2HZ0nSL7+MtEsvjv/52umX0dzbxuuVY/tgLVUoUKZYUKfbkCljMxby5GSkKhWh7smZTbFZNKSZNRRlG1k+f/QaNxqVggsXZPPzP2+jptnFqn9V4PH42f7Ve/HW1U34eBOeONvU1MSjjz5KKBTCYDDw/e9/P77U43a70esHF4XR6XREo1E8Hg8Wi2W4WwqCIAhCnMJgoN99/JVQu97/EIlMSl9jI5H+fqQKBdFolGCXHVXa4V0uxjmzB11n0ZhYUXQ+O9pH7oFzNJXNhjw5Of5niUSCMiWFYHc3mpzjL4R3vCQSCb/+znKUCtmYt4/f89lZ/OrlHdz3m3VIpVJKVX6igQD+ljaSCwomdLxjClJWrlzJBx98MOLrZWVlPPTQQwBkZGTwxBNP4PP5+PDDD3n66ad57LHHSE5OPqG91k8++SRJSUkALF++XOSwCIIgnKEUBsMJLff0NTVhOXsJnWveo6+5heSCfMI+H+G+PpSpx94KnaFL4z8HRn4/PJqurDTeg+gQZYqFoN1+PENPCFXS6G/9h9oUSCQSFHIZ99+6gP6b5vL033Zi31dFChDo6Bhy3dq1a1m7dm3sHglYIRlTkHLjjTdyzTXXjPi6QnF4+5JcLsdmi23RKiws5L777uOTTz7hsssuw2Aw4D4q+vV4PEgkEnS6Y29veuCBB0Y9RxAEQTj9KQyGE1ru8bd3kLLsbLQF+fjq6kguyCfQ1YU8ORm5VnvMazN0aXT5uhkIDyCXjf4WmnvzTUOOKdNiCbVTVTQaZee3vkvJ976DYUZ5/LhCLqMg00Bgcz1IpcP+HY6cRPB4PDz//PMnNJYx5aRotVosFsuI/x29hHOkaDSK7GDzpcLCQhwOBx1HRF8VFRVkZ2fHZ0kEQRAE4VhOdCYl0N6BymYjuSAfb20sryLY2TVqQTkAs8aIQiqnw3f8MyGarEz8ra3Hff1ECzmc9Ltc+Orqh7yWn2FAYW/FMKOcQOfEB1oJTZx97bXX2L9/P3a7nYaGBlauXInb7WbOnDkA5OTkUFpaynPPPUdjYyNbt27l7bff5tJLLz32jQVBEAThIIVBT19LK31N498aG+nvJ9jdjTo9HU1uDv7mFiA2u3Jk0uxIpBIp6clW2j1d4372IeqsTPwtUzdI6WtsBMB38H8PiYbD5BjkmH3dvB+00tfWPuFjSWjirM/n4w9/+ANOpxOtVkt+fj4/+MEPSD1ije8b3/gGK1eu5NFHH0WtVnPVVVeJ/BJBEARhzBQGA67tOzjQ62bOL58a17WBzi4kMhlJFjPqzEz8rbESGc6t27CcvWRM90jXp9Hm7oTRd/AOS52ZQaCjk8jAAFL51Cv87qtvQJqURF9jU/xYOBhk+1fvRZuXS8hio1KRxgKnk0gohHQCV0IS+tW55ZZbuOWWW455jtFo5L777kvkYwVBEIQziOWsxQx4PLS++vq4rw10dKCypSGRSlFnZhByOOhracFTWUXJ/WN7b8o3ZrPPXs3VZZeM+/kAypQUJDIZgY5ONFnHGelMIF9DI+bFC3Fs2kI0HEYik9H98SdEggGcW7cx++v3sKfLSKRSjr+9A21uzoSNRTQYFARBEE4pCr0O26WXxIqi+XzjuvZQPgqAXKdDnpxM8yv/QD+jfMgunJGck7eI3Z376elzjnfoAEhkMlQZ6fhbW4mGw5PaZXg4fY2NWM5eQjQSwb0v1gyx45015Nz8BaY//CCpy88jx6bHY0rHs79yQscighRBEAThlCNP1iLTagl0jpwb4tq9h5ajZluCXUdUlZVIUGdm0P3Jp6Seu2zMz07RmJmdVsa6ho3HNXaIld3vXP0uO7/9XQ784ldEx1jFdqIN9Pnpa25BV1JMzk03sO+xx3Ht2o23ppaUs8/CNH8eUoWCnDQdTeo0eivGXjPmeIggRRAEQTglqdKsBDu7CDmdeI/YieJv78D+8ac0/N+LNL30MqEjtisHuuyDdvGoMzOQSKVYzjprXM+ebZvOgZ7YM2t6Gmhwji+JN/+O2wn7/Wjz8/HW1NLx9tRoD+OtqSHJbEZpsZB1/XWYFi6g8cWXUKWnozAY4ufl2PTsi5rp3VMxoTNBIkgRBEEQTkmqNCvtb73N1rvuYc9//4Dqp/8XgJZ/vMqBn/+SYGcnuuIiOte8G78maLcPKtimLcjHvHhRrCfQOOQaM2lytRKJRvjd5hd4p2bduK5XGAzMfPLHFH/7XtKvvALH5i3jun6ieKoOoCspiv/ZOGc23uoa9GWlg86zmjV0aa30uz30tbXz4e9fxjsBtV9EkCIIgiCckpRpafTu3kPurTcz7/f/Q/dHn+CtraNnw0amff0eir/7bdIuvhDn9h3xa4JddlRH9ue58gpK7vvWuJ+dY8iku8/BRw2baHG309PnOO6/h2neHHr3VhAOBI77HoniqapCV1IS/7NxziwA9GUlg86TSSXcdvVs7EkG3nh+NUnv/INd37k/4R2eRZAiCIIgnJJUaWnIk5OxXXIRyhQL1guWs++xx5FrtVgvuhDT3Dlo8nLpa2omGo0S9vsZ8HgGLfdIJBIkBwuOjkeyUotFbeL5nf9gZloJdt/xBymq9HSUKRZ6905sfsdo+t0eevdUYJh5uMqsymrFtuIyjPPmDTl/xdn5GArzUO3fTp9SR29KNq/8v2dw9HgSNiYRpAiCIAinpJRlSyn74Q+QqdUA5N72RfJuu4WS73473jxPnZlJ2O/HXbGPjnfWIFUqkSeoxUqOMROiUW6ceTXdfQ4aXS20uof2sxmNRCLBOHcuru07EzKu49X66mvoy0qHNA0s/MpdKC3mYa8pXlBOmrsNZW4u/4oWkNe8i/133oFj67aEjEkEKYIgCMIpSaHXoS89vAwh16ixXnA+upLi+DGZUonKlkb1r39Lw/+9gDI1dczdf0ezKHM2n5txJdmGDELhfp7b+jL/qnx39AuHYZw7B+eO2LJU9W//F/vHnyZkjGM14PPR/vZqcr5w47iu0xyskZJSOo2WJAtv2s4hfMGV1PzP7wj7/Sc8rqlX6k4QBEEQEkiTnY1j02a0+XkkmYefETgeFxYe3rasS9JS1VNHhOPb6WKYOYNglx1vTS32dR8h06hJPWdpooY6KvvadWhystEVF41+8hE0ubkApE0v5uYcI/vrrXRPSyF335Z4jZUTIYIUQRAE4bSmycnGV1/PjMcfG3fxt7FK0ZrxhHy0uNuJRqPjmq2pczSiV+nQTy/jwK9+S3RggMBJ6ItzpI7V75J5zWfGfV2S2YRlyVnoykq40WjkuTf20uMOMHvWTNwV+054XGK5RxAEQTitWS88n8KvfgW5VjtoZ08ipWjMFJpzCQwEcfhd47r2z7te453qdUz72leQqVVYli7B337ygpRAVxf+llbMixeN+1qJRELp978Xr9ZrMajo7vVjmDkjITMpIkgRBEEQTmvq9HRMc+dM6DPKUqexLGchNm0qzb3jCzBaPR00OJtR2WzM/vlPybvtiwQ6OnFu33HMirqJ4tq+E11pCXLt+GrFDCfFoKanN4B+xgx8TU2jXzAKEaQIgiAIwgm6suQirii5kCxDOi3utjFf1xfy4/T3Uu9qjlduVaZYkEilVD751KBCdIfUPvNHnNt3MOD1JaScvnP7Dkzz5p7wfQAsRhU9Lj9JRgPF3/rmCd9PBCmCIAiCkCC5xkwaXC1jPr/V04E2SYM35MPhd+EL9TFABJXNRiQUwltTO+j8aDiMfd1HdH+6gb0/fISWf752XOM8spS9p7IK/YzyY5w9dhaDGocnSDgSxbxowQnfTyTOCoIgCEKCFJhy2di8Y8jxgUgYKRKk0sFzA63uDnINmbiDXuqcTbyy51/IpTK+WDoNw4zpdH+yflAirq+xkXBfH46Nmxjwegk5XWRe8xmkCsWYxxiNRtn1ne/Fmwj29/aiyco6sb/4QWa9img0Sk+vH3UCIgwxkyIIgiAICVJgzqHV3UGgf3CJ+5998gx/q/g3HV47roA7frzF3UGG3sac9HKe2fwi/oEACqmcmotLyb/zDsKBAIGOwwXi3BX70ZWVEvb7McyehUypxLFl67jG6Kurx9/WjnPrNlpefR2FwTDu3kUjUcillOaa2bq/kz019hO+n5hJEQRBEIQEMauNGNV66l3NlKXGao5U99Szo30vXd5udrXvo9CSy53zbyISjbCjfS9XFF/IeXmLkUoklFuL2dWxH4ffhVShQJufh7e6BnV6OgDu/fsxzZuLRCYjZdlS+hoacFfsI+XsJWMeY/en6zEvWoBcm4z9w3WoMzMS+jU4b14Wr7x7AI/nxMvji5kUQRAEQUigAlMOtY7G+J/frfmY8/PPpsNnp9bZyJ6OSgDWN23F3x/gnNyFyKQybpl9HXPTZ2BWG3D6ewFInjYNb3VN/F7e6lp0xUWUP/pD0i6+EF1JCZ6qA+Man2PTllhtk9Ji+nt7UWdmsq+rmlC4PwF/e1g2OwNPX4gvXT3jhO8lghRBEARBSKCSlEL22w8HFg2uZuamlzPDWsyirDl0+brp8HTxyt5/87nyK1DIBueTmFRGnAdrrSQXFeKprqHh+Rexf/QJwa4utIUFSBUKJBIJutJifHX1hIPBMY2t3+PB39qKYUZ5vKWAzJbK4x89zYamxPTbMSQreeHRyzh3TuYJ30sEKYIgCIKQQDOsJezrOsBHDZvY0b6XVncHOcZM7ln4Rb6y4BaKLPn8cv0fkUmknJu3eMj1piNmUnRFRfhq62j713+oX/UnlGlWFEc0SFRarch1OnZ95/4xdVH2HqhGZUvjxeq3+VXV3+lTy/igr4r+cD+7Ok68QuwhyeqxJ/IeiwhSBEEQBCGBCkyxpnu/2/wCz237K0gk2LSpmDVGkpVa7ph3I6Up07hz/k3IpLIh15vVBhyBXqLRaCxfRCpFplbT73SRXFg46FyJRELOzTchU6txbts+6tjclVUklxTzft0nFKUUEPzmDaxOamZ+xkx2de4nEj3xuiuJJBJnBUEQBCGBpFIp5dYSunzdNLhayDdlD9p6nGfK4o75N4x4vUltpD/cj6+/j+QkLbqSYoyzZ9Gxeg3JhQVDzrddchEA9nUfjTo274FqJLOKkVLPdWUrkEqlJNsymJtezr1vPUKjq5V8U/Zx/K0nhghSBEEQBCHB7lpwE3KpnB++/3NyDOPLzVArVKjlKpz+XpKTtJT+93eRqVREinIwZeUNe42ueBr1K/9ENBxGIhs6OwMQjUTwHKgmdPEccgOZ8cBpeX5sZ1BGchqdXrsIUgRBEAThdGZQ6QG4bvpl6JTJ477+UF5KtiGDP+z9B1GibGnZxbWKy7jGfOmQ8zXZ2RCJ4G9tQ5MzfJDR19xCNBKhUR0kVzU0cDJpjPHmiH/e9SpXFF+ISW0Y99gTSeSkCIIgCMIEWZa7iNm26eO+zqQ20NPnpMXdzvqmrdh9DnIMGezuGL6zsEQmQ1uQj7e2dtjXAZz799FukrKm/hPyjEMDGbPagMPvIhwJ85+q96lznniDwBMlZlIEQRAEYYrJN+Wwv7uG6p56luYs5KuLv0i7p4v73vkR9c5m0nVWVHLloGvUWVn4W1pHvOeeje/jzTByefEFzM+YOeR1s9pIS2879j4H4WgER58r0X+tcRMzKYIgCIIwxSzKnM2W1l181LiJK0ouAMCWnIpRpee/1zzBRw2bhlyjzszA3zp8B2ZXwE24tomFyy7npllXY9YYh5xjUZvo8bvo8MTK2TsDroT9fY6XCFIEQRAEYYopthQgl8goSSkg1xhr/ieRSLhrwU3MTCuhu88x5Bp1Zib+tjb2PPBQfDty1c9/SW/FPt7b9hZGzwBFi88d8ZnmgzkpHd4ugCkxkyKWewRBEARhipFKpdw293qy9OmDjs9Nn0G9s5mW3vYh16gzM/C3tBINh/EcqEZbWID9k09xR4PURBvIzM9Grh25kaBZHQtS2j1dKOVKnIHehP+9xkvMpAiCIAjCFLQsdxF5w2wHTtGY6fE7hxxX2dLi/7+vqRnntu2EFFJ6t2ynsK2fjIVnHfN55oP1WWocDZSmFE6JmRQRpAiCIAjCKSRFY6LbN3S5RyqXo0xLQ1daQl9TM10bN7GjWIVEIiHDHiJ12dJj3vdQfZZaRyPl1mIcU2AmZcKWe1544QVWr17NnXfeyfnnnx8/7nK5WLVqFXv27EGj0XDJJZdw9dVXT9QwBEEQBOG0kqIx4/C7iEQigyrZAhTeczcytZrd9z+Av6ODjs9ksOjOe1GlpAzq+TOSK0suRK/UsTBzNn/Z/Tr94f4hDRBPpgkJUioqKti/fz9Go3HIa08//TTRaJRHHnkEu93OM888g8FgYPny5RMxFEEQBEE4rZjVRiLRKK6Ae8guHeOsmUQjEaQKBQNZqWizs9Hl54/53p+bcSUAkUgEiUSCM+DGqrUkcvjjkvDlnr6+Pp577jnuvvtu5PLBMVBTUxOVlZXcdddd5OXlsXDhQlasWMHq1asTPQxBEARBOC3JZXKMKv2wO3xaetsJRQbQTy+je1EhGbq0Ye4wOqlUiklloGeYZ5xMCQ9Snn/+eZYuXUr+MJFbbW0tZrOZ9PTD2crl5eU0NzcTCoUSPRRBEARBOC2laEx0eO1Djj/1ye9ZW7+B8kd/SHVWEhn64wtSIFaX5VDNlMmS0CBly5YtNDc3c8011wz7utvtRq/XDzqm0+mIRqN4PJ5EDkUQBEEQTltLcubzxv7VDETC8WOugJsOr53K7hq8IR/7uw4wzTz2pZ6jpevSaD9YM2WyjCknZeXKlXzwwQcjvl5WVsa9997L888/z/333z9kmeeQaDR6fKMUBEEQBCHusqLzeb/2U9bWb+CiwmUAVHXXIpNIqequ4/X9aygw51KaWnjcz0jXpVLd05CgER+fMQUpN95444izIwAKhYKWlhacTicPPvhg/HgkEmHlypV89NFHPPLIIxgMBtxu96BrPR4PEokE3ShZx08++SRJSUkALF++XCTaCoIgCGcsuVTG1WWX8EblGi4oOBupREqVvZYlOQtY37SVt6s/5PELv3dCz7AlW/m4YfO4rlm7di1r164FSEgax5iCFK1Wi/YYVeoACgoK+MlPfjLo2E9/+lMuuOACli2LRXmFhYU4HA46Ojqw2WxAbCdQdnZ2PAAZyQMPPDBqICMIgiAIZ4qlOQt4affr7O2sYpatjD1dVVxVchGeoIe56TOGLQQ3HhkHl3si0QhSydiyQ46cRPB4PDz//PMnNIaEbUFWqVRkZw/+gshkMkwmE1arFYCcnBxKS0t57rnnuPXWW7Hb7bz99tvceuutiRqGIAiCIJwRFDIFs9PKqOyuRZukodNrZ2HmbM7JXYREIjnh+1uTU+gPD+D092LRmBIw4vE76RVnv/GNb6BWq3n00UdZtWoVV111lVi6EQRBEITjkGPMpNHVwru1H7MsdxFqhSohAQpAkkxBnjGLDc3bE3K/4zGhDQZ/85vfDDlmNBq57777JvKxgiAIgnBGyDNm8U71WvwDAR4452sJv//Ns6/lF+uf5by8xeiUyQm//2hE7x5BEARBOEXlGjPp7nMgl8qZZslL+P1n2cqwaixUdB1I+L3HQgQpgiAIgnCKMqj0GFR65mfMHHNy63gVmHOpczZNyL1HI4IUQRAEQTiFXVSwjAvyz56w++ebsql3Nk/Y/Y9FBCmCIAiCcAq7YeZVFKcUTNj9C0w51DmbiEaj/Hbjn3D4XRP2rKOJIEUQBEEQhBHlGrPwhnxsatnBJ42b2XcS81NEkCIIgiAIwoiU8iTmps/gmS1/BqDuJC79iCBFEARBEIRj+uLs6wiGQyzMnE39SUyiFUGKIAiCIAjHlKG38fTlj3F9+RXUOZuIRCMn5bkiSBEEQRAEYVQpWjPZ+nT6wwN0eruHPWdXxz4ikcQFMCJIEQRBEARhTOQyOZl6G829bUNe8wZ9PL7uaap6ahP2PBGkCIIgCIIwZll6Gy3udgCi0Sh/2/sv2j1d1DgaADjQXQ9Au6fzhJ81ob17BEEQBEE4vWQbMmjpjQUpO9oreGP/Gt6uXsvCjNlIJVKqeuoYiIR54N2fnvCzxEyKIAiCIAhjlqVPp/ngTMoblau5vvwK5qbPYG3DBs7KnseB7lpc/t6EPEsEKYIgCIIgjFmW3kabu4M2TycHeuq5eNo5XF9+OVKJlBVFy/H1+9lnr8ag0p3ws8RyjyAIgiAIY5aWnArAX/e8yay0UpKTtCQnafndlY9j1hixaVPZ21mFRW084WeJmRRBEARBEMZMJpXxmdJL2Ni8ncVZ8+LHzRojAOk6K3u6KjGrTSf8LDGTIgiCIAjCuHyu/ArUCiVnZc8d8ppNZ2Vr225mm8tO+DkiSBEEQRAEYVykUimfKb1k2NcydFYAsdwjCIIgCMLUkq5LAw4v/5wIEaQIgiAIgpAw6QdnUswq4wnfSwQpgiAIgiAkjEllYFHWnPiyz4kQQYogCIIgCAkjkUj47tIvo0nSnPC9RJAiCIIgCMKUJIIUQRAEQRCmJBGkCIIgCIIwJYkgRRAEQRCEKUkEKYIgCIIgTEkiSBEEQRAEYUoSQYogCIIgCFOSCFIEQRAEQZiSRJAiCIIgCMKUJIIUQRAEQRCmJHkib7Zu3TqeffbZQcdycnJ48skn4392uVysWrWKPXv2oNFouOSSS7j66qsTOQxBEARBEE4DCQ1SAIxGI48//nj8zzKZbNDrTz/9NNFolEceeQS73c4zzzyDwWBg+fLliR6KIAiCIAinsIQv90gkEoxGY/w/nU4Xf62pqYnKykruuusu8vLyWLhwIStWrGD16tWJHoYwQdauXTvZQxAOEt+LqUN8L6YO8b04vSQ8SPF4PHz961/nW9/6Fr/73e9wOBzx12prazGbzaSnp8ePlZeX09zcTCgUSvRQhAkgfgFMHeJ7MXWI78XUIb4Xp5eEBikZGRncfffd3H///dx55510d3fz4x//OB6AuN1u9Hr9oGt0Oh3RaBSPx5PIoQiCIAiCcIobU07KypUr+eCDD0Z8vaysjIceeoiioiKKiorix/Pz87n33nvZsWMHixcvJhqNjnuAh67xer3jvlZIvFAoJALKKUJ8L6YO8b2YOsT3Yuo49L59PO/9h4wpSLnxxhu55pprRnxdoVAMe1yr1ZKWlobdbgfAYDDgdrsHnePxeJBIJINyV44UCAQAWLBgwViGKpwEzz///GQPQThIfC+mDvG9mDrE92JqCQQCaLXa47p2TEGKVqs9rgf4/X7sdjupqakAFBYW4nA46OjowGazAVBRUUF2djZJSUnD3sNkMvHb3/4WlUqFRCIZ9xgEQRAEQTj5otEogUAAk8l03PdI6Bbk1157jaKiIqxWK263m7///e9otVpmz54NxGqmlJaW8txzz3Hrrbdit9t5++23ufXWW0e8p1QqxWKxJHKYgiAIgiCcBMc7g3KI5MMPPzz+xaKjvPjii2zevBm3241Op6OkpIQbb7wxPpMCsWJuK1euZO/evajVai655JJjLiUJgiAIgnBmSmiQIgiCIAiCkCgJrzibSG+++SarV6+mr6+PGTNm8KUvfQmj0TjZwzrjvPHGG2zevJn29nbUajWzZs3ipptuGrKdXDi5fvnLX7Jt2zYeeOABZsyYMdnDOWPV19fz8ssvU11djVwuZ+bMmdx7772TPawzjs/n46WXXmLnzp0EAgFycnK44YYbKCsrm+yhnfa2bNnCu+++S11dHX6/nxdeeGFQtfn29nZWrlxJTU0NBoOBa6+9dsxV5qdsg8F169bx+uuvc/vtt/PII4/g9/t5+umnJ3tYZ6SqqipWrFjBj3/8Y77zne/Q2toqvheTbN26daIA4hTQ2trKE088QXFxMT/60Y949NFHWbJkyWQP64z00ksvUVdXx7e//W2efPJJCgsL+fnPf47P55vsoZ32gsEg06dP56qrrhry2sDAAD/72c/Q6XT86Ec/4tprr2XVqlXs3bt3TPeeskHKmjVruOyyy1i4cCF5eXncfffdVFZW0tDQMNlDO+Pcf//9LFu2jIyMDAoLC7n11lvZt28ffX19kz20M5Ldbuef//wnd91112QP5Yz397//nQULFnD99deTlZVFZmYmCxcunOxhnZFqamo477zzKCoqIi0tjeuvv55AIEBbW9tkD+20t2zZMq655ppBddIO2bVrFw6Hg7vvvpvs7GyWL1/OkiVLWLNmzZjuPSWDlP7+fhobG5k+fXr8mNVqJTU1ldra2kkcmQCx2jYKhQKlUjnZQznjRCIR/vCHP/DZz35W7HqbZJFIhN27d5OamsqPf/xj7rnnHp588kmampome2hnpKKiIrZt24bH4yESibBu3TpMJhPZ2dmTPbQzWm1tLQUFBajV6vix8vLyMb+XT8kgxev1Eo1Ghy2hf3QxOOHk6u/v57XXXuOcc84Z0uFamHhvv/02SqWS8847b7KHcsZzu90Eg0H+85//sGTJEu6//34sFgtPPPGEmGWcBLfddhs6nY6vfOUr3Hbbbbz55pt897vfRaVSTfbQzmjDtcPR6/Vjfi+fkkHKiZTQFSZOJBLhd7/7HQA333zzJI/mzNPa2spbb73FnXfeOdlDETj8e2rRokVceOGF5Ofnc8cddyCRSNi2bdskj+7M884779DR0cEDDzzAj370I5YsWcIvf/lLUSJ/kp3o+/mU3N2j0+mQSCTDltAXO0omRyQS4ZlnnqGtrY0f/vCH4tPJJKipqaG3t3fIzpGf/OQnLFmyhK997WuTNLIzk06nQyqVDurqLpfLSU1NHdT9XZh4oVCIf/zjHzzwwAPx3Tx5eXns3LmT9evXc+mll07yCM9cBoOB9vb2QceGm10ZyZQMUhQKBbm5uezbty++tbKrqwu73U5hYeEkj+7ME41Gee6556ipqeHhhx8mOTl5sod0RlqwYAEFBQWDjn3/+9/nS1/6ErNmzZqkUZ255HI5eXl5dHZ2xo+Fw2G6u7tFvtBJNjAwQDgcRiodvDggkUjEzPwkKyws5K233iIQCMQ/3O7bt2/M7+VTMkgBuPjii3nxxRfJz8/HarXy5z//mZKSEvLy8iZ7aGecVatWsX37dr73ve8BsarBEFtXPPqXgjBxRuqhlZqaKt4UJ8lll13GH//4R6ZPn05BQQGrV68GYN68eZM8sjOLRqOhuLiYl156iS9+8YskJyfz0UcfYbfbmTlz5mQP77Tn9Xrp7u6OB+xNTU1IJBJsNhuzZ8/GbDbz7LPPct1111FTU8P69eu5//77x3TvKV1x9o033mDNmjX4fD5mzJjBnXfeKYq5TYKR8k9+/etfD2p5IJx8N998syjmNsneeecd3nrrLXw+H/n5+dx2221iR8kkcDgc/OUvf6GiooJgMEhmZiaf/exnmTNnzmQP7bS3bt06nn322SHHH3zwQaZPn05bWxurVq2ipqYGvV7PddddN+ZiblM6SBEEQRAE4cwl5uoFQRAEQZiSRJAiCIIgCMKUJIIUQRAEQRCmJBGkCIIgCIIwJYkgRRAEQRCEKUkEKYIgCIIgTEkiSBEEQRAEYUoSQYogCIIgCFOSCFIEQRAEQZiSRJAiCIIgCMKU9P8BXbqrZQJMCNAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the data with Matplotlib defaults\n", + "plt.plot(x, y)\n", + "plt.legend('ABCDEF', ncol=3, loc='upper left');" + ] + }, + { + "cell_type": "markdown", + "id": "01f502ae-fe48-437d-8d4b-1be8d5b7291a", + "metadata": {}, + "source": [ + "**Seaborn**" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "d91be125-f7bb-43d3-9f4a-1b647a4f6343", + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f7d84ffa-8c7c-4b02-a70e-a02f05813192", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    xgroupy
    00.00000A1.764052
    10.02004A2.714141
    20.04008A3.475178
    30.06012A3.788246
    40.08016A6.058001
    ............
    29959.91984F-10.465950
    29969.93988F-9.613061
    29979.95992F-9.165378
    29989.97996F-9.004272
    299910.00000F-9.084870
    \n", + "

    3000 rows × 3 columns

    \n", + "
    " + ], + "text/plain": [ + " x group y\n", + "0 0.00000 A 1.764052\n", + "1 0.02004 A 2.714141\n", + "2 0.04008 A 3.475178\n", + "3 0.06012 A 3.788246\n", + "4 0.08016 A 6.058001\n", + "... ... ... ...\n", + "2995 9.91984 F -10.465950\n", + "2996 9.93988 F -9.613061\n", + "2997 9.95992 F -9.165378\n", + "2998 9.97996 F -9.004272\n", + "2999 10.00000 F -9.084870\n", + "\n", + "[3000 rows x 3 columns]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xy_df = pd.concat([pd.DataFrame({\"x\": x}), \n", + " pd.DataFrame(y, columns=[\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"])], axis=1)\n", + "xy_df = pd.melt(xy_df, id_vars=[\"x\"], var_name=\"group\", value_name=\"y\")\n", + "xy_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "0087a9f6-979d-48aa-ad73-2506510faeb4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAG+CAYAAACedH6uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOydd2Dcdf3/H7dn1mXvpEmT7j0ZZZYlZYqyVBABQRnq171ARf06fiKg+AURBERBNpTVAi2F7pE2HRnN3uOSu9yen98fn7tL0iRN0qZNoO/HP7l81r1ufT7Pz2sqJEmSEAgEAoFAIPgMoZxsAwQCgUAgEAgmGiFwBAKBQCAQfOYQAkcgEAgEAsFnDiFwBAKBQCAQfOYQAkcgEAgEAsFnDiFwBAKBQCAQfOYQAkcgEAgEAsFnjikncHbs2MGMGTNi/z///POceeaZLF68mPvuu49QKDSJ1gkEAoFAIPg0MKUEjtfr5ac//SnR3oP79+/noYce4qmnnmLdunUcOHCAl19+eZKtFAgEAoFAMNWZUgLnwQcf5Mwzz4z9v3btWtasWUNRUREWi4XbbruNl156aRItFAgEAoFA8GlgygicsrIydu/ezU033RRbVl9fT0FBQez//Px8amtrT75xAoFAIBAIPlWoJ9sAAL/fz89+9jN+97vfoVKpYss9Hg96vT72v8FgwOPxjOvYwWAQu92OTqdDqZwyek4gEAgEAsFRCIfD+Hw+EhISUKvHL1emhMB5+OGHOffcc5kxYwbt7e2x5Xq9Hp/PF/vf4/FgNBrHdWy73U59ff1EmSoQCAQCgeAkUlBQQHJy8rj3mxICZ926dXR1dfHss8/GEoyXLFnC6tWrB4mT+vp6pk2bNq5j63Q6AHJycsYtjgQTSzgc5vDhwxQXFwtv2hRAfB5TB/FZTB3EZzF1cLvdNDc3x67j42VKCJx33nkn9ri9vZ2zzjqLnTt3sm/fPu644w6uvPJKUlNTefzxx7n88svHdezoF9RoNBIXFzehdgvGR7TE32w2DwpFCiYH8XlMHcRnMXUQn8XU41iF5pQQOCMxb9487r33Xm6//XZcLheXXXYZ119//WSbJRAIBAKBYIoz5QRORkYGlZWVsf+vueYarrnmmkm0SCAQCAQCwaeNKSdwTibhcDiW8yM48URdv6Ib9clHoVCIfAKBQHBKccoKnHA4THl5OcFgcLJNOeUoLy+fbBNOOdRqNXPnzhUiRyAQnDKcsgJHkiSCwSBz584ViWSCzzShUIjy8nLhrRQIBKcUp6zAiaJSqYTAEQgEAoHgM4bwVwsEAoFAIPjMIQSOQCAQCASCzxxC4AgEAoFAIPjMccrn4HxauPjiizGZTLz44ouTbcqk8tZbb/Hkk09SW1uL0Whk9erVfPvb38ZsNk+2aSeV0tJSDAYDCoVi0PK//e1vLF++fJKsEggEgqmDEDifAsrKykhMTKSzs5NDhw4xc+bMyTZpUnjyySd56qmn+N3vfseSJUuw2+3cf//93HXXXTz55JOTbd5J55133iEjI2OyzRAIBIIpiQhRfQp45ZVXOPvss1mzZg3PP//8ZJszKTidTh588EEeeOABli9fjkqlwmKx8MADDxAXF0dPT89kmygQCASCKYTw4ByFf79XyaayluM+zpkLsrnugtJj2tfv9/POO+/wyiuvEAgEuPrqq/n+97+PwWA4brvGw4sH1rK5cddxH+e0vMV8fvbnxr3fnj17UCgUrFy5ctBys9nMQw89dNx2jYeN71VxsKz1uI8za0EWZ11QMgEWCQQCgeBIhMCZ4qxfv57Zs2eTlZUFyLkXb731FldfffUkW3ZysdvtxMfHi55FA/jc5z43KAcnLi6ODz/8cBItEggEgqmDEDhH4boLSo/Z8zJRvPLKK+zZs4fTTz8dAJfLRTAYPOkC5/OzP3dMnpeJIjk5GZvNRjAYRK0e/LXt6enBYrGcNFvOuqBkSnhe1q5dK3JwBAKBYAREDs4Upquri+3bt/Paa6/x6quv8uqrr/LGG29w6NChQRPXTwUWLlyISqXik08+GbTc5XJx/vnns3PnzkmyTCAQCARTESFwpjCvvfYay5cvJy8vj9TUVFJTU8nNzeXss8/mhRdemGzzTip6vZ5vfvOb/OxnP2Pbtm1IkkR7ezvf/va3mTt3LkuWLJlsEwUCgUAwhRAhqinMq6++ys033zxk+Zo1a/jRj37Ed7/7XfR6/SRYNjnccsstGI1GfvnLX9La2orJZOKCCy7gW9/61mSbNilcdNFFQ/rg3H333cN+ZwQCgeBUQwicKcybb7457PLVq1ezevXqk2zN1OC6667juuuum2wzJp1TLUQpEAgE40WEqAQCgUAgEHzmEAJHIBAIBALBZw4hcAQCgUAgEHzmEAJHIBAIBALBZw4hcAQCgUAgEHzmEAJHIBAIBALBZw4hcAQCgUAgmMJIoRDWrdsIeTyTbcoJwVa2l/0/+Tn2Awcm9LhC4AgEAoFAMEUJBwIcuP9XVPzmdzT+57PXwV4Kh6l9/Ans5fvZ/+Of46ismrBji0Z/U5jm5mbOO+88jEZjbFlpaSkPPPAARUVFk2jZyae0tBSDwYBCoSAcDpOamsq1117L1772tck2bVIY+H5EKSws5OWXX55EqwQCwURT98ST2PfuA6Bn+04Kb/7KJFs0sVi3bsPT3ELigvnYy/dT8+hjzP/j/6JQqY772ELgTHFUKhV79uwBIBgM8uCDD/LDH/7wlJtFBfDOO+/Epmfv3buXb3zjGygUCm655ZZJtmxyGPh+CASCzx6ellba336XhLlz0CQl0v3Rx/h7etFakibbtAnB3dzC4Uf+ispkpPjub9L2xpu0vPIavbt2Y1m29LiPL0JUnyLUajWXX345FRUVk23KpDN//ny+//3v89hjjxEKhSbbHIFAIJhwHNWHAUi/8AKSFi4EoG3tW7ibmpEkaTJNA6DvUAW7br8Tb0fHuPeVJImaR/+PkNvDjO/9D7pkC5mXfg6UStrfWzch9gkPzlHo3fQCzoOfHPdxzLNOJ+nMLxz3cQKBAK+99hqrVq067mONl8b/vED3x8f/XqSccTp51x7/ewFw+umnY7PZqK2tZfr06RNyzLGw/f3XOLxv+3Efp3jeMpadd/kEWCQQCD6LuOrqADAVFqCJj0ebnEzziy/T/OLLTPv6rWRefNGk2tf54Ua87R307txN5ucuPuq27sZGWl55jWm334pKr6dn+w769h8g/YLzSVwwHwBdSjJJixfSu2sPvXvKUBcfXyqGEDhTnFAoxJIlSwDweDwoFAoeeeSRSbZqahAfHw+Ay+WaZEsmh8997nODcnCeeeYZZs6cOYkWCQSCicRVW4dSr8eQmYFCpWLhI3+m7c21NP7r3zgP10y2edj3yblBjurDZI6ybcf6D+j8YAOJixZhzM2ha+MmUCjIvfaLg7bLv+F6+g5WUPHr/2XGn//fcdknBM5RSDrzCxPieTkeVCoVO3fuBCAcDrNx40buuusunn32WebPn3/S7Mi79gsT5nmZKGw2G8BJz0NZdt7lU8LzsnbtWpGDIxB8RpEkCVddHab8/FjCrdpoIPcLn6f1jbV4Wlon1T5fVxfetnYAnJFQ2tFw1TcAUPPo3wi53ACYiorQJVsGbWcqLCD/xuup/b/HcTc3g+rYM2lEDs6nCKVSyTnnnMO0adPYtm3bZJsz6WzevJnk5GTS0tIm2xSBQCCYUPzd3QQdTkzTCoasM2RlTorACbo9NP33JbwdndgilV0qgwFPSwtBp/Oo+7obGgFi4gYgaeHwN+mmwgKAmIA6VoTA+ZSxc+dO6urqTqr3ZqohSRLbt2/nD3/4A3fccQdKpfgaCwSCzxb2AwcBiCstGbLOkJ1NsK+PgMNxwu2QwmEclVVIkkTn++/T+Oxz7LrtDhqefQ6FSkXmms+BJLHj5ls5cP+vhrUpYLcTiHjcB5K4aMGwz2nMywWOX+BMmRDVyy+/zCOPPEJvby9z5szhF7/4BYWFhTz//PM88sgjuN1u1qxZw09/+lNUE1Af/2khFAqxMJI9D5CcnMwPfvADli9fPolWTQ4XXXQRCoUCpVJJVlYWd955J9dee+1kmyUQCAQThrezE11yMvby/QAkzJkzZBtDlpzx4mlpRTOj9ITa0/nBBg4//BcKbv5KzAsDEOi1kbhwAdlXXoFSq6Vn2w5su/dgK9tH6pmnDzqGK7KfIScbT2sbcx/4BUG3m4TZs4d9TrXJhC4tDW9b23HZPiUETk1NDb/97W959tlnKS4u5uGHH+ZnP/sZ3//+93nooYd4+umnSUpK4vbbb+fll1/mmmuumWyTTwo5OTlUVlZOthlTAvE+DEa8HwLBZw9/Ty+7br0DY14u3s4u9BkZ6FJThmxnyM4GwNvaSvwJFjjuBjl3pvnFl9GlpqC1WDAV5tO7aw+W5UvlvKBrrsaydAll93wbd309HCFwoseYdustGHJz0CUnj/q8poJ8bC0taI/D9inh2y8qKuLDDz+kpKQEr9eL0+kkKSmJtWvXsmbNGoqKirBYLNx222289NJLk22uQCAQCAQTjqelBQB3YxNhr5eEuUO9NwDGgjwAHFXVJ9ymkMcLQNDhwFVbh6kwn5L/+TbTvn4b6avPj21nyMlGoVbjqqsfcgxXfWPE7oIxiRuA+NmzkI6zx9mU8OAAmEwmtm3bxk033YTJZOKZZ57hoYce4qyzzoptk5+fT21t7SRaKRAIBALBicHX1Q1A4oL5mKYVknHh6mG302dkoEtPo3f3HiRJGtQuYqLxdnYO+t+Yn4/aaCTz4gsHLVeq1RjzcmMCRwqHCfT1oU1MxN3QiCYhAW1iwpifN2vN53D7fPQdh+1TRuAALFy4kL179/LPf/6Tr3/96+Tn56PX62PrDQYDnmOcphoOhwd1vBXdbwWnGkd+56P/i9/C5CM+i6nDZH4WnkhH4NwbrsNUNO2odiQuXEDHO+/hamrGkJ11wmzydXZhyM1FoVTgbmhEn5Mzok3Ggny6PtiAt7cX267d1Dz8V0p/+D3cjY2YS0vG/Z6mXXQBfYdHL0EfiSklcLRaOdr2ta99jb///e8YjUZ8Pl9svcfjGTR4cjwcPo43SSD4LFBeXj6u5YKTj/gspg6T8VkEIpO0qzraUTiO7rsIJcjekPKHHkFz9RUotMNnq0guFxiNx+TlkSQJX2cnysICNFddjnrffprNRlrKyobdPqjVALDvnXcJ7dwNQOVvfgeAy6CnbIT9ThRTQuBs3LiRF198kYcffhiQvS2BQACVSkV9fX1su/r6eqZNm3ZMz1FcXIzZbI79HwqFxMlEcEoxd+7cQRWI0d/AkcsFJx/xWUwdJvOzOPT6Whw6HQtWrhxVkEhz51Ld1EzP5i1kdHTJ5dpH4Kis4sAvf0PRXd/AmJ+HMS93XFO6/T297A6FSC0uonDFClix4qjbe9LS2PvOOpKsPXgNhkHhpfwlS0hbsGDMzw3gdDqPyzkxJQTOrFmz2Lp1Kx999BErV67kr3/9K9OnT+f222/njjvu4MorryQ1NZXHH3+cyy8/tg6ySqVy2C+rcAkLPutEv+MqlWrY38BIywUnH/FZTB0m47Pwd3WhS01BrR7DpVmlYtrXvkrP5i34OjqGtbX7gw0gSdQ8JI/3KbrzdjIuvGDM9gSsVgD06eljei/MubkYcrLp3bkLhUKJPisLTUI8jkMVJMwoHff7ebw9zqaEwElNTeWhhx7igQceoKOjg8WLF/PQQw+Rnp7Ovffey+23347L5eKyyy7j+uuvn5DnVCgUqNVq4cURnBKo1eoTmogoEAiOD0mS8HV1Ez971pj30SYmgFKJ39ozaHk4EKDl5VfpWLd+0HJnTd24bPK2yn1o9GmpY97HsmwpLS+/CkDqWauYfu9d+HttQ0YynAymhMABWLlyJW+++eaQ5ddcc80J6XujVCqZO3fulBg5f6og3PCTR7RBokAgmJoE+/oI+/3D9r0ZCYVKhdZiwR/xtESxbt5K43P/AcBcXBQbzCkFg+OyybZ3LwBxM2eMeZ+0c86KCRxDdhYKpXJSxA1MIYEzGYgT/uQg3PACgUAwmL4KuXmnqSB/XPvpki1DSrmtW+VZhTN+8F0SFy2kbe3bNPzzmSFCaCQCfX2ozWZse8owFuSPuXcNgDEvL/ZYmzL2/U4E4govEAgEAsEkY9tTBsjl3+NBm5xMwGYnHPHOhP1+enfvIW5GKckrV6DS6ci56gr0WVn4RhA48uTyeiRJwla2l+1fupnm/75EwN5H0qKFw+5zNGb/8j6MebnHtO9EIgSOQCAQCASTjG1PGbr0NPSZmePaT5tsAUki0NsLQOvrbxL2ekk+bXDFky4leUiuTpSe7Tsou/c7WDdvoWf7TgAa//MCIOfUjJfEeXNZ+PCDaJOSxr3vRCIEjkAgEAgEk4irrh5veweJCxaMuxggGj5qW/s2zppaGp/7D4bcHDIuGtxpWJucTMjtJjRMs1zr5q0A9O4uw75fHvJJOIwhJ5u4Ezzr6kRySufgCAQCgUAw2bS+LhfYpK8+b9z7aiMCp+WV12h/5z2kUIjCr96ESqcbtF000ddn7cGYkx1bLoVC9O7eA4B1y1ZCLhdKrZaw30/66vM/1dWXQuAIBAKBQDBJBPr66PpoE/GzZhI3vXjc+w+sugp5PKjNZhLmzR2yXVQI+a1WDNlZOCqrME8rxFVXT7CvD5RKQi4XAAU3fRmlTkfqWWce46uaGgiBIxAIBALBJBAOBOjZth0pGDwm7w1AXGkJRd/4Op7mFlpfe4OkpUtQDtMoMCpwvB2dhHft5tAvf4022ULauecAkLrqTLo2bESfkU7a+ecO8QB9GhECRyAQCASCk0ygr49dX/8GIZcblEqSli45puMolEoyLlhNwOHA19lF9uVrht0urrQElEp6d+xEnyUnMvutPbGeNQU3fYnE+fNIXrn8MyFuQAgcgUAgEAhOOj3btsviBrkhniYu7riOp4mLY8YPvjviem1iAonz5tK7ew+G9nYUGg1IElIwiC41BW1SEmnnnn1cNkw1RBWVQCAQCAQnGevW7QAkLV7ItK999aQ8Z8qZpyMFg7gbm0iYM5v4WTMBMB3jEOupjhA4AoFAIBCcREIeD7a9+0iYP49ZP/sJiQvmn5TnTTnzDFQmEwCmaYUkzJ0Te/xZRISoBAKBQCA4idjL9yMFAliOMe/mWFHpdCx48A80PPMcGRecjyTJPXCSV64YfedPIULgCAQCgUBwEuk9xrEME4E+LY3S79wb+3/Bg3846TacLESISiAQCASCk4htTxm6tFQM2VmTbcpnGiFwBAKBQCA4SXjb2/G2tZO4cPxjGQTjQwgcgUAgEAgmACkU4uCvfkPH+g9G3CYankqahPDUqYYQOAKBQCAQTADejg56d+yk/Z33RtzGtmcvKJUkzB06TkEwsYgkY4FAIBAIJgB3UzMArtpaQj7foI7A4UCAQw/8FtueMuJmlKI2mybLzFMG4cERCAQCgWAC8EQEjhQK4aw+PGhd785d2CLhqYyLLzzZpp2SCIEjEAgEAsEE4G5qij3uO1QxaF3nhxtBoWDJPx4j7eyzTrZppyRC4AgEAoFAMEYkSaLm/x6na+OmIevcTc1oEhJQqNU4Dh2KLXdUH6Z3124S5s1FF5nqLTjxCIEjEAgEAsEYCTqctL/1DlX/70EkSYotd9XX42lqxlRYgLmoiL6KKqRwGGdtHQd/8QAKpZL8G66bRMtPPYTAEQgEAoFgjHjb22OPnYdrADmBeP9Pfk44GCTtvHOJnzWDkMuFs/owB352PyG3m9Lv/w9xpSWTZfYpiRA4AoFAIBCMEW9bv8CxfrJZXtbeQdDhJPvyNaSuOoO4mTMAaH7pZYIOB3nXX4tlyeJJsfdURggcgUAgEAjGiKetLfY4mkjsjSwz5GQDED9zBigU9GzbAUDS4oUn2UoBCIEjEAgEAsGYaH39TdrfeRcAU9E0XPUNSOFwTPToMzMA0MTHk3xa/4RuY17eyTdWIASOQCAQCASj4ag+TN0TTxLotaHU60mYPYuw14u3owNva8SDk9k/PDP3ms8DED9nNgqluNROBqKTsUAgEAgEo9D6+huxx2GvF1NhAQC7v/5NAJR6PZqkxNg2psIC5v72AfSZmSfTTMEAhMARCAQCgeAo2PaV073pE+LnzIZwmKSlSzAVFg7aRgoGh0wHj48kGwsmByFwBAKBQCAYASkUovrBh1DqdBR/4+sYsuQwVDgQQGU0otRqCdhsxJVMn2RLBUciBI5AIBAIBMPg7+nF1dCA39pDzjVXx8QNgFKjYdGjj6A2GXFUVKLPyJhESwXDIQSOQCAQCARHIEkSu++8i5DHA4Bl6ZIh22gTEwBImDvnpNomGBtTJrV77dq1XHjhhSxevJgbbriBw4flSazPP/88Z555JosXL+a+++4jFApNsqUCgUAw8YQ7O9n3ne/hGdBITjB5BB2OmLgBME8vnkRrBMfClBA4NTU13H///fzhD39g+/btnHXWWXzzm99k//79PPTQQzz11FOsW7eOAwcO8PLLL0+2uQKBQDDhBF55HXddPe1vvzPZpoyZoMuFu7Fp9A0/hfi6umOPc6/9gij1/hQyJT6x1tZWbrzxRubOnYtKpeKGG26grq6O119/nTVr1lBUVITFYuG2227jpZdemmxzBQKBYEKRJAmp2wpA2B+YZGvGzr7v/4g9d91L0O2ebFMmHH9XFwDT772LvOu+OMnWCI6FKSFwzjzzTO6+++7Y/xs3biQrK4umpiYKCgpiy/Pz86mtrZ0ECwUCgeDE4W1pgUj43dPcPMnWjI2Qz4enSbb1s+jF8UUEji4tdZItERwrU0LgDOTQoUPcd999/OhHP8Lj8aDX62PrDAYDngExUYFAIPgs0HewIvbYfQIFjrOmluqH/0I4cHxeIk9bGwfv/1Xsf3dj4/GaNuXwdcohKl2qEDifVqZUFdWWLVu45557+O53v8vq1at56aWX8Pl8sfUejwej0XhMxw6HwyJBeZKJvv/ic5gaiM9j6uBukj0g5pkzcB6qwNfXh9pkmvDn6Vj/Pp3rPyDl7LOInzXzmI/T8K//0HfgYOx/V33jpH6PJEka0mTvWIm+Dm9nJyiVqBMTxW9kkgiHw8e1/5QROO+++y4/+tGP+O1vf8vq1asBKCwspL6+PrZNfX0906ZNO6bjR6uyBJNPeXn5ZJsgGID4PCYff0UlqNV4M9LhUAV7161HVZA/8c9TLZ8Hq7ZtQ+33jbL1yPiqqwHQfvkG/P9+gc6DB7GVlU2EiePG/+y/kTwedLd+dUKPa29qgjgze8Xv41PLlBA4DQ0N/OAHP+Cvf/0rK1eujC2/+OKLueOOO7jyyitJTU3l8ccf5/LLLz+m5yguLsZsNk+UyYJjIBQKUV5eHksmF0wu4vOYOuz+62MEki2UXLiagxs/QvHWO+jz8ij8+q3oUlIm7Hn2PvkMHiBVpSZ/wYJjOoYUDrOjp5f4BfOZecXllG/eir+rm/nz50+YF2XMtkgS237xawDmTC9BbRrewz8eD08oFGLfvn0oHU6M+XnMPsb3SXD8OJ3O43JOTAmB88QTT+D1ernzzjsHLX/nnXe49957uf3223G5XFx22WVcf/31x/QcSqVSnMSnCCqVSnwWUwjxeUwuIY8Hf3c3ytmziC8pYdptt1L7t8fwd1tp/td/KPn2PRPyPJIk4evsBMDX1n7Mn7nXaiXs92PMyUalUhFfWkrb4Roa//FPpt12y4TYOlYCdnvssbu6mqTFi4ZsI4VClP/k5xiys5l+l3yNcTe3oNJpR8yvkXpthFwuzIUF4rcxiSiPszR/SgicX/ziF/ziF78Ydt0111zDNddcc5ItEggEgpODp7UNAGVKMgCZF19I2rlnU/Gb39H10SZyvnA1xpyc43oOZ20djf/6N+FITqOntfXY7W1uAcCQkw1A3o3X46ytpW3tW2RfedlJTcqNvncA9gMHhxU47e+uw3GoAsehCqbfdSdSKMT+H/0EfWYm8/7318MeV4rkRMXNEMMyP81MuSoqgUAgOFUIOl3U/t/fAVBkpMeWq3Q6Mi68ACQJR2XVcT9P3eNP0LtzV+x/b1s70jEmznpaIgInWxY4aqOBjIsuBMC+/8BxWjo+vG39Aqdn2w6q//ww9U89HVsmSRLNL/Y3hw37/TiqDxOw9+E8XEPY7x/2uOFI+buYBv7pRggcgUAgmGDCfj+N/3kBv81+1O3a3nobR2UlGZdegvKIadT6rEwAvO0dx22PakD1qdZiQQoGj2kkRMjrpXvTJwCDvEoJc2YDYN9/cNj9ThRRD45lxXI8zc10frCBlldew9Ugl61729rwW63927e107NtOwBSMIirrn7Y44Ybm9CmJKNLnbj8J8HJRwgcgUAgmGC6P95M07+f5+B9w4feQU7W7Xz/AzRJieR/5UtDkmD16WkAeNuPfzbVwJlKqWevAqD6zw+z73s/JOhyje0YPh8Hf/lrHJVVZF12KVpLUmydLiUZfUY6fSfRg2M/cIDm/8qd7Uu+fQ/F37yD9AvOB6Ds7m+x7cab2P0NOX8pccH82PKWl1+NHcNRJVeDVfz2d9Q//SwAfmsPUrf1uMroBVMDIXAEAoFgnATsdvbc823sB4a/oHsjybyuunq8HZ3DbtO7ew/e9g7Szj4LxTCJrCq9Hk1SIt624/fg+K09qIxG8r98I7nXfgGUSpxV1Tgqq+jdtWdMx2h89jn69h8g45KLKPjqTUPWx8+Zjbe9fcTXO5GEg0Eq//cPgNxpWKXTkb76fIq/cQdp552LITsLdZwZIn1U0s47Z9D+2VddAUDd3/9BxW9/h3XLNlpeegUpFMK2pwyAxEVD83kEny6EwBEIBIJx0vXRx7jrGzj0wP8Ouz46wgCgd+fOIeu9nZ3U/PX/UOr1ZFxy0YjPo8/IwNtxfAJHkiR8VivxM0vJufpKVDodcQMmY9vK9o5+jHCY7o83o8/MYNptXxu25DopIgh6d+0+LnvHgq1sLwF7H4bcHEq+fe+gddPv/gaL/vpwLIHYkJMzaBJ46ff/h4KvfAnL8qUAWLdsi61zHq7BtlsWfAkL5p3gVyE40QiBIxAIBONEoZY9LqERhkxGOxMDQzwa7sZG9nzjHvxWK9NuuwV9WtqIz6PPyCDY1zemYZZSKITzcM2Q5UGHEykQQGtJji2bfs9d5N1wHfrMDDrf/4CqP/2Z/T/5OSHf0OZ/fRWV7P3O9/D39JC8csWI/WQSF8xDoVINSmY+UXRt3ATArJ/8cMREYE18PEueeIw5v7xvUC+hxHlzAZj5ox+QueZzg/bp2bET+759KLKz0MTHnyDrBScLIXAEAoFgnPh7euUHkkTlHx8cNItJCoXwtLTKeR9KZaz3TJSuTZ8Q9vsp+c69pJ937lGfRx+prKp74imCTiedH24Ysfqp6k9/Zu93voezZvBAYn+PnGSrTbbElhmys8j9wudJXrlCtmnDR9jL9+NuGDpTquWV13DV1gHEth8OtclE3MwZ2Mv3E3SfuJmBkiRhK9uLqWga+oyMo26rS0lGa0lCqdGgUKtRx5lRD2j4Gjd9cGJ362tvEHJ7UIn8m88EQuAIBALBOPFbe2KPuz/aFEtQBblSRwoGMRbko0u24O3sGrSvfV85KqORlNNPG/V54meUgkJB5/r32XbDV6h+8GGsW7cN2S7k8cSqmwb2hhlo60CBEyX3i9cw+/6fkf+lG4DhE5p9EQ9U4dduHhTqGY6UM04j7Pdj3bJl1Nd2rHhb2wj29Y07CXjZP//B4sf+NmiZuUR+PSqTkeyrr5TLxhUKVLNnTZi9gslDCByBQCAYJwNLjwF6d+zC3dhIyOOh+sGHAIgrLUGXljbIgxN0e3BWHyZ+9qxhE4uPJHHBfJb98wm0A0IsUW/KQLo+2tRvW0/PoHW+qMCxDBU4Kr2exAXzY1VG0ZL0cCCAr9uKFA7jaWkhccF8stZcOuq4g5QzTkehVtP14cZRX9ux0ndInrw+3h41arMJtdEwaJk+IwOtxUJcSQk5V12JJiGBhAXzUcTHTZi9gslDCByBQCAYJ0eKCIC2tW/T8f6HOKsPk3XFZSSvXIEuLY2gwxnLobGXlyOFQrE8kLGgSUgg7/ovxv4fLs/Gtqc/Udjf3T1oXVRgHW2mVTQU5o30xml49jl23/FNHFXVhP3+WNfiUW2Ni8OydLEcpnI6x7TPeIkKnInoMqxQKJj7vw9Q8q27UZtNLHzkQUr+59vHfVzB1EAIHIFAIBgnPqsVc8l00s4/l0V/fRhTYSFdGzfR+tobqIxG8q6/FoVCEetlExUZne9/CAoFySuXj+v50s87l+X/+idxpSU4a2qQJCm2TgqHse/fj7EgHxQKfEd4l1z1DShUKgzZWSMeX22Wc1O87XKH464PNxD2+2lb+zbAmAUOQHwkvBPtMTORSJKEvbwcXXoaumFCbseCPi0NTUICICcmqwz6CTnuycbrCfDys7tpbbJNtilTBiFwBAKBYByEvF5CLjeGrEym3/UNDNlZpF+4mpDHg6+zk5Qzz0Cl0wFyjxaA3t1lVP3pIXq2bSdp0YJjmtekNpsxFxcTdDjxDSgddzc0EnQ4SVq4AE1iAv7uwd4lV109htwclBrNUY+vz0jH296Bbe8+AvY+QM4vgv6xDGMhrqQEODECx13fgK+jE8uypRN+7E87e3c2s39PK39/8GP8vuBxHaurw0H1oU6ksDT6xlOYKTFsUyAQCD4tRGdDaZP7y67TzzsHf08P/p4ecq6+MrY8fsYMFGo1Df98JrYs83OXHPNzx80opW3tW9j27iMjUkHUs0Pus5Mwdw728v34BoSoAg4H/u5uEubOGfXY+owMnIdr6Fj/AQBKrVZOulUqMebljdlGU2EBCrWa3l278TQ3E/b5mfHD76EYZjJ0X0Ulvs5OUledOWi5JEkQDg/JU+reLCcvj9cDdipwYE//ANV9u1pYclr+mPbr6XaRlGwk4A+h1ampqeziX4/JiexX37iI2QtH9vxNdYQHRyAQCMaIu7mFg794AABz0bTYcqVWS/4N1zH9rm/EwlIgl2PP+dX9JMyby4wffo8V/3l22InXYyVp8UIUajXWzVsBuSS9/d11aJKSSJg/D21yMv7e3lgpeXTWkqlw9IudqbAAAOsnmzEXF5F1xWUAFN1+K9rEhDHbqNRqMRUW4KyqpnvTJ/Rs3zFsYjRA+fd/RNUfH8QdmVAe5fDDf2XX17+Be0DDRCkUovujTWgS4okXU74HYetx09zQS1au/DnZe0fvmwRQU9nFI7/5kPVvHuK3P36H+sPd1FX3C+S6w91H2XvqIwSOQCAQjBHbnjKkYJDp9941pjJvkKt95vzyPpJXLEdlMIy+w1FQm0wkLpyPbV85gT4HPTt34e/uJuOiC1Cq1XIicTiM32YD5JAOgKmwcNRjp19wPkq9nH+SsuoM8q79Akv/+Q8yLrpg3HZmrbkUy/KlFNz0ZQB6hmn+N3CSd8srrw1a1/n+B/g6uzjws/tjc7S6P9mMt72DjIsvGlMF2qlEQ60clly4XPa0uRzDT0k/kopyOal820d1IMnHaWm0odWpiE/Q01g3NJn+04QQOAKBQDBG+g5VgEKBZenk5YCknLYSwmF6tm/HEakoiootbYocNvN3y4nGrjrZc2IqKBj1uJr4eLIuuxSVwUDKGWegUKnG5bkZSOpZZ8Y6BauMxmHHNzgHeHW6Nn4U66IcDgQgEs7y9/TQ8tobSJJEyyuvodTrybz02EN8n1VaGuTGk0WlqahUSpzOoR2pj0SSJGoq5R5N4UiuTVe7g9YmG5k5ieQXJ9Pd4cTlGP1YUxUhcAQCgWAMSJKEo6ICY14uarNp0uywLFuKQqXCunkL7sYmFGo1hqxMAHSRvCBfTOA0oE1ORjPGvi5511/L0qf+PmEVSkq1mqTFC3FWVQ8pb3dGkpATF8xHCgRiYs3b0QHhMFlXXIY+M4O2tW/jPFyDq7aOtLNXoYkTPWqOpLmhF3OcjoQkA6Y47ZhESU+3C1vP4FDWofJ2Av4Q2XmJ5BXK34HmRtuJMPmkIASOQCAQjAFfZxd+aw9xM0on1Q612UzC/HnY9pbTV1GBITsrFrKJeXCsVsKBAO6mJkzTCsZ8bIVCgUo/sWXSOZ+/GhQKGp7516Dl0WTtnGuuBvqHfnojnZiNOdkkLlxAsK+PxmefAyD9gtUTattngYA/REebg+y8RBQKBeY4HT3dLl56Zjf7d7cMaikwkI/WyQIzJz8ptixaNZU3zUJSsizi+2wnbuzGiUYIHIFAIBgDXRs/AiBp4cJJtgRSTl+JFAwScrkx5uXGlutSoh6cbjzNLUjB4JjCUycSU0E+luXLsJXtjTU8lPvZ7MeYn0f8rJloEuKxle0D5FEXAPqsTMxFRYAsfoz5eYMSuwUyDbVWpLBEToEsVExxOnzeIAfKWnn5X3vY8E7VoO0lSWLT+mrKd7VQPDONcy+RBbslpd8rWVSSSlyC3OrA0ec9Sa9k4hECRyAQCEYhWq2ktVhIWrp4ss0h+bSVsccDS7ij4xh83dYBFVSjJxifaMzFslDxRKqi3A2NBOx2EhfMR6FUEjdzJq6GBsJ+P9422YOjz8jEXNwvaCzLl518wz8F7N8tV6DNnCeHKc1mXWydSq1k0/pqqg72902qP2zlw7crSU03c8lVcygoTuHuH5/LnEg5eGZOAiq1krh42ZPn7BM5OIITTOcbj9C19tHJNkMgOCVpW/s2/u5u0i9cjVI9+e3D1EZjbHjmwBEMSo0GTWIifqsVR5V8524umnyBExVh0anrtr2ytyY6A8uYlwvhMJ7WNly1dSj1erSWJIy5uSi1WgAsS5dMguVTG78vyKHydrLzEmMeGFNcv8D52j1nAAwq/e5sk5s4XnTVHBItRgASLUYWr8xn+qw0Pv9luY2BTq9GrVbiFB4cwYlEkiRcFVtxHvx4xHiqQCA4Mfi6rdQ//Sz6zAyyL18z2ebEmPOr+0k779whTe+0ycn4uq30HTiINjkZXXr6JFnYTzSM5mpoAuSZXAq1OjYR3JibA0DHe+txVFaRvGI5CoUChUpF3IxSdKkpMS+QoJ/WZjsBf4gZczNiywYKnLSMOLQ6Ne0tfbFlvVY5TGhJHpwoH5eg57pblsVybxQKBXEJehyfYg/O5N+KCEYl7O5D8suJXsG+LjQJaaPsIRAIJoqebduRAgHyv3TDcfexmUgMWVlMv/sbQ5brUiy4amrwAymrzhx1AvjJQJ+ehlKrpfODD0latABn1WFMBfmxhGZDjixw2ta+BUplLPEYoPS730EKBofthHyqY49UQSWnmmPLNBr5fVKqFCiUCtKz4ulo7UOSJBQKBT1WNyqVkriE0ZPJownLn1bEN+ZTQKC3LfbY39k4iZYIBKcevbt2o1CpSFy4YLJNGRMDQ1YJc2ZNoiX9KJRKNIkJhFwuDt7/KwJ2O+bpxbH1AweBWpYuwThguKcmPg6tJQnBUGw98o1vYrIxtswUycGZMUf26mRkxeP1BGJenN5uF4kWA0rl6MLXHK/H5fQTCoUn2vSTghA4nwICPe39j7uEwBEIThYhnw97+X7iZ81EbTSOvsMUYKBYmEqiLPvKKwb9by7uFzjR4aQAGRdfeLJM+tRji4xkSEzq9yyWzE7nmq8s5vLrFgCQkR0PwON/2sTOzQ3YejwkpYytj1O0kurT2uxPhKg+BQzy4HQ1TaIlAsGpRdvatwn7/ViWf3qmV6dfsBpjQT6mggLUpslrSHgkmZdcROqqM9l2gzy+YaAHByDrskvpq6gkcf68yTDvU0EoGGb31kZmzM0gLkGPrceD3qBBb+ifFK9QKGIVVQDFM9JiYaq3XioHwJIyNrFujpPDWI4+H/GJUyc8O1aEwPkUEOiVPTgqUwK+tsOTbI1AcGoQsNtp+s8L6DMyyLhw/POYJgulRkPC7NmTbcawqM0mDDnZeJpbBoWhAApvuXmSrPr08M6rB9i1pQGnw8c5F5di73UP8t4MR1yCntu/s4qDe1t58Wl5ZMaRCcYjER/J07F2OsnOSzwu2wP+EM2NvXhcfta9cYiv3XPGoIToE4EQOJ8Cgj3tqMxJGIsX4yhbj9/agjY5e/QdBQLBMeOorCLs85F1xZpYqbLg+Jn3+/8l7PWKgZnjZOfmenZtkYen9lpdhENh7DYv6bPix7T/rPlZ3PQNPfU13cxbkjOmfYpKU1Gplezc3DDmfQYSDoVRquRMmPVvHmLHJ/WxdfU1VmYvyBphz4lB5OBMcaRwCH9XI9rUXEylcjmou3LbJFslEHz2cTXI+W5ToVHeZwm10SCShsdJT7eLd145QFKyEYNRQ2+Pmz67FyksxXrZjIW8aRZWrS4ZFNI6GqY4HfMWZdPc0Etj7fgmi1eUt/GbH75DQ408F60+8jfKycjrEQJniuPvakIK+tFlFmMomItCZ8S2+RX6dr07aTZJwQAt//g+9u1v0v78r3Ee2DRptggEJwp3g3y3PLBTsEAwGeze2kg4LHHJ1XOxpJqw9XhobbIBkJJmPvrOx8lp5xahVCp497UDsanjY+FAWRuhUJj//GMH4VCYYCA0aH20H8+JRAicKU4050aXWYxCrSHtsrtR6k10v/M47tqyybGpvQZf22F6NjyH+/AuejY8hyR9OssIBYLhcFQfxlldgy4tDbXx05dcKfjsEA6F2bezmUSLkWnTU0iyGHE5fFSUy7mZRaWpJ/T5k1PNLF9VSFuznQNlrUiSNKYBnH5fEACfN8jBfW0xQRNtyyQEzilI0NlLsK/fledrqwFAlyV38TSVLCXzhvtQaPX0fPDspNjobZZbwEsB2cUYtHXiqSufFFsEn356rW48bv9kmxHD3dzCvv/5Pt72dgxZmaPvIBCcQOoOW3E6fMxfkoNCqYiFpPbvaSUlzTyuENWxcsZ5xWi0KrZurOXQvjYe/OX7lO9qPuo+1q7+BoGffCBfx8773Ay+c/8FWFJM9FpPfANBIXAmAOehzVg/eCb2f1/Zeqzr/znu47hry2j889dof/6B2DJ/Ww0qUyKquOTYMk1SBoaCOfg7GwgHT/6FwddSGXus0ET6JBz85KTbIfhs8PCvP+D3P31vyowhcdXWxh6bxPRqwSQT9dTMmi+L7YGCpmjGifXeRDEYtcxfkkNbs513XzsIwNqXykcMWYVDYWw9bkpmp5NoMdDRKjcZTM+Kx2jSkpRipKvDSVeH44TaPeUEzhNPPMGPf/zj2P/PP/88Z555JosXL+a+++4jFAodZe/JofPlP2Lf8ipBpw0pHKJ77aPYt71O2D+6Gw8g5HURdPbS9frDAPg75di/nGDchDa9cEi7dV3GNJDC+JoqCAdOXhMmSZLwNlehMiUAYCxahMpswddeO8qeAsFQom5s6D+RTzbuyMTr3Gu/QM5VV0yuMYJTGiksUXmgneRUEynpcq7NQIGz/MyTlwC/YJk8T8xhl4dv+n0hXv9PGaHg0PQEW6+HcFjCkmKioFjurG1JMVFQJN+oJ0Vew6O/24i1y3nCbJ4yZeKBQIBHH32URx99lKuuugqA/fv389BDD/H000+TlJTE7bffzssvv8w111wzydYOj6+1GoW6v5zU39WMPnv6qPt1/Pd/8TYeGLQsHPQTtHUiBf1o04YmOeoy5JBV23P3oy+YS9YN9x2f8WMk5LQRcvYQt+B8jMWL0WYUYH3n77hr9yKFAihUY8vOF0x9QqEwUlhCrTlx5bzOAZUUn3xwmBlzMyZ9dpKnqUmeh3T1laI8XDCpdHY4cPb5mHt2dux3kZ2XyLSSVFacVXhSwlNRMrMTMMfpcDp8FJWmolQp2LerhZZGGwA33r6ChEhPnmh4KjnVROH0FHR6NatWT4+dS0pmp7Nzs3wj39ZkHzRLayKZMh6cX/3qV+zfv58vfvGLsWVr165lzZo1FBUVYbFYuO2223jppZcm0cqhDPSe+FqqcOz7IPZ/oHtw1+H3dzRy/9+38s6W+v79g/5B4sYYKQUPu/tinhxtWv6Q59Vm9LvOvfXlSOGT49nydzfGbDKVLkOTkIY2oxDCQdFl+TPGv/++g0d++yFbNtbyyQcnpsGkc8Ck4tYmO7/8n7Wsf/PQUfeRJImP1lVTV919QmxyNzWjz0gX4kZwUvD7gjzzt61U7m9HkiR2bm5g15YGnnxkM9s/qgNkcRFFp1dz4+3LKZ5xcocuK5SK2HMWFCfzxZuWsPT0fKxdLqxdrkG/R2un7JWxpJqwpJi48PLZGIz9v6fiGWnc/p1VgCziThRTRuB885vf5LHHHiM5uT/XpL6+noKCgtj/+fn51NZOrVBIsLcj9ti2+WVcBz5GnZgOgH/A3ChJknj27UPsPNTBX17cS12rnWCfFXdFpKeNUk3i6VfLoScg5OqLDdYcTuCo4wb3kQj0tA3ZZiJx1+7FU7evX3Sl5sbW6dJlm33tdSfUBsHJIxgMUVvVRZ/Ny7rXD/L+2opB6/ftbGbfKEmGR8Pj9rPx3Sr27pRF8dLTC2LrNn8oJyS2NNr4y28/ZMO7lYP2dfb52PBOJc/8beuE5+2EAwE8rW0Yc8ff1EwgOBb27mymrrqbV57bQ2uTjbdeKmfti+U01fWwZ7v8+4iGpyab+Utz0Bs0TJ+VjlKl5OKr5nLLPacD0N3ZH2pqbugFxWBhdiTJaSYUSgXdHcOHqCRJIhw+vurcKROiSk0dmizl8XjQ6/tHuhsMBjyeseW1HEk4HD4h+Ts+a+ug/1WmRNKvv4/Wx+7G21xJwOPCWbYee2sT3fZcSvOTqGzo5d/vVXCj658EbbJASrvm+xgK5+MoWw9AwNmLr6MelCpUSZnD2p751d/jrtyG/ZMX6f3kZeIWrkaXXTLhrzHkcdD+718Mfp2WrJhN6lQ5hOZrrzvqexxdNxXzqE5FjvZ5tDb2Dlnm8/pjLub1bx5CAmYvGFuVkSRJMRe73x/k8T99HJuEDFA6Jw23y8eBsjaUSgWOPg/P/t9WfN4g2z6q48zz++cWtbfaYo9rKjspnN4/Pft4cTe3QDiMPjv7pH5PxW9j6jCez6L6UCeWFBPJqcc+82v/nhYANBpVzAsyc14GFeXtSBKggMRkw5T4buQUJPKd+88H+t+f1AwzSqWCrnYHoVAISZJorOshLSMOjVY5ot0KBViSjXS2OYbdZuN71Rwqb2LFeZZjtnfKCJzh0Ov1+Hz9LmyPx4PxGCf6Hj48wS72UBAUCnSNezACrlkXglJNIL2E7tom4gwWpJYq6v92D6BA6e5FxfXMz1UQDuipOFBDMLHf+1PV7UGyl6HpsGIG6g6Vo285DMYk9pbvH9EMpcJCAuDavxFH9U7sZ30DlPLHqvDYQaVB0g59z7RNewibkglaRm9iprY2EDfgf0mhYm9lLUplxAEYDpMIWJvraCwrG/V45eWipHwqMdznUVsh31WpNQqCAdlLsm3rHkxxaoKBcCx3Zsf23Wi0IzuCfd4QOzf2Yo5XYzCrMBhVuF2hQeIGoKmljoJZarx+EzUHXbz47GZ83v4+Glu37EJvkMVV7aH+O76N6/ZjdyUe+4s/glCF7C3qCgXpGcN3eaIRv42pw2ifRcAf5r2XOkjL0rH0rGO7CHtcIZrq5JsJl9NP2c46FErInwEOp4HmWg8Go4oDB6b298JoVtHSZKWsrAy3M4izz4clXUXZKL8htS5IR4uPXbv2oFL15975fWE+Xt9BfNLxSZQpLXAKCwupr6+P/V9fX8+0acdWtllcXIzZPDFuPvuWV7FtfA5VfAqGooU4gZJzrkQd1/8ld+mvp/vVP6Fy998JJyudXHrexSx0/RWjd3Nsub5gLvOXrgDA26ynY89LZFvM2Lx2jNOXMm3BghFtkcJhGj9+DAClz0VO23YSz7oOlTGBxt9diyrOQs43/jZon4C1ldZ33gYg/wcvjPp6bdtbsAP21HkkdO1DIYX442tdXHV2EVefI99ZN22KQ69RMP0otoZCIcrLy5k7dy4qMYdm0jna51G7fw8oHNz70/PYu7OFda8fIierkPyiZNpb+wBZnGemF5KTP3Lb/X89th2bNYDNGgBArVGCBKnpZvKLk9n5iRzyXLJ0PnqDBnW4hZqD+2iq8WA0aTjj/Om899pBEs3ZzJibAUBT1T7AgcGowe1QsOAo37nx0lJbTxNQsmIFcaUT7w0dCfHbmDqM9bNoqLGC1IHXdezfwd1bG4FO0rPi6Gh10NPpJ7cgicVLFkKggebag2TnWib0O34iOLxvN1UHOpgzey4V+zuALhYsLmbugqPPTLR1VNHRXENOVhHpmf0ztbZsqCV6jjkeprTAufjii7njjju48sorSU1N5fHHH+fyyy8/pmMplcoJO3F468oACPV146neiUKjR5uQjEKhZMfBdlq6nFxx1hkQ8NG99q+x/RZkhDC62zE29Iubgu88jVLf797URnJr/K3VIEloU3KObrdKRcrn7oRwCOv7T+Mq34C/pYrUS++UbXT0xPa3bX0NjSULb+PBAbuP/p7Ym+S8p1edC7klsYNa80Jc+wI883YFXzi/VD6OOZGw2zam46lUKnESn0Ic+XmEQ2HqD1vJyIrHaNKTmCR7AF0OPyqVCvsA70tPl5v8acOHiEKhMA21PaRmxNHd4UACggE5pn7hFXOw9/Z3MjWadCgUCtKz+mP2y84sjHVpbW6wMTtysuzucGKO11E4PYXyXS34PCGM5olJCPa1yydVU072pHxHxW9j6jDaZ9HZLnsS+2xe/L4Qer2GN/67j/yiZOaPcTBlTWU3CqWC084u4pXnygAonpmGSqUiL/K7Ss+Kn/LfibSMeCr3d9Db46WzTU4azsm3jGp3eoYsanq63GTl9N8odXdOTBPAKS1w5s2bx7333svtt9+Oy+Xisssu4/rrr59sswjYOmOPQ85eDIXzUShkN/2/3q2gptnO+Uvz0GUWDdpvcRb0bpI9JrXxS9jdpuDrIQ0DZ8GqjPIJ3tskV5Jokkefthq/4DxA7o3Tt2cdjrL1tP37V7H14YAP9+Hd9Lz/NABKo/yMKlPimF6vt70ef1hPWRtYfvFnfvib9YCftAElimpTIt5I12XB1CUUDBMMhtDpRy7nb6jtweMOsCzSYyM+Uc6D64v0vxjYobRrhARBAFuPGyksUTwjldPPKUJv1LD5wxosySamlaTQMiDPJ5qfM3CuzsqzilBrlMQl6Kkob+eCNbMIhcN0dTjJLUgiOy+R8l0ttDT1Mn1m+jG8G0PxtraiNptRx8WNvrHglKa9pS/2uLNN9iiWbW+ibHsTlhQTuQVHHygaDISoq+4mJz+JwhK57Do7L4nTzpavGxlZ8Xzxq0vJK5z6g0mzcuXrVv3hbjrbHKjVSiwpo+clpWbIv7Ou9sHnEXuvB71BQ2Ly8Y1JmXIC56677hr0/zXXXDNl+t64KrfhqS8n1GdFl12Cr0UeWaDPmwVAIBimoU3+0lc09LK4JAeFSoMUkt3zWV1bcTu6Mc1YgSftajbVl3N+s42kOB1/+e9e0ixGvnvjYlCqCXvli4gm+eguvoHosopJScvH23SQwIDk52BvB9b1T8X+D7tlG0MeB5IURqFQYnf60GlV6LWDvxJSKIDG2UZ9KJVwWOKNTbX0ueTuyVabh1AojEqlRGVKRPK5CQd8KCPdjQVTC68nwNN/3UKP1c0V1y1g+qzhu6BWlMsVedGQUHyCfJKJzp/piQgchVIxqHLiSHq65e0sKSbmRe5oS2b1C5HU9KEiQq1R8cWvLiUhyYBGK9/9zV2UzeYPa2iotdJrdRPwhyiakUZ2nnzib2mwTZjA8bS2oc/KnPRePIKpT3uLPfa4o61v0Lrtm+pGFTg7NjcQ8IeYNT8Tc5yOe396PiaTFoWy/7tXOntivtcnmmklqWi0KirK2+npdpGaEYdSOfpvKDnVhELBkI7G9l4PCUkGUo4jeRumUJn4p4Hej56nb+fbgIQ+ZwaqSM6NIX8OAI3tfQRDckJmRUMPCpUabUYh/oiODDu6UWj0JK++mem5iQAcbrLx4H/2UNnYy6ayFsISqEz9Ph2NZXQPzkAUag0ZX/wxKnP/j8tTv49QX/egcQ/6/NkQDhH2uvAHQtz5uw949KV9Q47nqtiKSgpSHZCrZf6zTk7CnJGfRCgs0RW56EU7G4dc9iHHEEwN3n31AO2tfYTDYV5/fu+gEus3XtjL336/EUmSaKrrJS5BT1rk7soUp0OhVNBn89LR2kd9jRWjSUtmTgL1h7ux9w5f2Tiw2ddwaHVqlq8qZM0X5g1aXjo7nYys/t/A/KWyOHr2/7bx1sv70Rs0LFqeR0ZWPBqtiobanmN/U5BL1h964H32bq0lYLNhyBrfb05w6mHtctLV4SQ7PxGQWxo01FhBIfepsXY52bKxlqb6odWIu7c20tZs5+P11cQn6lm8Qi70MEd+Z59GNFoVxTNSaaztwdnni507RkOtUWFJMVFR3s6H71QSDoUJhyX67B4SEg2xm6xjRQicMRLs6471gAFQJ6RiKJiH0hgfG4RZM0DRV9TLJ93US77O097VseXJF3wVdXwKBVnxKBVwoNZKfWv/ft02D9pI2TUKJSrD+BOjNUkZ5N75FzJvlEu7nZE5UYkrr0Ch0qDNKEKfLefOhFx2DtRa6XP5KavqHNJXxLbjbQKSEk/+SswGTWz2yJkLZc9Sa+QuPRruCrls47ZXcHJoa7aTlGxkzsJsvJ4AXk//mIQ925robHfQ3eHE0eclIckQ82IolQri4nX02b3895+7sNs8LDktn7MvLCEYCPPuaweQhplJE/X0WI5yF3bh5bNZuPzolXyp6XFcePksps9MIyXVxLmXlKLTq1GpleRNs9Bc3zto5MN4aarvxdbj4XC5XK471gGbPd2uEWfxCKYW3R3OCR3u+O6r8nf+/EtnkpOfRPmuFg7tayczO4HMnAQ62hyse/0gTz78yaCp2T3dLt787z4e/9MmPO4Ap51TdEI7hZ9M5i3uzztKyxx7iNccL3v8N62r5nBlF06Hl3BIIiHJQHpW/Ch7Hx0hcMaI+/DuQf+rE9NIuehWcm97MDaeoKbZBkBWiolDdT20W10E47Mod6eyPf1qLOfcSNz8cwHQa9XkZcSzu7KTsATJCXKeQ0uXk7TL7ibxtKtIueT2Y7ZXqdHF8neioTRD/hwyb/g56Vfe2+9xcfexu1LOKbK4G+ho6BdxQUcv/pZK9vrzyc3L4tYr5gJQkBlPTpr8BW6PnDRU5kT5eMKDMyWRJAlbr5tEi5GExEjIyS57XsKh/mZaB/e14XL6iYvXD9o/NT2OjtY+erpdLFiay9kXlVI8I41Z8zOpKG/nxWd2093hpM/uiZWQ93S70GhVQ451LCxfNY0vfnUpt//PWSw5rSC2fNr0FEKhMI11x+7FiQ4C7O2Ww236rKxRGwjWHe7mkd98eMI6PAsmDr8vyJOPfMLTj24lFAzj8wYJBI69p0yf3cPhii5mzsskf1oyqy+bFVu3eGUeyammQYL/vdf7O9VHv2sASpWCOQvHnoIw1SkZ4HkdjzDJn9YfWSjf1ULVATnRPzr24XiYcjk4UxVPw35AAchfXE1iGkqtnpCkIOBwoImLo7Kxl0Szjjuvns9P/m8zj760j69dLoev/FkLSDxt1qBjLpudQX0kdnvWwhxe3nCY1i4ni0rTsJxzw3HbrDIlotSb+vN5UrJRKFWRdXJCcMhtZ0+lB5PCy13x7+F44RMyvicnI3ub5e61VYEMzkgzc9bCbIKhMDPyk9Co5eO0CQ/OpwKPO4DfFyLRYoidOPp65aThaPIwRMtWIS5hcB5VUWkqNZVdAOQX9Z+QLr92AV5PkEP72mICSKdX871fXUh3hxNLsvGE5rMUlqQCh6ir7j7m1vXRi47NHqA6eQndh+HQ2+9wydVzB92VDqQyMhh0/55Wzjx/9Hlzgslj99ZGPO4AHneAzRtq2LWlgaRkI1+587RjOl59tRWA0jlyfkxuQRLXfW0p5jg9mTkJbNnQX2yRkGSg8kAHPd0uLCmmQQJn+sw0jKbPzjgQhULBTd88jdqq7nE13zztnCKKSlN57T9lHChr5UCZnD8avRE7HoQHZ4wEuptQJ/YnZaoT5Me1f3ucPd+8F0efm7oWO+fRSPzHa1k+O4PdlZ00RpKnkhOGfljnDDh5rjoi5DMRKBQKki/4KgC6nBkxcQP91Vp93d00tDs4O1P+4akC/c8fFTh1wTRy0swoFAouWJ5PXkY8KZEv35AcHKdtwuwXTBy2HtlNnmgxxqqi7JHPbmDTveik4CO9LgPFQ/60/n5PGq2KG29fzuKVebGkYp83iLXLRZ/dS27hsXchHQvpGXEYzVrqqo59LlX0ouMOKGlMmsve/b34fSH27hh5FEX0teoNRx8u6/MGefnZ3fz+p+9SuX9qTEs/1di9tRGTWYvRpOXDtyvps3lpqOmh6Ri9ftFuw4XF/Rfx6TPTycyRz4HR6iGVWsml18wDCXZ8XA/I3zWFUsGV1y/goivmHMermppodepxD8zV6tTkFlpYtGLwSKL4CfDgnLICp6nDwVubxzY7SQqHCFjb0CRnk/3V35G65psotfKbb9u7j4DNxsGNO8h2tzO97F1aX3uD+Umy23/rfrkiJRqCGkhOWhyZySaSE/QUZiWgVStpmeDR8XFzzybrpt+Sdvndg5ZHBUlHXQ2LtHWco9wVW+f2ylVfvqYKfEoDneF4so+Y9qpRK4k3aentky+I6kgCs6tqx6ABpIKpQTQRODGp34MTFTPRHIHUAfNujhQ4yWkmLCnGQR6ggUyfNbjaY8822RNUdIIHAiqUCgqLU2hv7cPlHP/3zu8LYj3ipuLiq+aQU5BEU30PwWFCGVJYiiWPRivLRmLn5nr272nF6w3yxgv7cDnEb+NkEg6FsXa7yMlP4kt3rGDmvEwWLJXn6D35yGZefW4Pmz+sYf/ulmH3f/HpXYPCkJIkUXe4m5Q0M3HDnNOhX+CkZ8YxrSSF5FQT+/e0EA6F6WhzkJJmZu7inAkJwXyWWHn2NP7nFxew5gvzSM2IG3Oi8tE4ZQXOC+urePSlfbEckqMRtHchhQJok7PRZRYRN+8cAPw9vfitsruyc9suVlnLYvtkdch5L1siJbcpw3hwAB76n7N59PvnoVQqyEwx0dY1cR6cKPrs6WgSB1+Aor1wEho38RXzJjRuOfwQluD1DdWEAz58HXW0KDJISTBg0A2NZlri9fRGpkGrTAkknnYV/vaaWK8fwdQh6sFJsBhjZd9R0WOL/C2e2S9Gool/URQKBdd9bRnX37p82LuzwuIU1Or+08m2TXUoVQoKi5OHbDvRTCuR76SffPiTcXtJ9mxvAkkWcFEWLs+lZFY6wUCYD96u5P/dv46K8v7jdnU4YmMk7DbPsCII5Ith2fYmjCYtl1w1B7fLT4Xw4pxU+uxepLBEYrKR9Mx4rvnKYi67dj5nXyQXWezb1cL6Nw/x+gt7Y4I/it8f5ODetkGDZnu6XfTZvBROH/l7nZRiJCHJQMnsdBQKOc/G5fSzeUMtth436eNIwD2VUCgUGE1aFi7P447vnoVOf/wZNKeswIlWPI0lJBTojgxDSxkcj3dU9yt7ffU+sr1dJC5aKDcJ278HpVKBzy+f/Ibz4ICcbBwVD2kWI10290mpzFAZ+5PAPtacTvzSS1BbMlEq4IOPy+mtPQThEJUeC9lpw1dyJcXp6HF4YwmZSWdfhyo+BVfFxE95Fhwf0TBUokXuL2M0aWO5N7aIB2egwBkuMTg51TyoEd9ANFoVF181h4XL5bvjcEgif1oy2mGE8UQTjff3dLt5/smd7NzcMMoeMn5fkE3rqolL0HPGGbmx5Wq1XPIKsHVjLc4+Hzs3NyBJEk6HL+bxiovXgSR7wHq6XUMqyRpqrFi7XMxdnB3LWxpYUfNZxd7roepgx5SoMOsdEJodyKrV07n1W2cC8tDHYCDMpvXVg7bps/ULnqh3sP6wfENbUDxyjolareKen5zHqtXyqI+5i7NBAR+8VYFKrYw10BSceE5JgeP1B2nplHNj2sYgcPzWiMA5oumeMzLA0zx9OkavAyUSliWLSZgzC29zM4UD7goTzKM3v0tLMhIMSfQ6vKNue7wolCqk+Wt4xnk64VkXknLBLcQvkKfE6gIOyjdvAaDKm0JRduKwx0iK1+Pzh/BESnQVCiWm6UsI9rbT+uT38TQeGHY/wcnH1utGqVIQFycLl4QkQ8yD09HaR0KSgczs/jEJw7nf6596mtrHnxjxORYuz+OsC/rnN80bY7v64yXRYuTaW5Zy/a3LUKoUVB8a2wybhlorbpef5WcWkqiRL2AFFjm0nJGdwJfuWMEFl88i0WKgtqqLR37zIf/vvnV8/L78u4+Klu0f1/HIbz5k28eDQ94fratGoYAlp+WTGAlHRD1pn2XWv3mI/zyxgyf+/DE1lV3HVbF0vETF+5ECByAzJ4FzL5nBZV+cT6LFQOMR/ZQG9ndqabQBkfwbBRSMwzNpSTFxw63LWbA0ly/evOSos9sEE8spKXAa2x1Eby7GInAC3U0AaAcIHCkUwrp5C0q9HuOXboktT1y0AG1yMkgSN56ZzfLZGXzh/JIxdXVMi5wEu0ZonDbRlMedwU5/EfOmy3er0TyaZI0XZXcNYYWKxmAKy2YP32wp6pXqieThBIIhXq2T3a++tppIU0TBVMDe4yExyRBrJGZJMdFn82Kz+rF2uSiekTooYfZI97C3vZ2WV1+n7c23cDePnHw7UBjNPM4mXeOhZFY6xTPSSLIY6e3uFxFSWGLje1W0NtmG7FMXqYYpmpGKOeRkeeOrrF7WHz4oLE5hxappsT49Ue9L9GI3rUT+3ezaIucbDQxjtbfYqT9sZe7iHJJTzag1KuLidaeEwOnudKJWK+lo7eNfj23jkd98GHvdHmcfvV0nL0wX9VwmWYZPETjjvGLmL80lOdVMT7eLmsquWNL5QA/Of57YwdoXy6mr7iYzOwGDcXzVT0WlqVx27fxjrvQTHBunpMAZ2JBvLALH21KFOj4llpgL0PnhRjzNLWRddim1Hg3rU5bAgmXoMzLQWuTKEfOG17mi/h2unju2ngCpifJdRmevmxfWV/GfdZW8/GE1f31xbyyZdyLZW92NWqVgVoFsb7Qzc5HBTqq/hQ5SMRj1zBjhjiMpbrDAOVTfwxuHdVSbFgJyjx3B5BPtgZOQ1H8XG50dU7VPTmoviYjYOQuzKJyeMiTPpu3tdyESdmx/690Rn0uhUHDhFbNZ84V5JyU8dSSWFBO91v4wb91hKxvfrWL9m4eGbFt/uBujWUtaehz+Hitmfy+GtKF35qVz5PdmwbLcQXlGM+ZmDBJ0ugGvtzsyo6tkVv8FLTHZ9JkPUUmSRK/VRW6hhTu+dxZnnF+Mw+7l+X/swO8L8sErT/HiX39JOBymp7OV5pqDox/0OIg29xvOgzMQS4qJYDDMvx7bxt8f/ITq/Q62bxrskdu1pQGPO8Cs+WNrBCmYfE65PjhVjb08s/YgSqUCk15Nm/XoVUshl51AdzPmOasGLW9b+xYqk5GPjKW88N+9kDiLb3zrAhQKBdpkWShYt2wDYN/3fsCcX96PuWjaUZ8rNXKXsbe6m/XbG1AoFIQiJ+qG9j7+95tnHtNrHvZ1hcIcqLUyPTcJfeTErI4InNORmxp+4JjGgllpqFTD62BLfFTgyO79/TVWwih5xbuSn6T1EhwwlHQ07OX7MU8vRqU//qZwgsEM7IETJSsyKqSrzYdWq4olTV5146Jhj9G7cxe6tFRURiOdH3xI3o3XozYOf1e8fBJzDCwpJqoPddJn81B9qJPNH8o9SeprrPTZPMRH2hu4XX7aW/uYNS8ThVKBzyqHJ6K/3YGkZcRx70/PIy5BT3NDL90dTrQ6NXqDhjkLs9iyoRYYHH6KNjs0x/V/n5MsBprqevB5gxOSQHmi6LW6aKzrHfNE7IG4nX78vhBJyUaSU82ce/EMNBoVH75dyfNP7sDTUYnf68bR281zf/oxAF//xWOoNUcvtz9WenvcmMzaUcW2JWWwAIoKf4Bv/vAc2prsvPTsbnR6NYtX5h+5u2CKcsp5cF577QCFnhDfvGIuJXlJtFuPntTrbZIz6PW5M2PL3M0tuGrrSF65gvJm+Q7h9HlZsZBN1IMDoFCrkQJBDj3wW6TQ0WPRaZE77Pe2NRCWiIkbkIVZcEDH2eOlpsWOxxdk3oBkuagHB+AN90K2+4vJGSGpFCApUmkT9S7tr5Fd/m3dTpQJqQT7rEjh0ePvrvoG9v/k55Td822k8MS9RoGMbZhEy4wB+TZzFmejVo/cLl6SJHydXRiys8n83MWEPB66Ptxwwuw9HpKS5ddYUd7O2y/vx97rkcPDkpwbEh3p0FBjBak/QdkfFTiW4XMr4hPl0RXR40d7CS1akYcpLvI7sLpjicYxgTOgGi36/k/lMJXT4ePhX3/Ia/8uOyZvU09kn+j7BHIYaMGyXBqq6/F75fW9XW2x9d1tjcdp9fDs2tJAS4ONjJyEUbc92jgRS4qJWQsyWbQijwsumzVq7yPB1OGUEzjuVgc6FLTubSMj2UggGMZqHzn8422SXajRieEA3R/Ls51SzzyDXoeXgsx4fvCVpTG3vi65/ySZeclFZF12KX6rFUdl1VFtSxyQiFyck4BapUClVHDRygKCIYmWo0xuHi/7DsvNquYN6Dip1OhIuehW9hbcyHqvPJYhI/koP/z4/hBVIBiiskG+SIQl8GgSQQoT7Bu9AZurVr4D9rZ30DlFL5yfZgb2wIky0IOw9PSj35EGHQ7Cfj+61BRSV52JymSiY936E2PscZIU6UGyO9KHx2jScu0tSykoTmb/nlY+WidXytRHvv/RZFF/Tw8qg2FEr1Ts+JELd7TKLDnVzHfuW83S0/MJBsM4ImK/34MzVOCcrDBVOCxh63EjSdKY++9sfLf/HHUsdkZDQgMFjkKh4LIvzqeoeMB2AwROR1PtuJ9nNFoae3n75f1YUoxc9sX5o24f7V0DsOzMAvKmD/boKBQKLr1m3qhz0wRTi1NO4IQiHoKGmh4selmJHy1M5e9uRqHWxiqoAg4HbW+uRZucTPyc2fT0+WIX+ihaS3/OiiE7G8uK5QBYt247qm0DE5Hv/Px8vri6lC+cX8KcyKyO6FiHiWBfdRcatZIZ+YNd8vGLL4LsubH/M5JHjl0nJxhQKRW0dbuoabHjD4YpjMwg6QnLnp+xhKlcDf13cO76sZX4CsbOwB44A/n8lxcxa1H8iKXfUXxdshjQpaai0utJWrQAV109gT7HiTH4OIiGGro7nCiUCu760bkUz0jjS7evwGTWxrrQ1h+2Ep+gj13Y/D09w4anjiQpIvijHpwjl0c9GM4+HxqtalBoJOpJOJ65WWOhorydR37zIW+9VM5Dv/6AZ/62lT/ety7WfXkkwqEwh/b1Cw97b7/AObi3lTee3zvsUNWBRBO8k4a5MVJK1tjjzpb62OOowNn05r956W+/JjwBXtx3XjmAQqngmpuWjGkW2kDv5uo1M5mzJB5znI5lZxQcty2CyeOUEjjhUBhVsP8HqgnIP6SjJRoHbZ2oE9Ni3pmWl18l6HCS/+Ub8QQk/IFQLFQTRWUwoDLKPxh9Vibm4iK0KSlYN28ZNUz13RsXc+fn5zM9N4lrV5dy/YUzKIiIhuEEjru5GW/H2MpiowSCYQ7W9zAj34J2mEm2AwXb0Tw4GrWSnDQzda12qhrkzq4XLJe9Ac1u+U44MIrACXk8uBub5GYUyM0TpyqhsERd69iGie473MX9f9+K3enDHwiNeb8TwcAeOAMpnZNO4YyRP98ovk65CaQuVfb2xc+eDUDfwRObIHosJCWbYoP+TGZtzFOlUCrIKUiivbWPznYHXR1OCoqTY79rv7VnUGh55ONHPDhHlNFHPUc9kU7kLod3kPcG5M625ngdhyvGnpt2NLo7nLz+n724Xf7YslAozLo3DtLT7ZLnikn9vVuis8SGQ5IkDuxtw+3yMyNS/Rb1/FUf6uDFp3ezZ3tTrK/MSEQ9OK2Ht/Dq338/KOTs7msiLBlQawy01PY3z+toqkWSJPZ+8h5tDdXUHdw95LjjQQpLtLf2UVCcTHrm2Ao8VColZ19UwhXXLQBkj83dPzmHi6787I1TOJU4pQROd7cTBaCM3H357bLbdiSBI0lhAvbOQV2A7eUHUMfHk7rqjFj10JEeHOjPwzFkZ6NQKEg//1x8Xd10fbSJsN9P2O8fsg/AqoU5XLyyYNCy7FQzapViWIFT/oMfs+u2O/G0jb30srqpF58/NCg8NRBLNJdIoyIp7uj9ewqzEujs9cQmkp+9KAdLvJ6N1fJ7U1Mx8rRln9XK1uu/jG33HkwFBajj4/H3nNi72/FS12rn549tobbFzk/+9gl3/3EDh4cpOR6IJEk8+eZBdh7q4C8v7uUnf9vM3X/cwG//uYPQBOZRjQW3009NZSdqtTLWA2e8+LqjAkcui06YLYdr7funnsBRKhV88eYlpKSbhwzBzC2wIIUlXnlWvoDOWZRN38FD+Ht6CXk8cnuHUcgrtFBQnEzp7MGdwbMjVWlRMeF0+IYIHIVCQXFpGt0dTt5+eT/r3jiI1xM45tf67usHKNvRxFOPbOaN5/fy2r/L+MtvN9BrlXseweBZWc0NI988bNlQyyv/2gPAyrOLgH6Bs2dbU2y70fKHrF0uTHE66it201xzkD6b7DFz9dlw2TsJhFPR6C24Hf2C397TSXtj/4DKPZveGdPrHwlHn5dQMIzlKN7n4Vi1umRQ76YTOSRWcHI4pQROQ4MNgLhUE/EJeno6HCgVI3czDjl6IRREHRE4UjiMu6kJU0E+CqUy1pAvaZgLhyEnG01iYixclbXmUlQmI4cfeZSt13+Zsnu/QzgYHJPdapWSnLQ4Gtr7BY6vqwtPWxtBh3zHWPu3x8b2JgDlkfyDuUXDC5zkiGDLGMMk6GhIaldFJzlpZsxGLSvnZtLgMhCSFDRXHMKx/yOCfdYh+7rq6iFyh6cy6NFaksbswfFZe05Kt+T3dzSxu7KTe/7fhlgS9eFm25DtOnrc/OudCoKhMAfrejjcZEOtUrClvI1D9T1kJpv4ZF8rB8cQngiHJXwT1Bzt7Vf209Pt5txLZsR64IyX/hCV/H0x5Oagjo/HcWho6fVUINFi5M7vnc3S0wsGLY8O/uxoc5CWEUemyU/5D3/CztvuAPpf39HQGzR8+Y6VZOcNbp1gjteTnhVPbVU3oWAYl8s/ZNwF9E+g3vFJPVs21B7TAM6O1j4e/f1Gaiq6QCH3ndmzvYm9O5tRKOTE52u/upSiGanc+q0zuOYri0lONQ1pZDeQxroelEoFX/r6CnILktDp1bERHm3N/WJk4GDWI5Ekie5OJylppliOTUdTHR6Xg+Za+bsSlNJA1e8pCyuz5Pfjgzdjy9obawYJoCjb1r3CBy8/Oer702sdOUwmOLWYurWKJ4DWFlkgWFJMGIxaDu5rIy3RMKIHJ2CTTz7qxDRau500HKgl7PWyx6amNBiKlUcP58EpvvN2Qh5PTCCozSZKv/MtWl9/E1vZXjwtrXRv+pi0c84ek+0FmfFs2N2MyxPAZNCw82tfH7TeebgGSZLGdNex73A3Oq2Kkrzh+9tY4vUoFJA5hhNEQWZ/hUI0n2flnEzWflJHayiJ2Zomul77M/q82aRf//NB+3oHeJ3Szj2b7s1b6TtwcNTX0XeogvIf/oRpt36VzM9dghQOo1AeXatX1PfwwFPb+dkty5meO3In0X2Hu/jDs7v44VeWMbPQEhMzi2akYdZr+KishabOobknf/zXLg7V95BuMbA1ctF64I7Tael0kpIoz/L67sOb+GBnE43tfVywIh/NCJVLz75ziP++X82z9180pg7YIyGFJWoqu8jKS2TFWUdvUXA0fF3doFDEPBwKhQJjbg7uhhNT/XKiyM5NYNGKPHqtbk4/txhXdTkAUkD2oqSedXxtGIpKU9n8YQ01VV0gMcSDA1AyO52b7zqd1sZe3n3tII6+8Q/f3PFJPV3tDnR6NVd/aRE1lV0sWp6HwaQd9JzRpnJJySYOV3SyZ1sTth73sD1hutodJKeaYlVliRYj9l4Pbpcfe6+HrNwEWpvs2HpH9uC4nH583iCJSSqamuQbr/f+8zd0BhPZ0+TZT4b4XPyhfqHl9mdjVrfSWLUXgEVnXcLujW/RXHOIkgUrYtuFQyF2fPA6ADMXnUFmwWDv3EB6h6nkEpyanFIenGiHyoysOHm0vQSZZh31bX1UNQ72HNidPlpq6wHQJKbz6Ev7+O9zGwGo8Op5a3N9rDz6yBwcAE1CAvqMwZ1ckxYvYvb9P2P5v55GZTDQ+vqbQ/YbiYLM/jycIz0XCrWaoNNJwD56nkc4LFHR0MuM/CQ06uE/fr1OzbeuW8QNF80Y9XjTBpQbX3uBfBKbU5zC58+djpRcEFsXdAz14EQFzqK/PUL66vPRJiUR9vkIuY/uBu/8cANIEk0vvIStbC+br7wG2959R93n98/uxObw8ebHdYTCErsrOodtD/D6R7X0Onz8/PEtuL0BDjfbmFecwv23ruTbNyxGq1HR3DE0Kd0a+S58sq+NbQfaWTEng1mFyaxens/C0jSKcxPRa1Ws39HI314p56f/t4VAcHgvzX/flyt9th84vo6vHe0OvJ4ABUXHN/DS19WF1pKEUt1/P6RLTSXodBJ0n5yu2xOBUqXk0mvm8aWvr2BaScqgWXKJixZizDm+0RJFkflVe3fInZ5Nw3h2FQoFuQVJzJwnN4tzjnMsixSWqDrQQUqame8/cBHFM9K48PLZpGbEDSuookTFzsAk4igBf4jeHjepA6Y3JyQZ6LN5Yh2go80O7Ufx4HRHqjxNhsGvyedxUXtgN2k5hSSlpmF39D9PMJxMWJLDaOYEC3OWy4OMow0AnfYebN3tdDT3N93btXHtiDYA9AxTySU4NTllBI4kSXS39uFGIiM9LtYHJFkn/7i+8+eP6Bxwd/LQ82W8t34nIHtwEvZv5er2DQB4ElJ5YX1VbPvhPDhHQ202ET97Fu7GpjH1ffG2t5Onk3N2Gtr7CPYNzsWxLFsq29U0cgv9KL0OL/5AiNy0o0+0PWdxLoVZo/ePSIzT8cd7VvHcLy8mPXJnqFIq+MrnZjF9UX/TOE1S+pB9ve3tKDQa9Onyumg4b2CYytPWzuarv0jP9h0AhINBrJu3glJJwGbjwM9/AUDnBxtGtLGly0lnxN3e2N7H25vr+PnjW3h+XeWg7YKR5ocAHl+Qv7+2H58/RGmkk7NKqSAn1Uxjx1APjk4j/5R2RuYgff7cwXeYapUSvbZfIByotbL2k3pAzvN5YX1VTLhqI8Jzc/nQi9FYkCSJYCA0pBT6WPF1daNLSR20LBrO8XePnLg61XFW16Aymcj/ypeYdutXj/t4eQUWNFoVlRFhmpA0csl5tHeOc5wenJYmG06HLxbqGivTZ6ah06sp390yZF1XhwMkBgmc1HQz4bDEc49vByB/WjJGs3ZIDk5Lo43tm+qQJAlrROColMNX180/fTX5RRb8/n4hFkaPJzQHs6WUy2/5LvFJKSQkp1FfuQ+fx83rT/4/Xnz0AeorygBQa7Q0Vu8n4B/5fTtaJZfg1OKUETi9PR6C3iDhoBtLnC5WaZGfaOSra+SqkI/L+n/8uyo6SFE6qPTO5MG/VTKzfb+8Qqnk9NVL6HP5eXerXNKcNE6BA6BLSUYKBgn0DU0cjlL72N+pfvgvlP/oZ0hPPgySRH1b35A8FcvSJQC4xyBwouG49An88ZfkJRE3zGyWlOJZuNoh6AVnQxe+7m6Cu/bgbW+n/uln6d21G316eiy8FE3MHpho3Ln+faRgkNq//wMAZ/Vhgg4HOVdfiSE7K7adyjDyxSSac6RRK6lpsbMlIhxe+6hmkBdnd0UnTk+Aq88pxmTQsG67HIIpHRDKy0k3023zxAaMguwV6xjQM2RecQql+UMrcm5eM4s0i5H/++F5pCYZ+Nc7h3jkv2X8Z10lz7x9iNoWOy5PAH9QFr1lVV14fWPL0xrI2y/v59c/eJv3Xpc7ducWjF4dNBJhv5+AzTYkP0WXJgueaH7ORLGromNQrtmJIhwI4KqvJ65kOjlXXYEhK2v0nUZBpVZSUJxMOCShVisHjWkYsq1KidGkjfXLGQ17r4d3Xz0Q8w5FPSpjRa1RMWteJu0tfXy0rpq9O5o4uLcVkMNTIHdsjnL6ucUsWJqLRqvCkmIiMyeBxCRDLC8H5ETqJ/78Me+8eoDuTifWLvncIgVlT7LRLJ9j5512Phl5RRTPXUrJLFmYGSzLCSlz0Rv0hNXTUcefTVKq/JoWnnkRboedJ3/zLXo6WvC6nezasBaNVseScy4lHAoNSko+kl6rC3O8Do125OaVglODUyYHZ1/ENXt652Y8L9rIvvN2zHE6utod3HTNXJ5fV8lHZS1cdc50wmH5BJWt6uX9viuAAD3mQhSqHlb96C6KEzN46r3DBIJhSvOT0A1Taj0a2hT5guHr6kabmDhkva+ri7a33onN/wEoiuulvjUZf0F/aEOp15MwVxZonqMMQYzSHrkQZ54E923AGaavEWgEaKVzy50A7Hv/Q8Je2Y0dvVACaJMiHpzefgHnt8knS7VZPvl6O+RqLXPRNBLmzZU9OOEw/p6hIbAozZE7y8vOnMZLHx6ONTl0eYOUVXVRkpfI8+ureG9bA3qtigtW5KNUKvjv+9XMn57C4pn9d8t56XGRYzpiuTxWuzcmSgCuOW/4/IBzl+Rx7hK5Udg9X1zIQy+U8e7WBqK5vxUNvQQiVVYGnQqPL0Rjh2PEXKnhCIXCsbv02fOzmDkv47jGAvis8vs6ROBEvr/ezonz4Hh9QX75xDZmFlr4zZ1nTNhxh32ujk6kQABTYcGEHreoNJXqg53MnJ856kBGc7xuRA9OKBSmrrobvUHDu68dAKl/yKc5Tkd2ZNTGeFh1QQkNtVY2vNPvubzlHgOdEYEz0IOjN2i47Nr5XHZtf5O8RIuR1mY7DTVW6mus9A7IXazc30HVgQ4MRg0epxWlUsV19/4Kv89DgqVf6KVnyf1lWtpzUChz+cJX5vPRuuqYDQCzl51NR1Mth3Z9PMj+RasuIbd4Nlvfe5nWukpyi2dxJHKis4vMnLGVhws+25wyAqemRr6oJXo76Hi3mZyrryQ9O576w1aUCgXLZmfw4a5mbA4fgWCYsN9HutmOUePDHdDTkDgHQ44bXU4+Zq2K5AQ9VruX266YO8ozD48uJdJBtdsK04uHrO/8YMMgcQOwNNjE2qZE3K39d7jGvFy0KSko9XqcNbX0HapAbTJhzMsd9nnbe+ST0tH627S/tw5Tfj5xpSXjfVmDcB4epkTcbCbs7M9hCav7y1hjIarufrHiqpNj71JQTgT1Ry642uRk4kqms/L5f7Hr69+IebW8HZ0ceuA3lHz7HkwFBQA0dTrQqpVcdc50XvpQtmn2tGQO1FrZsLuJNquLVzfWkBSn47s3LiErxcx1F5QyPTeJJTPTUQ+YxZUTEThNHf0CpzXS++TmS2cxrziV4jFcfOZPT+WHX1nKt/60MTbZvqKhJxaeOn1eNut3NNLQ1jcugdNYK886OvuiUlatHjkRczSiVVz9PXCOCFFFhKm/e+I8ODUtdkJhieomG6FQeMQZaBNBwGYDGFPvm/EwZ0E29YetnHHe0N/0kZjjdDRHKjuPZO+OZt787/B5ZaVz0o+pIi4hycAt95xBTUUXToeP914/SPXBTrraHahUylHLqlPSzSDBP/+6JbYsOz+RrnYHH7wl97VZefY0Oqo3EJ+cisEUh8E0OBSuUCg45+JSqg91suzMQgqKkqk60EFbs50+u4f4BHkkxrlX3UxSWhbhcAiNRkdfbzdLzrkUSZLQaPU01x5iOVcOsdHe68HvC5KWIQSO4BQSOJLDjS7owZSahK+jE19nJ3mFFmoquqjY105BZjxm4M2Xy9HlxJOpsqGQJLxBOV4cVmqosyfz8K8/4K4fn8sDd5xOW7drXBefgUTvgH0jXCCsW7ahSYgn/cILUKhUWD/ZTEHjXr7OPuor5StiyXe+hXl6MQqFAsuyJXR/9DHlP/gxmsRElv3zCVx19aiMRvTp/XdQ7ZH4dPoI03VDPh81f/kbAKe98t9Rq5OOhnNAEqc5G/pu+BVhbzcZZTsJz1/G2mfeo9GRz58jVVPRkFM01Bb2+2Odjb3tHUiSNEjgACi1WrSW5Nhy+759uBsa6d25OyZwmjudZKWaiTdp+eLqEp5fV8WlZxQSCIbYur8tVrH1p2+dRXKCHOrSqFWsnDt0anBupOtvUyTRuLnTwe//Jedq5WfGj0ncRCnKTsASr4/1U6qo78EQydM5fX6WLHDaHbR2OfnPukrc3iDf+9KSYZszRqk6KOcAHdmnZTxIksTPH9tCW7eLny2Sv2sjeXAmMkQVTfT3+UM0dTpjifUnAn+vDQBtUuKEHtdo1vKFm5aMaVtzvB6/L4jfF0SlHixYOgeE6QxGDZYUE1m5Cez4pIFZ8489nGYwapmzKJtwKMxH66o5XNGJy+knJc2EchRBOVyo8/Rziti/p5WDe9tAAQuX5fDC1i7yS0e+8Vu4PG/QyIOcgiT2bG+iub6XWfPl359CqWTRqouH7KsAcotnUXdoD057L+aEweffqCcoLfPoOYaCU4NTJgdHpVBiDPSRfeUVgHxiXrwiH7VGyeYNNWQkm8hBSe2+dv771iFy1D14JQNhSYHeJ+eEeFxBnA4ftZVdZKeaWTLz2C8i2lEEjrezA2NeHvk3XEfetV9g5k9/BDPnoaLfq5M4fy6GTDlunfP5q2PLAzYb7qZmyu79Dgfu+0Vs+bPvHGLjnmYSzNrYBPG+QxV4O/s7qwYGhIdse8qO+fWBnMSpTkykfl4J5ix49JW9rK/wUnzv3bTE57AxZRF1AUMsmVZtNqNNScHdIIua3l17Yp2fwz4fgV4bvm4rKJVoE/sToLXJFvw2G1IohLddvsB7Wtto7nRw8y/epbPHHRsaesOFM/jjPas4fV4Wqxbm4PGF+GBnEyaDZkzJ4pkpZlRKBU0dDgLBMP/79E76XH5m5CcNm3dzNBQKBcvnZKBUyD2J2q1u1m1vYFpWAgtL09BpVeyt7uLHf9vMh7ua2Xagndc+Gjn3AKClwYbBqDmuE/zBuh4O1Frp6fOy4QO5lFqXmorHF8TtlT1pKr0edXw8vq7jD1G1vPYGPdt3DKpkrD6iqnGiiXpwNMOEh08W0aqn4fJwbFY51yUrN4Fb7jmDW+45g4uunMMd3z0rVsp9PChVSqaVpNDaZMfe6xkUnhqJnPxEWWEge3MWLs+lZHYGF181hyuuW8CNty1HpXQTDodITB16czDicQtkkTKSNyvKnm2NvPnffWRNW4QkSVTu2Txkm862oflEglOXU0bghBVqLHlpxJXIbntfdzdGs5b5S3Jpa7YT7vMRnchTihJFIAdHSL6DtLiaUYf6Sx8ryo+vfBdAF5l7MzAcEyXo9hByuWMiCECflsb0732XN9NOjy1Tx/ff4Zry8yj82s3oI4Jn/0/lnjPeVlk8dPV6eH6dPEjPGKkcs+8/QPkPfkzVH/4UO070zhagY937x/z6Qj4f7sZG4kumkzstB4UCTEofVoecNFs3oCvze1v750+Z8vNwNzUTdLup+8dTqAwGsi5fA4CnrQ2/1YrWYkGh6vdiaC1Jch6OzR7r6OxpbWV3ZSfdkUGqKYmRO0OFgpK8JBQKBctm9Sdq5mfEjamHkEatJDPFRFOHg/U7Gqlv6+Pa1aX8/u5VmI9hyvBNn5vF7+9exTe/MJ/UJAPBkMStV8xBpVSQGGlh0G3z8M1r5pOVYuKF9VV4/cMnHkuSRFeHg9QxvpaReONjeTbQ4hlpMQ/Nw+828Kt/bOPnj/WHJ/QZ6Xhah1Z6We0enO7hO3Ufia+rm/p/PEXt4/+gqrGXeJOct1J5Kgic+JErqaxdTpJTTXzt3jNj87IUCsWYhMhYmTW/X4SM5bg6vYb0yHbnXzqTNV+Yj1KpwGTWMW9JDtNKUrFFGvwlpYw9CTol1YzeoKGp/uhNMD98u5LdWxv5+CMPepOZqr1bh2zTGTmvCA+OAE4hgQNQfNrcmKs9eue5cLmcq/LBKwdQRG5PNCjwh+NoDhUCkOjvweDpxGjWkpJmpupgB71WF0/9ZTOP/fGjY+qoq9Rq0STEx5I4BxLNa4jm6URJTTLQnVoY+//Ii1jWmkuZdustAAQGCJWg08nuStmzkZls4pbLZuPrtlIZETaOyv4S5YEVWrZ95aPOzhqJvgMHkUIh4maUMnum7I7OUNr4YuA13NU7qW/tw6BTsWhGGmXVXdidPnZVdKDNyUUKBjn80F/wdXaSe90XiZ81E5DLyn1W66Bp7dA/vd3f04O3PSJwWlqxDbgznlU4tFQ6M8WELlJpkTeOmH1uehztVhe7DnWgUMDlq4rG8c4MxqjXUJKXRFaKmQe/dTZ/vGcVcyIdpheUyHkuX7p4JheuKOD8ZXl4/aERR0U4+rz4vMHjunsNhyXKqroozU/ihzctI13lxadQ80lVL1WNvVQ12fBH8nOMeXkEbLZB/ZeeffsQN/3iPR54avuYns+6Rb5I+To7UbQ1s6AklZw0M5vKWiiv6cbuHH8jvLHgj+bgTAEPjsM+uG9MKBSm1+omeZQhqMdL6ex+ETLW70zxzDT0Bg15hcN7K3u75d9f0jg8OAqlgrxpFlqb7CNOPQ8Fw7gi3wW7zU924QysHS28/uT/k2deRc5fne0OEpIM6PTjv9kQfPY4pQROSnoc6rg4lDpd7M40Mych1q8idMRNb71fFhPGgIMzisPc/aNzmbMoC487wD8e+oTG2h7aW/tiM1vGiy4tDXdjIz7r4DuXWOVKymBXtEKh4NYbVlKTVMTe5FkEgmFCRzSrMw9IWE45Q/b2eFpa2VXRiVIBf7x3FaXhbvb/9D4Cvb1oEuQLezSZNFrBFFdaSsjlwllbx7HQs13OS7EsXYLOnAjAFxL2kKvswlW5nbrWPvIz4jlrYTbhsMQ/3jjAfY9vZV2DHAKxbtmKMT+PrEsviTVM9DS3ELDZ0aYMPrn298/pFzjBvj6s7fL7+Md7VrFihLLa6FiK8VTC5abHEZZg24F28jPiMR2D52Y44k3aQTldX75kFr/75pl84Xw52XtGJAeiYoSZQl3tcl5QSvr4Loz+QCgWemrqcODyBJhdmIxOoyJX6SaUmAwKBV5/iHBYoinSB8iULwvXf/5jPY++tJdQWOKVjXIIbX+Nlc37WqloGP6u/NADv6XhmX/RvXlLbNBqqauRrBQznz93Om5vkB/99RP+/vr+cb2WsRLotaHQaFCZJq8ZXP8E8sGd1HutbsJhieTUE9vHRaVWMndRNkCsL9honH1RKXf/+NxBM64GEvXgJKaOr4x9zsIspLBE+Z6hfXpAfk+i95GhYBhLWi5IEo1V5TTXHKSzuY4dH6ylr3MnGdnyOW3ja8/w6t9/N2hyueDU4pQROAqlgvRM2XWvS02JCRyFQsF5Z6cxLVtBcWo9C42bKJwl3zm7g/LFTx90klmUg1anZkbkQuly9rvgO1qPrW9H9pVXEHK5OfzwXwYtj3pwtClDvQ7LZmfgufxG3k5awlXff4P7BoQMADTx8cTPmU3KGaeTcsZpADibWiir6qQ030LHk09w4Kf34evqovDWW8j/8pfkbWrkC1M0Byf1nFUA2EfpEDwckiTRs2Mn+owMDLk5KA3yBdcUli+M9vYWHG4/BVkJLJ2VgUIBG3bLicWf9OoJKVUoU1KZfu/dKFQq9BlyrlPfwUMgSUM9OJEKH2f1YUKu/n407pY2EuN0sZDUcHznhsWkJRm4aGX+mF/fotL+pO0Zx9FjRgqHRxy6CrLgmTngTnl6TiJKpYKKEVz53R1Dy31HoqnDwaH6HjrtAW79zft8+8GPADhYJ4vCWYUW/D29BHp6UOUMfm+iQ1+jlXrN+6t5d2sDtS2ydyf6Vv/mnzv47kObhjy3v6eXnu07aHv7XRwVlXKjSoORfHcbmSkmzlqUw4Lp8mfaMMyA2YnAb7OjTUyY1IGKUQHTc8SomGjDvJQT7MEBuPza+dz943OP2pRwICqVckRxA9Db1Y7OYBpSPTUapXPkdgb7djbTa3XRfsQ51RqpVIw2SDQlDU603rt5HTs/eA2D8gApqUqkcJjyrR/QXHOI9f/9+7hsEXx2OGUEzmmrizFH79ZTUvB1d+NtraFnw3PE7/sbp3n+wenBD5mtP8ylK/tPeqmJKrQhb+wimpoRhyVFvus7/1I5dDKwh8N4SDl9JYkL5mMv3z8oFOTrjnpwhu9AW5yTGHtcVj00yXPuA7+g5H++hT7SvKz54GE8vhDLsjR0vLeeuNJSFv3lz2RdegnmYjm84jwsC5xoDk7yyhWojEY61q2n/qmnafzPC9jK9hIOjD792FlVjb+7G8uyJSgUClRG+Y5KUiixhQ0ErC1cbChjUWaIOKOWwqyEWMM9u8bMnwq+yOZzvoZ5muxBU+n1aJKScFTI/Tu0KclIkkRFfQ+hUDjWy6T7408AYq9J6mwfsVosSkleEk/85AJyRunsPJBZA0RHcc7Y7nyHo+3Nt9h+09cIDiibPxp6nZrCrHgqG3qHDYt2RSq7UtNHfy13/u4DfvjXzbyyuQe7009Ll5Neh5eDEfE0o8ASE73R9zNKTOBEPDipfhuhsMSrG+TtP3da4aDtrfbBHk5Hpfw5hlwukCT0s+fiS80mzd9LZpwKlQJ++fXTyE2PIxAcvdP3sRCw9aJJPLYKyIlCb9BgNGljDfKiNESGYo7Vq3I8KFXKYWdTHSu93W0kpY09PBVFo1FROjud9pY+nvnbNv75l80EB4wyib5H+dPk357O2H+TYTDHU1W2lVAogEIh4es7gMPefxPQ09l61M7Hgs8up4zAyZ5mYntzGSD38Ah7vXS88U9sn7yEvaIda0V/25lg/W6KdHJC7mkFPhSAPtL3Q6FQcM5FM1h6ej5LTssHxdg8OOW7mtm2aWi4x1iQjxQM4u3oiC3zxXJwhq+WOLIUebikU4VCIVdYKRRYa5sAKPHL4Zusyy+NjUcw5uag1OlwVsnzj/y9vZH8oARyrr4Sb3sHLa+8RtO/n+fAz39B/ZP/POrrlCSJjvc/BCD1nLMAUCekoVBrCZaeT00gHaPk5iLDPnL2Pw3InX8B0pIMnDYvk6BSTWWkqVmUaLUYgKmggP21Vr778Cb+33O7UZvN6DMzYrOt0s49G4B4ezvpSWM/eYe8Xlpff5OGZ58j5PHgrKml4re/I9A3WMAqFAp+eftKpmUnsHz2+E/mUfoOHiLkco2pA3WU4pxEbE7foPyiKE11PcQl6DGZj95gbqA4auvtF6y1LXYSP3iVmzrfJ8Gsi4nejLmDZ5JFBc7mGgdupY585P8/inQCP2fJ4B5M0caKUfoqBo/I+N1mB73mVDRSiJ7v3cXhh/8KyB6sPtfYkpXHgxQOE7D3oUk88QJiNCyppiEenJrKLsxxulio5dOCx+XE63KOK8F4INNK5XOsrceNzxukoaZfpEQ9ONHcn0BATXxSKjq9EX1Cf1l+WNJQW/4hbzz5/wDkMnJJorut6Zhsam+soa93Yrt1C04ep4zA+c2mR/jDJ/9Hl6ub3pwkmjMNtH1UjdcGfQ3g7wNd/jIA3FXbWWLcxi3XxGFyyMJjYEXT7IVZXHzVXLQ6NUkWI+0tdoKBkZNxqw918MpzZbz76gF83sFixJgjx8CbX3qFzg3yME9/txWlXo/KNHwM/khvQ0fP8MMplVoturRUgh3tJMbpUB8+iEKlInFBf3dShUpFXGkJjsoqwoGAnJeTlIhCoSBzzedImDuHrMvXMOcBudz8aDk5IY+HXbd+nY5338NUWIB5mjzBWmWMI//eJ8i95CZ8usT+7V02AOZGBM7imen88CvLWL0sjzari64BuU3RMBXIeUZVkTyUj8paaOpwDMo9Sjv/PJRxcWR6u0kbx91p96aPqXviSZr/+xJ1/3iKvd/+LtYt2+j+5JMh2y4oSePP3z6bxKMMOByNaL6Qt23sM6eyU+WwResRF0WH3UtXh5NpJSmjhl2sRyS1nrNYHjK5/UA7M7oOktHXQtDpou/gIRRqNVlzStColSgVsseqqrGXDbua+PMLZbQk5JDU18HiAVq8IDOen9y8jG9dtxDoH5URs7WyCqVe9qba1Gaag3q29PS35Or8QBbI8SYtTrd/SJ7Z8RJ0upCCwQnvgXMsJKeYcDv9eD2y0Oyzeehqd1BUmjqp4bNjwdZ9bPk3UaYdUf5edUA+93Z1ODhc0YXBqImFX10OP+defTOnX/pVaurjQKElLGlxK1aTkplLbyQXqGS+PJG8q7WB8RIKBXnx0V/x9O++i9Pei983vsGogsnnUyFwdu3axZo1a1iwYAE333wz3cfRPXXPpnfZtvVdupI0OANBeqv71xlnnI9SbyLksqNRBIlPMNP90SZ06Wkjngzzi5Lp6Xbz+J82DXKpDmTju1Wxx81HJIgaIhOMO9d/wOGH/oKjsoq+ikoM2dkjnuBUSgW3XTGXmZH8j4FzkKIEgiEkSSJsScXssXF2jhpb2V7iZ81EfYRwip89i7DfT+3j/8BVVx8bmaDS6Zjzq/sp/OpNJMyZTVxpKd7W1mFtAnDV1cdym3Kv/cKgdUqdEZ1Wzbw52bFlikgX44UlaVx5djGXnSkLoqjg+daDG2I5GAMns6uNxkEDLzfubo7l5WgSElDpdEhZ+aT7ekmLP7o3YyADxw50vLc+9ti+b+ITXSVJ6i9pbxt724HMSMlwW/fgsFZttfy+H3mRGI7GI0Kql6+ahlIB73zS32On6k9/xr6vnKQli1HrtORnxpOdZmbF3Ezc3iD/79+7iTdpWfmVqwC4Ml5+7ww6FVqNiuVzMjl3SR4FmfFsKmuJNTOUwmHs1TX4M3LpWHA2HyUvAKBD1x+OVepk0Rhv0hKWwOUZPSw6Hlz19cDg79RkYTkiD6exTj4/FJYcf6+bk01v1/grqAZijteTnhWPWq0kPkFPxf52QsEwb7ywD5fDx/mXzuwfUurwkVM0k7YOE0hqll5wE+ddczu3fvtiZi89O3bMkgWywOk+BoETTZgGeOq332bDq0f3XgumHlNe4Hi9Xu6++27uvvtutm/fTn5+Pr/97W+P+XidDf0ncb9JCRIkLpLvNH2dHWjTC/q33bCdkMdD4c1fGbGj70VXzGbxynzsXQd47cnHh6wPBkK0t/bFSkIbagaXhRtzc2KPpVCIfd/7IWGvl7zrv3jU17HmzGl86RI5B6j9iCoMSZL4zp8/4s7ffUCNR4dGCjH7kxeQQiHybrx+yLGiZdgd774HDPaWDMSQnUnA3jdszkjA4cBZI/dPmfXzn5C8Yvmwx5AM/W73kKOHsN+LRq3kq2tmxzxTS2amk5Kgx+70sykS9lDqdZG/8p1/fWsflngdBp2a8ppu0s49B5XJSMm37wGgVZeMijApr/1jyHDSkYj2JJrxo++jz8pi+j13YS4uwl5+9HL5YymlD9hssXlcUU/OWMiKCJwjPTh1VbLAGEsTuMYOWTTmppvJT9OSnxFHdlocCYH+Y/bu3IU+I4Ppd38DgB98eSk//eoKVkRCcpIEX7p4FiVnLUOfkYF36yf8723L+cVFGThra2PHufGiGXj9IZ57V27lb2tuQxkMsKdXzQvBafQUzOH+W1eSXpRLKJqYKklIkhTridPnmtj8Cfs+uXlhwtw5E3rcYyFanl1TIX9+zogQTJrAvJiTRX8PnGMP215x3QKuu3UZS04vwGH3snNzPa1NNopmpLJweR5ms3weqKnqonJ/O7s2N5CUbGTZqhXMXryI5FQzBTP7PdTJGbmY4hOPyYNzZFir7lDZMb8uweQw5QXOli1bSE9PZ/Xq1Wi1Wu69917effdd3O7hwzIjcXqXCYM3jMva7/1pTDdQMSuRvJtuBMDT1oF51hmoE9OIX3Ix9v0VaFNSsIxwsQbQ6tScf+kMDOp62mq3Ye+1Y+tx886r+/nnX7fQ3tpHOCSxaEUeWp16iMBRm/srJXTpaaBUkvm5i7EsWTzqa8qwyBe79iNCVI3tDupa+2judHLIJbv+Qz1WUledSfyM0iHHic2cUiqZ+dMfUXDzTcM+XzRp+cjmbkGXi+033kRdZOK3MX/kiqRgYg6G4iXo8+RBeYGeoeGZOKOWv3zvXAA6et2s396Afo580ir6+q0EQ2EaOxxMy05k9rRkqhp7UWZksuK5Z0hcMJ9QKMxmtyyk/NWVVP7+j2MSIT6rFZXBQPLyZSx+9GHSzj2bhPnzCDqcuBqGP0F2bfqErdd9iZ6du0Y9/kCiHZeBWO7QWMhINqFQyFVQjkgzPUmSqK3uJi0jLpZIfzSiHpxf3b6Sm89PQ6FQ8JVLZpIYGOzZyb76ipi3L91iJDPFRF5GHDlpZlISDZy1KAeFUknmpRcT7OvD8PHbWP/4G/Z+5/uxYyybnUFRTgIfl7Ww42A7H6/fA4BVG08oLHHzpbNZNCONP9xzFmf883FSz1pF2O8n5PESb4r0iXFNjAfH295O2O/Hvq8clcmIuWjahBz3eCiemUZSspFtm+oJ+MO4HPJnajqO0Odk0dvdjkKpJN6SOvrGI5CeFU9hcQrLzijAZNby7msHCYcksvMSAXlsBUBro43nn9yJ1xPg7ItKB83miktMJj23iGmzF6NQKEjJzMfa0UIoOHyDTIDXnvg97/77UaRwf1J7VOCs/sKtmOITUalOmclGnxmm/CfW0NBAQWSmEEBiYiJGo5HGxkZmzJgx8o5H4OnpZbHNTwA/+aXzaKjcR1ChIEiYvqAHhUqFr6OD+EU3E7/oAgJ9fXj++jYpq84cNRau02vQaryEAvDUQ+9i7+u/+6o+JI9ByClIIq/JRm11N4FACM2AvisZF12Ar6ubkv/5NlIwgCZ+bMmFlgQ9apWSdqsLry+IUqmgy+bh3W3yxfj6C0rJc8dBpOla0giiSaXTsfDhP6FJSECTMHLipSEmcFpjHaEB3I39dzoqgyHWl2b4J9OQ9vnv4anYgrfxIIGeVnQZhUM2M+o1mAwaNuxqZsOuZuYUJXP/iy+g1ahoaO8jGApTmBWP2aBh56EOKup7WFAiV1aU13RTTRJNX/0Jyzp207b2Laxbt5Fy+mkj24U8yFObPLjsO3oR9DS3xHKKBmLdspWwz8ehX/6apU/9PRbeG4m+ikp6d+zsn6KuUAzrwbFu207Xxk2UfOtulJoBA0k1KpITDGzd387+mvU8/qPzcff5cPb5mL1gbDOKalrsJMbpSDDrCNXUUf7svzHHx3Pv6gW0Pd2/XepZq4bsq1Ao+NXXT0OS5K7OAGnnnUfjv1+g9fU35Y3CYTxt7RgyM6h59DEucAZ41JvLL57YxlLbQc4Dzr94Kd9avXLQeAylRhN7/wO23lE9OGVVnWSlmkkbQyK5z9rD7m/cQ9p55+KoPoxl6eJB3bAnC5VKydkXlvDKc2XUHHRi1Ms2mT+FAsfW1U6CJQ2V+vgvK1qdmiWnFbDxPTm8nxUprDhyyGhRaSpzhvnef/6OH8fO26lZeTRU7qWns5XUrLwh2/q9HpoOHwQgMSWDxees4fCO9XQ1VKBQKimZv4KGynKq9m4l4Peh0X76PptTlSkvcNxuNzrd4C+UwWDA6x1/wlfUXZWckUtjVXl/98u2RnRpqXja2gmFQjiqqqn9qzxwMm5mKaER7v6d9h5cDhspmXmEIu59j7Mb6P8R7dnaCEBGdhy5hUkcruiisdZKQXF/zkHBbV+LPVbotCM+33DkpJmpqO/hWw9uJClObu3vcMt3vJevmgZ9Sex5St42bu7sEY+ty5ZzY4723NpI6Mrd3DJoO9eAKqCQx0M4PHxpb3SfUCiEKkl2Y/s6GzGUrujfxmmj+82HSTjjGlITDbH8i/01Vq7/6dt8+ZIZxBnlC19eupm8iIv/vW0NzC2S39NoWGvF0kKSfUm0rX0Lx+Eako7iiQO5PD+uZPqg16aJJJdHvxtHMlCc2A9WYFmxbMTjOw/XcPDn9xP2+mJjNjRmFQGHE093F9qkfnFV8ev/BaAhPU0eV3HVFbETdnQMgtMTYN32BjIU8je7oMgy6nfH5QlQ12pn5ZxMgv4AgdffIOCQQ46OKvliMuuX98lTttXqYY+XGKnSiq5T6LTM/PlP6Hr/Q3xdXdh276Fn127SL7qAjnffIwHQTLuOgFKDxS93PV50xmyMJs2Q46sjjSe9Pb2Y9LJYtDm9Q7bz+IL8/PGtrFqQxb3XLjzqawawlZcjBYN0vLcOJIn4+fPH9Ts7kcyYl0HKehP1lW5S0pX8f/bOOzyO8vr+n9mqrdrVatV7sy1Z7h3b2BTTe08CIZAGgfBLb6QXElK+pFJCgABJCKGYjsHYxsa9d8vqvUur7X1+f8wWrVUsW7Ix4PM8PFi7M7Pv7M7Me997zz1HqZQjVwhnzPjGglAoyEBvF7llUyds3JWzs2IBTka2IXZcdZICnzfIt35xISqVgrAYhlE+0pIpdfV1ttQjk8uRK5QYTPHnb3dHfIG2fc2rdLbU090olVQt6TmERRFdxNRzoK8H80mSqM/ixDHSXDJWnPEBjkajwX+MGJrH40GrPbEadZI+GZdNqnPbPf6EVtmjB3aTp9EQrqtn+y8fINzegRgpw7QKAu179gx7zIPrXsLe286UxVdCxARTLiTyU5wOH/pkBVVHD+ELSeex6f2DdPXoUSVJE1N7k4dQUCSn6MTr7gWp0NAewOEO0NIV/+yp+RoOH9qfcJ4HB3EjTgZiRAOn/fBhuv75NEJ2FrLUVAKDTDnlC+ezZ4TvK4r9+/dDKIhJEOiu3keDoSz2nm7PS6g6juDqauUrPgf/Ui5kT6AAAF8gxBOvHaQ0S1r1ewba6EdJUYaaD/a2UZYWICtFxQd72rEmK+htr6UnFAKZjI79B+gbZVyiz0fY68UpCAnjFyOl0LbDh+k+Zn8xHMbX0AgaDXg81G3bRlNSIqlZdLkI1zUgm1pO4IWXCXt9CEY9QbsdlRHUyUECDmh48Mt4rvl/BHYfJHTgYGz/tpdWAtBpMSOL2AqcO1XP3no3A64Q/1tdxXSVHEEGNmcLe/aMTAI/3Oxh42EHogjJKg97X3sNHE7kC+YR2n9Q0qUBar0ehM4O6DxBz7X5cxC9Xti9h6b319NujmcDZ4nttFlLsLTY8cpVVDU3IbQMbd0NRWwfqnfvpiNN0t85Ut1AqrIvdi0LgkCfI0g4LFLX3H3c6w0gENFIimpBtGs1dIxhv9MBUQyTmtZDT1cSnW0ONDr5mM7pTILH0U84HMIflk3o2LPyk/B5w1QdPRR7bdEKM+EwHDo0NvK/1yU9Fw/u2sy6l59CodYw5/I7EASBxv2bsHVIGe/iOefTUbufpqP7EQQZuVMXYErPZc+ePdgc0nNg765tmNKHZoHO4szEGR/gFBYW8vrrr8f+ttlsuFwu8vJO7CLLLiyjt6UGgGnTZ5HSX0NVbQ0+tZGQ10nmnNm01tUT2rk7tk/GFZeRf8H5QwjG3W1N1B3cgb1HmkxaDsTbiGU4uOXzc1Gp5fzzr5LPzrRZecyYMUnihryzivoqF72dIRYtL8Zp93JgWxehUJgLL52HOunEfhJrlpN1+9clvPbwt5eTZtYgl0vjtv/yZygNBjQ52UMPcILYYTQi7+nFd0B64Cx46Xmq3n6HfpmMWY8/gtJgGDH1HwqF2L9/P5WVlcjlctr25KLw9lE6Y4b0vtNGyztSW5vc3YccmKVuYE+gAKtZw/zydF7f2MCRFi8KuYzzF89GLpchN/Two8e28I93urn63CLcvjBXLi1hxgwpcNqXm0NoYIAZkc85Fr7uHo4++Ht8QEZpCbmDthNFkR2aR9EFQ5Qfs7+npYW9oRDpy5bS+dYqkgPB2LlEUfOnv9Czbj2ZQT+ddXWoU7UYs534BgRMlYW4aqSgM+CCzP5O6la9O+wYC43JmCPHjn7Em5saeOrVg3g8IjK9itlzZo5YTu2ze3ngf2vxBUJMcdSzyJmCeqCHPqD8059CdLup/fNfUaWkMGX28flfo+HgpDJcDY2UpWewP/LaNakuCr64gL13PYu6MI8ZM4fPugzIFRx+6RWyzWayZ1bw+DtdrN5jx2K2MPm1RzBOmULq8nPh0D7SfOAL5Yz4uw7Gvqf/RZSppisupnLpknGd40TBae9ny9sv0HV0KyrZHPzhfMwW/ZjO6UxCw5E97AEmlU9jygSOfSIOJYoih9a9SHejpL8U9Hk4sv5FLOk5tFXtim23YOkFqC++ivdXPkNQpuKi625DHnmWNSQJ1O9+n3SLeULP7yxGh9PppKam5qT3P+MDnAULFvD973+ft956i/PPP5+HHnqI8847j6Sk45MpByM5xUp7iQFdpxOTWoEouElLlXPIOpn6Q7tIu/NbmGdM48D3fwRA/q2fJuf6a4ccRwyHefOZP+F22ABJRdMxSAgqSe2hZFJaQq14UkUGcrkcuVxO5exs9u9sxW7z8vbLURsE6SaqP9pLxcyx8SiiyMtMZmFlJnqNkp1HurCaNeSkJ3J4zFMrTuiYo0FtteKqjXei9W/ZSv/2nSRlZqA5xkJhJES/C3VGEc7968DnRq414O2qh3Birnm6qonvWN9jzq33oM4qZdP+DvrsXvIyDKhUEjdlRlk6D967hG/9aQMr35cChnOmZ8ceTtr8PHrWf4Do86PQDpWk7353deyc1BZLbL/YOaen4evsGvK6p1HKQBgnT8a2azeelpaEbURRZGD3XgDaX3srciw/5vkXYF5yI3JDCg3/9wU43I/fCd1rE20Nsq+9Gmd1DQP7D+Bra0M+d07C+1csKSZLpeCN5/fT4PTRM+AjwzJUO8kXCPHISwfwRbSarurcgOsNcCsUCLk56LKzkMvlzPrrn4bsezIwz5qJ40gV/VvjhpsDu3bR8uRTiF4vuZddMuS7jCIpRSrTBQfsWI3x32rLGxsp7Oiku6OT7rXrALggKZ3ntakIggyZbGSenLulFXdjE6aZM/D39pJ56UUjfv7pREvtYVY+/mDsb7WsAX84H70h6YwY31jR29nK+lefBSAlPeuMHPviy27mvRf+Efvb1t2BrTsxQ2mypCHIZKy4+Uvs2bMn9pwCaf4AcDlsZ+T5fVwhG6F7ecz7T9A4ThmSkpJ4+OGHeeSRR5g/fz7Nzc385Cc/OeHjGMxWVOkWDhUqCfW14O9qRJ1RRNn0+YiiyOZ3XsRYXh7LciRPqxxyjANb1/LXH9wZC24yC0pZdPENsfc1eiNywUEoJJVyiiJu0Nn5ceLp1TfP4Fs/X4FSJSdZ+R5m1WqpY0KAw/vHJvjW0+mkf1Br+Pdvn8dXb5rJ7+9byg/vGJ1nMl4kpSW2IVc9+Pth/aHGgmhLvq/1KLbNK/HU74u8nkg6zgq14ti7BkEQYto/x5pjTs5PoTRCREwza8gf5Meki3R1NT37r2GtJqLt7QCa7KEBZlJ6Gr6eniGdWM7IykJfVIg2LxdPaxvhQZ0antZWAgMDaNI0KPUgyME8axrWy+5CYbQgCAK64koUWimD427pRJuXi2GS1OmWddUVTPrW1wFwNw2vdtxcJ7XA9yNyeASPqodf3Mu2Qx0smZHNv+9fHntdDAaRD3OdjxemmTMA6IoqWi9bihgK0bP+A/SlJViXDSUvR6GM6E0F+m1o1AoyIwHbZI/Eq/LKlBw2FBJOTiHH24XS7x5R7VgURRr++QwH7v8xCAI5113DzD8/RPoF50/QmY4PLbVSFnTSzEXkllSgkPUgw/WRIxhveedFXHYbwEmrGJ9qTJm9mJu/+lOWX3P7iNuMJAUCoDdJzx2HrXfEbc7izMMZn8EBmD59Oq+88sq4jmFKTcfUbsHv6uDPh17jhqAfdUYRGVPnkFtSweEdGyiumI35ykvR7j04bAvprvelVbggCNz6rQcxmlPx+7yxlcHUecvYvuZV6g/voXTaPG6+cw7hkIgYDhEIhlCq1AgyAY1WxbkXZrPrXakt9/NfXcBL/97P0UOdeD2BYc3s3nhhH/29bqbOzObV/+7FlKLh3u+fl1CSSDWNzTAvClEUWfmfPQT8IZZfMmlMHkaq1KEtoLKkJFKXnHNCnw3Euqc6XngQwvHAQF++iL7OekgygFf6joRIi+acKels3NfGpPyh3UrzKzKobrYxryIj4XsxTJkMgkD7G28hU6no27YdhdFI2dfuQ51qwXGkCsPkSRTcfhuGYdro1WnpEA7j6+mJWVwA2A8eQmE0osnNQZuXR//2nbgbm7AfOkT7G29hWbRQOp88LXLBgyBXknb5HQnHNp97C737++jbfgACAfRlpRR9/g583d2oIpwbhdGIZwQ7B7vNgzpJQdAb4nB9H8tnJ9okBENhNu9vpzgnmW9+ejaOg3F+j6BUIi8feyfiWKEvLkJh0OPvlSaDjIsvwn7oMGIozOTvfnvUiUSh1yMolZJdiSjybVMtO5MMGBqaCBrNPGS9HASBKw09lO9+k1JXM70DnmEVpV31DbS+tBKFwUDpvXefEbo3g9HZXI9CqeK86z5Hc/UhmmsOolNsQ51U/mEP7YTQ0yY1Upx//Z1o9GeuvURqZh5Gs5W1K/8Z9+UBFqy4jtyS0b9zdZIWrSGZ9oajiKL4kVOZ/qTijM/gTBSUKjXF6RInYw9uGpOUqDIKEQSBpVd+BkEm4/V/PsTbH7xI9hdvH8IjcTvt2Pu7ycgr5rov/wCjWcpkqNRJlE6bT7IlnakLpIBj1XOPUHtwJwqFHJVawarnHuHxn9/D5lUvxI6nUcbJoOGQkxlzcwgGwhzYnUgS3byultf/t4+dm5uoO9rDq/+VSh62Ps9Ju5iv/PduXnxmF3VHe9i/s5Uj+zt47fnhXcN3bGqgdZAvlNoaz+DoS0sovvtLLPzvv8i4aMUJjyMpdwq6KYsSghtBrUU7aQEIMlKXfwrlktsBCLmlcz1/bi4/unM+t14iiROGfR6633qUoL2X8+bkMbXYwsULCxI+J7minJl/fgiA1pWv4mltw3H4CB1vr8LV2ETI4yF5agXGKZOHfXBFfbAGe0YF3R6cdfUYy6cgCILkiA1U//HP1D/+JN72DtpeeU0KIoR+dGVzKPjaP1BZEwMQpSmNnBs+Hf+sdDNyjQbtII6ZNicbd0vLsAabTocPg1FNplEYNoNT1diP2xtkXnkGth07OPSzXwJQ9KUvMOVHP0DQnFhQPBYIcjnG8viEoU6zMv0Pv2X2I38Z0UA2tq8goM3Lw9XQQM8Hm+hc9Q45779IctDFYXU2Uavyd2wGgoKMxb176akfIfiLBHNlX/sqaectH3abDwuiKNLVUk9qVh5yuYLc0grCykkoZX30dxw8/gHOEPi9Hhy2XsqmL2DK7MUf9nCOC1WShimzF5NbIpXtBUFgxuKLSM8dXRNJEARKKucy0NtFV2vDaRjpWUwEPjEBDsDlU1bwZalJg1qtCnWGdFGbrRmcc4mkHBwKBjm0fT0gKVdueO3fiKJIa53UNlg+ZykZeYnuyitu/hKf+cYD6AzJ5E+eDqLIO889QjgUwuUYoO7gTkLBIDvXvUFzzUFCoSAHt78f23+gt4uKGVmo1HK2f1CfYPnw7muH2RVpNT//sslccu1Ull0sBWqH9o3dwygKnzfAvp2tHNzTxr8e2wqAXCGjpbGfdauqaKyLp2D7e928+eIB1rx5JPZaNMBRJhuZ/rvfnFRgE4Ugk5N+7TfI++rjaMukAEGhN6GyZJH31ccwzLyA3KVXIFNrYwGOIAjMLc9AFSlRuaq349j1DvY9q7GaNTxw92LyM4auIrW5OWjzckEUUZpNqCwWut/fQMsLLwGjq9oaK6Rgqvv9DTT/93+Eg0EcR45AOBxTgTZMKkNfWoq7UZIcQCZDDAYxlBUjCGFU1jxkScN7i8WEFgFBHJoC1+bnEXK5aHv2N4QDiZowLocPpbeLr6mep729N9YiH8XuKkmHadbkNGr+8jfCkY5E67JzMVacukxB9DsDUJlMKA0GZKqx2WboiwoJ9Nuo+evDCa8fUGaSnqLFatbglat5I+0cDCE3npX/Tdgu6HRy+Fe/of7xJ0EmkzJ4ZxgGejvxed2kZ8fLscb06YiigNc+vm7HU4ljg+zeDim4tGTmDLf5GYnzr7uDy267LyJKmIZCOTRjPhyivlZHd28+lcM7iwnEJyrAASj0hVGHw9SZTShM8XLDjMUruPuX/0CfnMKhHRsIh8O88fQf2bvpXRy2XtrqJQZ+dvHQh6UgCLGV/0U3f5mc4nJCwSCOgV6q90pBxKJLbkSuULLh9f+wb9N72Lo7yCqUyiEDvV2o1AoWnFtEd6eT916XAgrxGJPB+UsKmXtOAYvPL0WrU1FX1c1I2LWlKSYyOBg9Xa4hr624ohxEWP9ONa8+t5dw5HPrIvL/rU02wmFJPj9qOqqOlGr27Wihq/3kMklRKAxm1OlSsBn2SuNT6M0IEX0XmdZI2D0w7L7+Tsn809dSNez7g5FcKfFNUubOwXruEvy9vfRu3ETKgvkkT5824n7avDyUyUZ61m+g6d/P0b9zF46I+7oxMnkKgkDB527DNHMGFT/7cSxo0RdK2R/lMZmbYzHjz/+HaZKOQMc+RDFR+yF6LNuu7fS++1Ts9WAwhMcdQOXtRB32cI6xhd/9ayfPvnU4ts3hhj40ajkFyQoCA9LvVPC5zw5Ltp5IDM7gnKignq5YmvTDXi+6wgJA4t40a9JZPjuX4myp/fywoZBabQ7ymsP89Yl17D3ajSiKVP3+IfoiBGeFXo/iBCUlTgeiKrnW7ILYa+VzrRgtebhsDQT847OnEMNh3M7x3ZfHYss7L/HUr7+BzxtXTo+eR2rGR6t1WqFUMvvcS5mxeOwLtPTcIlLSsji0YwNe91C7mrM48/CJC3DMcy+lyBOkURZkwJcoTS+TySiumI3L3k9zdTxN3NfZSn93O0p1EkazlSPdNbxdvW7Y4ytVaoqnSm22tp5Oag5sR6lKYtrC85m97DL6OlvZ+OZz6Ixmll19GwADfVIgsvSCUrJyk9mxqRGP2487IuimN6q5+c65KCJZC5lMwGTR4rAP/xB02L28/r99/OfxbUPe641o5VxyjZSxyMozUT497h3T3+um6oDUXRANcPy+IO0tNv748/fYcURy+NZkZjLQ72Hlf/bwyO/W01Bz8gaoAEn50oSoLZ075D25NpmQK/6wdh7eTMMfPkvHCw/iqdsDgLf1KGJ4dIExy6IFIJNhXbqEzMsvxbpsKVlXX0npvXePWlMXZLIEY0ZfVxfuhkaQydDmxx/syRXlVPzkh2gyM7EuXYJMpUKTLk2uqtTRAxxdXh7p559L2NlH0JYYmOpLpeDP7wTH7ncI2qUsT1TWXyP3IShUXJXZRrZVx39XH8XtlcjUbT0usqx63EelALDoS18g++orRx3LREBfNFSdeuz7xssFpffdi9JsRjtnHj/98jl86qJJFGWbYu/vM5UiQ8S+YQOvbqjD19mJbddujFMrUBj0ZF91xXhO45TB3ifdW6bU+CJLLheYtmAhoWCAXevfoqX28LBlybHg0M4NPPXA12Ou2sMhOAzhfiS0N1SzY+1ruOz91B6QbEm6WhvYs1Hyr/soZXCiWLDiOioXnDfm7QVBYPbyywn4vezdtPr4O5zFh45PXIBjWnAVl5x/F2FR5N97Vw5535wmTfY71r0We623swVHfy8Gk9T58vjO53hi139psQ//8Ig+tDqb6+hsqiW3tByFUsXsZZeRnlOERmfgis99DXNqBnKFgoFeaUKTyWXMXphPKBTm8L6OWAAzZ1E+ZeWJBph6vRrR9X6M4Pzem0fYuKYGURTZvytephAjmZcoerqlACe/OIWvfHcZn7pzHjqDmhs+O5tPf3E+MrnAnm3NhMMi9dW9yOTSxL99YyP2AS91dQOUfeNr5N58A+0t8azKs49tZeW/d9NUP3wnz/GgyZ9K1u0PYFlxx5D35FojIY8DURTxdzfR9dLvEUNB3FVb8XdJ5TvR78HfPVQ4bjCSp1aw4LlnSa6citpioexr91H4uc8m+IGNhOxrro7929PahquxiaSMDOTq4TteMi65iHlPP4EQkr4jpeX47f/RbY4NcAjYkCkh4JVKPJ56iYflckrXh86gRlsyC7prWT5Nsqto6XLiC4TosXlY0vA+h38pGdRGS2qnGoJcTsVPf8S0Bx844X21BXEvM11hAbMf/jPzv/NVZpRJvlnFOXEBwVvvux5RnUShp53WbieuSOu+9dylzPvnE8NKPZwJsEekJQzmxK7EKbMXY7Zmsv29V1j5+IM0nKTBY0vtYcLhUKy0fiw+eOM5Hv/5PbHup9FwYOtaXnz0V7G/j+7ZghgO894L/8Bh62XhxdejN45uUfJxQem0+aiTtLTWHj7+xmfxoeMTF+AAzM+bzbT0Kaxr2EyTLZGzYIq0ObY3VMde62lvxjHQh9GcSvNAG00D0j7rG7YOe/xkixSMHNiyBlEUyS+Tyh9yuYJrv/Q9bvv2b0nNyJVqwGYr/V3tsSBkyrRM5AoZm9bWsGX1alSyRvQGSfOnv6s9tiJTyu2oZC0c3vkBrzzxe7avXcv7b67niV99nV1r/xMbyz/+9AHPPrqVcCjMurer+GB1DQiQkqrDYtWjjcjuT5mWSfEkK1m5Jprq++judOD1BKicKbXN79sh1do72x2knLMITVYWHa3S5D19bg7hkMi+na3s2NhwMj8JAEnZZciUQwMGudYI4RBt//wBti2vASLp13wduVGaHAS5VEP3Ng//ME841ggByfFgWTifhS/+F1lSEq66BrwdHejyR87KCIKAXKMh0NuG3Jg67HkdC6VJCk4Cts6E172NB1DpIeAIEA6BOxLg2LulYNKYYkSZIgXmuUaJsN3S5aSz10Whq5WMBolArramSjyk0wTTjOkJ/KKxQq5WU/HznzDrkb9If2s0yAb5G0VLVAAzJmdgnjKJLF8vXT12nA2SKq0uP++M8JoaCY7+HuQKJdpjuo6U6iQuvfWrpOVIGbCm6gO0N1SPmMlpqj7I07/9dsLzCuKdTR1NtUP2aak9zJ4PVhEM+GlrOHrcse7dtJoknZ4bvvIjCstn0lJ3mKo9W+jtaJEy0+deNqZz/jhAJpNhsmaOmhk7izMHn8gARxAEbqqUUtevVSWmGk2DfEayiyajT06hpeYQ4VAQg8nC+5GgRilTsKFx27APHkNyCnKFIlYDzyuLE1jlCkWCWVtO8RTs/d10NkvEwiSNknNXlGHrc9N06B208r3ojdIE/uKjv+Jff/g+/d3t+Bzxyby5+gB6xTb0is14nDbw1wISj6OteYD66h5e/99+1r8beQiKxMpdxyK/KAWfN8iebdJKuGRyGjkF8dVZKBimO+JG3dFqRyYTuPTaSpZcKJlvetwT4/w8GHKdNKH5Wqtw7lsDgDq7jJRzbwHAtORG6f2WI3ga9iOGRnYNHg9kCgWa7CwcVVUQDo/qmg4SITPQ144qJXPU7aKIcsKCkQAn5BrAsW8dA1teRZ2qA1FEVKTjqd+Hv6eFzp0fAGBMS0URCfYy1JJHW0uXg/YeF3NthxDlCmb97c/MeOgPo7Zon0kwTatEkzn892ZJ1vClayr5/X2Sno5hymTk4SCLu3fRtXU7AJrcM7tkYrf1YjBbhi2Nmq0Z3HD3D9HqjezfsoYXH/0VDUf2Dnuc/Vvew97XzYuP/ooDW9cihsME/D76e6Qyc0fz0ACnavem2L87W0YnNPd1tdHf1UZxxRzScwqlbiNRZNt7KwGYseSisZ7yxwbmtEw8LsdZHs5HAB+Np90pQKmlkCnWUj5o2o7TFyfe6gwmlCopY5KeW4QlIwePS5rQPUp4o2o12cYMluTPo9fdz4B3KJFPkMkIRQTfcksrEozdjkXFvGWAlAaOYvH5JUydkYJM8CETAhCy47LbYjfUmpeexNF7hJCoZ/rSG0nSmgCQCUFEpGBo3jmJKeM92+Plm8mVI4tx5RVJY926XiLvZuUlx7I4UURLUx2tA1jT9ShVcpZfPAmzRYvTfuImqMeDTHvMKjclE7nGgGHaMnK++BCmhVehtGTjPLiB9n/9BPuud8Z03LDfg23rq0M6k0bDYCHAwfyb4RBy9iMGvChTxqZOrYhlcKQSVd/af9H92p8RQwGs518ujVkwE3bbaXnsa/Qcln4jY1YmCqOkT5SME5kgZXDaelxY/TYUmdlosrNQ6Ifv4voo4vLFRZTlSde4MaJdNN92CH9tDaqUlDOSWByFKIo4+nswmlJH3EYQBKyDOqy6h2lNDoWCsRKURm9k3cqn2br6ZYn4K4ogCNi6O4ZMxB1NtRhMFpTqJLpahh53MOoOSlYGxVMlFe1ohtve143BnPqJKU0NRtRss/8YJeSzOPPwiQ1wABbnzSUUDnGwO56mFQQhlsXJzCshqyCeYt9nrwdB4OuLvkBOsjRptToSywlRzFl+Oem5xVx0y12jjiE1MxdrVj71h/ckZIOMhninwtZVT7HquUdif7c3VBPwOQmE0+mzZSLoL5TGLpOz4sbbAQj74inU7DxT5OTgS99YylU3Tx9xPHmF5pjsvUwmYErRUj5DWklnZEuBRmuTDafDh33AS8agcoHeoMbhGF/3x3CQHxPgqLNKY/9WWXMRZHKScuICfcfj4kQxsPU1+lb/k95V/yDkdWHbvJKw3zPqPoPJxslTRxeOC/RJmkZj4d8AyBQq5PoUXIc20vnyH/C2SsRg89KbSD3/KmQqFT5bEDEMYijMwIDUCaVPTkFulAJT0dlLukVHS5eDzrZeDCEP+oKPVofLiUJfVoqgVhNGum5dTg9VjSfHBTsd8LgcBAN+jClDRTMHI6swfp0PN5m2N9bg93qYf8E13PrNX5OWU8iOta+z9d2XASiYJJXG2+rjzzevx0V/dzsZ+SWk5xTS1VJPeBT3786WOmQyOdmF0nNwMCk6JW383nYfRZhTpefh2TLVmY9PdIBTmS5Nivs7E7kblowcBJmM9LxiispnxV6v83VRZikiNzmLbKN0o7fZhw9wFqy4jhvuvp8kzfFXzdbsAnweV0Jbpwxb7N8DvR2xNvWp8+OCZYGwlb07WmhtCeML5TN90YUUTJkBgoB7IC5+tnRFGQqljJw8M+lZRtRJI+s+qJOUnHep1PpszTBIdgJ6Nffdfz63f2URFquOqgMdNFRLJMm8opTYvobkJNxOP6HQ+CzuhyKxDKgpGGovoLTGJ/GwZ2ztsSGPtLJ17F3DwOaV9K15hu7X/jLqPukXnEfWlZcz98nHURpHV34O9EX4UmMsUQHINBLh2XVoI4GeFrQlsyXfKpUafUkxjiM1dOyCzt3gVegRxDAytwNFsjRZBu09FGUn09zpZN8myeoyuejjHeAotFoq/vwn/lb2KWq12bxpnsMr689cLRlHjGA8uujhjHMu4tJb78VgstDbOVTMsKNJsgrJKSlHpdZw6a33kqTV01J7CJM1gwUrJIJ1c028I7SzSfpeMnKLScspJBjwY+sZORPR19GKKTUduUJ6Zpgs6TGxRUv6ifnmfVxgtkr385oXn6Bm//YPeTRnMRo+ElYNpwrpeisWrZl3ataTpkvlikkXIAgCCy+6nvI5S9DqjQkkQIc8yHKrtKrKNkgr+VbH+NOUlnRpJdTX2YrOIGVE3APtiKKAICRO7tMWXRArZwXFeIrbFZrD4sukMoYpNR2XvROQVl3ZuSZu/8oiNNqxCVotXFaERqskc1C3SrJZyhZMnZXN+6uOsm6VFHDlF8cf0nqjxC1yOXwYT9A2YjRoS2ajzp6E5cLbkeuSY5P5YBhnnE/Q1oV91zsE+sb2mwTt0dZ2EdsmadXrOrIFX0ddTATyWCSlp1N45+fGdHx/ZwMAyuO0iA9GlDAdRdSvCyDzissQFAr8Pe142npwqs1o/QP429uQTa9EUGkI2Xv4/JVTGXD6SK6SPl+Xe/qIxR8WktNT+cN3LsIfuIA1f9+Mv+fM5Uf0dkpNCskpaaNuJ1coKCqfxeEdG2io2ofT3p9QErJHui+jZSO90cyKm77ErvVvsezqW0m2pGMwWWgaJHkR5dxk5BXT1yVlGPu720lJH5qNCfh9DPR3UzI1bvKqUKowJKfgsPUOu88nAUaLFVWSBr/Xw4GtaympHCptcRZnBj7RGRxBEJiRIUl2P7v3pVh3lM6QnFCauvDGL6IrLiCggPI0KcBJ1aaglCtps48/wEkZFOBE0dVajy7ZSuWSO7n6C99h6vzlzFp6CWZrJskpaVgy8hCRAorC0lRu+Ozs2L6m1AycAz1AGHWSAo1OSVauCfMwTtPDQRAEZs7PSyg/RVE5KzLWHjcKhQyzJc51iHZ7Oew+XE4ff/7VGvZuH1u5aDTINQayb/8VSdllKE3pMQHAwZCptaRedCea/HIC/R1j0g8J9g/+7cQYmXlg2+vjHjOAp/EAcoNl2IBsJFgvuwvTkhsRFFJ32+AAJ3XRQqb+/CfMevhRZj79NF6lAYO/D09LK4IgoEhOxd/XhUkR5oG7F3NjpRScaz4BAQ5AZqqO/Ewj2VY9bd2uk9aQOdWImmwOfsaMBktGDmI4zFMPfJ2XHvt1rLV7oK8bVZKGJG38vs4rm8rVn/8WplTJjy23tIKB3s6Y4nDUQduclhXLRPSPkMHp724HURwSyERL+J/UAEcuV3DzvT9FpdbgdgwvQHoWZwY+0QEOwGemX8NVkyU1y30dw7cZT5q5kP4pWQgyGWUWaWUvk8nI0qeNyME5EUQfFNGVncPWi3Ogn4JJUzj30sXkFE1m2dW3seiSGxEEgau/8G0uu+2+2P5X3zKDKdPiZRBTajpiOIxK5SUlVTehxnApqTqWXyKV9sqnZyaaWkYyOE67l52bm+jvdbPqlUMT9tljgcKcgRjwEnKN/uARRZFAfyeawmkozNID2zDzQpLyKnAe3EjQaRvXOEKuAQI9LWjyK07o+1dnFJKy9CaS8qXAW5VWMOx23T0SmdsQHMDT0srA/gN077DRsrqTXXffgxgK4WlpQaZSkZQ29gDr44DMVB0eXxCbM84HE0WRV9fXsvL9mhHdx08W4bBUku1srhuVzxIdR0vtYVLSs9Eahi4ghkNh+SySU9LInzSNtvoq3nz2L4SCAex93SSnWEe9vsrnLAVBYN3KpxHDYWw9HeiMJlTqpFiAYxuBLBtdcFmOCWTySqdiTLF+Yjk4AMYUK2k5hTgGzlyu11l8wktUADqVlusrLuONo2vY13mYKyZfMOx2Xa4eUjQm1Iq4n05uchYfNG3H4XNiUB9fLG4kaPVG1BodrbWHeetff6W9UaqtZ+aXDLv9sV1ZhuSkhL+jKesFi1LJmzTxPjxLLiglrzCF1LTEc9YbpXFsfr+Opjrpxk+xnt7OHWUkWAn2d6DQm0bcLuSyIQa8KMwZWFbcSe+7T2GcdRFKcybepoN4G/ajn7rkpMfhaZLKAkl5FSe1v3npzSTlTB6RvxM1WrUY5bjqa6j6/UME7RIxPTBgx9XUjLu5BU1O9hmtB3MqkG2Vrsu2bhfmSFaxrcfF3185AEBn3QFuvX75mAOMkSCKIjvXvc72Na8yZfYSDmxdy7lX3krlwpHVcfu72nA7BiidNn/Mn5OeU8it3/oNABvfep7d69/izWf/gsPWG9PLGQkZecVMnbeMA1vX0tFUi62nE2u2JG+g1mjR6I0jdgNFsz7HZmpmLrmYmUsuHvP4P67Qm1JoqT2E3+tBlXRqrU/O4uQwpgzOa6+9htc78e2/ZwrUChWTU4s53F2NP5So41LT28Ce9kN0u3pJ0yUGFtFy1aHuRJGtE4UgCOSVTWWgr4vaAztwO2wAZOaXjrrf1Z+akVCaiiIa4JjMQYrKTs3qPb/Ygs6QKF4XzeBEgxuQ+DinE9GWbF+E/zISgv1S5k1pzkCVmkPmLfejMKTEuDf+7qaT+nx3zU6a/nIXvaseB0GGpnBkj6vRkJRVQtKsK9n2QQOrXz9MY22iCWdnxP8ro8BCYMBOoL+fgttvI+N8KaCy7dyOv6cH7SekPDUYWalSUN3WHefhtEYsSoyCjcDRV3j96T+O+3M6m+vY8s5LhILBGC+uqebAqPt0tUpChCMtXo6HhRddT+m0+TRWSeKNyZbReTwAJdPmAVBzYAd+nyehE8qcmoGtu33Ycl5nSz0qtUYiFp/FEBiSpQaLs1mcMxdjCnCefPJJFi1axHe/+102b/54OqlOy5iCPxSgqkcSxgqFQzy+8z98f/Vv+NX6P+Pwu7BqEwOcijSpVHOg8/hGj8fDipu+xKe//gDX33V/7LXjPbymzc5JKE1FEX2ADfSOv3x2IjClaNEb1EyZlskXv7GUsvJ07ANewhPeVTUyNHnlIFfgPjrUh0sMh3Ae3oQYDuHrkH7nYzVqlJZMkMnH3Gp+LDwN+wkOdBFyDWC98t6YOvGJwtbn5vGHPmDVyoNsWlvL049sSdAY6u12odEqmXLnp7GcsxB9aQnpF11IcrnUut69TnKrP9MF704FsqIZnJ64vlVbhHSsF6TAsKulftyf09MuBcHRDiOQWrLF8MjXu71f8qAaS2AyHGQyGcuuuS32t9E8spZOFOk5hchkco5EhCGjCyAAkzUTn9c9xJgzHArR1VJPem7hR0Yc8nRDlywRvp22xAAnFAyw8vEHObRj/YcxrHGju62Rf/zyPupP0ibkTMKYrtyXXnqJF154gaysLH784x+zdOlSfvvb33L06PFlvj8qmJYulXJ+vu6PfOvtX/Dc/ld5pybxArUek8HJ0FtJ0Zg40DX+AEcQBMzWDDLyirn2i9/jmi9+96S5M5JYoTrWJXG6oFIr+NqPLuCGz84mI8uI2aJFDIsjmoKeCsiSdGgLp+Op34tj7xrEYDwjN7DtDbpe+j3965/HeWADgjJpSMu5IFeitGSddAYn5JYmity7/4ph6tKTPo/N62rp73Vz4ZXlrLiqHDEsUlcdNzTt7XaRYtWhNBiY/O1vMv13v0GuVqObVIkgB3ez1KKuyTi5ifSjjAyLFpkQD2oAWrulYCcvOWJQqjMOu++JIHp/zb/wGkCyWfB5XPR2thIKBti6eiUNR/YmZEeiHlRG88lnVtVJ2ljnzuBgZSQoVWqsWfkxF/DB+2TkSRnLwebCAD0dzQQDftJzi096nB93RDM4TntigFOzfzsttYdZ8+KTH8awxo2m6gN4nHbeePqPuD7iJOoxh+ZFRUV89atf5Z133uF3v/sdmzZt4qqrruKaa67hueeeI3Qcct2ZjgJzPJXfONDKOzXrMaj1/GjZ/4u9fmyAIwgClemTabV30O1KLCGMB1mFZWQXTjr+hiNAUkEtoKulIUaAHAvaG6tx2MZ3HoIsHpQZI63ltn73SJufEuimLAKg+/W/0v7cL2JKxdGgZWDLK/jaqtFNXoBMlTRkf5U1j6Ctk7D/xMuyIZcdQaGK2S6cLBx2H4IAC5YUxtze645Kk6PXE8Dl8GFJHcpvUqcVoBz0cv+6R87YbiLb1ldxHt50/A1PAD3tzbz73N8oNvTT1j0og9PtRKOWk6KUVMmj3mAttYdwnmSJob+rHYVSxYzFF3HhjV/kvGsl+YD2hmoaqvax/b1XeP2fD1GzfxtN1Qep2r2Z/q521Ela1JrxKS1feNMXufrz3yK7aGwcu8xBooGpmfFnXeHkGQiCwL5N79JUfZCA30dvR0tcLyfvbIAzEvTRAOeYDM7BbVL29HhBrL2v+4Qc3U8XHP3xOSBaCv2oYswkY6/Xy3vvvcfrr7/Oxo0bqaio4Cc/+QkZGRk89thjrF+/nr/97W+ncqynFDJBxrT0KezrlFxiPUEv01PLKUmJ+w2l6VKG7Dc3ezrvN2xhe+teLi0bmVx4upGRV0xbfRW9HS1Ys44v9BYKBnnxEckx+J4HJmblYYoEOPb+0dWBJxr6qUsQ5HLcdXtw7luH68hmDJXLCDmkB5EY4VkZpg//e6msebjYSMNvP03Ol/+EyjL2bpGQewC5LnncnWset58kjRJBJmBM1mBN11N3tBsxLNIXKb2kWIcS22VqDeZyC51behFkIBO8hBx9KIyji8qdboR9bvpW/xOApPumoNCPX/I/4Pfx0mMP4Pd6yEnKYkOXhYdf3Muiyizaup0SN2dAKhF53Q76OltZ+fhvAZh73pXMOvfSBJ+4KJprDpKRVzLkvf7uNszWTGQyGZNmLsQ50A9Ab2cLgUH2H7s3rEooiY3lfjwe5HIFOcXlY95+9tJLMVnSyS1JtI7R6I2k5xbR0VTLq0/8jvyySpqqD2BOy0IQhLMZnFEQDXBqD+6kbPoCzGmZuOy2mIFpaBhPPFEUObJrI8GAn/WvPoslI5eZSy4if9I0krQn36gykRgs/Gjv6/4QRzJ+jCmD8/Wvf52FCxfy0EMPUVFRwRtvvMF//vMfbrrpJs4991x+9KMffSy4OfcsuJ3/t/DO2N9F5jySlPEV/rEZHJC4O0q5ku2tw5vhfViIEpS3rHoh1g0xGlz2/ti/TyTrMxqiYn+9g1bSpwOCTI6+Ygmm+VcCcUVhf1djbBtlag6a/OE7nHRTFsUUhd01u07os0OugSHWEicDjyuAVhfv2JtUmYHT7mPvjpbY92kZoUMtuXIGaTMhtUISnY1aRpxJ8LbFifn9G56fkGMO9Hbh90rBtCrYTzAU4s1NDdz/6EZUjiqKnKsI+aVsYsjvpbkmLmGwfc2r7Fw3VP+oq7WBV/7xO3a9/2bstXA4zO4Nq3AO9MdarQF0RhPqJC19na0J/Ldj+T7G4wj8nQpo9Eamzl8+LPdnsBt449H9iKJIX2crOSXlaHRnxqR7JkKVpGHSzEX0dbWx5mVpUdjeGL+u3c6BIXysjsYa3nvhH7z/yjMIMhk97U28+/zf2bnujdM69tFg6+mIXdcDfV0f8mjGhzEFOHq9nscff5x3332Xe+65h9xjOjOys7P597//fUoGeDphSjKyMHc2yUnSBFUYKVtNz5gCgEUzdJWZpFBTmTaJw901+IITq68xHmTkSV0ajUf38/Z/Hk54L+D3Ub1va0J76OBOgCh5crywpuvR6lR8sKaGQ3tP/yQbNa8M2iTSb8hlQ1NQiXbSfDJu/N6I+6ksWeR95WEQZPhahtdGGg6iKBJ225Fpx9d+DOB2+0kapDy9aFkxWr2KNW8eoSvi5j5SgGNZcQeW825EkydlCgK9Z16A42uJ8/ece9ceV7doLIiuNhVKFQQ9JOFBIMxcxQdUKnaj8PdRNG0hbSGJeF13SApeP/f9h1CpNbTWVw07IQG01B6OvVZ3cCcb33wOSGyhFgSBlPRsejtbGejtRqlSx1b5IHFngAR19DMBheUz+fyP/hKzYIhi0oyFH9KIPhoQBIELb/wCJVPn0N4glfejvl85xeWI4XDMqDmKgxHisdaQzPnX3ckNX/kRwKh2GRMJURSpP7Q7Zgbt87p5/5VnYoKFAb8P50A/qVl5aA2mT0YG52c/+xmzZw9tR45Cr9czZcqUCRvUhwlBECg2SxNDUaQ89e3Fd/HkNb9HIR++oldqKSQshmNKyKOhob+FQ12nnpyt0eljvlX9XW0Jkfjzf/kpq/7zCOtfezb2mnMQ96a9YWLGp1IruO2uBWi1Kl58ZhfVh0/vakCm0iDTGgnYuvB1SqtobekcMq7/dkwvZ8R91VpU1jy8zUfGzGER/R7EUAD5OAmsoihKGRxtPIOTpFEyd1EBToeP/TtaQJBEF4cduyqJlKU3kXHDdwDwn2EZnEB/BwM73gS5AuuVX0UMBbDvWjXu40Y7lKIEXKNgI03WToqsF1P+dO68/yEuveWLoJEysa11R0i2pKEzJJOeW0R7QzWP/uQu9m58F4etl3/84qtseOM/gLQyX/vyP+nvbufo3i0AzFx6CRXzliWMISU9G5/HRXtjNcmWtFhHo9ZgorB8JsAZ2ZWUpNGRmiEFfrkl5aTnFFFUMes4e50FQNn0BQBU79tGe+NRNHpjjEPpikh+gBQ81OzbRnpuEXd8/yEmzVxIek4hxhQr9v6J43COhrqDO3njmT+x5sUnANi3cTX7t6zhvRf+AcQ7b02pGSSnWD8ZGZxPGq6vuIxbp1+HVSutvpRyJTrVyKTAwkhAVN9//MzHP3Y9x283PnpaiJ/Lrr6NS2+9F4D6Q3uAuJswSO2AUQzO4LTUjT1rcTykZRq5/R6J9Lt3+/FLZRMNpSmdoK2TgS2vAAKagrHr0iTlTibkshG0ja3dPtpBJR9nBifgDxEKhdEMKlEBFE2SSIv2AS95hSmo1KNT6BTJVgS5Evu212n/z8/HNaaJwsD2N2l+5KuE3XbUmSXoKxYj0xhOuBQ4HOx9Egm7OOKdVCI/wgzFdmQyOSvmTEHuk0p7Vmu81BzNdEbJtMGAn22rV7Jv02o8LkdCRufgtnVseO3fNBzZR05xOedccuOQEk40oxMKBjCmpJEc0ZBJScti8eW3ULnwfOYuv2Lc53oqkFs6FUEQWHbNZ7nhKz9EpT4rXjcW5E+qRKlKomr3Znram8nML0WXbAKg7uAuPJEW/M6WeoIB/5DA0WhOxdHfc1rmhIGIf1nVns2EQyHCYak5qKNZIpVX75PMQ1PSMjGmWPG6nLGy70cRZwOcYVBiKeCKyReMmShaFCll1fUfXzulx9WHy++m3ztySn576162NI//gQ+QW1KBXKGMseGjFziA1+XE65Ee+tFOAFNqBs3VBwkGJq7clpKqIzMnmaa6vtPe0aMwpRFy9uOp34e+8lxUaWMneCblS5oy7uodY9o+WmaJelqdLNwRK4FjzVGzc5NjQc2UyuO3BwsyeYxQ7anbQ9Dx4QqShf1eelf/E4UxFctFX8B6+VcQZHJU1jz8va3jvjbs/d3I5ArySqdSVD4Lg0K6tgtKy3GueozmR74KQG52vMMtmlUZrAjs87rZveHtYT+jqfoA4VCQshkLhn0/fdBxDMkpMc5LSloWSRod5175GTR6IwNOHw89t4t+x5kjoDrv/Ku46d6fHNcE9CwSIVcoyS6aRG9HM6Iokl9Wic4g0Rm2r3mVVc89CsTLnccKuBpMFvw+T6yN/1RiYFDJqan6QKyE5vO46GyuY+f7b2DNyqeofBbJKdYh+3zUcDbAmQCYNMmYk5KPm8EJi+FYYDOaSecze17kqd3/m5CxKVVq0rIL6GqpRwyHYzXV1Expou+PaHk4bH3I5ArK5y4lGPAnEDAnAvnFFjzuAA7b0M6CUwnloHZt89IbT2hfbcksZGotjn3rYq+FPE7se1YjhofKIsQCnHGSjD1uKSjRHpPBkcllFJZI2YdJU48f4AAYZq2I/dvXXhv7dzjgI+w9veRvb/NhCAcxzrmE5DkXo7JIIovK1GxEn5uQs/84Rxgd9r5uDCYLghii0lPHzZddzmW3fpX5syUlXzHoJ+joo7ggTgwuKK2g88XfYVGGyS2t4IrbvxbLAEWDngUXXccNX/kRFfPOlcarTqI0og58LDLyiimfK+kfWbMLYj5Og1uzAdbvbuW97c1s3t8+rnOeSChV6thz4SxODLkl8YaFgsnT0RlNsb+j5qodTTXIZHLSsgsS9jVExBod/T2cagwmvzfXHEr4zO1rXgVRZMnln0KuUMaCc1vPmXONnig+8V5UE4XClDz2dhzC5rUTDAdJ1Q5tKbf7nIRFKeXdau9kavpQDYuwGKbH3U8oHCIYDqGQjd9HKC2nkPbGamy9XbGaauGUGfS0N9HX2YZGZ6C7rQF9spniitlseut56g/tonDKjHF/dhQFJRY2r6ujt+v0ErFlkTS7TGtMCHbGtK9SjW7KIhx7VuPvakKVlkff2mdx7H6XsM+DaX5iqWGiSlQe9/AZHICLrq5g9qJ8TClj01FJvfiLGCrPpe2fP8DXXou2ZBaCTE7L378uualf/P1xjfVE4KmXOg21x9hXqFIl7kegpwWFYeh9czyEQyFef/qP9HW1kVtSgbfxAIHuJgJrn6HgW89i3706tm3Tn75A9tJP4SMJt7GSQHsNriObcR3ZzFU/eBGQSjWNVfvILpqMz+NCZzAhk8vxOO0c3PY+k2YsHLadPIrl19zO1PnLSc3IBUHg0lvvJX9S4jkfbZaCufae0xtknsWpQV6plO1NyylEZzQhG8TXVChVhEMhOppqSc3Kk0jwg2CMBTi9WLPyOZWw9XSSmpmL095PW8NRQoOEUBuO7EWuUJCeWxg7F4COxtoT8k47k3A2gzNBKDLnEgqH+OHq3/KdVb8iEBoq4NTntsX+3eoYPoNj9zoIhoOIiPR5bMNuc6KIps27WuqxR0pUBZOnA7D25af49//dj9sxgNaQTLIljZT0bOoP7+HFR37Fvk2rRzzuiSAnX0rZ2vtOr7CVrmIxSXnlZH3mpye3/xSpk8RdK5UMo1ka15Ghsgghlw0Yf4nK45K+I41WNeQ9U4qWksljLyEIgoA6Q+KX2D74Hy2PfY2QxykFNwDDXKenCp76fch1JpTWxCyBMhLg+HtOjqPV391O09H9gJRBcdftib3n2Ls21iYf7aoLtx/FXnQbu225eHviBOyo6rVMJqNwygxU6iQMJguyiFlpflkly6+9nQUrrh12HEGnDVEUJVXy9Dwee+Ug13/vDRzKXOTHNChUN0kBTttpllA4i1MDkzWDuedfxcKLrgekJo/l195OTvEUggE/r//zIbxuJ3mlQ6UpohmcrtaGhIBjohEM+HEO9GFKzSArv4yetkb6OlvJKpyEJtLZl5ZTGLMeMaVmkKTT095YjXOgH6e9n572Jl567NcnLY55unE2wJkgRInGna4eHH4XR3pqh2wzmHfTZu/EE/Di8DkTtul2xy+cXvfEXETRSPzd5x/j0I4NqJI0pGUXkBQhSOpNKeSWVlA+R3LPLiqficfloL2xmvWv/WtCxqDRqtAZ1DgGTnOJKjmNrFt/jsp6cqn3pNwpCHJlLPtApDTla68l7EusmUfJyIrk8XEY3LEMztAA52QgKJTINAYAAr2tdPz3l7H3ZJ7huWABWxf+3uN3BY4VQacNf1cjmsJpQ7htKks8g3MyiMoaLL/2duaefxWeur3IkqQOM2/LEQK9bQgqDbl3/w2lNQ9/dxPlBSkEgmG6G+L3qbf58LDHj0KQyaiYe+6wgmz+rkaa/ngnPW8+AsAbG+t4Y2M9gWCYjfsSu9icbn/MOmKwncRZfHQhCALzL7ia3JK4+GLF3HMpnS5lPpqqD5BTPIW55105ZF+TJR0EgR1rX+ORH3+Zqt0Tq+4dRZR/aUpNJ7OgLMZ5S06xUlwhdUkP5gcJgkBmfildrQ089euv89Svv8Fzf/oxbfVVVO35aOjenQ1wJghF5sQJdFfbUFfh/kEZmVZ7B3/c/A/uXPkt3jy6hmAoSDAUpCchwBkfJyGKZEtagnqpGA4jyGTcdM9PuO5L3+eW+37OVXd8k/I5EnegcMrM2LYm69i4HmOBNV2P0x5EDJ+Z1gHDQaZUk5Q3BW/TYcIBH0F7pGYdCuJtSpwQA/2dyJJ0MZHAk0W0RKXVDS1RnSzSrrqPlPNuJSm/Al9rXAZA5rUP2Tbo6Kf5r3fR+sS3J+zzvY1ShuVY7y8AuSEFQaXB33uyAY5E7s8qKEP0ugj0tqItnYtcZyI40E2gtw1liqTMq7LmErR1MTlHCoA8HfFOQk/D/pP6fIi71zv2rGageg8vrqnBkpyEQavicH3iQuWdrXGuXkevm9BH6H44ixNDSlpcJ2nZ1Z9NMGaNQmc0cf2Xf8C0RRcghsM0144eaJ8sovxLY4o1lsEHSQSyfO5SknT6WKATRXqu5FUmkyvQG+M6cIM11M5knA1wJggpGhNGtTSxyQQZu9r3D+kKiZac8pOz6fX0s6tdCoKe3fsy31z1C77zzq/odg0S3JugAEcQBG7+6s/49NcfIKtwErPOvRSQ2PuZBaVD+ARp2QVMmim1dgf9E8eZSU3XEwqK2AfOnM6RsUBTPBMxFKDn7ccJDHQjKKTMSlRbJ4pAfzsKU8a4bBpqjnSx7m0pAJmoDA6AtngmpoVXY7nwjoTXj83ghH0eOl/6HQCi30t4gsQr3XVSF5+mcGibviAIqFJzCPQkZoxEUWTdyqePu1rsaW9CoVSRbEkn6JD0RJTmdBSmdPxdTYScfTFCczSTV6hxIpMJyB0dqNLyQZCddIkMIOSI65i07FiPzenj6nOLmVFmpbHDjtPtRxRF/vnGIZ58/SCZqTqWzswmGArTY/votuEOB38gRHe/54z1QDudsGRIAU5eWWVME2k4ZOQVs/SKT6NUJw3xtpooRDV59MYUzNYMKhdIVjWW9GzSsgv4/P1/jgU0UUyZtZiKeefymW88wKW33htrcT9WnftMxdkAZ4IgCAKTUovRKTUsK1xIu6OLBlviA7MvMplUpCcaaQbDQdocnTTb22keiKezmwbacPnjZZAmWystAyfHaFdrtJitGVz7xe8OmyZNOBeZjAtv/AL5k6bjcdkn7EFlTZcCwO4Ox3G2PLNgnHURmqKZOPetQfS50ZbOllSOj+lKCjn6UKaML+O15s0jyOUyKmZkYUweagQ6XqjTCzAvuQlVhJdzbAana+X/Jag3B23jF/oSRRFPwz6UliwUxtRht1Gm5hBy2Qh54iWb7rZGDmxdy443/42ratuIx+5pb8aSnoNMJosFGnJDCgqTFTEgBdNKq9TFpEqV/h/uqOIn5pfRhp2o0gtQmjMIjKMkF7THAxyxU2oHLs02slh1GKUY4FBDH7urunlhTTWT8s389t4llBdIhOrP//Jd2ro/PqWqh1/cxx2/eIcfPLyJUGhibF8+qlCpNdz5gz9y2W1fHdP2BpPlhA2PJeuQt2NqxCPBZbcBoEuWMjFLr/g0137xe6MSiHVGE8uvuR2jOZW07AIu/cy9FE+dQ39XGwG/b8T9zhScDXAmEF+a+xkeWPE9ziuUsh/rG7YmvN/vsaGUKymzxKPk84sWJ2yzo20fckH6WT5o3MaP1/xBsgAIh/nmql/w9bd/NoS3c6qg1RsIBYP4fROzwkyNBjidH62HuUypxrLic7G/lSnZqKw5+DvqYq/5u6Syw4l2ag1GR+sAHa12ps/N4bpbZyU4s08kzEtvjJGuZZ54gONtPYq7Zie6yQtIvfTLAGMWORwJYihIoKeZkL0HTaGUFl/9wj/YtnplwnaxTqpBZaraA5L+UL/DQcv/fjPs8Rs3vobH5UDv6cV5aGNM60dhsKAcxIVSZ0qCfqp0qUulf/3zJIt2AqIMb/YslJZsAv0diMMYJI4FQXsPyBRoy+ahcbWhJkBq9w4yalZyi24Tbd1OqiLE4i9dU0myXs3MSWkoFdK9vnJ9Hc+s7T4jszmH6/t44rWDhMdQSvMFQnywVwoU99f2sK/m1Lc+n+nQ6I1DSOYjwZCcgnPgxPTCmo7uZ+Ob/2XlP3476nbOiN9gtIVdkMnIKiyLkejHirTsAkRRpLtVKu/a+3t497+PnRYdnxPFGRXgvP3223zuc59LeG316tVccMEFzJw5k/vuuw+3+8z7EqMwqvVk6K2UWgpJ11vZ2LQdb9CHy+8mFA5xtKeOPGMWOcb4Kn9O9jTSdfFVrcvvJnWQqWfTQCvVvfUc6o6buP1n/6uAJBo4UZ1WwyHKrI8qcY4XUe+k/t4z9zccCcqUrNi/FUYLqowigvYeQm47jn1raXvqu5HtMkc6xIgIh0W8ngD7d0kTw4x5ucfZY/yQqTUSX2hQicq2eSUA5qU3xawsAv3jC3Da/vkDWh77GgCagmn4PG6O7PyAbe+9ktCJoYw4tvu7pQDH215H9d7oAkHAFpLHupxAytxsfuM/vP7GywBkulsZ2PZ6LMCR680oBgWb6kxpUaE0Z6CvWIIY8BLQpfOt/k9xNJSLMjUbwiEC/YncAlEUcexbm5ChGQ7BgR4UhhSS8soREJms60cVloKVqaoWemxeGtoHkAmQlyHdV1lWPf/++SXIZALvbG2itt3H6xvPvNT/6xvreHldDU2do2deA8EQ/3vvKF5/iEsWFQCwbtfpVy//KENvSiEUDOB1jT3L7Y48n/s6WxOUt8PhMLUHdsQMQF12GwqlKuaJdrJIj6h+tzdJx63Zv52qPZtprj44ruMeC6e9n9ZxquqfEQGOKIo8++yzfPvb306IXDs7O/ne977Hb3/7WzZu3Ijf7+fRRx/9EEc6NgiCwMLcWdi8dr759s/52ls/ZWfbflwBD7OyppJhSIvxNLKNGXxt0Rf49uK7YvsvzpvLPfNvZ3kkE3T/e7/lZ+seAkAtV7GhYSveoI8frfk9D7z/l1NW646aArpHCHCajh5g/av/4tD29YTGsPLV6lTIFcJHMsARBCEW5AiqJIm3Afi7m/E2x29ChfnEMzhr367iwftXcXBPG1qdiuw804SM+XiQG1OReQewb32N7tf/hqd2N0kFlaisebHzCIwjgyOKIr72mtjfmvyKBHuQvZtWc2TXRhqr9iVkcMJ+L1VP/hB7fw/mCCezP6Sgq2pnLJvYcHgPOz94BwCzLIhRHiY40ENoUAZHYbLGzzXSRQaQeskXMcy4ANPFX0JExqH6PlSRAOtYHpC/vZbu1/5C05+/GMvSHXuOH+xtxd3XCfoUknIlT75KfV9MNkAlhOizOahvs5Nl1aNWxlfMSSoFhVnGQccbyzd7etEaKZ/VtdpG3e6xlQf477sSf+yG88oozTWxeX8bwU94mepEEG0GsfWM/b4bLNYXtVwQRZFNbz3PW//6qyT3sfk9XPZ+dAbTuDiCIMmOyORy2hukACdaGptIw9DWuiP8+/9+wOa3xyd4e0YEOH//+9959dVXueOORALku+++y4IFC5g5cyZarZZ7772Xl1566UMa5YlhXvYMALpcvdi8dn63UQrMZmdVopIrSdOlopApSNNaKErJY052nHx5UclSlhbM5655tzLJUoRaoUZAoNCcy02VV+IL+Xn50Nv0uPtoHGhN4O1MJDS6kTM4HpeDV5/6A/s2r2bNS0+y/tVnh2xzLARBQKuXY+v76AU4ABmf+iHGuZehm7wgVv4I2nsI+6VJN3n+FSRlTxrtEMNi43tSEGC3ecktNI/7ATRWqKy5yD0D9K99Bsfe9xCDfnSlkoqvwmABmZzgODI44qA2enVWKbIkHV2tDbHXWmoPs/p/j/PaU/9HbUMtMrUW+6536Fn1D9q80kxfKnehlAk0BZW88K/HeOnRBwgFA2xf+xoAk1VeLrzpS+inLSfk7MPf1YggVyLT6FEYrQwHmVqL9bK7SJ88nTSzhiONfTEtHl9XQ8K2gwM8+86h9g1Vjf384ektKIIeOjxJ1LoN+EQFBfLOBP5SuLOWjl4XBZlDVa4n5cW7U3Yf7ea7f/2Arv4z4x4RRTHGD6ptHZ3jsa9a6tL5/u3zsJo1TC+14vGFaOn6aJWkP0zok6UA58VHf8X+zWvGtI99UICz9d2X2Lf5PZ7/y0/Z88EqMvJL0BqS2bnuDZy2vhj/ZjxQqtRYswpob6xBDIdj3J5jO6tqD+5k5eMP0nSCmZ1wOMy6V54hHArFiNAnizMiwLnmmmt4/vnnyctLbLVuaGigoKAg9nd+fj5dXV04nWf+DVOUkkeKxgTApFQppZeut1IQ8a26rOw8rpx8IbJBzsLfX3oPX1/0BUyauFDcj5b/P/5x1YP8/eoH+eGy+5ifMwOAlw/HH7abmsfmlXSi0BoiAc4x6VKX3SZNVKLI3POuJKugjIPb3ud/f/s5L//9N6Ne0Fq9nAGbd1jyYTAQYtPa2jM2AFImp5G64g5kChXyCFk2aO8l5OxHpjFgueB2hDHW2gfDaIqTifOKLKNsObFIyh/a0aSNBDiCTI4i2UrAdvKrsmBEFFE/bRkZN/8AIFa3T0nLorcj7t12YOs60m/4LjKVBue+NXQEFaiEMBZ5iNlzFuIXZTFC8XsvPEFXSz2FaakUqfxYSqbFMmq+tmqp7VwQUKZkYl72abLv/N2IY5xckEJzpxO/IRuZ1ohz//uIYvzaDA7EfXg8jUOlHzp6XZhlkqbNoW6R7z68hcZgKin+NgJ98YYAha0FUYTCrKEikJUl8RJ1U4eDg3W9bD80vtLgRKHP7sXjk7Sf6kYJcBxuP209Ls6dmcPCSqlMW5yTHNnPdsrH+XGB3hRX8j6ye2PCey67jSd+eV+MmxaFvb+bJJ2e8rnn0lJ7mPWvPoutp4PKBedx+W33Mf2cC3HZ+/F53egMpgkZZ1ZBKT6Pi76utlh31uCsU0vtId76119pqT3Mq0/+PqZVNRZU79tKf1cbMxavYNKsc8Y1ztMW4Kxfv55JkyYN+e/Pf/4zVuvwKy2Px4NaHW9h1mg0sdfPdMgEGbfNuJ6bK6/kZ+d9g0eueIAHV3wfWYRAfHHpMm6uTOxmmpFZwYLcRKdZpVyJSqHCqNajV+mw6izMzJwae9+sSWZt3Wb8E9TOOxjRDM5gdv6u9W/x5ANf4/V/PgRARn4JCy++AYDO5jpa645QtWvjkGNFodUrEMMi9mHIlO+8eojVrx/mxWd2jYnQ+GFCYZQCkZC9h6CjD7n+5FZGoijGvKcA8gpP3KrgZJFUEL+OlClZaCfNj3FvAFSWbAJ97YihIKIYHtZ/azSE3dJ1o0orQK4xsPp/j1O9byum1AwsGTmEQ/Hj2fu60eRXkLzgSnxhAZcoxyoPIigUzLj0MxSZdUzX+jGYLBzduwUAk70Juc6EXGtMMFGN2j0IgoD5nGtRZxQyEqKdTEdaHBhnXEDQ1omnThJ19HXUx4IUTeE0Ar2tQwxLewa85Ckkfk6rR+I2dCmzkYcDBHpbUUS+zxS5tCgryTUNGcM507L49d2LKMqIP+sa2ieG9zZWBIJhuvuH3pODlZbrWgdGvC+PRgjUk/Lj90FxtgmA2pbRMz9nEYc5ddD9l5To5l69bytup513n/97wuv2vh6MplQWX3Yzs5ZewoU3fpE7fvBHzr3qVpK0eqbOXx5zhh/skTUe5EasKY7u3RLL4AwuUTVW7QdRZPFlN4MoUr1v+C7I4VCzbxuCTMaMxReNe5ynzYtq6dKlVFVVndA+Go0G/yAdlmhgo9WeOEkqHA4TCp3YA3q8mB8pU4XDYZLVEgdgIsbw9YWfZ1XN+1h1FvrcNv659wXePLqWKyZdMO5jD4ZaK5GCXY4BQqEQbucAm956HiBGZjOlZqBPTuGqz38brd7Iy3//DQN9XcOeZygUQquX+Ac7tzSx8NxCkjQSyaK7w8GOTY2oVHJam2zs3NzArAVnsPFfkh5kcgID3YSc/ahzJp/Ub+t0+Aj4Q6RlGigosaBWuTm4fR+Tx7lyGQsEnZmQNgW5z07G536DTKlOOAdFai7U7MTb00rfqr8THOgi5+6Hx3x8v10KBmQaI36fL6bQOv2cFQmmf4JMhttpx+txo526DPsqST07WSGizp6EoFCx6Pwr6Hv7MfxpVg5H2mgt8hByQwqhUAhFavxakelMY/4tyvJNAByq62HagmXYNr2Es2ob7ro92Le9HjmgHO2Uc/DU78NVvw99xZLY/j02N3PVtYSRsT+QS1GWkWuvvoyu53YCoM6ZjL+/kxSZFOCU5SYPO7bS3GSStXFuTn3bwIQ/r8JhEdkInXkvrqnm+feqefjby0k1aWjssLNpX3usXJqXYaCpw8Guqk5mlg1dkB5pkH7rkhxjbNypyWq0SQpqW2yn/dk7HkTH+mGMOUln4NNff4DXnvwDzoH+hDH0RzIkGn38Ow4FA7gcNjLyipErlMxfcV1s++g2CqWainnnsnvD2wn7jgdZBWUYU6wc3L4ef6R7yudx4XIMkKTV09vZGjFvXsbO99+k7uAu5l1wzXGPGwoFaak7QnpOEUq1Bt84qzVntNlmYWEhW7fGW60bGhpIT09Hp9Od8LFqamqOv9FHCNlYwA2pogG9XMvrh1eT47ZMKH9DFMMo1Rqq9mxBk1aEa2Boy2d1XSOCEEk/2twoVFp6u9rZs2fPsMeMBjib1tSyf2cjU+cmY7YqaayWbpKKOQYO7rKz5q3DiIpe5IrTw0c5GRjVBpxtdcgDPgZ8YdpHOOfR0NctBfApGWDN9bH65X/S03SUPocXbfKpL1cppl6K4Hex7+BQ9VSVO4wOqN6+Hn3ExqD6qZ/Q4Qvjy6okNbd0yD4J+zcdRAfUd3Tj6NuAKIpklc3CrzRiczbEtjOmZjPQ1cz2zR+gTbbQlXcOHN2DYspyujIK6NizB8GvI1mmwNApEboNshCkl9KXWUln5HtXzroBVfMeHLpcWsf4W4TDIiqFwPYDzVRmeElWabHvX48sGBejDKkN1NnDJAOtB3bgCRhADKNqO0B/vZoLFO0MGItx9SVRlCZQ1R/AJJMjhEP02t2E5HpSZE4EAaoODy1zRREIxbMj9a02du3ejewk72e3L8TRVi+VBVoaOn28tLmPUEjk7ssyMGqHtgVv3ddNIBhm1frdVORpeWZNN7UdcZ2T5RVqnuly8OQruxEuHGpFsvdIL4IA9u4G9vTFieRWo4zq5n527do9YnB1pmL//pNXth43FCrs/T0Jz9H6Kmk8fp8v9rrH3g+iiMcfHvGZCyA3ZZNWWI5P0Iy63YnAlF1K0/5EW4l1b71MRnElna2NqHVG9h84gMGaS1f9QTZvWIfmOCUye08bAZ8XhT5lQsZ5Rgc4559/Pg899BDbt2+noqKCv/zlL1x22WUndaySkhL0+vFJ6J+pOCjU83bNOixFaeQlZx9/hxOAQRHi3f8+irOtCnOa1EVUMW8ZB7etA2DmzJkJ23dXbaNm/zamVpQPcc0NhUJsc+0BQKGQ4RgIsnl1L0tXlCKEZICdZRfOJjW1jXdfPUzYa2b24gIABno7ef4vP+XCm75IweQZE3qOJ4uOg1n4mg8BYM0vxjxjxgkfY9/OVqCXisoSJk/N4NBaKUOmU4SYfhLHGyui2kr790NlZSXyYbQw/Flm2ve9SpYGogUTVcchDjiN0NzG4vMvGdaXKQqb4ygDQFnlbNr6+tkDlJVXMmXGDJLV0LBnPQCTps1m2+pmMtMsFE6ZQdeRLSAIzLv8UyjVcX6SU+OD1/9GukJH8ZzllF5+2zGfOAO44YS/i/Jdfg7W9VJROY3+msl4IsaqgkKJGAygTUknZeo8bB88iizgY8aMGTgPrKd3/+tciwKZAGUrbuBn5FFemIJCLsOf9QDdK/+PgqVXUrWyG0ughfx0AzNG+E1DoRBdtl3YPHLSzBp2VXWTlVdGhuXEF3MAT7x2kFe3tBNWmugdCOPyShnXoCqN9NwU3t3aRDgs8qmLJqFSyvnzG5KpblBhpmRSCY3/lTrUlszIojDTyNXLimke2MuaHS1Ys0vItib+7s+8v4EUo8ic2YnPg/mdVTz/XjXNzmSS9SqWzco5qfM5nQiFQuzfv3/E++J0oKd6O9XdrVSUT0GpUuP3ednyopS59HucVE6tQK5Q8v6rzwAwfd45CfYLw2Hu/IUTOsbC3Ez+HQlwyqYvoK3hKPW738diMuJzOyiumM2MGTMwqsKsqj9IcpJA+XGeaTvWSry8uYvPIyOvBKfTOa7kxBkd4GRkZPDggw9y//3309PTw7Jly7jvvvtO6lgymexDu1hPNebmTOftmnXs7jhIYcrElnUmzVjAwW3rOLp3C9mFUofQ9HMu5OC2dWQXTR7ynSZbpPT1wW3rmDxzEVpDIqlSo5Pz5W8txZKqp6PNziv/2cPmdVJro8Wqw2DUMGdRAR+srmHHpkbmLylCkAm01h4hGPDTXH1wiF/KhwVlciq+CE9WabCc1PXV1mQDINVqIODzxAzxNr31PM6BPpZcdguCbOKocrUHdtDf3UF/Vxu23i6K5l+CXC4fduxJ1lxJsbkxvpIdlGTg6J4tzFwycp08HBERVBlTsNdI7cMpaVnI5XKSU6TrRCZXkFVQBoDT1otcLqenrQlzagZJ2sTJPXnG+SiNFq5KtsbauicC5YUW9hztpqHdSXpWKZ7aXcjUWvTTz8O+7XVC7gEONjnRhbTIezqQyWQ4drwFgJIgXbI0CsvmMHNQtkWTVUze3X8BwJqTh99Rz3duqRj1GkkzKfnLN5exdmcLu6qk8WSnDe26Ggs6eqVy/qsbJF0dk0GNzeHj9Y0NPPn6IRxR3pcgcOMFZfRG7FNqWwbYeaSLYEjknhtmcNGC/NgxF0zNZM2OFg7U9ZGXkYzXF6TP7iXLqqfb5iHbqh9yfvOnZvL8e9U8+bq0EJhRloYlOZFbcqZipPvidCDaLu512UnSZNDVXIcoisgVCkLBIM6BPuoO7uTw9vVkFZRRVD7ztHVfRpGSFtcGS88tYtElN/Lqk79nR6TDMSU9G7lcTk5k3uhorDluV1TUL8uamYdcLk9owjkZnBFdVFFce+21PPXUUwmvLV++nFWrVrFz505+//vfk5Q08fL1H3VMsZaiUSaxt+PQKTn+zCUXEw6FaK45hM5oJiUti0/9v19w6a33DtnWGJm4Nr31PG/+6y8JwlNRWKw65AoZ2Xkmll1cRsAfIuAPkRshfCqVcmYtzKevx01NlXTBdzRLtgjRLpwzAYNtB+SGEyMZB/wh3nhhHzs3N5GeaSA1XU9XS0PCNvs2rT4hPQyA3s5WWmpHvg7e+tdf2fLOi1Tt2Uxncy0Bn4f3Vz7NS48+QO2BHRzdsyW2raBQorRk4Wuv44hPzUFfEq5w/JGxb/PqEfWPgo4+yR1ckCHT6GOcm+SIH4/BLD3ADckpJFukkoe9r5vO5joG+rrILBi+/KUtmjGhwQ1AeYTYvae6G3WW1PGoKZyGJl8iUqozCqluttEb1qP29eHvrMffUYumZDZ1QSv7LReOOrnorFJXkVXhGnGbxPFI382B2h5EUYzp0JwIOvoSP+vCeXlYzRrqWgfw+IJ8//a5TM4388r6Wjbvj3d7HW7o459vHEallLNgaqLtSGVxKjIB/rOqipfX1fD0W4f50q/f4xdPbMXu8pOeMpQbWZJjSvj7of/s5mv/t44f/33zWa+qUaCLGFs6ByTydnOt1Jk6dd5yQHq+bnnnJUypGSy/5vbTHtxEodFF9aVE9MlmrvnCd2LvRQnTGr0Rc1oWbQ1HhzlCIpwDfaiTtEMI1ieLMyrAOYuTg0ImJ9uQQYej+/gbnwQKJk0jp7gciIv/paRnD6uIaTTHCYgdjTUc2rFh1GNPmZbJZddXUlSWysz5cQXfmRE13+0f1POHn7xL1V7pBu/paE7ovplIhIcJxkaDtmxu7N8Kw/AeS8PhyK6NPPHr77Bzcx15hVouvy4PuVxGZ4uUyVpw0XUx1+HuE2ivPLj9fZ77049Y+fhvObp365D3fZ6h7fd9bfUc3rmBtoajvPWvv/LOfx9NmHhUafmIokhzQElLWIP6fEmryqjV4ujv4cgIHXNtT30Pb9MhBLkCQSbH1tOBUp0Uu37USVo0OgMmawZ6oxm5QoGtp4Od778JwPRFF475vMeLKQUpWM0aVq6rwW8pQVs2F+Pcy9CWziH9+m+Teuld1LTY6A0bUIte3NWRNt3J5/NH+yWQNjoXSWGKaCaN0dcrM1VHijGJfbU9vL2lkS//+j32Vo/93g6GwrR1O5lXnhHT3ZleasVilBaHF87LZ2FlFjdcUIYowvOrpYmnKDuZQDBMn93Lp1ZMIlmfaMKr16rIsOiwOX088dpBNuyRRBG3HpS6Z6zmoZOSTCZw84WTyEyVsnF7qrupaRlg15GuMevjNLbbqWo8NQaUZyr0kW4nV8Reobn6EBq9kcKI2WXDkb3ojGZu+MoPMaeduHr6ROHKO75JRl4xJRE/K43OwFV3fouMvGJySspj22UVlOKw9SZo9gwHR39vbPEzETgb4HxMkKaz0O8dwB8KHH/jE4Qgk3HZbV9l6vzlLLjoulG3ja7GQTKa2/PBKv7zxx8mZAYSji0IzF6Yz2e+tIDcQS3SZouWZLOGmiPduBwOCEutpqFggP7ukzMcHQ1Hdm3k7z+9m90b3h7zyjIpu4zcu/6C9cp7UWdJXkehUDCWZh0Jq//3OAFPL6nJdThbn2Hl479goK+L5ppDKJQqZpxzETfd82OAMelHiKJIwO9j89svoDMkozOaWPvyU0MCts7muiH71u9ahyiKCY7yg5WrVdY8/KJAABmhUIj2Tmkym2bVodbo2LHmNULBxCxOyOuSvJkAMegn4PfR096MKTXutC4IAld//tssu/o2BJkMS0YunS311B/eTV7pVCwZp4+roVLK+dzlFbi8QV7d3ErGDd9Fk1eOIAjoJs1HUGmpbbHRF5J4J4797wMCO/ukSXu4iX0wovYd/t6xCXIKgsC0klSaOhz841WJlLzlwNiv+fYeF8GQSG66nl/dfQ7f/PRsppWkcueVUzlneha3XSZNPNNKUlHIBTr73CgVMn7wuXl86ZpKbji/lKvOLR722DddWBb7t82RaLaYZh6+u/XTF0/mse9dEMsIfeqiyQBjDtru+d1avvmn0RdKHzfEMjj2fjxOO70dzeQWl5ORW0Tx1DmkZRdw/vV3xtq/PyxYs/K4/q770Q2iIuSWlHP9XffHFjMAGXnS83E0F/JwOIzT3ofedDbAOYtjYI34V+1uP0Cnc+IzOUqVmmVX30Z+WeWo2xnNqVz8qbu5/Xt/oGjqbPq72+ntaGHjW/89oc8TBIH8IingUauklV4wLN30Lzz8yyGTtd8X5O2XD+A85qF7PHQ01fLoj+/ivRf+QcDvY+Ob/6WtfuxyBsqUTAyVy2IT975Nq3n6t9+m4cjeYbcPBgbpFfmljiAxHObIzo20Nxwlr3QqCqUSU2oGcoWSnrbjBzib3/4fj/74y3jdTmYuvZTSafMJ+Lw4+qUSR+3BnWxf8yo71kltz9d+6Xvc+YM/Sp8thkm2pPGZb/w6Vh8frGehsubhHFSWqj+8BwBtfzMzF6/AYevl8M4NiOFQTCcn0B0fs+XCz7Ft9Uq8bidTjml9t2TkxLgGadkF+DwuxHCYvLKpnG6cMy0LS3ISG/a0DglwW7udeHwhesJSgBPs76Bfkcqjr9eSadGxfPbo3mExG4qe5lG3G4zZk6WFgs8vfafv72rh+dVH+ecbh/D6g7Fx/f5fO3F6Ehc1zRHPqLwMAwatinNn5SAIApMLUvjubXPRR6QZklQKUiJ8mEsXFZJm1nL54iJuu7QchXz4qeG8OXn89t54m/z8ingZa6QAJ4qv3TKLJ+5fwZVLipDJBPYc7aarzx1rMR8ODnf8fvH6Ts4I9aOIZItUyu3rbIspBFuzC1AoVVzy6a9w4z0/Jq+04sMc4gkhLUfSohotwHE7BgiHQrFnwkTgbIDzMUE0wPn9xse4940fsaZuI232ifMGORGUVM5FbzRTNn1B7LVwKHTCNff8YumcMrOkbixfuACDpZhwOMjrT/+R//5jPb0RfkL14S62fdDAgd2tIx5vOLQ31hDwexFFkcWX3RJ5rfo4e42Mmv3bAVj3yr9Y9/YRQsHELEpbQ/zY4VAAdZIWmVzB9jWvIooiBVOkTgiZXI4lI4em6gNU7xtabhqM6shnag0mpsw+B5NVmnT6u9vZtnolbz37F7a++zJt9VUolCrScwpjRqoACy66Hp3RRF4keB0YxPtRpeXhGBTgeJx21CoVirCffHWQpCQNW1evpOGpH9Dx/ANA3Fk946bvY5x7GQe3v09KejZTRyEYpmUXxP6dWVA24nanCjKZwDnTsujodQ+xJDhUL03AyVnxQOag08y88gx+8eVFQ0o5Q46t1iI3puLvHnuAc+6sHO67aSbnzcllfkUGDneAZ946zAtrqnn6zcP8/B9bee7dKtbtamHj3sTMUDTAyU03DHfoBNx7w3TmV2Rwy4qxW4zkZcSPO7U4XppNSxk9m6BNUmI1a9BplEzKM7Onupvv/e0DvvXnDTz84vALgsODgp/OM8S+4nRAo9NjTLHS2VKHI6L7NJGlm9MNszUTpUqdYNVyLBw2Ket7NsA5iyFI0yVyQB7Z/iyP7vj3hzQaCbnFU1h40fVkF03G43LEbtTRMJiUXFaeTlaeiZw8aQIJiUaMmZdRsfAGPE47zVXreftliZsTNfAc6Dsxletojfu2bz3I1PnLEGSyGNnX3t/D2pf/GTN4HAsCfimD5LR1s3H1NjaulcjRXa0NvP/KM2xfl+gvY83Oj3URKZSqhBb4zEhad9V/HsHlSJx0o/B53Tj6eyipnMtt3/oNKrUmRu7r7Wxh36bVmKwZXHnHN1l65We47Lb7Yvyec6+6lcyS6RROkVp7TRECcDSD47T34xZlOIXEdv/siJuwY92/KBP78Djt7K1vxlO7m6C9F38kg6NKy8fttOP3esjMLx21IyItpwAApSoJa+apFXh0+d188+1f8E7NejY17cDmlUpy50yXukKODRgO1UvX7bQF83jJNYfD/iw6LHP4wefmkTYMsXY4qFJzCPS2EvI46XnnCULu0ZWKBUHggnl5fO2WWVy3vJRUk4bPRkpLr22oY9uhDtbtlJy6d1UlEtGjrt85accPcGaUpXH/HfPRRbI6Y4E2SRk775w0PRURexHrcTI4g3HThWX4/CG6IurJb25qSMjWRHGoLv7M6DpDLVxOFdJzi7B1d9DbKf3OhuTTp3I+0ZDJZFiz8ulqbRi28SRqwwITG+Cc0W3iZzF2pOniF/+Vk1fw6pF3aLFPPFflRCDIZMxedhk6o4nWuiN0tdQBqhG37+9q5/m//oxlV9/GpJkL0RnUfP6+xTH1ZK0+mf27WgERo8KIStZIKGJREfWv6j/Bh2A0wNEZTcgVSlLSsulqldKo+7es4eC2dWTml4xJWTgUDGLr7gBBAFFEIdjYuWELtpbXCPi8scxQUExBrXISCvgxpWYwacZCDGYLMxdflFC3Xnjx9bhddqr3bqW/qzWhzh1FNBjLyCuJ6Q6ZIgHOvk3v4fO6mbXsUvJKK4aktMvnnotfmRwrrxnNVgSZjLrDu5k8ezFv//tveJx2VDItCpmfYESmf9aF1+J+RsoqFebk0lDfSVdQgSiC68hmfO2ScabcYKE/Uu4zWxM7co6FOS0LdZKWzIJSZKe4NXdj03aaBlp5fOd/ALio5FzunH0zk/NTsCQnsXFvG7ddOoX9tT2U5Zo5XN9HZqqOc2bksK/2ImoFgc9eOOmEhOtU1lw8dXuwbX4Z+/Y3UBhSMC28ekz7TilM4ckfrgBg79Fu9hzDXdl7tJtQKIw8UlZq7nSQZtagUZ+6x3tBhpGuPjc5aXp++sWFuDyBBJf042H25HRuvWQKDe12JuWbefyVAxxp6GNueQbNnQ7sLj8VRRaONPbH9vnEBTg5RVTv3RrznppIbsqHAWt2AW0NR+ntbMVlt7H13Ze48s5vkqTRsfXdl9ixViqhnw1wzmIIUnXxi+K68kvo99jY0LgNT8CLRvnhttZn5ktdJltWvUjRvOF1U7xuJ1vefYmA38uWd19i0sy4KFXU68SSnordMQAI+MLF6BS78dqrgSWxDM6JGnU67f0k6fSxrEZaTgGHd2zA7RigOWIa2t5YM6YAx9bbSTgcomzGAo7u2YJcGCDs7abpaEtsG1EUmHXutbRUvUVfZyum1HQyC0qHbYtWKFVMmb2E6r1b6etsi3WyDUa08yo9N+63pDUko1QnxYK30sp5I465zz9AbV8jpamF/HXHMwgKGbbuDp77049i3WoeYPKsRSRpDfi8bjLySnDf9H3EUIik3MmYHryXJp8Mv1xF77tPSmMonYsgCNgihHBT6ugBjlyu4Iav/HDYzryJxrr6RMJ7g036fWQygUXTsnhtQx3PvVPFv9+pYsHUDNp7XZw/Nxe1Us7/u3nWcIc8LpSpUnnLdUjqOvO2HEEMhxBkJxbMLZ2ZzZ7qbtJTtHT2uUkxqumz+/jfmmpeeb+WSxYV0NzpZFrp2Lv6TgZXnVtEbrqe9BQtgiCcUHATxY0XSJnL2hYbIJWj5pZn8Ltnd1LXNsC9N86gsd0eO8fOYbyyPs5Izy0CYKC3C5lcgVZ3/IzcmYySyrns3fgO21avpO6QJKbZUnOIZEt6rHuypHIu1qyJy+CeLVF9TKCSSxO0XJChUSaRrpfatU8F4fhEkWxJ47xrP4djoI+mA5uHvG/v7+Efv/hqbKXi93oS0pguxwBKdRLWzLjWjD+cjSiCx94AMCjA8ZwQ18dlt6E3xo+bHiHDHdz+fqyDaaycnL5Oif+TXzYNBBUK2QBKWbwtUqUrxiFeyuKLFmE0SxPQ8Sb+qJjWSJ1jPW1NIAikDirrCIJAwCcJt5VNX4Axxcp/9r3Cz9Y+RFhMTA8/0/Iq96/5Lc8feJ0PGrdRY5U8yKLBjdZgQqM3cs6lt7D4sps5/zqpTVxbMhvdpHnItUbylkvqwcKcK9FNWUh42goUC2+IjFsqd5mtx29lNaVmJHCDTgX63DZq+hpYmj+fh6/4FYWm3IR7ZHGkTPXvd6TM05YD0vgXTB1fK25SpMsu6k7uPrqd+t98iq5X/ogYHHvn4wXz8vj79y/g3htmYDVruPpc6bhvfFCP0xPgf+9VEwyFyRsD/2Y8mFZi5fbLKyZEf6Ug04hGLeeFNdUcrOulrk0qxz784j6cngAzJ6UhCJ+8DE5adn4sK6tPNk+o4OeHgcz8EoqnzokFNyBl7fdvXo0YDnPjPT/m4k/dHVtsTgQ+2t/YWSTg0St/zWNX/QaAjEiA03EGBDgA5XOXkldaQX97Ay6HLeG9zohKJ0irFp/HRW9XnCzsdtjQGUwYBymgiqgJiWaEcAcOu4eBiDu53xdMcOceDaIo4rL3oxvkj1I2YwFavZGt774MSFmUvq62YTVkjkU0wLFkZBMSk1EIvciEuKeRN2DGkpaGTCbEiMDH07DQGU0o1Uns37KGNS8+MaR+PdDbhSE5JaHNG+CcS28mt6ScZdd8lmA4xDs173Ogq4oj3XHZ87AYxhuWOEMvHpJWUO1WBTk3XUflgvOYNHMRN3/1p9x070/Q6Ea2ZEjLk1bibrWJ9Gu/ydubtvDc337Bxjf/y96NkuS/wXxqMwpjRfR+KErJw6I1k2/Kwea14/RJwnhTClJibcxR5+/K4tSEbqGTgdKah1x3TIkxHMR5YD3OI0OD/pEgCAIZFh3Ty6w8cf8KppdK97nNmdg9mJP20bGlkctlTC1ORRThu3/9IPZ6MCRd60VZyViMSXQeI174cYdcoYzx8zTaj3b2Jopzr/wM+uT4grKno5mGqv2YrZkJjQYThbMBzscIZk0yBrX0YEvXSxNKp3N0YaXTiSlzloIoDtHEiQYGN937U+YsvwKA1tq4+aPLMYDWkEx2xPl5yQWl3PO95WQVTUEmBNi/bS/iIKfksZapvG4XoWAQ3aAbTqXWcM5lNyMIAkUVs5h73pUginQ0xQMDURQTtF/EcBivx0VvZyuCTIYuOY1AKJ6JCItSidDhMmJNl36f2edexhWf+zrJKUONCwdDEAQEpPM6tGPDkC4Ee193TD16MGYuuYir7vwWKnUSVT21uAJSALiuIf7dd7niBE6jWs+vL/wuCpmCnW37WXjZTSy59ja0emNChms4RDVrejtaEgLB3RveBiRRv/FKrk8UuiPnnKqVOGs5yVKA2WyXiMWCIHDLikk8+9OL+e29S/jc5eX8v5vHL4MvCAJJEWVkeUQBW1MkkbuD/Sff7ZhhiZf0Mi26GFG6MGsoX+tMxjc/PZsL58WzkFcuKYr9OzfdQF6GkYZ2BwPOE5OB+KgjWqZyDHw8hA61hmQ+9bVfcv1d92OyZlB7YAduh438ydNOyeedGU+ds5hwHFuieuXwO2xp3jXaLqccuSUSybX7mEm6t7MVQRAwWzPJLpqMQqmKtT4HAwF8Hhc6g4n8Igt3f3sZyy4qIyVVR3aRxEk5sns3ANl5JgAe/+MHdLaP3qUCgwnGiRP4pBkL+fLPH+PSz9xLboSYO7hMVXtwJ4/99K6Yb9S+ze/x+M/uoe7gTpItaXg9YbyhIrTJBZLis/kSnMG5hEQT1kiLrUZnOK6mUBSl0+McmsH6Ol6PC5/XHSt3jYQdrfsAMKj1bGvZE8uWNQ1IgeWds27mr5f/kqKUfKZlTGF/1xG+seoX3L/6t2Mq96k1WowpVuoP7+bI7kR34cmzF3PedZ8b03meDnS7pQAnLcJZy40GOAOJJcBkvRqFXMa1y0vH3Cl1PGgKpYe4edE1ZN/xW9Ku/n8ABGwnn2XVJikx6qQyRmaqjm9+eja/v28pZXknZh3yYUObpOSOK+P6R1csKSIaU+ZlGFg+J5dgKMzanWNvtf84ICrdUDBpbM+KjwJUag0ZecVY0uNingWTRjcKPVmcDXA+pkhWG0hSqGlzdOIPBfj3/pW8cuSdD3VMSpWaJL2J3o6WhNf7OltJTk1HoVSiUidRVDGLjsYaBvq6cDulenzUtDM1XY8QydRMnTMdUVQw0FOLIMBFV1dQPMmKAKxaeTDhM46dqCVRv+cAhs1QyOUS/z41IxelSk17YzyD095QTSgYjL2254NVsfcs6Tk47V7CGJmy4DOSZ9dNS/CH8wCBtIwTTzWfc+lNfOr//QK1Rkdj1b7Y61HF5OEyOINR01uPXqVjTtY03AEPTr+U6m+ySQFOsTkftUKaJFcUL0UURTqd3TQNtNI6Ri2l5dd8lnAoxIbX/gVIpb1pCy/gguvvpHjqnBM74VOIaNYqqhuVa5QyHqej49Aw9VwsK+5AX7kMdWYRco0emVpLcODE/MaORWbEcTzDokUhl33kgpso9BolN11QxtKZ2WRYdBRkGjFolaQYk1hUmYlBq+S97Z+sACczv4Qb7/kxS6749Ic9lAlHdPFYufB8sosmn5LPONtF9TGFIAgUp+RT09tAq70DURQTShIfFrTJFvrb6ggG/CiUKoKBAAO9nRSWx7tTyqZLXUh1B3djzZbcjAfXbaNINuvRJufhHqineJKZrFwTn/7ifF75zx727mjhlX+9j0FTTzgconrvVpItaVzy6XswWzOo2b+d5hrJlHI0WwCZXE56bhEdTbWEQkHkcgWOiJ9KX4QnlKTVxTR+UtKzcdgl3o0h4v2TW2Bm1oI89mxrJiP7xEsHKrWGlPRs8idVcnTPFnase53KBeeNOcBpd3aRZUiPTerdrj4Maj1NA20ICGQb4/ySGZnlZOrTaHdK2amdbftjZZzRkFtSQdmMhRza/j4AN97z4wS34Q8DPa4+TElGFPL4Y67b1YtWqUGnkrIyKVoTKrmSdkcXXc4entrzAldNvpBJqcNbFYwHgkJJ8tzLEl5TmNIJjiODA5Bu0VLV1E9m6keHdzMSPnPJlNi/v3bLLNzeIIIgoFLKmZSfwp6j3YQHlaM/CTgV3JQzARVzz6Vk6hyStKfuuj2bwfkYY3JqCb6Qn41NUrnH4XPiDny4rZbaZAuiKPL4z++lavdmmo7uRxRFUgcFGdbIDW3v64pxcaJeJseiYs5sBEGktCxOvp0514hFt5Gm/c9waPv7HNn5AVpDMn2drdQd2gkQc+m++vOSMdxoyMwvJRjw09Us6eNEDeP6OiVZf3v/IC6LORWnXeIJ6I1x4u+l11Xyle8uJ/k4vkWj4ZxLbsJkzWDLqhd57k8/jnGXBhucHgu334Pd5yTDYI2VZXrcUj2/1dGBWWmMdeAByAQZP1j2VR5c8X3UCjW72vePeXyFU2bE/n08btGphsvv5u7Xf8D3Vv+GP2z8O3/b+jRtjk66Xb2xQA+k883Up1HX18gPVj/Ijta9PH/g9dM2TkWylaC9J2ZzcTKIZnAyLSdWSnP6XHzQuJ3gCI7wHzYKs5JjIoIAVpOGYCjMgOuTxcP5uEIQhFMa3MDZAOdjjSlWKSh4rzbemdDl/HCzONpk6YEVDPh578UneP/VZ1GqkqiYtyy+jc6AXKHA3t9Dc81BVGpNrH37WJRMler2IZ+UcfC4nKx98W8Q6iIkJpOcfRk3f/Wn3PLVnyEIQszDKpr9GClwGoxoiWX/FkmF2N4v7dvX1YbHacfniXd35BRPiYkNGk3xYEYmEzCf4AR0LHRGE9ffdT/lc5fi6O/h4Pb1ACSPksHpiGRiMvRpWCNikF2uXsLhMJ3OHszKoW3ZaToLBeZcisy5tJyA3UdOcXz1LVd8OMnhA51HaOhvpt0hnXejrYUtLbtY17CZFw++Sa+7PyHAAcg0puPwuxjwSQrAR3vrCZwC09rhoDClgRgmZD/5+3LxjGzmV2Qk2CaMBf/e/wp/2vIE31/9m9N2vuNBauR+6rF9svRwzuLkcbZE9TFGqaUQQRBiHTQAXa4eCsynz6n5WOhT0hEEgcz80oiiZT+LL7sZndEU20aQyTCYUulpb8btHKBg8vQR1W3N1ixkMjk9EV5P9b6tOGy9LL3yM2zbqqKj040lPRdBJmDJyKGjSWpJH+jrQmc0xXQmRkNqZi45xVOo2b+dshkL8Hul79Pe3xPralp82c1MP2cFgiDQ01mDQiHDNEHk1MFI0uiYsfgiDm1fj8veT3JK2ojaMdta9rDysMQPyjRYsWojGRxXL93uXkJiiBTVyCUzo9qA01dLOBweUxeUUqXmolvuGtKyfrpg89r52TrJRLQiLe5ntSR/Hke6a9jVtp+QGI5lsqLIMsSzTcsKF7KufjOHuquZnjFUWHGioUyWgtPgQNdJH6Mg08j9d8w/oX1EUWR7yx5AEjqs6WtginWo2OSZhKhre3e/h9LcjybP6CxOL85mcD7G0CiTWJiTqLza5fpw28bVGj23f+//uOaL3+WO7z/EF3/yMDMWD1U3NpgsuOz9iOEwucMo+EYhVygwp2XSG/Exaazaj0wmZ/LMReQXW/C4A3R2SCvz9Nwi3A4bzoG+EdurR8K8C65GJpfz+j8fAiTPJESRXevfAiQhu2grcXeHg9R0/SnjCQwWzZu59OJhW5g3N+/kdxsfpaavAZAyOGZNMnJBRpe7L5bhMCtHC3D0iIg4/M4xj6102jwKJp+ajojjIUqaBjjYdRSAnyz/GvfMv53ilIJYoF9+zESeZYhzkC4tlQxBD3SO3VF+PFClSRwzT/3wZpOnCvX9TQz4HOQnZwPQ0N9ynD0+fJzN4JzFieJsgPMxx+dm3QjAJIukp3Am6OIkafUIgoBcoUClHt5GYrAw3PHcpS0ZOThsvbgdA7TWHSazoBRVkoa8SP2+rUlqB4+Wo6p2b8brdo7KXTkWWQVlXPul78X+nr38MrQGE231VSRb0mJWCz5vAPuAN9YOfiogCALnXHoT6blFTJ61eNht3qxKNPXM0FuRy+SkaM30uHpjAU7KKAFOcpJ0Dnbf2AOcDxPNA21DXstLzo4R7kHi3ExNS3TOjmriKGQKcpMzUcgUNA1zrFOBpPwKFOYMnHvXwGnkwuxul7oMr624BJBKeWc6rJEA5++vHOB7f/uAQPDkeUvjhdMTIBAcahp5FmcWzgY4H3MkJxl58prfc/+y+1DKFGeEdcNYMFjbxZKePeq2UZuCTW//j2DAT16ZxMtJTZPIl73dAbWdVAAAayZJREFUEkemeOocdEYTW955EZAsJE4EadkFFESItLnF5Vx15zeZseQirv/yD1CpI+nzTikYsJ5iqfyZSy7mhrt/iEI5VNY8HA7TMNDK1LRJXFd+KbOyKmNdQxn6VFrtHaxvkMwyh+PgRGFUS+cw4HWcgjOYeEQDnIW5swESuqWiAU6ppRCtKpHoPSm1iMvKzudXF3wHuUxOjjEjIRt0KiEIMpLnXELY4yCpZsNp+UyAuv4mZIKM2VnTSE4yUtPXGAt6xwNvwHvKujUtg5TMD9T28uxbRybkuP984xCvbagb8/at3U7u+Pkq/vK/PRPy+Wdx6nA2wPkEQKfSolaoyDCk0eoYn+bG6cJgTs7x3KUz86XMzJFdG9EZzZTPWQqAyaxFkAkxnyqVOokll38qtt/JdPpc+ul7uP6u+0nPLcKSns3iS29O4MB0RQQGo4rFHwY6nF34gj4KTDncVHkF311yd+y9a8svJSyGqe1vRC1XYVDoRjxONMD5KGVwktUGpmdIZOd0fWqsfFdiKaDAlMP5RUNNU+UyOZ+deX2Mm5ZnyqbX0x/TCzrVMMxagSqzBE39Znpe+zPhwKnvEmq0tZBlSEclV5JlSKNpoJX73vwxfW7buI77h01/5+tv/TTWqTeRUCoSp6t3tzWN+5iBYJgX1lTz2Mr99Nm9x91eFEUefHoHHl+INTua8frOzA60s5BwNsD5BCHbmEGPqw9f0P9hD+W4iKoLj4XPkZlfysWfupvckgou/cw9aCKuu3KFDJNZQ193fKIqqZzLDV/5EfMvvIbiqbNPeFyhMHj8iWUdURSxD3iwD3hYt+oocoWMrIiq8oeBqDt2gTl3yHsVaWV8Z8lXWFGylLvm3jqqBYExYvth9535GRxRFGm2t5ObnEWhWcropeviJcgkhZoHL/oBywoXjnSIGPIivJQm2+kpU8kUKtKu+zYBSyGugxtw7F17Sj/PHfDQ5eol3ySdZ8Wgkl1U3fpksK/jMHs6DuEPBXj50Nux1188+CbfXvXLCenUKsmR7r3z5uTicPuxu8b3LOvojT8bVr5fO+J2obDItkMdfLCnLWYGCrD90EdjwfhJxdkA5xOEHGMmIiJtH4EsTm5JOZd85h4uuuWuMW1fUjmXq+78Zsy7JYqUVB1dHQ5Wv34Yj1t6GKbnFDL3vCvH1EF1LPZub+aZh7dQdzTOZXr3tcM89LP3ePpvW3DafVx18/SYyN+Hgfp+iXBdOEyAA5KY3+dn38L8nJmjHifOwTnzA5xGWyveoI8Ccy65yVksyJnF4vy5J3Ws6MRf1984kUMcFXK9CefMa0GuwF29fUKP7Q54WFO3iU1NOxFFMVZ+yzdJGatrplzE52ffAnDSz4awGObf+1aikCnINmawtn4zwYi2z38PvEaDrSVWFh0PHrh7Mc/94lJyIyXg1i4nR5v6OdJ44hkjp9tPTYst9vc7WxqGzchsPdDO3b95j5//YysPPrsDgO9+di6CAJv2n54g+CxODmcDnE8QciKKtc/seZEj3SOvVs4ECIJAccXscbccp6RKHIxNa2v54L2a42x9fETLXdWHpYmgrdnGlvVS/b6vx8X0uTlMnTk6Z+hUo2mgFaVMQZYhfVzHiWZwPgocnD0dEml2RkY5Cpmcr5/zBeblzDipY5WmFGJQ6Xj+wOt89sWvnT4PN4WapLwKPI0HCPsmrlNo5eFVPLL9GR7a/DjNA23xDF8kwFHKlczJknyyTjbA2dK8m7r+JlaULKUirYxgOIgjUtrUKKVg/7Wq1eM9FZLUCnQaZcwtvabFxjf+uJ5v/enE+Etub4B7freWP/xb+m3Pm5OLyxtk3a5EsrXHF+TXT+/A5vQxsyyeEVw4NZPCrGQO1PaOya/tLD4cnA1wPkGISvIf6KriNxv++iGP5vRAq4sHSI114+cFuJxSFqiuSiJrH9zTBqLkgzV9Tg4rrjz12inHQ6u9gwxDGnLZ6Nyl48Gg0iMgfCQ4OLvbD6JWqGPiluOBVqXhztm34A368AS97Gwbu5rzuD+7ZDaEgrjr90zYMfd1HI79u9vdF8vwRQMcALMmGbVCTftJBjibmncgCALXll8yiLvlIBgK4o1witocnXiDE8MvyrZKAc4Trx2IvXYi7eP/e6+a3oE45+YzF09Bl6Tg2bcP09odv94PN/QRDIW5ZcUkfnjnfGZNSuOOKyqQyQQqi1OxOX20dJ3598cnFWcDnE8QMget6P0fAeXSiUBpeRoymYBcLqOtycZTf93EB+/VEAgMbTH1eYPs2tJEODRy+6fLIT2guzudDPR76OpwIFfImLson6tumYFGe+Jlr4nAW0fX8usNf8Mf9NPt6ht39gZAJpOhV+vOyBLVrrb9sY5AT8DL0Z5aKtLKUMqHdpWdDBblzZbsKuSqCekuGozRJnlNiaSa7T66Y0I+y+FzUt/fjE4pdSD1uvup6WvAojVj0sS5ZIIgkKVPo81+cufa4egmTWvBqNYP4m456fH0IxLPcNg8AyMd4oSQEbGnCIbixz4akYM4HkJhkTc31ZOkii8ArGYNX//UbBzuAH/5X1yT6ECtVIqeWpSKUiHnp19cyDXLpCC6sliSodhf++FLb5zF8Dgb4HyCoJIruWPWTdIfgvCJSK1m5Zr4/m8u5ZpPzwCgqa6PNW8e4eiBoSvVpx/ezOv/28fRQyM/5KMBDkBtVTdd7Q6s6Xpk8g/3VlpV8z672vazt/MwIuKEBDggudJ3uXoJjcMraaLR6ezm1xv+xj/3SO3+tX0NhMQwFdbR9ZJOFAXmXIpS8mi1t0/YvVLVU8tnX/oaf9ryZIyjMhiK5FRUaQW4a3Ym+FOJokjQObYJfDAOdFUhInJuwQIA2h1dtNjbY23zg5FpTKfX048n4MXld4/5M8JimA5nFxkGqYQzOIPTE2kZT9dL7/V7JybAUSpkRPnxd14puVKPNcBp6rDj9ga5eGEBIClBA8yryGD57BwON/TzwSE7rV1ODtT2ok1SUDiMSW5FkQVBgJ2HJzYAPouJw9kA5xOGi0uXcX7RYgKhAI7T1Ab7YUMmE5gyLZMvfG0Jn/2K1EXT25OYVu5os9PeIj183aOY+TmdPlJSdSDAgd2tOAa8pGWOrCVzOtDnscW4ExsatgEkOISPB3Oyp9Hr7p8Q/sREYXOEE1PVXUNYDHO0VzJBLbUM71c2HmQbMnAFPAx47RNyvJ1tkrnsB43bRiTdasvmEPY48LVVx15zV22l6Y+fx3Fg/Ql93vbWfQAsL1oEwI62fYiiSElKwZBtC00SKf3rb/2Mz738jTEHOf2eAfyhABl6SXYhRk73OulySWXhsshv0++ZmO8R4Jd3ncOP7pzPFUuK0ajlVI0xwDlUL42psjiVZ35yMb/+SlwsMxr0rN5j5+dPbuNoUz9Ti1KRD6NKrteqmDkpjR1HOsfUYn4Wpx9nA5xPICxaEwB97hNfEX5UIQgCmTnJpEeCkf6exIf3+2/HpfmdjuFbT8WwiMvpx5quJyvXREONtDpNO4WqxWPBoa74RLilRZr8JyqDc33FZVh1Ft6qHtq6fLi7+kOR+N/cJDnCO/wu2hydHO2tRy7IKBqha2w8iAaKJ2I6OhqqeuLk/igxWjp+O081v0xdfxNJuZKOj6+jPva+u3Y3AN2v/BFxjIrHvqCfHa17KbUUkpecjVqhjpX1SobJ4MzKkgQyez3Sc2GsWjYdkWNmRjy9oiWqd2rW88j2Z4B48GmboAwOSAHK3PIM5DKBsjwzR5tsY1I3PtIgndfkghRMBjU6TbysOSnPzIXzpOuoo9dNKCyydJSmgYvm5xMOi7y3fagmjz8QIhT++GfJz2ScDXA+gbBoJI2Znk9QgBNFkkaJRqukr0fKXjnsXl77716qDnaSHdGuGVyGGgyPO4AYFtEZ1JRMjndUpGV+2AHO0SGvTVSAo5IrmWItod8zEBO+cwc8/G3b0/x4zR/47QcPn9ZSZ6OthXpbc+waPtxVQ3VvPQWmXFSKiec/ZRsl369WewfugIcXDr5Bj+vkyOqBUICa3gamZ0yh2JzP/s4jhMMS32tLy246fb384L0HkaVIQVWgJx48hn3xgNxVNbZ2693tB/AGfZyTNwdBEEiJcG7kgmzYDE6OMTPBiNQ5xgxOlKOUoY+WqKQAp9URDwrjGZyJC3AGo7I4FX8gxNaDHcfNphxq6CMnTY9RN/R6EQSBr1w/nTsvlM5Fo1Ywf+rI2dB5FRko5AKHGxKvCX8gxJ2/fJfn3z2+p9n7u1ro7j/rr3UqcDbA+QTCopUmhz7PJy/AAUkbp6/XTUtjPy89u4vd25oxW7RcfoPUKutyDh/gOCOv6wxqFp5bxAWXT2HhsiIKS1KH3f50od7WjCnJSHbENHJx3twhdgTjQc6gSV4URX71/l9YV7+ZJIWabncfP1n7fzy+8z+AtGpfV785tu/RnrphPaJOFu/USCWaO2ffjIDAv/evxOFzMj1zyoR9xmBkGaVAsWmgle+88wDPH3j9pMt11b31BMJBJqUWU5kxGZffTV2/tPIfnC3ZZmtEUCXh742L7gX6O0EmB0GGc//7CccN2nvpW/svxGMaB/Z1SlYGc7IlsUxTkhTglFgKSVIO1WkSBIFFeXNifzvG2D0X7bzKiGRwDKpEFe9Ly86LBdynKsCZWizdg795egc/eHgjAK9/UMdDz+2KEYUBegc8dPW5mVKQMurxclJVzK9I57rzSkhSKUbcTiGXYTYm0X9MUNXZ58bm8HG02Tbq57R0Ofjdv3by39Wnx9z1k4aRf7mz+NgiGuCcaAbHH/SjlCtHVb/9KMBs0dLaZOOJP0kPwrnn5HPJtZUAaLRKnCNkcKKZHb1ejTpJyaLlxadnwKMgLIZpGWhnUmox15RfTFVPLVdNXjGhnxENcKp66uhx93G0t45lBQupTJ/Mn7c+yeHuao721nFL5VWxQGdBzkyCYoj73/stAM/f9PC4xxH10Co05TI7q5LrKy7lfwffIF1v5eopF4/7+MMhVWNGLpPzQeN2PEFpEqvpjZeORFGk29VLqi4FmTDyelEURf574DUEQWBe9gw8QS8rD6/ig6btlFgKaIuUwAT+f3v3Hd5WeTZ+/Hu0h4cs720nzl529iCTMEIIEGbZo4XSMgK0pYUCL/CW/lqgLQVaXqC0tNDSAoWyySiEkBCyhzOcxI73krcta4/fH8eSZxyv2I79fK6Li+jojEc6sn3rGfctsacsm7GRie16cDz1FeiSJiCptdjy9uFtbkBplAOWpoNfUv/Ne+hSJmMY25q88URNPhH6cKJbiokGhoe6mmAccPWUi4kxRvHK7r/T5Dz9HL0aWx1f5H9DmDaEGKMcZCgUre/DBRlLuSXrKkDOJj1Qk4w7Gt8mc3iJxYrV5uLVDw7h8/nJK2nghR8vBwj2tExO7z7AkSSJh26eg/I0ZWIAzGG6Tj0wljq596u2ofvepPwyeU7SydIz876MdiLAGYUi9SZA/uXUUzW2On748c+5bOIFXDv90jPUssERZmrt3bjoimlkzm3NBxISqj3lEFVguzF0aJaCd8VircbpdZESnsCUmPFMiRnYlUQASeFygPPmgfeC29ZOvhBNmyXZXp+X9bmtPQvfluwb0Pw57x/5nE9PfInb5+HGzMuRJIkrp6wmLSKZVFMSOlX/EkKeikKhIMYYGRyG0am0nKwrkpd6+/08+sVvKKwv4e55t7Akbd4pz5NdmcPRqlxWjl1MiikRv99PYlgcXxV8y3XTLqWksYJkXRw6g4795Ye5JjINb3kePkczfr8Pn6MZlSkOw5jp2PP2YT2ylfA5q4GW3h3AXVsOLQGO3e2gqKGUOYkzgl9IYoxRlDdZmBh16sBcpVQF5zI1uU5///617XWaXTYePOdOVF3kXQpkhQY5185ALRPvSK1Scs154/nXRnm49uNt+fha5r9U1jbj9/uRJImj+a3zbwaKOUzHiaI6vD5/cDKypSXgOdVw2f7jFtLiwylsqV1XWNHU7nhhYIghqlFIp9YRbTBz2HK8x8t//7r/Xfx+Px/mbDjDrTvzzFFyDo2556Qxe2EqKlXrL2ZjqDaYzK+jhpZEYiFDWIaho6KW4Z8U05nLnhxjiGz3+MopFxEfGkOkIQKVovU70r+PfBb894bcLXx+YnPwsd3d91UmNredt7I/wOf38YM5NzI1diIgf8uekzij3byRMyEwtwRg5djFeP0+cmvy2V9xhMKWrMC5tQXdnmNfuTyh+MKMpYDc9pVjzqHZZePtw59g9ziI0kQwM34ado+DghA5A7eruiQYwKgjYjGMn4uk0bcbpvI0tAQ4deWAPOn85vfux+/3Mz6ytXTJXXNv4s45N5y2REdIyxwa6yl6cOp3fEjxy+vwNNZQWHoIg9fHdHVEl/sG6noBROjCqRug1WhdueHCSfz4erm+3Dub5EBnxrgo7E4vVrs8fHckv4YwoyaYKHAgmMN0+PzQ0GZou6qlB6fe6sTTIa9WVZ2dR1/ezoMvfE1BS4DjcnspqxIJAwfasAhwtm/fzqWXXsrMmTNZu3Ytu3e3JrnatGkTK1euJCsri3Xr1mGz9Tw/g3Bqy8cspNZe36MsrXa3I5iuPjCOfzabMSeJa26bw/mXTun0nDFEi8PuxtPFaoyik7UolBJxCUO7LHxz/nae/volfD5fsDhiSnjCGbueQqEIZr1944rfc/XUNcHnXrz4f3nlkl+RGBYXLKY4I24SubUFVNtqg8M2VS35UPrCYpWPvSBjKUvT5/f5PH0VKNoZqjEyvyU4yKnOC2YEBk6bAfhg5VFMujCS29ync8eeQ7QxMvilIVJjYlaCPFR6SJIDQmfFSTwtgYs6Ig6FWotx4gKc5Xm4auTg1lMv9y65a+VhrralJSZHjwv+26QPZ8WYRacdYg7VyF8Aukoj4fe6adj+H9zVJZT+9WFq1ErMbi+Okpx2++lV8peAtq83ymjG6mruVY6d3kptWSXp8vhITwhjyhh52Kyqzk5RRSO5JQ1kjY8Z0GF2c8sXnuNFdcFaVpW1ra+xYy9ObaP8Ram8ppnCitaAL79MDFMNtCEPcOrr61m3bh0PPPAAu3fv5rbbbuOuu+7CZrNRWVnJQw89xDPPPMO2bdtwuVy8/PLLQ93kEWHFmEUoJAWbC75tt93udnRKQNY2B0iNve6sqEbeHaVSQfQYLX/c9ddO+U1CQuWhjuYOS8V9Xh9F+bUkJpvQaId2ZPePO//G7rKDlDZVcKKmAIWkCM6TOVMeW34ff7rsGbQdViqZ9SZM+nCundY6bHn77OtRSgqMaj03zrgcAEtz37O9Bo6NNQ7NZO5AAruk8ATGRKSgUao5WpVLfl0R6pbikmXdZDuutzdQ3FDGtNiJ7f6w6lRafjDnBgxqPfEhMaQZEkkKiyfaGMkBazl+wFl6HGeZXENNEyPPnTGMzQTAVXESv9eDp1EOAD11coBTbpWDrceW3UdGZFqvX69OpUWpUHYZ4DQf34W3uQGFPgRHUzWNqpYAp7T9JNlnLnyEx5bdF6xDBa1zuUoay3vdpp5q2zNz+bIMYiLk4WhLnY2Pt8lzp1YvGth8SYEA56m/7ORXf5MLpbadk9MxwGlbIqKixhZMNNjfeThWm4vHX91OXpsCoqPdkAc4ZWVlrFq1iqVLl6JQKFizRv52WFRUxMaNG5k/fz5ZWVkYDAbuuece3nvvvdOcUegJs97E2IgUjladwOeXu1B3lR7gjg9+yh93/LXdvg0tqfoDcy4CuTTOZl/lf8uWgh181SHZmjEQ4HRYSVVR1ojT4SE148wOh/TGwYqjHKw8yrTYCWdkiXRbIRpjcPlvV+YkzuDCccu4ZuoaYoyRrFvwXe5b+L1gxWpLP3pwKq0tAU7I0AQ4gSy8SWFxqJQqxkWmc7wmn7zaQlLCE0kOS6C6ufaU5U8CiQi7mh81NXYir1/+W3574WNEakxIksTshOlU2ev41ZgYcstzcBTnoNCHoo5qKY4ZIQcK7tpyPI3V0PLz66634Pd5KW2sJM2UxNTYCX16vZIkEaoxdjlE1XxkG4dCdLw7cw7qGx4DIFqpw1nSPsCJMUZ2un4gwCluOHMBjlqlYExiOAadisVZSUS3BDj/+SqP9dsLyEg2MTGt6+G0vjK3GbLekyMHuoFJxtA60dhSa8Pp9lLd0H5C8vJZyYTo1X0q+eD3+9l9VE40uP9EFXtyLHy9v/T0B44SQx7gTJ48mSeeeCL4+ODBgzidTlJSUigoKCAtLS34XGpqKhaLBatVjFUOhEkx42h22ShpKKe6uZbfffMnnF4XW4t2BVd1QGs16QktkxMrRkCAc6xGrgDethAhtPbgNHVY/RBI6pc2dvgEOP/M/hCvz8v8pJlD3RQkSeK2mddwxZSLAJifPJMZcZOJaQlK+hPgBHpwYoYowBlnTiMhNJY5LcutJ0Zl4PQ4aXI1kxaRTEJYDH78pwz8A0vA287l6c6KMQtJCU+kWSHx1xAvNZY8dMkT8eOntLECdYS85NpRW0520T78gKTRgc+DtaaUalstCf3MZB2qDQnWsXr38Cd4fF78Pi/2gkO8GRfGzsrD7GmUh+hiw+Jw15bjdXS/6io5/Mz34AD86q5z+Muj56NUSMREyHOZDp+swRSq5ac3zh7wVaDm8PZz8hqbXdQ2OoJ5dmoaHNQ2OvjBr//L3z490mll1cyJMUzLiCK3uJ5me+9qBO49ZuGJP33LzU+s5+OtciBdKubyBA1aX/uWLVu4/fbbO22/++67ueeeewC5N2fdunXcf//9GAwG7HY7JpMpuK9eL0fjdrudkJDeTRLz+Xx4vcOnns5wMN4sT0A8XHmMooYyPD4Pl09axXtHP+PT419ya9bVQGuBvPHmdLIrcyhtrOjTexk4ZqDvg9/vJ7e2gLHm1OCcD7fXzeaCb1mcOheb284/sz/k2mmXEqEPl9P7t2SUPVp1ArvLjkYp/zIKN8u/rGqqrO3aWZBbjUIpEZ8cNqSfI5e3dejM6XWhlBTMjJ82rO5HWyZNKApJgcVa3efrVFqrUCtUhKqNQ/LeG9UGfnPBo4D8Xk2MbF2FNDNuCla3/G39wfVP8fT5P++UZDEwhyhCF37K9re9F0mh8fz6vIf4dMufecOylz8mmXk4Lp2NuV/z2t5/cu+8W0kyhPGq9QSHco5yh07NlKSp2HN3U1giV9eOD4np13sVojZQbC/j/3a9QX5dMfX2Rq6Lm4XPYQXkoGFXqVyUMjYsDjiIs7oUbfypV2iZdSY0SjXF9WVn9D5qVBIg4fV6MYW09mxee/4Eok260167tz8X4cb2BV7f/OwIfj8syUrk46351DTY+OZgKS6Pj/3Hq0jvUNolKdrAtLGRbM8u52BuFXMn9zxJZ9sMyodPyp+zEot1xPytCyTC7KtBC3CWLFnCsWOnTmaUk5PD7bffzlVXXcXNN98MyAGNy9X6C91ul7v2DAZDr6+fm5vb62NGOpdX/ibx+dHNVDqrSdTFkuFKQKvQkFN2gv3SfgCO1cqlAJQN8rLLw4VHSbH37NtoV7Kz209sdnidfFDxBQvNmSTrez+X5Li1gPcrNjE/YgZLI+cAsK/hKBuqtnE4/yiVzhoK7KW4Gh0si5pLtasOq8uGRqHG5XPz8bfrGWOUl8bWW+U/VsePFaENkwM7n89PQV414REqjhw51OfXPRDqXO3H6ZdHzuPk0f59tjvej4EWrgrhZFUh+/fv7/WxHp+HHEseoUojBw8cHPjG9YHf7+eS2OVEakwoLF48LvnnyOv38e7OD1nS8hkMyCuXv1kXHy+iTOq+tEXbe5EQksmKigK+UNey2Wbl2DE5geI7+z/mRl0oh1Tyt/2KMDPREeMJZTeHWqqQu2vs7N+/H8lhRVN5FGfKbILVKb1uVPVl+LQG/NoQ/AoVdKjC7rV7sLpswWzGG/K2MO5kKcmAFiVOvBS0rCDz2OVViLn7v8Vd2X3l+QhVGPk1RX36LPSXSVnD/v09z0Ld058Lv9/PzLFGXB4fhwrtfLa9ELVSYkK0g88UsHVfEXqt/MWrqKIJl7O1ByfMoOTAgQOo3PK9/PLbo2hcPevhcrp9bM8uJzlag9frp6xWPkdZtZU9e/eJJecMkzw4e/bs4c477+S+++7j+uuvD25PT09nx47WORIFBQXExsZiNBp7fY2MjIxe9/qMBjvch9lRIte5uWXu1UyNmUBs9ec4PE4yMzMB2LfvONTC0qxz+Kx6K3aVK/hcb3i9XrKzs5k2bVq7BFpbCndQkF9KuiaVNZmren3egpxKqIAcez7rMuVewk+2fA3A/qYcnC29HiERoWRmZvKfo+sBuGrKav6e/R9yvIXYFR5SwhN55cRbTFevRok++BrLihvwuCuYND2FzMyBzzPTG0eqTkARnD92CVNixjM3MbPP5zrV/Rho4+y72VV6gMYIJ9GGSCZFZ/ToOJ/fx7rPHsfhczIpJqNPn7kzJYv2S60XzpzP9z/6GU1qR6d2vluzEbPPxKysUw8lnupeRGck8MWGXyDFmNDVW6EZqtx1vBupAr/8B80/axmTJ6+iePdbWCUb+GHhtPmkmhKp/uhFmo9uITEpGZ+tkfCFl9O482Pqd/2j3fU1selEX/UzVCHy/JRd3iMczy8AYGb8VPaWH6LYX0OypMCgM+JsmZwfY4wiK3MJluzPSAzTYjrNPZrkOczmgu2kTEjD3JKP60x72pyKSqVgTELPVoD25eciK0ued3PH//sCgHPnprB4wTRO1h3l/c1yb7FSIeH1+amoc5MSF8oNF0wgI9mEOUyH1+fnT+s/w+HT9/hz/u2hCjzeMi5YOI5Si5Wy7YUA+HwQnzyOhAFcCj9UrFZrvzonhjzAqa+v5+677+bhhx9m7dq17Z4799xzee6559i1axdTpkzhxRdfZPXq1X26jkKhOKO/xM9WN2deyf6KI2SYU5keNwlJkogyRLCv4jAPfP4kC1JmBVdTROjDSTElkFdbiEKh6HYsu6SxnJO1RUyMGttp7oRSqWx3Lw5WyvNgCutLUCqVeH1e/ntyG/OSMgnXnX5JtrIlwVi9oxGlUskRywmOVJ0gRGMM1k8CKGmqwOv38nnuZiINEayeuJKtxbvJtuSQbclBo1Tjl/wojB7qamzBNpYV1QPy/Juh/gzVt/xhmRo7gfnJAzP3puP9GGhpEcnsLN3PSy2FF3ua1bjB3hScv3LNtEuG/L3vjlFpYExECnl1hfgl2iW9q7bXEWuM6lH7O96LhPA4VAoVpU0VwdpOHp+Hk3iY32BjR7iBSnsdap0BdWQixc4GVDoVKaYEcNqw5ci9PnUb/wyANioJT528vDx8wWX47Fa89iZsx3ZQ+8kfibv2USRJYl5yFtuL9+L1e7l15tUcWX+CA/Z6lkQltKtRtWbCSgxRcq4bb73ltK9xcsw4Nhds53jtSRalzOl234EyKb1vc7d6+3MRFxnClSvGEWbUcPE5Y1AqFVyzcgLZudWYQnWsmJXM02/KPWzmUB0LprfmCFIqISk2lOLKph5f81CePCQ1a2IsU8dE8dn2QialmTlaUEt5jZ2qBidTxkSiVQ/fn5vTaZsVuy+GPMB5++23qa2t5cknn+TJJ58Mbv/zn/9MVlYWTz/9NI888gjV1dUsW7aMdevWDWFrR54oo5nfXvgoRrUhGLBEGcz4/X7KrRa2Fe4iymjGqDGgUqpICU/ksOU4pY0VrM/9ivnJMzutDsmpyuPxL3+Lz+9DpVBx55wb2Fm6nxVpCztd3+fzcaBloq88D8jLvw9/yr+PfEpRfSnfm30tfr+fveWHmBbT9WqhttlRvzz5TfAP6S1ZVxGmDSG/rphvi/dS3FDG7rJsGpxN3JR5JSqFkkUps4PJ2gKrYBpVdXhqlGw6sZXZSdOoLJe73eOThj4HUKDSc6DcxtkgkEOntwJzV26YcTljzCkD2aQzIsOcRk51Hte9czcPnvMDZidOx+V10+Bo7HOGaZVCSWJoLMeq82h221mSOo9LJp5HSXkOY44f4qTCQmWTPLlZE5tGafNRkkITUClVNB7d1lKfSgLk4eXG/RsBUOhCiFxxY/A6lg9+j/XQFtxVxWhiUsiKn8qrl/6aZredCH04mTET+LbsILboJNwueYL+1JgJLE9fgEKlQWEIkzMpn0YgL89RS+6gBTiDRZIkbl49ud02o17N7+5fBoDX62N8ionjRfWYQjtn3k6JDWVzaQPNdne7CuenciC3iqhwHYnRIUiSxDv/bzUFZY385IWv+c0/9mBzeLhl9WSuWDHutOcaqYY8wLnjjju44447Tvn88uXLWb58+SC2aPSJ7pAJNsrYmsa8srmaemdTsLxDIHHXA5/LwWhpY0W7X95en5eXdv0NpaTguzO/w98Pvs8fd/4Nn99HUX0pN8a2JokD2F9xBKurGa1Ki9Pj5IZ37w0uW29umbx5oiafX3/9R27KvJKLJ5zbqf31bXLZvLTrDYxqPT855wdMis5AkiQy46dQY68jv76YfeXyHJppLUtYV49fQVxINB8c3UBeXSESElZ1PXp/FJ++c4hX099iYfGlGELUGEPOTDmA3qi11wOtFeHPBmkR7QMcu9vRLj/KqQRXT53hTMUDpW3OmU+O/5fZidOD5VCiDH0vDZAcnkBhS0LHpPB4UkyJcubqSecSt/l5jlXn4ff7ccem0lh0nMk2B805O4LFOg0ZM7Hl7kEZEoGj8DBICjTRye2uYciYhfXQFlyWQjQxcjCpUWmCXyiSVPK0gOLQEKiRe25uzLwieLw6Ij6YSbk70cZIIvUR8lDrKKNUKvjVXefwybZ8Zk3sPJE4JS4UgOLKptOWkqhtdFBcaWXF7OTgF1OdRsWE1AgmpkaQUyh/7kb7iqohXyYuDD8d/3g6PU7CdfIPX8eMuV5/+1nuFdYqypssrBy7mPMyFrMifWEwYKmwVnHUejK4r9/v593Dn6BSqLimJTuuz+8L/sAGhpcCeVACWXs7qu+QrO+SieczOWZcuyG0QLu/KdqNJEnBlS5qpZr5yTOZmTAVgAXJM7Eb5R4hU00S4Q2x1FXZsCjKya0p6PoNGyR+v5/syhxCNUZMPRi6Gy46fp7+cfA/7C5tnTD8xclvOi3Xh9bsxzFDlOCvt2YlTOfSieeTFBbPkaoT1Dsag5/dqH70uLXNBtwxoWNcaDROr4s6RwMnY+TPdFRZIZX/fprmnB0gKYi88HuYz72JiKXXygf5fajC2r+ngaDGaSnosg1mpzyPrVAp/yyHdsiJpDbH47M14jvNUnFJkpgSM56SxnKqmmv48uQ3vHng/VPuX1BXQk7VyFkgolYpuWxpBsmxoZ2eS2nZVljR/URtIFhTa1qHtBWSJPH9tdPRqOQ/7dZeLjsfaUSAI3QSZez8yzhM2xrg6FRa0k3JJIbGUdfSoxAQ+Maa2JKH4/xxS1Er1Zw3djESEies8kQ4r8/Lb795ldzaAlaOOYdzUucQoQ/n1qyr+ceVL5AYGkd1s3yuwLBMWWPX6fAbHE0khsbx4Dk/4KeLf8glE8/rtE+GOQ0At89DXEg06g6rRs7PWMLFE1ZyU+aVNEVUUjxmPwBL9StR+FQ49I1sL95zurduQJysLeRf2R+1mz8EkFdbSGljBYtS5vR7bHowSZLEb1c9FizxsD73K57e+hJOjwu728H/7XqDX3z1fLCgZUAgd05MyNnRg6NVabh+xlqumLIKv9/PrpIDHLLIK0fHR/Y9e+7ClFnMTczk2mmXkhnXfggkMVT+OfvDjr/y4u43AUhv6THzNtWgDDWjDo/BNP/Sdku4VeHtV0GqzQmgVOGyFNGRvSAb3cGtAJxsWcXXMemjOkJuh7uugtOZm5QJwI6Sfby06w0+zNnQZZJEv9/Pb7a9zC+3vHjKJIojSUqc/KWl+DQr0QByCuUAZ0Jq556ejGQT//71GqIj9O0SDo5GZ89vSWHQtO1Ov3f+baxIX8iqcfIwoU6t44XVT/LL835KlNFMnb0Bv98f3D8wKTTwjTUuJJqX1vyS7878DmmmJIod5fj9fvaVy6u35iTO4LoZl2HShfHyJb9i1fjlKBVKoowRVNtq8fv91NrqAShtqmh3rYB6RwMmfRizE6czK2FacNJxW2kRycH6OF2VNQjXhXFT5hWYDSaSTQk0Rci/qAuOyNdWmjzsLjvzy5QDgd+/j3zKT9Y/Ra2tPlgQ9auWshpDUY+pv5LC4pncYfXUO4c/IbuytYbRv7I/bPe8pbkag1pPiKb3qyaH0vTYSQAcqTrOvrJswnVhpEUkn+aoU4sNiebH53yftZMvRKVsP6tgadp8IvThZFfmkBAay51zbmDOyjuDz6vCWoNDTVRim+3te3AkpQpNZBIuS2Gn69d+8WawByevZb5apwDH3JJduQcBTmbcZLQqLf/K/ii4ratSHnm1hVQ2V+PwODliOX7a857tYswGVEqpR8NKxwrrMOrV3RYNjYkwYKkVAY4gtBPRMt9mnDmNc1LncOfcG5kc0zpRLVwXhlKhJEIfjtPrwuZuTT3eGuC0Bklh2hAUCgWTojOweR3sLjvIl/nfAHBz1lXoVJ3ntkQazDi9LppdtmAPTrPLRnZlDv+7+blgoUOX102z237aIRuFpAgGXeHazt3DbY2PGoNP6UUTKuH1yF3y48YkUN5kCWZh9fv9NDoHfnz7q4JvsTTXEK4Lo8ZWx10f/5w7P3oYq6uZbUW7SQqLZ0zE8J9w25WOQ00f5mzg2W2tteUqO/yRszTXdJofdjYI1YaQHBbPtqLdFDeWkxU/JZiAcqAZNHrumXcrU2Mm8ODiH7BizCI05tYAvm0gI7XptVSFdx7208Sm4m2qwWuTexBcNaVYPvg9zvJcoiYuIkRjxN8yWbnTEFWgB6cHE401Kg0LkmcG0zdA6zB0gKepjq+Pt1ZMbzukOVIpFRLxUcbTVhV3e3zkltQzISUCRTe5bqIj9DTZ3NidHppsLn77jz1U1HQ/hDjSiABH6ESlUPLKpb/mseX3d7tfII9FXZtVTNXdTKqc1LKC4rfbX2VX6QHGRaafcgJpIBipttUGe3AAfvHV82RXHgvmsgkUy+xJlfMFKbMA5Ama3ZiTOB2lpCCmZUzcZDawaMp0ALYVyss8N+dv544PftqupEV39pcf4bffvHraSsoHW3o0fr/qcS6fvAqv30eDo5G3sz/G6mpmadr8AU81P1ja5j15+ZJfsTB5VvBxUlh8u4DR5rZTbavtcXmD4WZSmyreZ7qUxtTYCTy2/L7gvDKFWosyVP7569hTE6DQdE6WqkuWe55seXI18vqt72I9tAWA0BnL29UC6xjgqMyt9bGcFSdxlp9s97yrugTbidYh3psyr2gX9FW0GZ70e90UPf89Dh7/GpMujLiQaPZVHO7uLRgxEqJCKKtu5v7nvmJ7dtfB4qG8atweHxNTu5/XFShTYamz8Y/1OXy5p4TXPz6CzeHmH+tzaGw+u4sm94QIcIQumXRhnSpHdxT4g1Vrr8fudnDnhw+xOX87epUOg0bfaf8p0eNJ0cezIHkWcSHRrJmw8pTnDgRID274ZXB1U1v7yw/j9rqDE4x7Mun28smr+Nniuzh/7JJu98uKn8obVz6PRiG//vikMKbFTiRCF87Wwp34/X72lGXj8/vIaSn50J0GRyMvfPtnvi3ey7uHP+1238qmKsx6EwaNnu9Mu4QnV/wYgPV5XyFJEovT5p72esOVQqHgiskXccfs64nQh3NDplxpPEIXTqTB1C7AOWw5jt/v7/Py6qE2Pkoug5IUFk9W/JRBv36gIGfHACf+xifRj52JLm1qp2OM4+eCpKD5qJw7x1khBylRF96OLnlSsOgodP55U+qMKAxhWLM3U/raTyj728/xuVsL1lb865dUvP1LHMXyZPIQjZH/u+T/8cjSe4HWHpzqz18l/1ffAaBGrSQ+JJqMyHSqmmva9RS35ff7qN/xEZYPn5cnVp/FAkNOucX1fLG783wogE+/yUeSYNms7oc9A5XUq+rs5JfJvyddHi8vv5/NWxuO8c5/R/6w35AvExfOXma93GtSa68nr7awdQnzKVaM6NU6rk1cTWZm5mmTWXVcdZKVMJX4kBiWpM0ju/Iobx54nwMVR4O9Rz2pNK2QFMHVUqejUihZev54GursnLt6EgqFgkWpc/j42CZyaws42rLMNZCuvjsbcrfQ5GomVBvC5ye+ZM3ElV1mcQ3kHmqbN2aMOQWlQk5+OCNu8qBlfz1TrpnWmiYgymDmqZUPEqoN4e1DH+P0OHF6XGhVGg6UHwFgRodJtWeLhcmzaHJaWZI2b0h63NTmeBxFhzsFOPqUKehTug64lMZw9KlTsJ/cj8daj7umDOPE+YTNuhCAi8efi0kbyoKUWRjUnb/A+Gytqxn9Hheeugo0Man4fV489fICgerPXyXxe79BkiRMujDCYkNQK1RUWC18lf8tuSU7WQ7YFRIOpYIoTUhwFVlJQ3kwcGyrZuPrNO76BABr9ldEXXgHYbMu6P2bNgy0zT6cU1CH3+9v9/nJKaxl5+EKZk2MJT6q+7lpsWa5Bye3pJ4TRXLPekF5IzUtxT5LLCN/CbnowRH6rG0PTmBODHRett0X46PGcn7GkmDPjQTcnHUl6RHJwfIEe8uy2Vd+CIWkYFrsxH5fs6PkdDN3/Ww55pZfJHMS5WGqT45/EczuXNiDACdQff26aZfi9fvYW9Z1PSurqxmb295uWEajVAfn3CxNO/smF5/OuMh04kKig5NWG53y/I8DlUeJNkaetUNUKqWK1RPO7TSUM1i08WNb8t30LsmiPmMWfq+bpn0bwO9DE9caUGREpnHLzKuZENV1Qc1AIGRaLBfpddWW4bIUUvvlm8F9XJZCvE2tleUVkoLYkGhO1Bbwh51/ZX2oiuIxEzmQKX/WIxXa4KKA4oayTtf0+7w0HfgvmphUku58HlV4NLWb/4Hfd3YWm4yLbB06rLc6qahpHdJusrl4/NVvUauVXH/B6X/fTUqPxKBT8e4XJ3C1zCWsqrPj88nzqI4V1gb/PVKJAEfoM3NLL8uBiiOcqMkPbo8fgD9KGqWa7826lh8tkpNATo5uHaqIC40hPjSGXaUHyLYcY0LUGIxdzCkYaOMix6BTafmmSJ6Ho1QoKawv7XJlV1s1tjqMGgPzkrOQJCmYbLCjQDd9bIf3b2naPMaaU5mbOGMAXsXwFJj43ei0UmGtotJaxYy4yWftfKOhFpp5Lsk//IO8/LsX9C3zcBpaekS0cZ17TE4lcuUtpN73Zwxj5TpdrspCyv/1Sxq+lVfHGScuAMBR1j7J3/ioMe3mpr2sqOM/jfLQb5RfSXL4qQMcl6UIv8uBIWMmmshEQqYtw+ew4iw9O4dfxiWbSIsPY/5UedL2wdzWydf5ZXKW4+vOl2tYnY5WrWRxZiJOl5dQg4aVc1oXJ6xakEaTzU2J5fRL0s9mIsAR+sykC2Pl2MUcrcrl25K9xIZEc9+C73H/wtsH7BpzkzL53ar/YdX49tmss+Kn0uBswulxkhXfs2Gn/lIplMHu8lBtCEvT5mNz26mydV+huNpWS5Q+ghCNkQmRYzhYmYO7i7weFVZ5omVcaPsA5/yMpfy/837WZZmKkaJtD87BCnl4qmPOF6HnJIUStSmm18dp4tKR1Fp8ditIil4FOJJKjdIYHlwyXr/1HbyNrX+gw+fKdQSdZe0T992SdVW7oUgPrV8YItxeoo2RaJUaihs7T7p1lMiT8rVJco+GIUOeuN58bMdpv3icTuOuT2g+vqtf5+gtg07NCz9ezg+umIFGreTl9w+y87C8kKGqTp6D1N3S8I4unJ+GUiFxy8WTSYqRjzPq1cycKH82dh2pJL+sgR8+/V/yyxq6O9VZSQQ4Qr98b+Z3mJckf2MbE5HCwpRZ7Uo9DITEsLh2xQuhdWXKhMgxnJ/R/aThgXTe2MUA3DPvlmDytu6GqXx+HzX2eiJb3pPpcZNwepzthvQCAkNZcSG9/8N0tgtryZTd6LCyv+IoCknB1JgJQ9yq0UdSKJFacu2EZp6L0tj7+mtKfShSSzCuCo8h4eaniLnsPrSJ45E0Opyl7XtwdCotP196Dy+OuwSpQ1AS4XSgkBQkhcVT0iAHOD6nDa/dir3wEDXr/ySfI0n+rGgTxqI0mmjY8RGW937T67YHSM5m6v77V6o/e2VIhrvMYTr+3w8Xodeq+N1be6mut1NVLwc40RE9763OSDbxz6cu4vx5qSzJSiItPownbp/PrIkxmMO0fPj1SR57eTvFlVbWf9s5B9LZTgQ4Qr8oFArunX8raydd2O2qqIE2MXosf7z4KZ5Y8aMuJzyeKUvT5vOXtb8hM34KqS2TgQu6CFYCGhxNeH3e4KTpQEblk3WdV0gcrz6JUqEckCG+s01giKrGXsfhymOMi0zvciWecOZFrrwFdVQS5kBphz7we+QlyOHz1qBLmkjIlMVICiXa+LE4K/K67F1RNdQS6/KibLN83NAkz+eLC42mztFAQ9Fhyv/+OIW/vZnKfz8LyPONlHr58yNJCmKv+AnqqCRsJ3bj93SRIdnn7TZoadq7AUOOXJTUa63FfvJAH9+F/hmfEsG9V2ditbt54k/fcrJU7mGJjujdz4VOowoe98KPlzMh1YxapeSSxWOpbXRQb5VXu1XV2TleVMd3f7GB3JL6AX0tQ0WsohL6Ta1Uc+30Swf9ugPdU9QTkiQF5/skh8UjSRKF9V3XyAI6FVsMTBjOq23/bcnudnDIcpypMePR9aAQ5UgTGKLanL8du8fBvJZ0/sLgC52xgtAZK/p1jojF19B08AtCM9sXx9VEJeMoPIy3qbZdlmUAd30lF1c3obv0HnwKBfn//Qt+pfzzE6ORl6Uf/tcTxLnk4MRnbyJs9irMy69vdx5d8kRCJi+ibsu/cFbmo0tsn2qg7G+PoAqPJnbtA53a7a6roHbDn2g7GNyUvRlDxpnNZXQq86bGc9NFk/jbp0cpKG9Ep1ES0oNK4z1xyZIxuL0+8krqOZhbTW5JPX9fn4Olzs6mnUVkJJkG5DpDSfTgCEIfaVQaEkJjux2i6li6IkwXSrTBzFcF3/LijtfxeD0A7K84jMfnYXbCyJ1I3J1ArbMKaxUSEguTZw9xi4T+iFhyNcl3vYRC3T5LeWtJh87zadw1ZUxQhbFk7CKWpS/gfKUZT4MFv99PSJFc06ta3TpULam1RCy9FkUXPX3aliGrwBydAJ/LgbP0OLa8ffg7FAoGaNy3sd1jTUwajsLD/Z7P0x9XLB9HqEEOaqIj9AM28V6tUvKd8ybw81vncc6MRGobHezNkecBfnuofEhf80ARAY4g9EOqKYnK5mpKGsr55Nh/8fna/9LsKrNzfEvG2S0FOzhRK68+C+R9mZU4bTCaPezo1bpgyY6pseMxG0xD2yCh37r6QxxIQNixpIPf58VdXRKsag7y0JO3uQFPfSWhlfIwcI1aHnQIm3sxsVf8BKWu61wwuoRxIClwFOfg9/uoeOfXVK9/DXeN3Nvqd9rw1LUv3uv3+7Ae/BKVKRbbpPOJueYRdEkT8DbX42mwdHWZQaFQSEwdK+czMmgHpvemo4yk1rlWcybHUtPgIKeg7oxcazCJAEcQ+iEwp+aBz5/kr/vfZX/LCqCAnKpcJEkKptEHuGDc0jbPy8thc2sLiTREdFniYjSQJImHltzFD+fexD3zbh3q5ghnSNuSDm256yrwe91oolsDHF2KvLLKlruHiHo5d05tSw+Oad4lweXoXVFoDWhiUnEUH8V6aAu24ztp3P0pzsqC4D6BTM0Brop8vM0NGCbOx5k6G336dLTJ8uosR8mxPr7igZGeIAcglWeoeObC6QmcNzeFF3+8nBtXTUIhwf+9fxCPt3Mv19lEBDiC0A/nj10cDHIA9pZnB/9tc9vZV36IydHjgquEAOYkzuDNK36PUqHkm+I9bC/eQ3FjGWPNqYPZ9GFnUvQ4lqUvwKTv/cod4eygNsWApOgU4Lgs8qT7tj04gdpYjXs3EOL1o5WU1BqNKEPNwVpb3dGPmYHP1kjVhy8Et1mzNwf/3THAsefLk4l1adNb2xAY6mopMTFUzpkhp6e4fHnGGTl/eIiWe6/JIjU+jPSEcK5YMY6TpQ1sPdA599DZRAQ4gtAPGpWGh5fezU/OuZNoYyR7yw4Fx653FO/D7fOwoE1RybbHxYfEUFhfwu+++RN+v79doCQII5GkVKEyxXSag+Oqaglw2vTgqELNqCLicFeXIAHxuggKNQrKzr2GNw68x5sH3uv2WoYxmcF/61v+7Sg6AgolkkqDq0OAYzt5AEmlCQY1IC9zV0XE0ZzzLT5P5+KUfq+Hoj/eRe2Xf+/Jy++z5NhQ3v7lai5b2nUW6YG2aoGcAuPgiapBud6ZIgIcQeinEI2ROYkzmJ0wnWpbLY9seprC+hL+tv9djGo985O7XoGxMKV94JMxyntwhNFBE5mIu7Ycn7O1eKbLUgiSAnVkYrt9QyYvCv77pqkXo1XreO7Qe3x8bBMf5rSfENyRLqm1nEH0mruDuXnUEXGoo5JwVbeufvT7fThLj6NLmhDcD+Sh07BZF+CzNdJ85JtO13BWnMRTV0HTwc1nfFKuXqsatMze0RF6EqKMHGiTSflsJAIcQRggV01dzZzEGZyoLeDpr1+i2W3n7vm3BpdAd3T5pFX86bJnuDnzSuJDYkQPjjAqGDJmgteD7cTu4DZXZQHqyIROq67CZq8K/ntK2mx+ce5PMOlbK5m3LfHQkaRSE7P2AYyX3oNToyXqwtsJmb4M84obUZvj8TbV4HPJhSc9DdX4PS7UbXqQAkJnnIuk1nZaYQWtQ1dea60cpI0g08dFY6m18e4XJ/jdW3tpbO7cgzXciQBHEAZIiMbIDTMuB6DKVkukPoKZ3ZSRUCgUhGlDWD3hXH6/+olRmf9GGH2MExeApMB6ZCsAXrsVT31ll2UhVCERRJ5/GxGLr0FSKIkPjeG5VY9z0Xg5T4+luabd/n/e8y+e2/4anpZEfoaJC/hF4Rc8+t9n0U9bSsyaezCOnxPsKQrMBQqsrtJ06EECUOqMGMbNxlmSg6dBHrJp2P059qLD8pBXC3ve3uC/rUe24ao5u+evzJkkL4z46ydH+GJ3MVsPnDrf13AlAhxBGEBxIdFE6ORJstPiJopikYLQgdIYjj51CraT+/G5nbgq5VQJmlPUvQqfs5qIJVcHH+vVOtJNyQBUdQhwPs/dzDdFu/nrvncAOGQ5RqW1ipLGcjblfR3cT9NShNRdKwchgQBHHdU5wIHWoTLr0W/wNjdQs/5Vyt94DEdxDprYdCS1DluuHOB4mmqxvP9baja81ot3Bfx+P3vLDnGoMgfvMKiGPndKHM/dv5Tvr5VTVxwrPPuWjYsARxAGkCRJTIoZB8D02ElD3BpBGJ70YzLB68FRnIOzQg5welPYMyZEzoLctgenbQ6qDblbKG4oY3P+dgCMGgMf5mzE5/eRV1uIRS8PhblbellcgQDH3HWAox+b1RLE7Gm3ZNznsBI6fRn6tKk4So7hdTQHi4naT+6n4l+/pDlnx2lfT05VLv8+8hm/+voPPLn597xz+BP+m7eVWlt9T9+SM2JskomLzxlDjNnAieKzL8ARpRoEYYCdN3YxTU5rt8NTgjCa6VuWYjsKs3G3DPtoY9N6fHyMUU58Z2lunQTb6LICMNacSl5tIX/d9y5Hq3OZGDWWCVFj+SBnA8eq8/j99j8TqTfxXdr34EhaA8oQU6dknQAKlUauo1Weh6Okdcm4JiaFsFkXIilV2E7sxp5/MNgjBXIOH0fpMYwT53U6p8vrRq1QYWmu5rEvftPyuiJxet18dGwTbq+blWPO4Y4513c6drCNTzax9UAZFTXNxEV2nVwRwOv1UVVv73afwSR6cARhgE2JGc+jy9aJYpGCcAqa2FQUuhDsBYdwVZxEFRGH4hRZibsSoQtHqVC2G6Kqt8uFOWclTGNuYiYHK4/i9rpZlr6QxalzAfhv3jZq7fVUWKtQhkTgrinF7/fjqipGY07odkhZmzgOv8tB0/4vkLQGEm75f8R951EkpQr9WHmlpC13L87yPFC0lpTwe9y4LIU4Kwvw+/34/X7ePvQxt7z3AC/teoNj1fJy9eSweB5eeg+zE6bj9spFQg9ZhjbBYMCEVLnUzO2/3MSenMou96mut3PXM19w+y83cfhkDT6fn5oGe5f7DhYR4AiCIAiDSlIo0aVOwVmeh7umvFfDUyBP0I82mDlQcZSfb3qaTXlfU++QAxyTLoxrpq1BQkKr1LAgeSYppkRiQ6LZXiLPk2lyNeONjMNVW467phSfrRFt0vjuLimXf0AeltIljkOXOB5VS8JBtSkGdVQS9ry9OMtz0caPJe6ahzFOXIDf7aTk1Qco/dOPqPvqnxQ3lPHu4U9QSBKb87fz4o7XAfjJ4h+QEBrLnMTWRIMV1iqqm2t79d6cCctmJrNsVhIAf/vkKD5f5yXxG3cUUlrVDMDmvSVs3FnELU9uYOeRikFta1siwBEEQRAGnT5tGvh9gL/XAQ7AVVMuZkLUGIrqS3nr4AfUOxoAMOnCSQ5P4NaZV3PrzGvQt6xOTAqLC/aMADSER+J32rAelicf61O7rwOnbQlwAEwLr+j0vGFsFt7menx2K/rUKRgyZmGctKDdPvbCbLIr5QKgd8+7hYiWrN16tY7YlmG36XGTWTVuORePlyuxD4deHFOolh9dN4vLlo7lZFkD2Xmd8+PklTagUEjERxr55mAZn2+Xh+pe/U92lwHRYBABjiAIgjDo9GmtAcWpVlB1Z3HaXP5n+f0sTp1Lk6uZ/Dq5IKdJJ+fJuXDcMlaMWRjcv209OIB6o5yfqnHvBpAU6FKndHs9VVgkoZkribzge+i72NcwtjWhZ9js1YA8rBWgT5+OqyKfQ5U5KCUFmXGTOX/sEkCeIB0YHlMplNw682rWTDwPgEOVQx/gBMybEgfAydKGdtvdHh/5ZQ0kx4SwYk4yjc0uckvkfSpqbBw+WdPpXINBBDiCIAjCoFNHJqIMked2aOPS+3yeFJO88ulgpTz5t20iwLY6BTgauTK3z9aINm7MKSuTtxW9+geEt0k+2JYueRLq6BRM51yFKlR+XerwGKIvuZekO59HG5+Bx+PiiOUEGeY0dGodF45bxlhzKt/vYiJxhD6cpLB4DlmOnfEsyT2VEie/t0UVTcFtOw6Vc/lPP8JSZ2dMYjgr57QmS8xINgFwqIsen8EgAhxBEARh0EmSRPjciwmZugSloeugpCdSWwKc0kZ5rke4NrTL/eI7BDg1itbVUiHTlvb5+gGSSk3yHb/DvPQ77baHTlvKpppjbFLYyDNosHudwVQSRo2B/3fezzinZRJ0R1NjJlBrr6fcaglu8/v9HKrMweF29LvNvRVm1GAK1VJU2Rjc9vm3rRmcU+PCiDLpiYmQF1hcOD8NjVrJ4XzRgyMIgiCMIqYFlxFz6bp+nSM5PCH47xCNEbVS3eV+CWFygKNX61AqlFR7Wlf4hA5AgBPg9Lh44LMn+e22V7G6mrE01/D6vnd4t2Ivf2/pAelpWZapsXLhz7bDVF+c3MaTm3/Pv498NmBt7o2U2FCKK5uCK8IKylqHq6ZlyPOIfnHnIlYvSmfpzEQmpkaQU1iHx9t5+f2ZJvLgCIIgCGetEI2RSH0ENfa64ETdroRrQzGq9UQZI7G57dTa6zGdcxVKo6lXS9RPZ09ZNiWN5ZQ0lrOn7CDz2hTbdSrkPoUx5s41r7oyLlIeuitqKOWI5ThKhZJ/Zn8ItPZYDbaU2FAO5lZTVW/H4/FR3eDgooVpXLp0LAlR8rym+Cgjd14urwabnB7Jwdxq8krqmZBqHtS2igBHEARBOKvdOfcGihvKWZgy65T7SJLEXfNuRq/W8/cD71Nrr8d8wXdOuX9fbSvahYTEDTMu553DH7O1cCcg58c6bDlOiNeHWdN1Ad6OTLowtEoNe8qy2ZC7pd1zbp/7FEedWSnxci9UfmkD1fVyL9j0cdHB4KajqWPkrNOHT9YOeoAzLIaoNm/ezEUXXURWVhaXX345+/fvDz63adMmVq5cSVZWFuvWrcNmO3X1WEEQBGH0mRE3mYsnnItZb+p2v9mJM5gSM54wXSgNzqYBn7zr8rrZV36YyTHjWDNxJVNiWnPrXDxhJQCJDjfu6pIenU+SJGJCoqixyWUSksPi+eniH5IYGkd189CUTpicLgcpB/Oq+fpAGRq1kpkTYk65/4TUCJQKaUhWUg15gNPY2Mj999/P448/zr59+7j22mt54IEHAKisrOShhx7imWeeYdu2bbhcLl5++eUhbrEgCIJwNgvXhuL1ebG5+5dpt9HRhKtNbp3q5ho8Pk9wjk0gwIkxRjIjbjJzTenMa7DL2Y57KC4kOvjvBxbdwayEaUQZzVTbaodkdVVKbCgRoVq+3F3Mkfwa5kyKRa899WCQTqsiI8nEkfyaQc+HM+QBTlhYGFu3bmXu3Lm4XC4aGhowmUwAbNy4kfnz55OVlYXBYOCee+7hvffeG9oGC4IgCGe1cJ280qrB2XSaPU+t2lbL9z54kD/v+Wdwm6Ul63C0UR6WmRIjTxJOCU9EpVBy36LbmWz3UL/9P3gae9ajEdsS4KgVqmCwE2Uw4/S6sLqa+9z+vpIkiWkZUTTZ3Pj9sHRm1wVK25oyJhKr3c3uo5X4/X5sDjfFDWX8afdbeLyeM9bWIQ9wAIxGI8XFxWRmZvLcc89x//33A1BQUEBaWlpwv9TUVCwWC1ardYhaKgiCIJztwlqWkjc6+h7gvHngfQC+yP8muC1QGyumJcBJNSVy0fgVrBq/HABVSASR538XT10F9d/07Mt6XIg8cToxLA5lS42rKIOcZ6faNjTDVIumyyvXLlqYxrwp8afd/8IFaRj1ap79+x7ufvZLbvyfz3n/0CY25G3hRG3+aY/vq0GbZLxlyxZuv/32Ttvvvvtu7rnnHuLj49m/fz8bNmxg3bp1bNq0CbvdHuzNAdDr5bX1drudkJCeTdIK8Pl8eL3efr0GoX8C77+4D8ODuB/Dh7gXgytUI6+aqrM3dHrPe3IvnB4X24v2ACAhYXU0o1frqLTKldEj9RHB42+cfnm78xkzV1K7+U2cVcU9ut/RejlYSgqLD+4fmGtksVaTEpZwqkPPmHlTYvnb/5xPmFGD3+/jdC8jJkLHQzfN5vdv7w8mCTxeJefPKW+0MN7cdSbrriq798agBThLlizh2LFTp5xWqeSmXHzxxbz22mvs2rULvV6Py+UK7mO3y+OlBoOh19fPzc3t9THCmZGdnT3UTRDaEPdj+BD3YnBU2eSK2Edyj6Kp6nqf7u5FlbMWP36UkhKv38t/d28mSR/HiQp5bk3piWIsivJTHh+qNeGtLGy3oOZU7F4HoSojZmdIcP96m9xTtP/4QVSWwc8v0xP17kZ21mezPHIeaoX89/0HF5gpr3Pz6voKqhwVIMGBvEOE1+vOSBuGfJl4Tk4Ojz32GG+//XZwm8vlIjQ0lPT0dHbs2BHcXlBQQGxsLEZj73MWZGRk9LrXRxhYXq+X7Oxspk2bhlKpHOrmjHrifgwf4l4Mroj6KN4u+5ywaBOZkzPbPdeTe7Gr9AAUw8LkWXxdtBNVlI7McZm898UmTLow5syc3e31q4vH0nx4K9MnTUCh1Z+2vQtmzW/3OMmWwltln6I26cjMzOz6oCH2z+wP2ddwlBVTFpOZ0Foh3evz87dv3sYvyYGZFKI85WuwWq396pwY8gAnPT0di8XCO++8w+WXX857772H3W5n5syZjBkzhueee45du3YxZcoUXnzxRVavXt2n6ygUCvGLY5hQKpXiXgwj4n4MH+JeDI4IgwmAJlfzKd/v7u5FZbNcW2lBihzgFDSUoFQqqbLVEm2MPO091EQm0gz4Giyo43tfaDQ6JBKtUkO5tXLYfl6KG8sAKG2qYJ4yK7hdqYSoBBe1LY8tzTWnfA0KRf+mCQ/5JGOtVssf//hH3n77bebOncsHH3zAq6++ik6nIy4ujqeffppHHnmExYsXYzAYWLeuf2m9BUEQhNEtVCv35n+eu5n3j3ze6+MrWubajItMI1wXRlljBU1OK/WOxuAE4+6oI+WVR+7a0l5fG0AhKUgIjaW0sbJPxw+Gwgb5tRXVt77Galst/zm6Hn94GX4/+Bx6yhtPMUY4AIa8Bwdg8uTJvPPOO10+t3z5cpYvXz7ILRIEQRBGKpWitcfgw2MbWTv5wl4dX2G1oFfrCNOGkhAaS1F9Cd8W7wMgM27KaY9Xm+WVR67qvgU4INfW2la0G4fHiU6l7fN5zgSrqzmYnDAQ6AD8afdb7C0/BICvIQq/R0Ozrgyb245Bffqhut4a8h4cQRAEQRhsD57zAyQkPF5PrxPmVViriAuJRpIk4kNjaHbb+fzEl6iVauYkzTjt8eqoJCStAdvxXX1O1pfQUh29vMlymj0HX1F9WfDf5U0W3F43jY4m9lccCW6/bdEq/HZ5Pm1Jw6knZPeHCHAEQRCEUWd24nTOHXsOTq+r24R/Vc017RLqub1uam31wQR8gUCjuLGcWfHTetQToVBpCJ2yGJeloFdZjdtKDIsDIK+2gA+ObsDSPPilEE6loL4YkIuF+vw+3jjwHlsKd+Lz+7gl6yrumH09502ci2ST8/kcqTpxRtohAhxBEARhVArMl7FYqzs95/f7sTqb+fH6X/Dbba8Gt9fY6vDjDx4bCHAAFqV2v3qqrdBMuTZV8+Gv+9T2MREpSEi8svsf/P3g+zzx5e+odzT26VwDLbemAIA759zAmIgUPj+xmfePfIYkSSxPX8jKseegUamINySBX8ERy/Ez0g4R4AiCIAijUoxRzhL8TdFunt32Mi/tfIOq5lp8fh8//+JpbvvPj7G7HRyyHAtOlg30lEQZ5KKTCaFyoUm9WkdW/NQeX1sTl4ak0eOszMdjraPoDz+k6eCXPT4+LjSGdQtuw6DWMyNuMlXNNXx2vOfHn0nHa06SEBpLcngCd827GZBXrKWFJ6FXt+a8SYkx4bOGk1Odh9fn7Xdiv45EgCMIgiCMSoFemE9PfMmukgN8mf8Nz3zzfxTZy8mvK26374a8LYC8Egha603FhEQToQ9nWdoCNEp1j68tSQo0MSm4LIU07PwYT30l9oLeJXpcmDKbP699locW30Woxsj+isO9Ov5MqHc0YmmuYXykvPw9KSyeCH04ABOix7bbd2ySCW9jBA6Pk//5+C9855/r+Ojw5gFriwhwBEEQhFEptqXOE8Bd825m9fhzKW4o492y9QBcMvF8nlr5IJH6CI5XnwSgKlBQs6UHR6VQ8uLq/+XmzCt7fX1tTBo+u5XGXZ8C4GnoPFR2OgpJgUKhYFrcJPLriod8mCrwPo2PSgfk4pwzYicDMDGqfYBz8aJ0orTyXKJjtj2g9PDGoX/x0d49A9IWEeAIgiAIo1KIpjUr/sKU2Vwy8TzUChVefKSEJ3LDjLWMi0wnOTye0sYKvD4vlpYkf1FGc/BYtVLdp6R0mphUAPweFyDhaeh7TpjMODmIOFhxtM/nGAgb87YgITG1pZI6wIXjljI7YXqnJfQ6rYr71y4BQJJat79x4k+8vus/eM+WWlSCIAiCMJxIksTjy+/HoDagUiiJ0Ifz8OK72XJoOxfOXBHcLzk8gf0VR7j2nbsBMGoMA5K3RRMrBzjKUDOa6FTsJ/dR/Mr9RJxzJSGTF/XqXDNaApz9FUc4J3UO3xTtZlbC9HZzXs60I5YTHKg4yuLUucS1zE0CGGNO5cHFP+jymIlxyWiUalxeN9TF48WLMsLCpyfXY9LoSCa6z+0RPTiCIAjCqDU5ZjxpEUnBxxOjM5gbMY2U8MTgtuTw9hW7m122Abm2JjYdXcpkIs+9KZj8z11VRPOxHac5srMIfThppiQOVBzh0+Nf8vy3f+Ff2R8OSDt76tPjXyAhceWUnpdUUigUJIXJr90oReEqmIyrYDJmTQxf5n/Tr/aIAEcQBEEQutExwJkSM35AzqtQa0m48X8JmbIYVXjrfCB3dXE3R51aZvwUmpxW/n7wfYBBzY1TY6tjV9kBMuMnE9+m96YnAsHkNYtmMzUlEa8lhbGamfjo3xCVCHAEQRAEoRuBpHoAz1zwc9Yt+O6AX0MV3joU46opw+/z9vhYj7We4lfuZ6pCnlPkbTnW7nEMbCO78XXhTvx+P+eNXdzrY89JncOUmPEsnTCdB2+Ucwmp7H0fmgoQc3AEQRAEoRs6lZZ75t1KbEgUqaak0x/QB0qjqfWB14O7rgJNZOIp92/LUXwEd1URCSUFfHfmd3gr+wNsbvuglnE4UHEErVLD9Ja5QL0xPW4S0+MmAaBV+lEpJawNSqKTT1+4tDuiB0cQBEEQTmNx2lzGR405Y+fXxqWjjkpClyqvNHJX9XyYyl1dAoCzIp8Lxi3lL2t/w8KU2dTa67n1/R9xqPJYu/39fj+7Sw/i6UUvUXdsbjs5VblMiRnfq1xAXVEoJMzheqob7Iw1p/bvXP06WhAEQRCEflNo9CR///eYV9wEgKsXAY6rJcBxWQrw+7xyEdAQeR5Ms8vGBzkb2u2/q/QAT299iQ+OruelnW9Q3ZLbp68OW47j9fvIjD99JfWeiArXUdNgZ+WY3g93tSUCHEEQBEEYJjTRySApcFbm9/gYd7VcRsLvduIsz6N6/WuEOp3B521ue7v9D1nkHp13Dn/Cl/nf8O6RT3vdTofbwecnNmN1NpNfVwR0TuTXV1HhehqsLjQKTb/OI+bgCIIgCMIwoVBr0UQndaoy7ve4qdv6DiHTlqGJbF3V5fd5cdeWgaQAv4/yvz+B3+0gRqUgJCMJq8dBQX0JHp8XlUIJQE5VLgA+v7xK6evCnVw3/TLCtCE9bueHxzby7uFP+Wf2h4yJSAEgvk3h0f6IMsk5hix19tPs2T3RgyMIgiAIw4gmLgNvYzUea31wW8PuT6nf9m8q//005f94EnvREQA8DVX4PS6MkxYgafT43fLKKbPHx29iF3H55FW4vW6KG8oAsLnsFLYUDgU5m7Pb62Znyb5etXF78V75fG47hyzHiDKY0ar61+MSMHOiPLz29qb+VRkXAY4gCIIgDCPaeHmox1Uh9+L4vW4adn4CyJOP7fkHaNwr18tq3LcRAOOkBSTe/Ev0Y2cSe9XPAPBa68gwpwGQV1sAwPGafPz4WZA8CwmJ66ZfBsCxlhpSPVHcUEZpYwVzEmcEtyUMUO8NwNSxck6g4kprv84jAhxBEARBGEYCAY6zLC/4f29T+6R99vyDeBpraNz1KZqYVIwT5qGJSSH+Oz/HkDETJAWeployWlYi5dYUkFOVS25LoLN6/ApeW/sMK8eeQ6wxiuM1PQ9w9pUfAuD8jCXBiuwxCi2lf34QT2P/kwsqFRJXLM/o93lEgCMIgiAIw4g2Lg1JrcVeeAhPYzXOCjn4MC2+GgBJo8Nna6Ty38/g97iIWHYdktT651xSKFGGmPBa6zDpw4nUR/BF/jc89sVvePvQR0iSRKopKVhsdFzUGMqbLGzO346vBwUuj9fkIyGR6vQwVicXHTWVF+Isz8N6tH/lFQKuv3AiD98yu1/nEAGOIAiCIAwjklKNLnkyjqLDFL3wfWo2vAZAWOa5JNz0C2IvewAAZ9kJtIkTMGTM6nQOVYgZT5O8/LtjPpmk0Lh282XGR6YD8Medf2Nr0a5u2+b3+zlRnU+SNpzaN58g4cgeAKJL5N4m+8n9fXjFnalVSiLD+1fQVAQ4giAIgjDM6NOntXus0BpQhkaiS56EPiML88pbME5aSNSFtyNJUqfjlaEReK11+P2+dqUmACINEe0en5MyJ1iN/Php5uLU2OqoczSQ6pNXZC0ft5T7qlykOjwgKXAUHcHndnZ7jsEiAhxBEARBGGb06TPaPVZoDcFARpIUmOatIfbyH6GNS+/yeFVoJPh9eJsbgsFLuDYU6Fw8NERr5OEldxOuCwvO0TmVwFyd5GY7Cn0o0Rfeztybfo1p0RWYFl2O3+PqtMR9qIgARxAEQRCGGW1sGvE3Pol55S0ASKrelUBQhsi9NN6mOiZFj+WZSVfw+1m3cgNmLouf2Wl/SZLIMKdSWF+Cy+s+5XmP18gJCBOrLGhj05AkCVVYFOZl16GJTQPA01iN3+/DXT94tbC6IhL9CYIgCMIwpE+ZgjY+A5elgLBZq3p1rCpUnvzrsdbi3H8S76cvUQFMBZwRXxJ6fueenwxzGnvKsimoKz5l3a3jVbkYURJptwUDmtZryiuqvE21WLO/ouqjP5B0x+/k7MxDQPTgCIIgCMIwpVBriVlzD7qE3i2bDvTgeOotNOz8SD6X1gCAoyVJYEfpLRmJ2yYCbMvldZNfV0RSsw0JughwWoKqphqcZbmAH1dNSa/aPZBEgCMIgiAII4w2IQMkBfXfvI+7uoTweZeQ9uM3ME5ehKsyn5JXfxQs0hmQECYn6ytrquzynDmHv8ALpLp8hM28AOP4ue2eVxpNgIS3qRZ3XTkgD5ENFRHgCIIgCMIIo9SHok+dgtdaC5KCsDnyEFdg8rLLUoAtr315hhhDJCqFioL6Yj49/gUurxuvz8vu0gP4/D72H9oEwOzz7yRq1R3BHqEASalCaQzH01SLu1YOcDxN/U/811diDo4gCIIgjECGCfOwF2RjnDgfdbhc3ylk6mKcZbk07duAt7G63f4KhYL4kGgOW45z2HIch8dJiNrAn/b+k+9PuIgcZy1qg5bJqZ3z7gQoQyPx1Fvw2hoBuVzEUBE9OIIgCIIwAoVOXULojBWYl10X3KZQaYi64DZA6rKsQnxYa02pWls9O058DcAX+z+gQKdmYkQqGuWpV3SpQs14m+uhpVK5tyXZ4FAQPTiCIAiCMAIpdEaiL76r03ZJqUYZEoGnQw8OgFlvCv67uLGcE01yFfITejmomZHSeYl5W4GJxgGeIQxwRA+OIAiCIIwyqrBIPA1Vnba3DXCOVp3Ag59YpwcAo1LLOSlzuj2vsk2AI2kNeMQQlaygoIAZM2ZQUtI6s3vTpk2sXLmSrKws1q1bh81mG8IWCoIgCMLZTxUehbe5Hr+nfVK/1eNX8L1Z1zI3KTO47XtWFT+Z/11euuzXmA2mbs8bMnkhxsmLiF5zN8Zxs/E7bfhc9jPwCk5v2AQ4fr+fRx55BIfDEdxWWVnJQw89xDPPPMO2bdtwuVy8/PLLQ9hKQRAEQTj7qcKigc6rnNRKNednLMGkCwMgzOMjJiKBOamz0am0pz2v2pxA7NoHCJ2+HFVYZMs1hqYXZ9gEOG+++Sbjx49HqVQGt23cuJH58+eTlZWFwWDgnnvu4b333hvCVgqCIAjC2S8YfHSYaOyut1D+jydYGDkOpaTk6soG1JEJXZ3itJShUfI1uhgKGwzDIsApLi7mrbfe4kc/+lG77QUFBaSlpQUfp6amYrFYsFqtg9xCQRAEQRg5VC3Lxp2lx9tttx7eij3/IPGlRfwp61Yy7G7U5sQ+XUNtlquYB3LiDLZBW0W1ZcsWbr/99k7b77rrLvbu3ctPf/pTjEZju+fsdjsmkyn4WK/XB7eHhISc0fYKgiAIwkilHzMDVVgU9d+8R+iMFSiN4QA4S3IAcBQfxVF8VN43ZVKfrqE2yz0/gazGg23QApwlS5Zw7NixTtv/+c9/Eh0dzdKlSzs9p9frcblcwcd2uzxRyWAwdNr3dHw+H16vt9fHCQMn8P6L+zA8iPsxfIh7MXyMmnuhUGFafgPVHzxH3Y4PiVh6HX6/D0dLgGPP2wuAYfIilJFJfXo/JGMEKFW4a8r6dLzP5+v1MW0NeR6cjRs3sm/fPmbPng3IH6pLLrmEV155hfT0dHbs2BHct6CggNjY2E49PT2Rm5s7YG0W+ic7O3uomyC0Ie7H8CHuxfAxKu6FX0+YwUz97vUUGjNQOBoIdzS326U8agal+/f3+RJhunCs5QWU9eMcfTXkAc5rr73W7vHkyZP58MMPSUpKIikpieeee45du3YxZcoUXnzxRVavXt2n62RkZIhhrSHm9XrJzs5m2rRp7SaTC0ND3I/hQ9yL4WO03YtG32XUbfwz4/QuPO5m6oGwuWto3P0pkRf9gNSpS/p1fkteOva8fcyYNhVJ2buQw2q19qtzYsgDnO7ExcXx9NNP88gjj1BdXc2yZctYt25dn86lUChGxYf1bKBUKsW9GEbE/Rg+xL0YPkbLvTCOmUEd4Lbk03xsB0pjOJErridyxfVI3ZRk6ClNZAL2E7vxNVahiUrq1bEKRf/WQQ27AOfIkSPtHi9fvpzly5cPUWsEQRAEYeRSm+ORVBoadn4Cfh+mhWsHJLAJ0KdMpeHbD2n49kOiL/7hgJ23J4bFMnFBEARBEAafpFCiiU4JFscMmdp5wU9/6DNmok+bRtOBL3DXlg3ouU9HBDiCIAiCMIppYlIAkDR61L0cRjodSZIInXkB4MdRnDOg5z4dEeAIgiAIwiim0MkrkzXRKUiSNODn18aPAcBZkT/g5+6OCHAEQRAEYRQLn7MaXeoUotfcfUbOrwqPQaELwVmRh9/rwVlZcEau05EIcARBEARhFFOFR5Nww5No+lhz6nQkSUIbl46rsoCqT16i9E8/wlmed0au1ZYIcARBEARBOKM0cWPwu51YszcD4Cw7ccavKQIcQRAEQRDOqJApi9s9HoxhKhHgCIIgCIJwRmnj0jFOnB987Cw/ecavOewS/QmCIAiCMPLEXHYfzop86r5+B3vBQfxe94AmFexI9OAIgiAIgnDGSUo1usTx8rJxrwdXVXGnfZqP76L0rw/jc9r7fT0R4AiCIAiCMGg00XJiQVd1CQB+vx+fSw5orNmbcZYcw1F05FSH95gYohIEQRAEYdBoopMBcLf04DRsf5/azW8Red6tOEqPA+AoyQFNWL+uIwIcQRAEQRAGjdocDwolrupifE47dVv/DX4fNRteC+7jKD2Gz+MD8+Q+X0cMUQmCIAiCMGgkpRq1OR53dQlNB7/A73ZgWri27R44y3LxNtX26zoiwBEEQRAEYVBpopJw11XSdOBLJI0O0zlXoUubBoBx4jz8bieuyv7VrhJDVIIgCIIgDCpNTCrNOd/iqszHOHkRCrWWuGsexm0pwlVdQnPOt/g9rn5dQ/TgCIIgCIIwqMJmXRj8t3HiAgAUKg3ahAzUA1QTS/TgCIIgCIIwqJSGMBK/+yxN2Zsxjpvd7jm1OX5AriECHEEQBEEQBp02Lh1tXHqn7Up9KAp9SL/PL4aoBEEQBEEYVtTm/g9TiQBHEARBEIRhZSACHDFEJQiCIAjCsBIyeRF2t5emfpxDBDiCIAiCIAwrhoyZmGPHUX38eJ/PIYaoBEEQBEEYcUSAIwiCIAjCiCMCHEEQBEEQRhwR4AiCIAiCMOKIAEcQBEEQhBFHBDiCIAiCIIw4IsARBEEQBGHEEQGOIAiCIAgjjghwBEEQBEEYcUSAIwiCIAjCiDMsApxXXnmFqVOnkpWVRVZWFosWLQo+t2nTJlauXElWVhbr1q3DZrMNYUsFQRAEQTgbDIsA59ixYzz++OPs27ePffv2sW3bNgAqKyt56KGHeOaZZ9i2bRsul4uXX355iFsrCIIgCMJwN2wCnPHjx3favnHjRubPn09WVhYGg4F77rmH9957bwhaKAiCIAjC2WTIAxyXy0V+fj5//OMfWbBgAVdddRX79u0DoKCggLS0tOC+qampWCwWrFbrELVWEARBEISzgWqwLrRlyxZuv/32TtuvvPJKZs6cyS233MLMmTP56KOPuPPOO9mwYQN2ux2TyRTcV6/XA2C32wkJCenRdX0+H4CYuzMMBO6F1WpFoRjy2HrUE/dj+BD3YvgQ92L4CPzdDtyT3hq0AGfJkiUcO3bstPtdccUVvP766+zfvx+9Xo/L5Qo+Z7fbATAYDD2+rtPpBKCkpKSXLRbOlNzc3KFugtCGuB/Dh7gXw4e4F8OH0+nscadGW4MW4JzK8ePH2bp1K7fddltwm8vlQqPRkJ6ezo4dO4LbCwoKiI2NxWg09vj84eHhpKWlodVqRTQuCIIgCGcJn8+H0+kkPDy8T8cPeYBjNBp54YUXGDduHAsXLuStt97C7XYza9Ys0tPTee6559i1axdTpkzhxRdfZPXq1b06v0qlIjIy8gy1XhAEQRCEM6UvPTcBkt/v9w9gW/rkv//9L88++yzl5eVMmDCBJ598kgkTJgDw5Zdf8qtf/Yrq6mqWLVvGU089hU6nG+IWC4IgCIIwnA2LAEcQBEEQBGEgiUkpgiAIgiCMOCLAEQRBEARhxBEBjiAIgiAII44IcARBEARBGHFEgCMIgiAIwogjAhxBEARBEEYcEeAIgiAIgjDijOgAZ8+ePaxZs4bMzExuvfVWqqurh7pJo9Ynn3zCBRdcwKxZs7j++utFnZdhYNeuXUycOHGomzHqlZaWcttttzFnzhzWrFnD/v37h7pJo9b27dtZvXo1s2bN4rrrriMvL2+omzQqvfbaa/z85z8PPv7Xv/7F4sWLmTVrFo8//jher7dH5xmxAY7D4eDee+/l3nvvZefOnaSmpvKrX/1qqJs1KuXl5fHEE0/w7LPPsnPnTpYuXcrdd9891M0a1RwOB48++igiz+fQ8vl8fPe732XhwoXs2LGDW2+9lQceeGComzUqeb1e7rvvPh599FF27drFvHnz+J//+Z+hbtao4na7ef7553n22WeD2w4dOsTzzz/P66+/zsaNGzl8+DDvvfdej843YgOc7du3Exsby3nnnYdGo+G+++5j/fr1wfLrwuApKyvjhhtuYNq0aSiVSq6//nry8/Npamoa6qaNWs899xyLFy8e6maMenv37kWhUPC9730PhULB2rVreeGFF/D5fEPdtFGnoaGB+vr64HuvUChEWaBB9otf/IJDhw5xzTXXBLd98sknrFmzhrFjx2I2m7njjjv497//3aPzjdgAp7CwkLS0tOBjk8mEwWCgqKho6Bo1Si1evJh77703+Pirr74iISGB0NDQIWzV6LV//3727t3LLbfcMtRNGfVycnJIT0/n4YcfZt68eVx77bWoVCoUihH7q3nYMpvNXH755dx6661MnTqVf/zjHzz66KND3axR5e677+aVV15pVyC7oKCg3d/y1NRUTp482aPzjdifIpvNhlarbbdNr9fjcDiGqEUCwNGjR3n88cd5+OGHh7opo5LL5eKxxx7jySefRKlUDnVzRr3Gxka+/PJL5syZw9dff81FF13EXXfdhdvtHuqmjToej4eQkBBef/119u3bx9VXX819990nhnEHUXR0dKdtdru9XU+aXq/Hbrf36HwjNsDR6/W4XK522+x2OwaDYYhaJGzfvp2bb76Zn/zkJ5x33nlD3ZxR6YUXXmDFihVicvEwodFoSE9PZ+3atWg0Gm666Saampp6/A1VGDgbNmygpKSEBQsWoNVquffeeykqKuLYsWND3bRRTafT4XQ6g49783d8xAY46enpFBQUBB/X19fT3NxMSkrK0DVqFFu/fj133303Tz31FFddddVQN2fU2rhxI2+88QazZ89m9erVAMyePZuysrIhbtnolJaW1m4umt/vx+fziV6DIVBZWdludY5CoUCpVKJWq4ewVULHv+UFBQWMGTOmR8eO2ABn/vz5lJeX89lnn+FyuXjuuedYsWKFmDQ2BAoLC/nZz37Giy++KHpuhtjnn3/Onj172L17N5988gkAu3fvJiEhYYhbNjotXLgQj8fD66+/jtfr5S9/+Qtms5kJEyYMddNGnfnz57Njxw62bt2K1+vl1VdfJSYmpt38D2HwrVq1ig8//JDjx49TV1fHq6++GvxydjojNsDR6XS89NJL/N///R/z5s2juLiYxx9/fKibNSq99tprOBwOfvjDH5KVlRX8r7KycqibJghDymAw8Prrr7N+/XrmzJnDJ598wvPPP48kSUPdtFFn0qRJPPXUU/zv//4v8+bNY9u2bfzhD38Qc9WG2PTp07nvvvv4/ve/zwUXXMCMGTO47rrrenSs5Bd9oYIgCIIgjDAjtgdHEARBEITRSwQ4giAIgiCMOCLAEQRBEARhxBEBjiAIgiAII44IcARBEARBGHFEgCMIgiAIwogjAhxBEARBEEYcEeAIgiAIgjDiiABHEARBEIQRRwQ4giAIgiCMOCLAEQThrPP++++TlZVFaWlp8PG8efNEfTNBEIJELSpBEM5K9957L83NzTzxxBNceumlPP3005x77rlD3SxBEIYJEeAIgnBWqqurY82aNahUKs4991weffTRoW6SIAjDiBiiEgThrBQREcGqVasoLy9n7dq1Q90cQRCGGdGDIwjCWenIkSNcf/31rFy5khMnTvDOO++gVquHulmCIAwTogdHEISzjtPp5MEHH+S73/0uv/zlL/F6vbz44otD3SxBEIYREeAIgnDW+c1vfoMkSXz/+99HrVbz1FNP8dprr7F3796hbpogCMOEGKISBEEQBGHEET04giAIgiCMOCLAEQRBEARhxBEBjiAIgiAII44IcARBEARBGHFEgCMIgiAIwogjAhxBEARBEEYcEeAIgiAIgjDiiABHEARBEIQRRwQ4giAIgiCMOP8fA4qUaY+EAfYAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set(style=\"whitegrid\")\n", + "sns.lineplot(x=\"x\", y=\"y\", hue=\"group\", data=xy_df)\n", + "plt.legend(ncol=3, loc='upper left')" + ] + }, + { + "cell_type": "markdown", + "id": "55bd026a-dc9a-4a4d-b5ba-634ae7dd2016", + "metadata": {}, + "source": [ + "### Analysis\n", + "\n", + "Hera are a few examples of basic libraries for data anaylis in Python and R, with a bit of predominance bias towards the former:\n", + "\n", + "- **Statistics**: `scipy` (Python), `statsmodels` (Python), Base R, `lme4` (R), `blme` (R).\n", + "- **Machine lerning**: `scikit-learn` (Python), `caret` (R), `xgboost` (cross-platform).\n", + "- **Deep lerning**: `keras` (Python), `pytorch` (Python), `tensorflow`(Python)." + ] + }, + { + "cell_type": "markdown", + "id": "6dd9490e-58df-4082-9432-5de004bd1c68", + "metadata": {}, + "source": [ + "**scikit-learn**" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ca4b6254-5841-4b60-857e-664d243dabf8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the average accuracy in classifying the types of Iris using a decision tree and cross-validation is: 0.9666666666666668\n" + ] + } + ], + "source": [ + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.datasets import load_iris\n", + "\n", + "X, y = load_iris()[\"data\"], load_iris()[\"target\"]\n", + "clf = DecisionTreeClassifier()\n", + "\n", + "res = cross_val_score(clf, X, y, cv=5)\n", + "\n", + "print(\"the average accuracy in classifying the types of Iris using a decision tree and cross-validation is:\", \n", + " res.mean())" + ] + }, + { + "cell_type": "markdown", + "id": "85c40ab6-f17a-40af-8bd5-3034edba44cf", + "metadata": {}, + "source": [ + "**scipy**" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "31c80388-db68-487c-83ff-8893cadb9fd8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "TtestResult(statistic=-2.0456709273958644, pvalue=0.04105049135941344, df=998.0)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# A two-sample t-test, adapted from https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html\n", + "import numpy as np\n", + "from scipy import stats\n", + "rng = np.random.RandomState(1234)\n", + "\n", + "rvs1 = stats.norm.rvs(loc=5, scale=5, size=500, random_state=rng)\n", + "rvs2 = stats.norm.rvs(loc=5.57, scale=5, size=500, random_state=rng)\n", + "stats.ttest_ind(rvs1, rvs2)" + ] + }, + { + "cell_type": "markdown", + "id": "65dac05f-17d7-4972-8d53-5fb8e8c2c6b9", + "metadata": {}, + "source": [ + "**statsmodels**" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "8e8706f0-00f5-4979-8951-18572cb9417e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: y R-squared: 0.004\n", + "Model: OLS Adj. R-squared: 0.003\n", + "Method: Least Squares F-statistic: 4.185\n", + "Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0411\n", + "Time: 10:19:40 Log-Likelihood: -3001.1\n", + "No. Observations: 1000 AIC: 6006.\n", + "Df Residuals: 998 BIC: 6016.\n", + "Df Model: 1 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 5.0487 0.218 23.180 0.000 4.621 5.476\n", + "x1 0.6301 0.308 2.046 0.041 0.026 1.235\n", + "==============================================================================\n", + "Omnibus: 0.183 Durbin-Watson: 2.112\n", + "Prob(Omnibus): 0.913 Jarque-Bera (JB): 0.129\n", + "Skew: -0.024 Prob(JB): 0.938\n", + "Kurtosis: 3.027 Cond. No. 2.62\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "# The same as above, but using a linear regression model \n", + "# (tip for life: any almost basic stastical tests is just a particular instation of a linear regression model).\n", + "\n", + "import statsmodels.api as sm\n", + "\n", + "y=np.concatenate((rvs1, rvs2))\n", + "X=np.column_stack(([1]*len(y), \n", + " [0]*len(rvs1) + [1]*len(rvs2)))\n", + "model = sm.OLS(endog=y, exog=X)\n", + "res = model.fit()\n", + "print(res.summary())" + ] + }, + { + "cell_type": "markdown", + "id": "01bfbd31-287f-4da8-aed4-a438594b0451", + "metadata": {}, + "source": [ + "### Command-Line Terminal Programming\n", + "\n", + "- Programming that takes place in a **terminal**, which a text-based interface for interacting directly with the computer.\n", + "- Commands in a terminal are interpreted by a **shell**. Common shells include Bash (popular on Linux and macOS), Zsh (modern and customizable), and PowerShell (Windows-specific).\n", + "- **Essential for managing files, running scripts, and interacting with compute clusters (e.g. SLURM).**\n", + "\n", + "In Jupyter notebooks, you can execute shell commands by prefixing them with `!`. \n", + "\n", + "For example, we can navigate directories:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "3e077d21-8fac-402d-98b3-19e98344bece", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/javi/Documentos/docencia/DS-1002/DS1002-book/chapters\n", + "01-getting_started.md\tmodule-1 module-4 wrap-up.ipynb\n", + "02-python-basics.ipynb\tmodule-2 module-5\n", + "04-python-basics.ipynb\tmodule-3 my_folder\n" + ] + } + ], + "source": [ + "# Print the current directory\n", + "!pwd\n", + "\n", + "# List files in the directory\n", + "!ls" + ] + }, + { + "cell_type": "markdown", + "id": "f961542d-8435-4701-9336-9eb85aaa41e4", + "metadata": {}, + "source": [ + "We can also manage files and directories:" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "898cc000-738e-4596-83c2-f394e531f12b", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new folder and file\n", + "!mkdir -p my_folder # make new dir; -p option to not raise an error if it already existed\n", + "!rm -f my_folder/* # Remove preexisting content; -f option to not raise an error if the folder was already empty\n", + "!touch my_folder/hello_world.py # Create a new file named \"hello world.py\"\n", + "!echo \"print('Hello, World!\\nCode run from:', __file__)\" > my_folder/hello_world.py # Add some a line of code to this file" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "6c70e822-b505-48f0-b31f-a2ef36a615bb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello_world.py\n" + ] + } + ], + "source": [ + "# List contents of the folder\n", + "!ls my_folder" + ] + }, + { + "cell_type": "markdown", + "id": "f2fb53a8-51e5-47d2-90ff-4f96469dc87e", + "metadata": {}, + "source": [ + "And run scripts:" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "34b98b2c-d216-4110-ac89-38fe9e4a2f90", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, World!\n", + "Code run from: /home/javi/Documentos/docencia/DS-1002/DS1002-book/chapters/my_folder/hello_world.py\n" + ] + } + ], + "source": [ + "!python my_folder/hello_world.py" + ] + }, + { + "cell_type": "markdown", + "id": "1e9ae7ae-ab8d-46cb-89eb-4fb1132bd12d", + "metadata": {}, + "source": [ + "### GitHub\n", + "\n", + "- Web-based platform for version control and collaboration built on top of Git, a version control system.\n", + "- It also has a powerful terminal programming where to easily interact and change your repositories.\n", + "- Allows you to track changes, collaborate with others, and share your work.\n", + "\n", + "Common Use Cases:\n", + "\n", + "- **Code Management**: Store and version codebases for projects/libraries. \n", + "- **Team Collaboration**: Coordinated team efforts on software development or data science projects.\n", + "- **Portfolio Hosting**: Showcase projects and skills for personal branding.\n", + "- **Open Source Contribution**: Contribute to or learn from public repositories.\n", + "- **Documentation**: Use GitHub Pages to create project websites or host documentation." + ] + }, + { + "cell_type": "markdown", + "id": "343eee57-2b06-4799-9b69-a9e820d8547c", + "metadata": {}, + "source": [ + "A few personal examples:\n", + "- Personal porfolio: https://github.com/jrasero\n", + "- This very course's book: https://github.com/UVADS/DS1002-book\n", + "- Niphlem: NeuroImaging-oriented Physiological Log Extraction for Modeling, toolbox: https://github.com/CoAxLab/niphlem, and [its documentation (rendered through Github)](https://coaxlab.github.io/niphlem)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/epilogue.ipynb b/_sources/epilogue.ipynb new file mode 100644 index 0000000..e7dd136 --- /dev/null +++ b/_sources/epilogue.ipynb @@ -0,0 +1,593 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d5ee9563-eb6c-46f1-af44-7dac2a01bc88", + "metadata": {}, + "source": [ + "# Wrapping up\n", + "\n", + "Throughout this course, we have covered the most important foundational programming skills a future Data Scientist needs, with a particular emphasis on Python.\n", + "\n", + "For both languages, we explored their syntax, different data types, and how to work with data structures. We also delved into implementing loops, functions, and even classes (which is uncommon in beginner programming courses). Additionally, we discussed basic data science operations in both languages, particularly focusing on how to inspect and interact with raw data.\n", + "\n", + "Now, coming to the question of **Python vs. R**: which one should you choose? It’s entirely up to you—both are excellent tools, as we have emphasized throughout the course. Keep in mind that you can essentially achieve the same results in one language as in the other. For example, when it comes to data manipulation, see this comparison: [Python vs R](https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_r.html).\n", + "\n", + "Here is my personal perspective though:\n", + "\n", + "- **Python**: Ideal for programmatic scenarios such as developing complex libraries, thanks to its versatility, simple syntax, and readability. Moreover, for machine learning and deep learning applications, Python remains the top choice.\n", + " \n", + "- **R**: Best suited for advanced statistical analysis, such as mixed linear modeling, factor analysis, mediation analysis, and Bayesian statistics. In addition, while I do not use it as often as I should, `ggplot2` can produce exceptionally high-quality graphs—so be sure to consider this in the future!" + ] + }, + { + "cell_type": "markdown", + "id": "5c0a9698-4972-4c13-9094-594ece61ff19", + "metadata": {}, + "source": [ + "## Looking Ahead\n", + "\n", + "There are certain things we have not covered in this course that a Data Scientist should likely master in the future. Here are some examples:\n", + "\n", + "### Visualization\n", + "\n", + "Clear and effective visualization is crucial for communicating with data. \n", + "\n", + "Here are a few examples:\n", + "\n", + "- **Python**: `matplotlib`, `seaborn`\n", + "- **R**: `ggplot2`\n", + "- **Cross-platform**: `plotly`, `shiny`" + ] + }, + { + "cell_type": "markdown", + "id": "798f9f74-440d-48d1-b3ea-665f8b7350b3", + "metadata": {}, + "source": [ + "**Matplotlib**" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "3ce65aba-b814-4fb9-9535-d0eebe4f5e83", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.style.use('classic')\n", + "%matplotlib inline\n", + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "b90a9671-5e14-4b47-ace2-5a9538d61886", + "metadata": {}, + "outputs": [], + "source": [ + "# Create some data\n", + "rng = np.random.RandomState(0) # creates a random range seeded from 0\n", + "x = np.linspace(0, 10, 500) # creates evenly spaced numbers of a specified interval\n", + "y = np.cumsum(rng.randn(500, 6), 0) # creates the sum of random numbers within a range." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "6217776d-f106-4533-944a-d85d16a63f2b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGpCAYAAABIy6ZbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOzdd5ydZZn4/8/pvZ8zvc8kk0lPSCGhhYAgAgqCsnbFuuuuu5bVZUW3gLK/r7uuva2irouIICIg0hMCBEjvyUym9zm993Oe3x9nMslkapKZzCS5368XL80pz7lPmedc57qv+7plW7ZskRAEQRAEQZhn5HM9AEEQBEEQhPGIIEUQBEEQhHlJBCmCIAiCIMxLIkgRBEEQBGFeEkGKIAiCIAjzkghSBEEQBEGYl0SQIgiCIAjCvCSCFEEQBEEQ5iXlbD/At7/9bXbv3s0999zD0qVLARgYGOAXv/gFra2tWCwWbr/9djZt2jTbQxEEQRAE4QIyq0HKK6+8QjqdHnVZNpvlW9/6FtXV1dx33320tbXx4IMP4nQ6R4IYQRAEQRCEWZvu8Xg8/OEPf+CTn/zkqMv379+P3+/nU5/6FJWVlWzatIkNGzbw/PPPz9ZQBEEQBEG4AM1KkJLP5/npT3/KHXfcgcPhGHVdW1sbdXV16HS6kcuWLFlCW1vbbAxFEARBEIQL1KwEKX/5y1/QaDRcc801Y64Lh8OYzeZRl5nNZsLh8GwMRRAEQRCEC9SM16T09fXxzDPPcP/99497vSSd2abL+XyeQCCAVqtFJpPNxBAFQRAEQZhlkiSRTCax2WzI5WeXE5nxIKW1tZVQKMTnPve5UZf/x3/8Bxs2bMDlcjEwMDDquvGyKycEAoExxxIEQRAE4cLwve99b0zpx3TNeJCyZs0a6urqRl32T//0T3z84x9n+fLldHZ28swzz5BMJtFqtQAcOXKE+vr6cY934ja7du3CaDTO9HCFM/TAAw9wzz33zPUwBMR7MZ+I92L+EO/F/BGNRlmzZs3I9/jZmPEgxWAwYDAYxlzucrlwOBxYLBbsdjs/+9nPePe7301rayvbt2/ny1/+8rjHOzHFYzQaMZlMMz1c4Qyp1WrxPswT4r2YP8R7MX+I92L+OZdSjfPecVapVPKlL32JcDjMvffey+OPP87dd98teqQIgiAIgjDKrHecBXjooYdG/busrIx77733fDy0MMNEZ+D5Q7wX84d4L+YP8V5cXMTePcIZESeA+UO8F/OHeC/mD/FeXFxEkCIIgiAIwrx0XqZ7ZlsymSSTycz1MARBmAEqleqcVgMIgnDxuOCDlGQyyYYNG3C73XM9FEEQZkBRURFvvPGGCFQEQbjwg5RMJoPb7Wbnzp1i2ZkgXOAikQhr164lk8mIIEUQhAs/SDnBZDKJIEUQBEEQLiKicFYQBEEQhHlJBCmCIAiCIMxLIkgRBEEQBGFeEkHKPPelL32J8vJy7r///rkeykVnx44dfPKTn2TVqlXU1NSwdOlSPvCBD/DEE08gSdJcD++C9sgjj1BeXj7uf01NTXM9PEEQLhAXTeHsxSiRSPD0008D8Pjjj3PPPfegUCjmeFQXh5/85Cfcf//9XHXVVXzta1+jrKyMQCDAli1b+PznP09xcTEbNmyY62Fe8H76059SWlo66jKlUpx2BEGYHnG2mMeeffZZIpEImzdv5uWXX2bbtm1ce+21cz2sC9727du5//77+djHPsZ999036rqbbrqJT37yk8jlIsk4E5YsWUJtbe1cD0MQhAuUOBPPY48++ihWq5XvfOc7aLVaHn300bke0kXhRz/6ETabbcJNLhcsWEB9ff15HpUgCIJwOhGkzFODg4O8+uqr3HrrrTgcDm644Qaee+45wuHwXA/tgpbNZnnjjTe4+uqr0Wg0cz2ci14ulyObzY76L5/Pz/WwBEG4QFxS0z2SJJFIZWft+DqNEplMNiPH+sMf/kA+n+fOO+8E4M477+TJJ5/kqaee4gMf+MCMPMZMkySJXCIxa8dX6HTn/PoGAgGSySQVFRUzNKrzS5Ik0rP4GVbP4GcY4Jprrhlz2Y033siDDz44Y48hCMLF65IKUhKpLHd99ZlZO/4j33gHeq1qRo712GOPUVtby5o1a4DC9uNFRUU8+uij8zZIySUSvPW+D83a8dc//BuUev2sHf9CkE5l+f+++tysHf8r37gRzQx9hgF+8YtfjCmctVgsM3Z8QRAubpdUkKLTKHnkG++Y1ePPhH379tHS0sJnP/tZQqHQyOU33ngjv/nNb+jo6JiXxYgKnY71D/9mVo9/rmw2G1qtlr6+vhkY0fmn1ij5yjdunNXjz6TGxsZ5+VkVBOHCcEkFKTKZbMYyHbPpRIHsD3/4Q374wx+Ouf6xxx7jH//xH8/3sKYkk8nmfaZDqVSyYcMGtm3bRiqVuuDqUmQy2YxmOgRBEOYzUTg7z6TTaf70pz+xZs0aHn300TH/LVmyhMcee0w0GzsHf/M3f4Pf7+eb3/zmuNcfP36ctra28zwqQRAE4XSXVCblQvDiiy8SCAT4yEc+wsaNG8dc/8EPfpB77rmHN954Y9zrhalt3LiRe++9l/vvv5/W1lbuvPNOysrKCAaDbN26lUceeYSHHnpILEOeAYcPH8bv94+5fMWKFaKpmyAIUxJniXnm0UcfxWw2c9NNN417/W233ca//du/8fvf/14EKefgM5/5DKtWreJ//ud/+Nd//VeCwSAmk4mVK1fy3e9+l8svv3yuh3hR+PSnPz3u5QcPHsRut5/n0QiCcKERQco888tf/nLS681ms5iKmCHr169n/fr1cz2Mi9Jdd93FXXfdNdfDEAThAidqUgRBEARBOGttgRiZ3Ow0aRRBiiAIgiDMkngmyw93t7G1yzPXQ5kVA9Ek/98bzdz3+jHCqcyMH18EKYIgCIIwC7J5ie/vaqMzGGfnQGCuhzMrnmsf4vJyO8UGDY8enfn+UyJIEQRBEIRZ8Gz7IMlsnn9Y10BbIEYym5vrIc2oQ54wOwcCvKO+hPctrmTvUJDuUHxGH0MEKYIgCIIwC456I1xfU0S5SYddp6LZF53rIY1y0B0ikTm7wCmcyvA/ezv40NIqSoxa7Do1a0ttbOvxzugYRZAiCIIgCDNMkiR6wnEqzYXtPC4vd/CL/Z38cHcbzb7IHI+uMBX1070d7B0KTuv2nnhqVBPRJ1r6Wegwcnn5yVYCV1c5eavfTyQ9c5ugiiBFEARBEGaYN5EmnZMoM2kBeOeCUv52TR2ZnMTuweDcDg7oDMZI5fJ0TmN6Ji9J3PfaMZr9hUxQMptje6+PdzeWj7pdjUXPMpeF/3qzhdQMrfYRQYogCIIgzLCecJxSoxal/OTX7EK7idUlVgajyTkcWcExXwSNQk5nMDblbX2JNIlsjuP+KP93qJvXe3049RpKjdpRt5PJZHx8RQ2xTI6u0NTHnQ7RzE0QBEEQZlh3OEGVeezO7cUGDUOx1ByMqJARkctkABz1RbimysnLXR6y+fyoYOp0fZEEANt6vASTGRQyGZuqnePeViGXUWnW0RtOUOo4953rRSZFEARBEGZYWyBGjdUw5vISoxZ/Mj1j0yFn4pvbm/nezlYGo0naAlE217jQKOQ8fLiXg+7QhBvX9kYSlBq1BJMZFtqN5CWJJU7zhI9TbtLROxzYnKsZz6Q8+eSTbNu2DZ/Ph1qtZuHChbz//e+ntLQUgIGBAX7xi1/Q2tqKxWLh9ttvZ9OmTTM9jAvaI488whe+8IWRf8vlcoqKili3bh3/+I//SF1d3RyO7sJ3+uur0+lwOBwsXbqUd73rXdxyyy3IJ/lVIUzt9Nf4VA8//DBXX331eR6RIJw/mVyetkCU9y+pGHOdWa1Ep5TjjiWpNOtnfSyPHOllfZmNMpOO7lCcKrOe/95xnGqLAYdOw1+vrmNHf4Cf7evgM6vqWOIaG3z0RRKsL7PxYoebdy4oRa9SUG6aOEtSYdLx8gw1r5vxIKW4uJiPfvSjFBUVkUgkePzxx/nWt77Ft7/9bbLZLN/61reorq7mvvvuo62tjQcffBCn08nSpUtneigXvJ/+9KeUlpaSz+fp7OzkO9/5DnfddRcvv/wyJpNprod3wTvx+qbTafr6+njppZf47Gc/y0MPPcSvfvUrdLpzT1Ve6k68xqdauHDhHI1GEGbXnsEgiWwOl16NXqWgxKAdcxuZTEaRQctgLHVegpSdA35imSybq13olAo+sbKGf331CNfXFgHQ6DDR6DCRyOboDMUnCFKSXF7m4BublqBXTR02VJh19EUS5CfIzJyJGQ9STt+w7Y477uCee+4hFArR2tqK3+/nG9/4BjqdjsrKSo4ePcrzzz8vgpRxLFmyhNraWgDWrl1LcXEx73vf+9i1axfXXnvtHI/uwnfq6wtw5513csstt/DpT3+ab3zjG9x///1zOLqLw+mvsSBczHb0+9k9GKTcpGWh3YRsuP7jdGVGLb3hBGtLbbM6nkwuTyiVZc9gkGqLngqzjhKjls+vW0CNZXSAVGnW0TXOSp9MLs9QLEmFWTutAAWg2KBFLoMtM5BNmdWcdjqdZtu2bZSWlmIymWhra6Ourm7UL9QlS5aIXX2n6UT2JJOZ+f0RhIKbb76Zt7/97fz2t78lkZiZOVVBEC4N/kSat9cVs7bUxk31xRPebpHDxGFveNbH40ukUcpluPQa/tw6ONKzpdFhQqNUjLptxQR1JAOxJBqFHLtWPe3HVcplfH7dAl7v8Z3bE2CWgpQ9e/Zw9913c/fdd7Nv3z6+/OUvI5fLCYfDmM2jU0lms5lwePbfrAtRLpcjm82SSqU4fvw4//Ef/0FRUREbN26c66Fd1DZv3kwqlWL//v1zPZQL3onP8In/crmLqy24IJzKn0yzstjKzQ2lk07lLHWZ6Q7FZ2VDvlHjSaSxa9V8cGkV0XSWiknqSCrNetyxFKnh1v1/aunHl0jTF0lQbtJNmBWaSK3VwFevWHRO44dZWoK8ePFivvnNbxIKhXjmmWf4wQ9+wNe//vUJK4en44EHHkCtLkRymzZtOqtiW0mSSGRnb326Tqk94zdyMtdcc82of5eUlPCrX/0Ko9E4Y48xkyRJIpmdvYp1rVI+o6/vRMrKygAYGhqa9cc6U5Ikkc/N3vJFuUIzq5/htWvX8sQTT8zY8QVhvjgxteLQTZ1xMGtUVJn1vNXv5221E2dczpUvmcahU1NvM/D5dQ3UjrPa6ASLRolRraQnnKDGauAvbUP4EmnMGuWkRbKn27p1K1u3bgUKsynnalaCFK1WS0lJCSUlJdTX1/OpT32K/fv3Y7FYGBgYGHXb8bIr47nnnnvOuVg0kU3y0cfHX3EwE3717m+jV81cseUvfvELSktLkSSJoaEhfvnLX/LBD36Qxx9/nAULFszY48yUZDbP516YvezD9962Ap1KMfUNz9GJYPp8BERnKp9Lse/lr83a8Vduvg+Fcmyx39k68Rk+wWCY+CQpCBeyQLIwtWLWTO9r9bbGUn62twOrVj1hbcqrPV4qTLpJg4vJeOPpkaCpaZIlw1A43zU5TBz0hDCqC89h50AAm1bN24aLbKfj1CRCJBLh17/+9VmN/YTz0sxNkiQUCgX19fU888wzJJNJtNrCifDIkSPU19efj2GgU2r51bu/PavHn0mNjY2jig6vvvpq1q5dy3/913/xk5/8ZEYfayZolXK+97YVs3r886Gvr7DdeHHx7P3COVtyhYaVm++b1ePPpNM/w4JwsfIlMti06pFmaVNZ6rKwscJBRzA2bpCSyeV57GgfS4vMFOs1LHKaWWg/syy6P5Gm2Dj9v+mVxRaebh2kzmqgxKDhpvoSfn2wa0yR7fk040HKww8/zJo1a7BarYTDYZ588klMJhMLFy5ErVZjt9v52c9+xrvf/W5aW1vZvn07X/7yl2d6GOOSyWQzmuk433Q6HdXV1Rw9enSuhzIumUx2XjIds+3ll19Gq9WyfPnyuR7KGDKZbEYzHYIgzAx/Io1dpzqj+1g1KrrCY1fU5CWJg54wOUli/1CITD6PXC474yDFm0ix2DX9GYilLgu/2N/FAXeYYqOW9eV2VpZY0Sjmrm/UjAcpPp+P7373u0QiEUwmE4sWLeKf//mf0esLkdiXvvQlHnzwQe69917MZjN33323WH48TYlEgs7OThobG+d6KBetZ555hueff567775b9EkRBGHafMn0Ga2AAbBp1ex3h8Zc/uM97ewfCnFTfQlv9vnxJ9MEk2dWZHti88CPWKY/VaRTKVheZOb1Xi831hUyyXMZoMAsBCl/+7d/O+n1ZWVl3HvvvTP9sBelw4cP4/f7kSQJt9vNL3/5S4LBIB/72MfmemgXhROvbyaToa+vjxdffJGnn36aq666in/+53+e6+EJgnAB6QnHqTvD2hGbTkXgtOAjkclx0B3mc2sbWGg3ssRl5pA7RF/0zFoitPgiWDUqig1nNoW7qdrF3qEQxeM0opsLYoPBeezTn/70yP93OBw0Njby0EMPiW0EZsiJ11er1eJwOFi2bBk/+tGPuOWWW+Zl0awgCPNTNi9xzBfhlobSqW98CqtGTTCZHrXx30FPiBKDhqXDnV8X2o3E0lkOTbOvykudbhY7TRz0hFnqMp/xuWyRw8Qyl5l62/wochdByjx01113cdddd831MC5a4vWdfeI1Fi4lHcEYKrl8pFnadNm0KnISRNJZLBoVkiTxeq+PVSXWMbebbLrniZZ+VhRZqLbo+VNLP4NRO/vdIT60tOqMn4tcJuNzaxvO+H6zRQQpgiAIgnAODrpDNDlN017Zc4JKIceoVhJMZrBoVGzr8dIfTfKplaNXxFm1aiLpLJlcHtVpNSKpXJ7n24fI5PLIZTIS2Tyv9ngxqVUsnmLZ8YVAbPUqCIIgCGcpk8vzWq+PDeWOs7q/VaPiwf2dvNHn4/l2N+9ZVI5BPTp/YNYoUcggOE6H2mZfhExeosUf5ZgvwlKXGZ1SwRWVDhTyC3/aWmRSBEEQBOEsvdnvx6RWssR5ds1GbVoVzb4Ijx7tI5nNsaLIMuY2cpkMi0ZNIJnBpR9dCHvAHWJVsYX97hAyYE2pjdsWlp1xwex8JTIpgiAIgnCW3ur3c3WV86yL7d/dWM69Vy4im5dY4jKP2fjvBJtWRSBRaDP/+LE+/tI2SF4qZFA2Vjiwa9Ukc3k2VjiotujRTnCcC43IpAiCIAjCGTruj+JPpmn1R7l7ec1ZH6diuNj2PU3llBonXvZbbdHT7I+wrszGth4vOUlCq1AwGE1SbdHz16vrsOnUIy3tLxYX17MRBEEQhPPgiZZ+WvxRqi167NPYVHAqV1U6J71+bamNH+xuY3N1EelcnrfVFvNC5xBGtRKrRoXtDBvJXSjEdI8gCIIgnIFIKkNrIMq7G8u4ub7kvDxmnc2ARiHniZZ+qi16lrrMeOJpKs26i7qv00WTSYlEInM9BEEQzpH4OxYuBPvdIarMem46TwEKFIpnb11Qyq8PdnNjXRG1Vj1qhZwq89xt/nc+XPBBikqloqioiLVr1871UARBmAFFRUWoVGe2UZsgnE8H3WFWFI9dhTPbrqx0Es/kWOIyo5TLubrSOdKZ9mJ1wQcpWq2WN954g0zmzDZfEgRhflKpVGi182PfEEE4XS4vcdQX4ab64jl5/BvqTj7uXYsr5mQM59MFH6RAIVARJzVBEARhtnUEYyhkUGW5uKdZ5gtROCsIgiAI03TYG6bJaT7jFvjC2RFBiiAIgiAAgWSagWhy0tsc9oZZcpHXgcwnIkgRBEEQBODFDje/O9Iz4fWxdJbOYPysW+ALZ+6iqEkRBEEQhHPVH03SHoyRl6Qx0zn+RJpXuj2UmbRYL9LGafORyKQIgiAIAjAQTZLM5umNJMZc9/ujvWzv80/ZGVaYWSJIEQRBEC55yWwOX6LQwbXVHx11XTyTZb87xBfWLeC6mqI5GuGlSQQpgiAIwiUjnikEI6cbiCYxqhSsKrbSGoiNuu7NPj/lJt2kGwAKs0MEKYIgCMIlY2uXh5/uaR9zeV8kQalRR4PNQFvgZCal2Rfh8eZ+3rWg9HwOUxgmghRBEAThkjEUS9IRiuNLpEYuO+aL8LsjvVxWaqXWaiCYyuBLpGnxR/n+rjbet7iSZUXnvw2+IIIUQRAE4RLijqdQyGTsHgiOXLZ3MMiGcjvX1RShVSqoNOlpDUR5udPN5hoXV1Q65m7AlzgRpAiCIAiXDE88xZpSK4e94ZHL3PEUZSbdyL8b7AaOeSM0+yIsFxmUOSWCFEEQBOGiJ0kSsXSWUCrLmlIbPeGTy4zdsRTFes3IvzeWO9je5yOTl6ixGOZiuMIw0cxNEARBuOg9dXyAV3t96JRyFjlMRNNZQqkMBpUSbyJFkeFkkFJl0bPUZUaSQCkXe/TMJRGkCIIgCBe1VDbHy10eMnmJEoMGrVKBS69h72AQnUqBXCbDrhvdRfbuFTVkcvk5GrFwgghSBEEQhIvai50eHDo1m6uLGIwVNhCsNOv47eHCPj3FBs2YNvgGlRJU532owmlEkCIIgiBctDqCMZ5pG+RL6xdQaz1ZX1JnNeCJp9CpFGgVijkcoTAZEaQIgiAIF63XenxcUeEYFaAAXF9bxOYaF7FMjkQmN0ejE6YiVvcIgiAIF52uUJzn2oc44AmxcpxlxHKZDKVcjkWjokS0u5+3ZjyT8qc//YkdO3YwMDCATqdj+fLlvO9978NsNo/cZmBggF/84he0trZisVi4/fbb2bRp00wPRRAE4bxpDUQpN+rQqcTUwXxwwB3iyeMDaBRyFtiNcz0c4SzNeCalubmZm266ifvvv58vfOEL9PX18f3vf3/k+mw2y7e+9S1MJhP33Xcft99+Ow8++CCHDh2a6aEIgiCcF3lJ4oe72tgzGJzroQjDfIk0FSYd11Q5USnEpMGFasbfuS9/+ctceeWVlJWVUV9fz4c+9CGOHDlCPB4HYP/+/fj9fj71qU9RWVnJpk2b2LBhA88///xMD0UQBOG8aA/EiGZyDMQSU994nkhmc/xwd9tFu8zWn0izucbFe5oq5noowjmY9fAyEomgUqnQaAqNctra2qirq0OnO9mCeMmSJbS1tc32UARBEGbFAXcIpVxGfyQ510OZtv3uEPuGQgzFLpwxnwlfIo3jtN4nwoVnVoOUTCbDH//4R6666ioUw0u8wuHwqPoUALPZTDgcHu8QgiAI894Rb4T1ZfaRHhyzxRNPIUnSjBxrz/AGe30XUGA1XXlJwp8UQcrFYNaClHw+z49+9CMAPvCBD4xcPlN/YIIgCPNBXpIYiCZYV2bDG0+TnqXpk7wk8a+vHh2158zZSGRy/MML+9k7FKTOaqA/euFMUU1XOJUlm5ewa0WQcqGblT4p+Xyen/zkJ/T39/O1r30Nrfbk8i6LxcLAwMCo24+XXTndAw88gFpd+MBt2rRJrAYSBGFe8CfSZCWJhXYjWqWcoViSSrN+xh8nmMyQzuUZiCapspz98QdiSWQyGV9cv4CecIJjvsgMjvLMRNJZDrhDXFHhmNHj+hJpLBqlKJidA1u3bmXr1q0ApNPpcz7ejAcpkiTx85//nNbWVr7+9a9jNI5e+lVfX88zzzxDMpkcCV6OHDlCfX39pMe95557MJlMMz1cQRCEczIYS1Kk16CUy2mwGXm2bYjNNUVUW3Qo5TP3JelNFE7451pDMhhNUmbU0ugwkZMkXu5yz8TwzsoRb5iHDnWzrtQ2owGFL5EasxePcH6cmkSIRCL8+te/PqfjzXiY+eCDD7Jnzx4++9nPAhAMBgkGg+TzhRToihUrsNvt/OxnP6O3t5etW7eyfft2brjhhpkeiiAIwqwbiCZHmoF9dHk13eE433qzhWfbh2b0cbzxFABDsdQ5HWcwmqTEUBhvhUmHP5HmsGduagLdsRSZvERXOD7hbYLJNHvPcGl3byRBqUE0aLsYzHgm5eWXXwbg61//+qjLv/Od7+ByuVAqlXzpS1/iwQcf5N5778VsNnP33XezdOnSmR6KIAjCrBuIJke+EM0aFf9+9WJa/FF+uLuNTVUujOpzP8164im8iTQ6peKcg5SBWJKFw83NzBoVH11eww92t/Gf1y0rbKp3HrmHn8txf5QG2/gN1x463ENfJMmqEisALf4ouwYCvH9J5YTHbfXH2FBhn/HxCuffjH8iH3rooSlvU1ZWxr333jvTDy0IgnBeBZNpjvmivHNBychlMpmMRocJl17DEW+YdWXn9mUpSRL//tpR9EoFTQ4TR3xhJElCdtquvdM1GE1yTZVz5N+Xl9t5unWAVn+UFcXWcxrrmRqKJ6m16Gn2RbmmKoc7lqTmlD12Wv1RDnkKzzcvSchlMnb0+3mr389fLa4Ys3MxQDafpzMU40PLqs7nUxFmiagqEgRBOE02L025ElGSJL63q41aq57LSmxjri8xavHEz71wMJ7Nkczm8SczLHaZSGbzhFLZszpWJJXBE09RfNpUyEK7kRZ/9JzHeqbcsRQ31hXTFYpx7yuH+dabLUTSJ5/bAXeINSU2JCCQTCNJEoc8YZLZPIPR8WtzukIJNAo5JQbNeXoWwmwSQYogCMJpfrynjeemqCnpDMXxxFN8eGnVuEWfRXoNnvi5Tc1AYVWPfDhhUGrUUWnWccwXpsUfJX8GLR0i6Szf3tHKqhIrztOKShfaTTSf5yAlls4Sy+Rocpr5yoZGbm4ood5m5LGjvWzp8nDUG6HZH6XJacKmVXPEG+Ghwz2EUxmqzXo6QoU6lnAqQ/MpK5Ra/BEa7MazzjQJ88v5nYAUBEGYB7pDcUwaJbYJ+mh0hRK0B2JsqnahVY6/YeBrPT7WltrQTHC9U6+ZkexEIJmhSK/hhrpiaix6Liux8tTxQdzxFJ9f18Bi5+TtG6CQGfrOjuMUGzR8fEXtmC/wRoeRXx7oJJbJnpe6lGZfhO/ubMWkVqJXKdCrFJQYtVRb9Dx0qIdIOstjvl6yksSnHDW4+jQ8fXwAhVzOdTVF5CSJ7b0+NAo5vkSaLV0eHti0BJlMxiFPmHVlYzNbwoVJZFIEQbjkPN7czyvd3nGvi2eyhFIZ9CrlhBsGdgRjvNnnY3N10YSP4ZqhTEogmcamVXNVpRO1Qs5lJTbc8RRapXzaq3KO+yOEUhk+sbIWpXxshsGmVVNq0HLEe356przW42NVsZVPrKgZdXmDzci/XNXE59Y2cF1NEU6dBodOg1Onxp/McHNDCXcsKmepy4wvkeaxY330RRL4EmmGYinimRxtgShLXZbz8jyE2SeCFEEQLjnBZJqBCdrBD0STWDRKGh3GcVfS7B0M8v1dbbyjoZQKs26cIxQU6dUEk5lz3sAvmMxg1apG/l1i1PKx5dW8b3Elhz1hktkc+4eCE9bQ+BNp9gwGWVVsHTdAOWFZkYWD7tA5jXU6Utkce4eC3FhXzGLXxFmg2xrL+KcNC4FCVgpgsdM0/L9mvn5lE/5EmmZfBKVcxlFvhCPeMEUGrWiHfxERQYogCJecQCpDfzRBNF1on36q/miSUqMOh06DNzE6SJEkiYeP9HDrglLeUV886WNYNCpUchnuaWRT8pLE/+zrwJ8YW2h7epACsLHCwcpiC4OxJJ9/8QA/2N1OX2Rse/t4Jss9Ww/xSreXVVOs3FlWZOGQJ3xGdS5n46gvgkWjonKSAA9ALpNh0hSed6lRQ4VJN2p67sQUkT+ZYX2ZnQOeEDsHAlw2vFRZuDiIIEUQhEtKKpcnnsnhjqf47x3HefRo76jrB6JJSo1anDo1vtOCBnc8RSSd5YoKx5SFmTKZjAqznn9/7Sj7hoI8sL2ZjmBs3Nse8oTZ0R+ge5ymZieme06nVyn52pVN/NtVi6k063CPs5JoIJpCr1TwnqZyGh2Td+yutxqQy+DYLE/5tAaiNDrOrLB1ZbGVL1++cMzlNRY9armMdy0spcUfZf9Q8JyXfAvziwhSBEG4pASTaRQyGSq5nN5Igtd6fSPLXgPJNPuGQlSadTj0arynffEf9UaotxlQT7OF+5cvX8gdjeX8fF8n7cHYhPvkvNDhRkahSHbMeFMZbKdlUk4oN+koMmgmrH8ZiiUpM+l4W20xikmmegAUchnry+y83ueb+omdg9ZAjHrr+I3bJiKXydCpxhYo11kNlJsLGZYbaouosugpNYpOsxcTEaQIgnBJOTF9UmbUsrzIQr3VwLbhItqf7+ukwWZgY7kDp05NKDW6puSoL8KiKTISp1LIZVxb7cKsUVJr0dMZGpspiWeyNPsiLC+yEEiOzYYEEmmsmvGDlBNODVJyeYnfHOwmmc2NaoE/HRvKHewbDJ5zHc1EMrk8XaE49TbD1DeehisqHPzN6joA3rmglC+uH5ttES5sIkgRBOGSEkgWMhOba4p4e10Jm6qdvNrjZSCaoD0Y466mChRyGWaNCqVcNjLlE89kOegOTVnbcTqVQs59Vy/h9sYyusYJUlr8UYoNGmqsegKJ0ZmUUCpDLJMb2RtoIi69eiRIOeqLsK3HS7MvwkAsSYlx+k3Nyk1a1ErFuNNOM6EjFEenVFA8Q43WVAo51uGpMJlMhuYC3vU4Hk2TzeTmehjzzoX7jgqCIJyFYDKNVavi8nI79TYDy4usZPN5frqng5XFFgzDe+3IZTIcOjXeRJpkNse2bi8VZh3lpskLPsejkMuotujxJdJEUqMDkWPD2RmbVj0mk9ITTuDSaybs1XJCIZNSuO+Ofj8KWSFYOdNMikwmo9aipyM4O0HK/qEgy1xm0WhtHI/8cieP/WbPlJ2OLzUiSBEE4ZISTGWwak4WoirlMj6xspZFThM315eMum21Rc+fWvq5Z8sh/tDcz7XVrrN+XL1KSYlBw/HAyeJZSZI46o3Q6DBh16rwn1aT0hOOT7kKBgpBij+RIjm8vPeG2mL2DobwxNNnXKNRZzXQHowRz+Q45Jl8SfKZrASSJIm9Q8GRjQKFkwK+OH09Qfq6gzQfOrfds3e81sHPv/MqPZ2BGRrd3BJBiiAIl4ztvT629/rG9DdZ5DDxV4srqTDrR13+4WXVVFv03Lmogp/etIoN5Y5zevxVxVb2DJ788mgPxggk0yx1mUcyKaf+ku4NJ6YVpNi1apRyOU8dH8CsVnFjXTHhdKH52YkeI9NVazVw2BPmq1sP8d2dbfgS4y+hHogm+eJLB4llRu8jlMrmeLnTPWZpd3c4QTiVnVaH3EvN4X391C90sWBREYN90+9V8/rLrfT3BNn7Vjc+TxRJknjluRbS6RzNhwZnccTnjwhSBEG4ZLzQ4eb2heVsLJ/eMlWNQs4Hl1ZxRaVj3B13z9TqEiv73aGRwtSXOz1srHCgVSqwaVVk8xLRU+oSeiIJKk8LnMajkMu4usrJ8x1u1pXZMKiVfPu65dy6oPSMx1hvM9DkNHH3ihoa7UYOuMfvanvcHyWazrK1yzP68kCMh4/08qPdbaMCrufah9hY4Zj2yqhLSesxN4uWlWAwa4hFp9elOJfL8+qLrRw7OMiWZ5tpPjREwBcnncpx+dW1dLXP7iqt80V8WgRBuCTEMzn6IglWlVjnrCai2qLHoFJyxBtBkiQOekIj2RmNsrCHTWC4UDedK+z0WzHNGpgbaouxalSsH+4TMt6S3enQKhV8ZnUdy4osk3ahbQ/GqDbrebnTM2raxx1LstBupDucYPfwtgLuWHK4y+zE2whcqnK5PP09QSqqbRiNaqKR6QUpvZ0B0qkszYcGiYZT+NxR+roCFJebqVvoYqAnRCZ94RfiiiBFEIRLQkcwhkOnHtO99XySyWRcVmJl92CAQDJDMpun7JSaEZtWNVI82xdJYFApJuyRcjqrVsX/t3nplCuBzsTyIjPHfBHCqbH9WzqCMd7RUEwmL9ETPtnt1h1PUWXW866FpTx5fACAbT1eVhZbcOhmZlXPxcQ9EEGhkOMsMmIwaYhFxi5DH09bswdnsRHPUGETS487Sl93kIoqKxabDqNJQ2/3hV+XIoIUQRAuCa2B6Iz15zgXq0ts7B8KjazcUZ0y/VGoSykEBD3hBBVm/RllfWZiSupUpUYdi51mnm4dXd+QyOQYiCaptxlpdBg54j05JeSOpSjSa1hdYmUgmiSYTLO918/Vlc4ZHdvFoq87QHmVFZlcVghSoinCoQSJcToIn5DJ5Di4p48rr2tAoZBTUm7GOxSlq81HRbUNmUyGs9hIwDs7q7TOJxGkCIJw0ZMkiX1DIZocc1+0WWvVo1XKebHTTZlpdNbDrlXjH86k9EamVzQ72961sJRt3d5RDd5aA1GcejUWjYrFTvOo3ZOHYimKDBoMKiUuvZq/tA2hVsinbMt/qepu91NebQPAaNQQjaR48nf7+dH/e2XcuhJJktjyl2YMJg3LVpVTWmlh5bpKkokMPm+MBYsLU2pGs5ZIePxNNC8kIkgRBOGi1xaM4UukWVNqneuhIJfJWF9u55gvMmqqB05M95zIpMSnXY8ymypMOpRy2agdoY/6IiMBX6PdSFsgSl6SyOUlfIlCkAJQZdaPTPXMdJbnYpBJ52g54qZxSWGzSoNJQyado687SOOSYn73i514hkZvpfDsHw9zZH8/t753OTK5jPd/Yh1rNtZgtmppWlaKZnh60GjSEA1Pr75lPhNBynkQS8fZ039wrochCJckSZJ4tm2IDeV2NFM0RTtfNg4Xy5YZRwchJ5Yh54brPKqmsbJntslkMsqMWvqiJ+tOjnjDNDkLmZFig5a8BN54erjrrQz7cBfYaouebF5ieZFlLoY+77UcHsJk1lBaUXh9dDoVcrmMVCrLDe9cTMOiIg7t7R91n/YWDzffuZzi0kKQqB2+z5qNNVx+Td3I7UwWLVGRSRGmY0//IX688//mehiCcEl6qz9AezDGzQ0lU9/4PCkxannXwlIWOUdPgdh0KgKJDN3hOAq5bMx00FwpM+nojxS+8MKpDP2R5Mj0jUIuo9igYSCa4PVeH4udppHNDOusBnRKBQvtZ7ah4KWi+fAgS1aWjdQdyeQyDEY1docetUZJRbV1VN+UfF4i6E9gd44NXq+8rmEk2AEwmTVEprlSaD4TQcp5MBh1E0qGCSdndwt0QRDGernTzW0LyzBPsUnf+XZLQymW08Z0IpPS4o+ywGacN1MkZUYt/cOZlPZgjBKjFtPw9gEApUYtxwMxtnR5uLnhZG+WhXYj/351E0q5+KoZj98Xx1UyOlA1mDQUDWdJisstDPadLEqOhJLk83mstqkzbEaTlmhIZFKEaRiMFpoddYf6p7ilIAgzKZzK0BmKs7L4wphusGlVZPISewaD8yr7UGbScdQb4Z+3Hua4P0qNZfSXZJlRy8udbqot+lErqGQy2cgGgMJYIX8cq330lJ/RpKGotBC4lJSZiYSSIw3e/L4YFpsehXLqr26TpVCEK+Uv7L2ARJByHgxGPchlcnpEkCII59Vhb5gqi37eZVEmolUqMKoKuxAvK5r7lUgn1AwHH5lcnm093jFBSqlJRyYvcU2VWGY8XZl0jlg0PSYr8rZbF7P2ihqgUG9itev5y+OH6O8JEvDGsDmmV6dkNGvJ5yXikyxlvhCIIOU8GIx6WFK0QAQpgnAeSZLEG73+C65o8ysbGvnP65ZRapz7lT0nGNVKPr9uAevKbCSzeWqso/vN1Fj0VJh0rCq2zs0ALyAntgoIBuKo1Ar0xtGZJleJCYPxZNO7ZZeVEwokeOqR/fg8sXHrUcajUinQaJVELvAVPiJImWWxdJxIKsra8pV0BXvnejiCcMnYMxikN5Lgupqz37l4LpQYtRhUyqlvOAfWlNpQy2VUnrY02qXX8C9XNY1qTCeMlsvmeehnb7FrexcAQX8Cq003ZbO+a9/eyEc+u4FsNs/O1zuxOabfkNBk0RIOJqa+4Rk4tLePbOb8tdsXn6hZNhT1YFQbWFu+grZAtyieFYTzZHufjxvriuftF/6FqNZq4IFrl4pg5Cw8+8Rh2po9DPQUVuuEAnEs9ullRZRKBR/72yu44Z1LWLxi+ptG1i1wcmhP31mN93S/+8VOejr8PP7QXno6z1+7ffFJm2XdoX7KTcU49DbqbFXsEv1SBOG86IskqbbMfZ+Ri82FUt8zn+x9q5ujBwe45oaFBPyFVvUnMinTpTeqWbOxGus0AxuAdVfVcvTAIKHAmWdTDuzqHSnYjcfStBwZ4slH9oMEAV/sjI93tkSQMsva/d3U26sBWFexkhfbXsUTm9sttPsjQ7T7u/HHgwxFPVPfQRAuMIlMDl8iTfk86NgqXNqkvMRrL7Vy021Lqa63ExwOUjyDEezO2d1Lyu40sGhZCVuebT6j+0l5iacfPcBzTxwGYKi/sAza54khk4H/PO4JJIKUWdYW6KJuOEi5ru4KXAYH//T8A/jic7c75Z+OPs9DBx7ndwef5Ec7/nfOxiEIs6UvmsCiUY7q5SEIc6Gz3UcqmWXRshKsdj3hYIJ0Kktnm4/ahbO/Gur6W5o4emCAvjPYETkcSpLL5Wk5MsRAb4jB/jD1i1zoDWoWLSsZCbTOBxGkzKJsPkdnsJeG4SDFpDHy+Y2fYE35Cv5n98NzNq4WXzvHPG3sGzzMUU8rveGBORuLIMy0bd1enmjpH9NyXhDmwoGdvSy7rByFUo7ZWiiUPbinD61ORVHJ7G+6aLHpuGxDNdu3tAHwxtY2fJ7opPfxeQr9WBY0FdN8eJChvhDlVVb+/mvXsXRVOQGfCFLOq4GIe+T/S5J01kuFd/cf5P/2Pz7y795QP0q5ghJT0ajb3bxwM4fdLeTz+dMPMeui6Rj94SHUSjWxTIL1FavY2vHmeR+HcHHobvfz8jPH5noYo7zV76fZFxVTPcKcy+XyNB8eYsnKMgDkchkWm46dr3XSsMg15cqembL+qlpaDrvxeaJs+UszLzx1dNLb+70xHC4DDU1FHD/ipr8nREmZBZVKgc2hx++NjSylnm2zEqTs3LmTb37zm3ziE5/gAx/4ALnc6OVKAwMD3H///Xz0ox/l7//+79m6detsDGNaekMDfOEv/0YyU2gfvH/wKF95/gGyuewZHeeYp5VvvfYTtrRvH7msI9BDjbUCuWz0y1xuLkGS8gxE3acfZta1+jopMji4rGwZi10NrC5dynFfx3kfh3Bx6O7w89pLrSNz1vPBQDTJx1dUc1N98VwPRbjEdbX5UKrklFdaRy6z2vX4vDHWXVl73sZhsemoa3Sy5S/NyBVyOo57OXZwcMLb+70x7E4DDY0uBnpD5HJ5quvtANgcelLJLI88uIvYedgbaFaClFQqxeLFi7n11lvHXJfNZvnWt76FyWTivvvu4/bbb+fBBx/k0KFDszGUKfVHhshJedoC3QBs795FNp+ddgDhTwT59d7HeLb1FdZVrCSSjpHLF4Ky7lA/1ZaKMfdRyBVUWyt4pfNNnjr24sw9mWk47utggaOW9yy5mQ+vvJNaWxWdgR7y0vnP6ggXvlgkhUIhZ9sLLXM9FAAiqQyRdJYVRVaxCkWYc8ePuGlcUoJMfjJjsnRVGe+6awXFZee3o/CCpmKO7B+gotrGbe9byR9/u5e3trVzcHcv6dToH+V+Twy7y4DBpOEddyzlw3+9AZ2+0HROo1VRu8BJd4ef3q7Zr62clSDlyiuv5LbbbmPBggVjrtu/fz9+v59PfepTVFZWsmnTJjZs2MDzzz8/G0OZ0lDUCxS+vDO5DDv69qFX6cZM+UiSRGtPkEBk9IZNe/oP8eeWl9jevYvbFt0AQCRdWJ7VHeqlylo+7uPW2ip54uhzPHHsufOWNgPoCQ1Qba2g2Oii0lJGhaWUTD6Le/h1EC4OsUiK7VvayOelKeefz0UknGTlugqaDw/R1e6js3Xqz1E2myOVPLNM5XQNxJLYtSp0KsWsHF8QThfwxUcVkkqShHswQjiYYLA/THmVddTtV62vYunq8b8XZtOCpkLZQXm1lablpXzwU+t57aVWnvjdfo4fHf2j3OeJjqw8WrOxBstpS6U/9JnLqW904RmavXPLCee9JqWtrY26ujp0upNPesmSJbS1tZ3voQAwFPOgUahp9XXyyKGnKDY4WVu+gp7Q6GLSA61evvi9bXzmP14iFD2Z4mr1dbCmfAXvWnQDdfZqdCot4WQESZLoDPZRZSkb93HrbNXolFqi6Rj+RHA2n+IoPaF+Ki0nmwEp5QoqLaW0B3rO2xiE2ddyZIgXnz7KC08d4f9++tao66S8RDx6bvt55HJ50qks0UiKiho7VbV2/vdHb/Din0/Wp/T3BOkYJ2jZvqWd3/9q1zk9/kT6I8l51U5euPj9+bGDvPJ8IZP43J8O8937X+Jn397GtheO4x2K4CyeHxtFWmw6ahc4qRteUVRZa+cL//o2lq0qw3tKsJFMZPB5Y5RWTL6dhLPYiGdw9puTnvcgJRwOYzaPTnOZzWbC4bmZ0x6KellbvoLd/Qd4ofVV/n7D3VRayugJFzIp+XyeZm8b+4972LS6gkU1dv64tZWhqIfvv/lLmr3tbKq5nA+suL3wXDQmwqkIoWSYSCo6YZByRdUa/m3zFyk3ldAxywHCy+2v88Vn72N79y4Gom4qThtTrbWSzqAIUi4mvV0BZDJ4a1sH4WCCfO7kdF5rs4df/XD7JPeenHsgzE++9QqP/LIwJ200abjyugU0Li3BMxhBykt0HPfyyx9s58VxCvQG+0J0HPeOOjHOlIFoklKjdsaPKwjjCQUStB/3jNRktR51s3RVOVde10Bbs4dYNI2zaH4EKVDIgFTXOUb+LZPJcBab8LpP/i32dgWw2fUYTZrxDjGiqMSEZ2j8IEXKS7z+cuuMtM8/70HK+ZzamI6hqIera9bz2fUf4bs3/xtl5hIqLaUc87Ty8IE/cdTbyr9v+Q77W90sq3fyvhsaeWZ7B6+07+DVrh30RQZZ4DhZAGXRmAilInSH+ik2ONGqxj9hapRqamwV1NgqeeTgk9y39TvTfm3yUp50LjPt53hw6BgquZIf7fhf1AoVTr1t1PXFRhfemH/axxPmv96uIBs21VNeZUUCoqcUuHkGI3g9UTLTOIEEfDGaDw+Rz+WJRVNIksRTjx7Aatcz0BsiEk5hNGuoW+jkjg+uJpfNEwom2PpcC6vXVzLYHx4z3+0eiGC2atnzVvdMP20GY0lKjJOfXAUBYM+b3Tzzh3PrAH5wTx8OpwHPYJRwMIHPG+OKzfWsvryKUCCB0axBq5vftVHOIiPeU4KNno4AlbX2Ke/nKjbhHYqSz4/93mo+PMhLfz5Gf2/onMd33jsdWSwWBgZGT6WMl1053QMPPIBaXSjc2bRpE5s2bTqrx8/n8zzd8hLJbIo7Ft+EJ+aj1FREsfHkJmSNjnouK1vOH48+i0KuIJPP0jo0yPKGdZiMMiyVXra193Bl1VoCyRA23cm0mFljJJSMEEnFKDeXTDmeWmslr3XtQBNVc8RznCVFCwFo8bazb/AI7116y5j7PHnsBVr9nXzpik9P6zm3+3q4rvJtPJN8GrvOSmtPiGQ6y/KGwnO2aM0cHJpfy0iFs5dMZPAMRfjQZy7n+lua+Pa/vUA4lMRsLUyD+L0xkAq9EEomKd6LhJP8+kdvEIumaVpWQk9ngGtuWEgkmOR9X1jHf/7r8yAx8otLoZRjdxk4sLuPwb4Qf3X3GlqOuOntCo6kmDOZHH5fjLfdunjG9hQ51VAsRbFBZFKEqXW2ehk8x1VpLYeH2LCpjuf+dITdb3ZTUmpGp1ejA0xmDY55lEWZiLPYiNcTI5+XkMtl9HT6R5ZMT8bm1JOXJIL++KjOuVu3buX7336IRCxNl+/Zcx7feQ9S6uvreeaZZ0gmk2i1hZPJkSNHqK+vn/R+99xzDybTuTe+6Q0P8Mihp8jlczS5GgBw6E9GjaFoCotRx1+v+xCH3c282lmYz3e68hTZ9Tx2+BlC9rcgBfet/NyoAAXArDURTkWJpxOUmqZeAnlF1RqMaj0DUTffe+NBNlRdxkdXvYdtXW9xYPDoSJAiSRKpXBq1XMULrdswaab34c/kMgzG3Lz+VpR3XL2ZSCrKj/6wH5dVNxKkWLUmQsn5s4RUODdd7f5R6VrziZ1QqwsZNL+3UNjtHYpMGqQ0HxrCYtVRXmXlyP4BjGYNTz96gNvetxK9UY3NricUSKDXn9xq3lVs4tUXjnPZhip0ejWVNTZ6OvwjQYp3KIpWq6JpWQkvPX2UTCaHaoaKXDO5PP5EmmKDyKQIUxvsD+NzR8lmcihVClLJLJlMbsppjhMS8TR9PUHe85HL2Lejl52vdbJyXeXI9eXVNkzm+f9ZtDv0SMPBhs1RyJDe8M7FU95PoZDjdBnHtPffuOFKti2IsmZjNaFwhGdf+OM5jW9Wpnui0SidnZ0MDQ0B0N3dTWdnJ8lkkhUrVmC32/nZz35Gb28vW7duZfv27dxwww2zMZQxPHE/JUYX1ZZynm5+iXp7DUp54STZ0R/iE994gUy2kAavs1UzFPOCJKO+Xkkik+SZlpd5/+L3ku1ahE4xdt8Fs8ZIOBmhPzJE2TSCFLveyrV1G7lzyc18bPV7eaXzTfb0H+Lg0DE8MR/Z4eXMv9r7KA9s+yEHho7ijQcIpaZXsNQXHoS8kvaONDcvuI7F2ito6w0xeErHQKvWTHCaxxPmv+aDgzQuPZnFM1t1hIMnV6X5PTFsDv2Ulfl+b4yScgs3vHMJd354NTe+awkLlxSzZFXhV5arxITBpBm1vLKoxIRKreDqtxUygjUNDlqPnVw54B4I4yoxYbHp0BnUDMxAOvgETzyFSiHHKpYeC1PIpHP43FHkcvnI38Erz7fw8++8Ou2i8rZmD0UlJkwWLRU1NhxFBq65YeHI9dff0sTGaxtmZfwzSa6QU1xqpq8rQCiQIJ3OTbvY11lsHHMeCQUSqNQK6hY6cfef+9/3rAQpu3fv5qtf/So///nPAbj33nv56le/Snt7O0qlki996UuEw2HuvfdeHn/8ce6++26WLl06G0MZZTDqwRPz4TI4qHfUsHfgEIuLTi6TbukOkkznaBs+cdbZqwDIR23YnDkePfxnKi2lvHPJNRhijXT0FbIPA94Y2w8UCm0tmkImpT8yRJl5+s2k1AoVl1eu5n3L3sWPd/zvyNJob9xPq6+Tl9tfp9nbxl+Ob2F12VLCqei0alja/T3kYkYyWYmOgTCv7O1lTVMxA76THQMtWjPRVGwkIBLmp6A/znN/OjyyM+l48rk8zYcHWXRqkGLREg4VgpRMOkc4lGThkuIpC1d9nigOlwGLTceiZaU0LS/lvR9dM9Ils6jENOaX4porqvnAp9ajNxayK03LSxnsD48U5h3ZP0B1vR2ZTEZ5lZW+GeyzMBRLUaTXnLcunsKFa2ggjE6vprzaOlL02tXmI5+Xpr0Z3963ekb+zq57xyLu/tsr0GhPTk7YnYYxS3fnq4VLijl2aBD3YASny4BSOb3spmuc4tlQMIHFpqOk3ILXc+67Jc/KdM8111zDNddcM+H1ZWVl3HvvvbPx0BPqDPTylRe+yTXVl1Okd1Brq+TFtldZ7DoZ+bb1BQE42ulnUY2dOlsVMuToUmU0B5rx9Pl54PqvIJfLqa+w0NobxKhX8Q/f3opCIWfDslLMGhOeuA9v3D+tTMrp3lZ/FX3hQXrDA3jjfgYjHo55j7Oh8jK6gr3sHTjMvdd8jt39B0lmU+hUWg63++geinDThpoxx3u1fQ+KpJPFDU6Odvg50OrlM7cvZ/exIQKRFHazFovGhIREOBXBrrOe5SsszKZ0Ksv//fRNQEZbs4e/+fKmUdcd3tfPqvVVI4VqFTUni6PNVh39PUEA3IMR1BoFdQtdPP3ogZFU93j8nhhrr6iZcEwLFhePKQo0GDUYTilc1enVNC4p5vk/HaamwUnHcS+3vnd5YYzVNno6A2w4g9dhPL1dAVQqBUOJpJjqEaalpzNASbkZh8vIUH+YZCLDYF+I625u4tjBQfJ5CRmMyhLCyYUf7S1eBnpDvOcjlwGFeqwLWdOyErZvacNZZMJ1BvsJuYqNtBweIpvNjQQ2oUACi1WHxaZjYVPRFEeY2oX9yp6BPQMHkSSJnX37KDI6aHTWoVaoaHTWjdymrTdIbZmZo52FlS6LixbyjtL3YFU66Y8Mccfim0aaszVUWmntDXLguIcFVTYSqSzBaAqXwU5XsA+dUotVe+YdBWUyGR9b/V6+es3fUWIsYjDqps3fRb29mpWlSyg2OFla3IhCJh+Z8nn2jU6e3Da2z4wvHuCo/xh12mUsa3Dy59fbCYRTLF/gxGHRMTBcm6BUKDGqDYSSYspnvhroC5FJ5/jo327EOxQlkz6Z9eru8PPUoweIRlKEgwlsDj3yU06uJzIpg30hfv3D7SxdVU59owuDUc0br7SP+3j5XJ7AaQVxp6ussbHx2slryQCuvakRi01HW7OHK69fgNFcqEWrXeCgs9U37uqAM/HaS63sfqNLFM0K05KIp3n9pVYu21BN/SIXB/f20XJkCLvTQHW9Hb8vxusvt/LLH2wnmx2dXd72/HH+/NhB3trWzvqra+f9yp3pcpWYsNn17Hitg6LS6X9vuUpMuAci/OfXXxiZug0FCpkUmUzGbe9fdc5ju2SClL39h9AoCpvquQwOyswl/OTWB9ANLxHO5vJ09Ie5+Yo6jnT4SGVyKOUKDNlyyvWVvH/5bdy26MaR4zVUWDneE6C1N8SSOgdOi5Z+T4xGZz3/sOHjvGfpzeeUdpbL5JQYXQxGPbT5u6m3V3Nz43V88YpPI5fJCwW6yQj5vMTeFje97iiR+Oi51G2db2GlnMaSMm69so58HhbV2NCqlZQ6DCNBCoBFFM/OayF/ApvTgMGoRqmUEwomRq4L+uMgFVYaRMIpTObRX9Q2pwHvUJRjhwq1Kre8ZzlyuYyb3r2M115qpeXI0Jipw1AwARJYZyBd7XAZufnO5XzoM5dz9dtOTq+WVlgBzrkuZag/TMAfxx1PTTuTsvO1zml1xxXmXle7jycf2T9j7St2v9FNUamJRctKWNBUhKvYxBMP72P5mgrsTgPxaJrjR9wM9IbY+uzo7R56OgPs39lLe4uXFWvGbnlyoZLJZNzy3uWk0zmKS6efSbE7DchkoFDIOHKgsGo3FEyMrCScCZdEkBJPJ2jxd3DjgsIUlEtfaGZj1Jz8ldg9GEGpkHPd2kqK7Xoefq6wJNcXTOCymLmt6Ubk8pMv17J6J0O+OG8dHqShwkKZy0ifJ4pMJuPyytXc0nj9OY+7xOhib/8hEtkk1dZyzBojNbbCH4ZluGlce3+ITDaPrdrDj994eNT9j3qOo4gVUe4yotUo+fon1vPxdxZqf0ocegZ8J4MUq9ZMUAQp81YwEMc6/OvEbNURCpwMUgK+OAqlnObDg0RCyZFMxQmlFRZkMti9vYuqupMr2SprbNz6nuX84Td7+P0vdzHQG+LFpwvN13zDxbVyxeydIuRyGTUNDjqOn32wkExkCAUSBH1xhsJx7EoFB/f0TRn4vPVqOy1Hzv8Gn8KZ2/KXZvbt6KGrzcdgX4idr3We0/HaWzwsXlGGTCYr/Np/30o++jcbuer6BYXlw3oVvV0Brr9lEbu2d5JMnOxJ5R4Io9WrqKy1Y7Xrz/GZzS8V1TY++Q9XsmDx9MsUFAo5f/3la3jHHcs4vLePh3++g76uwIz8uDnhkghSesL9WDVm1pWvBKDIWAhSktkcvzvSgyRJHGr3sqjWTjCV4a/vWMGftrWTyebwhhI4x4kKDToV65eWEomnaaiwUe4y0j/De6RcUb0WpUJJtaUclWJ0WtGsMRFKRtjb7GbFAheaoiHaAl0j1+elPC2+DsJuAxVFhci4oshEw/Cv12KHHnfg5AofiwhS5rWgP4Fl+KRosekKS4qHBXxxFq8opavNTzScxGQZnU2Qy2XUN7qIRdNU141u0rR0dTl/+0/X0nLUzfYtbezbUeg83N3up+y0PUdmQ91CJ+0tnrO+/2B/GLlCRtAfR7Hfx++/9RpP/HYv27dMvM1GNJzE743jn0ZRXyKeZs+b3aP2ZhHOn/6eIIN9YdZfXcszfzjEI7/cxbN/OjwqSD8TmUyOns4AtQtOdl212HSjgne7q5AdWH15NcWlZvYONx2MRVJEIyk+9On1I3VVF5uScsuoqeLpsDkMLGgqIh7L4PfG8HvjmEWQUtg7ZLr6woWVNnX2aj695gMYVIWTfWsgykudHnojCQ61+TBVmbj3lcMUuQzoNAo6+sP4QkkclvHnua9fV4XTosVp1VLmMtDvPfdK5lOZNUb+ffMX+YeNnxh7nbbQ2Xb3MTfLFtiIygYIpUIj8/u9oQFy+RxBj4bycRoK2U1aAuGTy1JtWgvdp22qKMwfQX985NeJxaobM92zYFERmXSW/p7QmOkegIamInR6Fa7isalck0VLabmZw/v6icfSxKNp2po9NDS6xtx2ptUucNLTERhVY3MmhvrDVNc5yOUk9J4kt71/Je/7xDo6jnuRJqh16e7wg+xkv5jJ/PZ/drD12Wb+8Js9o7YWEM6P/p4glbU2rrt5EcvXVLBwcRGNS4r582MHOH7UjZSXRmU6ThWLpEYKxk/o6QigN6gnrbVyOA24igtL6ddsrGb/zl6gsCLI5tBTVGqe9P6XIrVGyRf+5Xru/twVVFTbcM1gE7sLMkiJJzN88F+eHbXR32T6wgOUm0tQyhVcV3/lSK1IZ7Dw6+iQO8yR3gDt+QxWrZp9QyEWVNlo6Q7gCyVwWsaPClc3FvHjr1yHTCYbme6ZaQa1nhLj2C8Li8bE3v7DtGr/zJ+9v0SpUJBXJHhtX6GL5zFvG+XGCswGLWaDesz9bWYt/vDJ1++GhqvZN3CYbZ1vjbmtMPdCgcRIetls1RIOFAJMSZII+OI4i41Y7Xq87uiY6R6AJSvL+PDfbBizWuGEhqYilCo5eqOarvZCWr3uPAQpdqcBo1lD+3HvmCLF6Th+xE11vR2NUY0sJ9G4pITaBU6y2TxDA2GOH3WPWSLZ0xGgfqGLgC8+adHuYF8I92CET3/xauKxNEcPDJ7x+IRzE/DFsdn1KJUKrryugZvevYzNNy1Co1Xx2P/u5s9/OMjPvr1t3D1i9u/q5elHD4y6rLPVS+0C56T1gmWVVmoaCpmWxqUlBPxxhvrD9HUHKZ6k+eGlTq1RotOruftzV2CYZkO86bggg5TOgTDRRIZe9/SCgr7IEOWmsS3qO0IxSgwadvcHyBuV1FoNXF9TxK6BAAsrbRzt8BOIpHBMEKQAaDWFVdzFdj1D/vh525vIojXR7GvDkCnj3UvezsdW3wUyif97cT+5XJ4Wbzs2eSnlrvEjWrtZi/+UTEqpqYj3L7+N51pfOS/jF6Yvn5eGg5ThTIrtZCYlmciQSmax2vUjWZLxulwqhhs2TWTVuipufNcSikpMvLG1ndIKy6ilxLNFJpNRu8DJI7/cyfe/uYXeM+ib0nHcS193gDUba1Aa1ajsWjRaJQqFnNoFDv7wmz08/PMdvP7y6Kkfz1CUhUuKkSRp0mmDfTt6WLyiFINJQ1WdHY9brH4734L+xJjaD2exkTs+tJrqOjt73upGkmDn9q4x9w0FEgwNREbtHdXR6qW2wTHmtqdad1Utb7+9ULun1ihpXFLM048e4LWXWkd1lBXOjwsySGnvKxTFDUxzeqU/PDhmHx1JkugMxrmloZSeaAJzlZllRWaWusy0+KMsqLSw61ihY65tGq2Ni2x6Uukckfj0N/47F6tLl9KouIoNRddwQ8PVbK7biFFtICOPsXVPL83eNvJRGzUTRP42s4ZYIkPqlF8ga8qX0+bvoj88SDxzdnO+wsyLhJJIkoR5OFgudJAtvD/eoSh6gxqtTjXSJXK86Z5sPk93eOK6CotNx2UbqnEWGentCrBsdfksPJPxXf22BXzoM5fTtKyEN7aOvyR6PLu2d7Huylr0BjWSQYnllM/6re9ZwRWbG3jHHUtpa/bgHYry3J8O09PhJxIqBHxWux6/N8Zbr3bQ3T56g81YNMXeHT2s2VgDgNWuJ+i/+P8mEvE0P/7WK+x4rWNeTG8F/fGR4Px0b7t1Me9491KuvamRw3vH7gMVCiaQ8tJIEXUqmaG/J0RNg/OMxnDDu5bQsKiId/3VChaeQVGpMDMu7CDFN3WQksllGIp5xwQp/dEksUyWlcUW7FkZOa2CxU4zdp2anCRRV2PjhvXV3LyxFuU0VjjoNEpMetWoYtTZVGUtJ9BRwvJT/uDsOiurl1p45WAb7riP1mYZa5vG/6OyGDTI5bJRdSm5lIpqcyVffO5+fnfwyVl/DsL0BANxTBbtSMMou1NPwB8nm81x/Jh7ZF8cZ5ERuVyGfpzpvZc7Pfx/25uJpbNjrjvViWMsPY9BitWup7bBSXW9g8Bpf9P5XH7c+jMpL9HZ6qVhuFmUbKmTpquqRq7XG9WsXFfJqnVVZNJZfv7d1ziyr5+jBwcLmy1adDiKDLgHwrz+UivHj41e6fPG1naq6x2UDxcP2+x6Ar6Lv3jWO1TYzXfna538+Fuv8OLTR8+o/m+mFYKU8VfRuEpMrNlYg6vYhM8TG7uMPpBArVGw581uWo+56Wwr7Gl1pl1gjSYN19y4kMUrpt50T5h5F2aQ0h+iocIyrUxKR6AHo0o/ppPqU8cHuLLSiUapINUTpU6rpdKsQ62Qo1cpiGZyrFlfwSdvXzbtcblsejyBOLm8xJA/Ti6Xp2tgdlbMBCMpeoYiLK0/NUixoNSlcad6KdGXEAzlWb5g/LoCuVyG1aghcEpdyq//fAR1oJElroUMRsTyzPkidFrK22rXo1YrcQ9EaD40ROOSQgBeUW2jqs4+pu4kL0ls6fKgkMt5rdc36WM1NBVx/S1N52Wq53R2lwG/d/SU6bNPHObPjx4cc9uhwQi5XJ6yysIGn0Eph2ucaVmFUk7DoiIaFrnYsKmeof4wqWQWk0XLgqZi3nilnWgkReC0c0l3h59lq05+KRUyKRd/kBLwxSkqMfGZL13DNTcupO2Ym2f/eAhJksimY7Tt+/V5m9JOJTMk4hlsjsmX+tqdBlLJLHve7OZ3D+4cKaYNBRI0LSvlyP4BHv+/vex8rZNFy6bemV6YXy64IGVfi5uugQhXrihnwDt1TcpRTyuLXA2jCqUGokkOuEPcWFPM719sobM7yIeWViIfvo1No2LXYJAf7G7nuztbSU2zoM9l1eEOJHj6tXb+/r+28NxbXfztf27hZ0+MPcmeq4NtXqpLzaOKYu06K4HsAAHTXoplDSxvcKKZZIdZu0WLP3KyAPNgm4/wgI1bGq/DE/NPeD/h/DrRI+UEmUxGWaWFg3v68HmiNDQVAlFnsZEP//XYJvOtgRipXJ4PLKlka5eH/CRfMnangcuvqZvw+tlks+tJp7LEo2nyeYlMOsfBPX0c3t8/qq4AoPO4l6o6B4rhLGcwlcGqGZtBArjtfSu544OrsTn09HYFUCrl6PQqFq8oJR5Lo1TJx2RJYpEUxlNW9dkceiLh5FkV915I/L4YNqcBhVLO0lXl/NXH13Hs0BA7XuskEmgj6D5ENh0hnQxx+PX/RJJmL8sS8CfQaJVTdnXVaJUYTRp2vd5Jy+EhHv3f3fzqB9tJJjJcd/MivvCv12Nz6Olq87H+qtpZG68wOy6oICWVzvLdn73F3bcsZvWiIga8Y1N8pzvqbaXJNXonyp39fpa5LERCSR5+vpmldQ7KnCcLTK1aNc2+CHVWA3kJfrynY1rjK7LrGfDGeGJrK6lMjv/7y1GuXlXOizu6zrn19+kOtnpZ3jA6S2LXW9nn3UvW78IQXUTNFO2NT12GPOSP4w0m6BmK4NA7cMd90/7F9GKHm5c6ReZltpzaI+WE0korO17rpGlZKRrt5CdxTzxFmUnLZaU2spLEQff87Iej1igxmTX4vTG2PNvMf//7ixiMGmwOPYdOqzk4tQAymc2RzOaxTfA6KFUKZHIZNoeeTDqHyaJFJitMi624rII1G2vwn3IukSSJaCSF8ZQVCkaTBoVCftb9Oc6Xwf4wP3jg5Wnv5Hu6oC8+KnNhsel470fXsOUvzex5fQcAyZibVNxDMjZEMnb2PW4mI0kSB3b14iw2Tqtzt81pYGgggt6gpvnQIB53FJVagcGkQadX87Z3Lub6WxZhmqCdhDB/XVBBSt9AhFpJhi6SpsRhIJbMEo5N/MeYl/I0e1ppcp1sxS1JEjsHAqwts+EPJyl16vn3T28c1cDGqlXRFYpTZdbx16vraPZHGIwmx3uIUYpsOl7c2Y1Oq+KWK+uIxDN84O2LSGfyM16rcqDVO6oeBeCq6vX8/eUfJ921mOauICVTpEltZs3ICp9DbT4aqwqb0uUSGjK5zLSbu+0aCPDIkV5a/DO/BFsY3SPlhLIKC1JeYt00fhn6E2nsWjVKuYxrqpxs7Z6dL5aZYHMa8PvitB51U7vAweZ3NHLV9Qt49onDI43m8rk8XW3+kQLIQDKDSi5DP0nWEApNp6CwhPuEW+9awTU3LCSVzJIYLnpPp3Jk0rlRQYpMLsNq083rupRcNs8jD+7E743jPct2CH5fHPtp543KGhuf/adN5NKDgIxkzE06WagLjIW6z3XY49r9RhcH9/Txrr9aOa3bO4b7ltz2/pXcfOcyauodIx2aAWrqHay/em4yhMK5uaCClO6eIDngrVc6yKay2EyaSYtnPTEfyWyKGuvJPRaOeCOEU1mWFVkIhJPYTGMja6tWhQQUG7ToVQqaHCb2DgWnHJ9reIXPJ965lBsvr+adV9dR5jRSUWSc0doUXyjBgDfKkrrRS+lKTUVcUb0Gs0FNz1CEEsfkDYdcNh1Dw/PsRzp8LK13UFlsot+dwKa14IlNXr8AhaCvP5qgxqrngPvc9mARxndqj5QTahc4ufamRiqqrVPe35dI49AVpkLWldo45ouQngcrN8Zjdxro6wrgHghz07uXsXhFGUtWlvG2WxdzYHehqVZ/bwi5XDbSsyKYTGPVqqf8xa1SKzCaNGNWP2m0SgxG9UjRbjSSRKGQj5lmcJWYznmfoeloPeYmk87xwlNHCAUSvPJcy4QNy07VPtzArrzaOibjM916moAvjm2cRmVGowqrJYLaUEsy5iGTKpzPTgQp+VwGX//uaT3G1GOI8cJTR7njg6twTrMpmM2px2TW0LCoiNWXV7N8TQWlFZYZGY8wty6oIGVoIIykVeAsMtDbGaDUaZi0eHYo6sVpcKCQF35h5SWJ3x/t5ZYFJWgUcvyRJPZxlmtaNYWT04nNylaVWNk7GJxyfEtqHdx96xJWLyqiosjEJ99VKLqtLjXTOThzQcrBVi91FVYME8zVnnhOUwUpNSVmOoeDp+buAI3VdqpLTHQOhHEZHLhjU++pEkhmSOXyLHaaCSXPz/Lr86F7MExuhqfozsbJHimjgxStTsVV1y+YVircn0hjHw5SXHoNRpWSjuDMdkeeKXULnex+sxtnsWlUJqO6zk5fd5B8Lk/HcS81DY6R7GcwlZlwqud0Nod+3M3PbI5C0S5QmOoxa8a8tvWNLlqPzVwWKh5Nj5lSHewP89v/2cHj/7eHN7a28/DPd/DK8y20Hpt6OvXo/gGaVpRis+tHBSlvbG3je994mUho8mxwOpUlFklhtWsJug+NHmukDwkFOapJxtxkUmFUGgvxUCG7FfYfp/PQ74iHe6f79CfU2eobbqg2/aXCCxYXc8Xmk9P6K9ZUzMgOvMLcu6CCFL8nhkqvpqLGRs80ghR3zEex4eQHvTeSwJ9Mc211oZYjEE5hGydIOXHCKzEWrltdbKU/mqQtMHkK1WrScPumhjGX15Sa6ewfG6R0h+L8bG8HmTP8VXug1cuKSf6AHRYtCrkM5xTzr7VlFnrdUULRwkqhxmobi2sd7GvxYFJaaPMMTHr/Q54wW7s9FOk1OHVqQqn5F6T0uiNksjmS6Szfe2Qv3uDUNQWDvhh/959beOrVdgLhJP/x6528cXDy12K2eAYjhR4p1rOfS/cn0zi0hSBFJpOxwG6keZ5OzS1dVc7GTXVj+rS4ik3I5TIG+kKFJmvLS0euCyYzIz8sptK0onSkm+ipSsrN9A03kotFUuN2zGxYVERvV4BEPE0qmTmnVS6JeJrvP/AyO1/vJBYt7Alz/OgQz/7xECXlZpoPD7FwSTHuoQhGs4aejokL2SVJ4oWnjnB4fz+LV5QVmv0NTy/HY2lefPooGq1yyqkqnyeGRqtELgVo2/drMqmTzevCvlYy2RIiUQOJ4SDF4lpCPNJPLpsczqjIGOw892aQAX8cu/PMNu8rKTNPa+pTuPAo53oAZyISTGCwaKmotrH7zW5Km5z0Dk18snXHvBQZTp6Q+iIJyk06lMO7GfvDSRbX2sfcz6FTo5bLRlLkBrWSzTUuHjnSy5pSG5l8npsbSsfcbyI1pWa27O4Zc3mzP8LOgQBGtZL3L5l+J8ODbV4+8+6JN7iym7UU2fQjKx8m4rLp0KkVvLyrB6dVh92sZf3SEn78+AEsyhRt5hY+smbi+2/pcnPAHeayEitWrYrgPAtSJEniy99/jZpSM3I57D9eqOPZdNnY1zqRyqIb7h789GsdVJWY+b9nj/KHLcepKTXznw/t5r/+/uopi5FnUiqZ4XcP7uTya+qmfC8nIknSqEwKwEK7kd3TyAzOletubhpzmUwuo6LGxrNPHCafl2haUcpLnW7kyPDEU9imWAFywuUT1CXUN7pGdoCOhkcXzZ5gsekoKjbyvW+8TCqZ5T0fuYym5dM/D5wwNBBm1+td6PQqXvrzMZ5/8gj5nITNoaeyxsbbbl3MK8+3cMXmBq66voGAN87rk2yYGIumeWNrO+//5Doqa2wM9YcZ7Cu08B/oDWG16zGatQQDcaoYe747weeJ4iwykooXMqiJ6AAqTaGLccTfilxThdunRe8IEZcPINetIx7XEPS0Ewt2U1R1JZ6e7eSyaRTK0SutpHyOeHQAg7lizOOeLuCNi/bzwogLKkhJRdO46uxU1Nh4+rGDXLmhip2Hhya8vTvqpcZ28gupJ5RAnZWQJAmZTDZhTUq5Sce/Xr14ZEkywNvriomlczT7I7T4ozTaTTTYpzdfWl1qps8TI5PNoVIq6A3Hea3XRy4vUWPRs38oOO0gxe2P4wkkWFw7cWtnu0U7ZdEsFH5V15RZeGZ7BwuHi2ZtJi1NNXbagz6Shi5+s+9xzBoj72q6YexYYikcOjUNNiNWjYrgNKd7Xu/xUWbSUmud/iZdO44MsqDCOm7m61S7jg6xoNKKxahhwBsjkcpS6jSg1yrRa1V0D41tbS5JEp964EW+dvd6yl1Gnn+ri3//1AZyeYlkOsvKhUXc94s32X/cQ3WJadIplnxe4pEXW7hzcwMq5eSFnFPpOO5FpVZw/S1jv7SnK5LOkslL2E4JUirNep5unZvM0LlYe0UN+3b0cNX1C1Ao5OwaCDAUS5HN5/n7tWMzmGeipsFJwB8n4IuPWdlzqvd/cj3RSIotzzafVd+UXDbPr36wHYNRwx0fuozeTj9VdQ4cLgMqtWLks/WOOwpTxRabDotVxx9/u5dkIjPuclzPYASrXU/DoqKR+5yY7hnoDVFSbkGpkk/ZMdfrjuIoMpKMF6aWosFOwr5WyuqvJxrswGjbwNFjIRZUFZGMDZGIgc9vxdN/jES4h4qF7yDoPkQ02IHF2Tjq2AH3IToO/pZlV/4Tap1t0nEEfDHRz0QYccFM92TSOfKpHEUlJuxOQ6HXgUw26c7D7piPIoOTaCLD3/3nFt5sc/PWrj72NBf+CP2R1Lg1KTKZDJd+9ElKr1LyoWVV/N2aBq6tcvGX9ulvNuayFjIWPcNZn/ZgnNd6fAzFUqwstuJPZkiMs0HWeA61+2iotI786h/PtZdV8t7rF07rePXlFhKpLHedcvsP3dTEF26/FjQxXm7bTn9kbCCYlyS8iTT/sLaB62pcWDQqEtkcqSmmrrL5PI8e6+WhQz1IksSewSBDscnnyiPxNP/vN7t4cefkKwmS6SwP/Hon3//9PiRJork7QH2Fhb9770o+/s6lNNXYx93vKRRNE4ykONjq5ZntHdSVW1hUY2dJnYPLFhWjkMtYWu/k9f39fPjfnuPJbRP/qnUH4vz2uWPsazn32oXONh+1DY5p1Z1MxJ9IY1Qr0ZySiXHo1IRS2TOeZpxrCxcX896PrmHh4mJyeYnucIKcJFFi0FJ3BgHveDRaJZU1NtqaPZMGKSaLltIKCza7nmhkehucnqqzzYdareCzX9lEeZWV9VfXUVphQa1RTvg+G81aXMUmjh8dvy7FPRjBVXJKCwWbjmCg0BRvsC9EaYUFq01PaIqgyueO4Swykox5kMlVuLteY6hzC12HH0OtteIorsDviWG01gAwMJDDF7AQ8+8BQGcsxeRoIOI7PubYJy4b7Jp6Oihw2jJo4dJ2wQQpPZ1+cnIoHf4lW1xmRkpkiSXS/NMPXyN+yq/4ZDrL/Q++xWDUQ5HBQZ87wkA2QzCTZVGxmV//+Uhh99hwclr78pxufbmdZl902nPSMpmMqhIznQOFlQHBZJpULs/xQJQ6qwGjWsngFF/UJ/R5olNOOZS7jKM60U7mfTc08v0vXUtt2clK+CV1Di5fVIMGE7FsjEhq7Bd7IJkmL0k49YVVFQa1EoVMNqZ49qh39PLto94IaoWcQDLNzoEAvz7Qxb6hyVdMPPdmF7lcngPHC2no7/xuDwdbxxb17mvxYDGqae4KsPPoEM1dgZFl1QCVxSa6B8dmUk7sXr3/uIcnt7Vz5+YFY26zrN7B0U4/JXY9v32+mV1HTwZup372TmRqth8490xFV6uP6vrJN0Obij+Zxn5aUalZU3ivAhdwofNANIkM+Nyaej68rOqcArkT6huLaGt2E/DFp+ynYTRriIbPPEhpPjRI49KSCXejnsjS1eUc3D1+UapnMEJRiWnk3xabjlw2z74dPfR1BwtBil1HcJweL6fuz+PzRHG4DCRjHiyuJnLZBCqNBf/gXoqqrqS41Ew2mycnK2Q5ejqSSPIq0rkyFq75NDK5ArN9AWFfC5IkkYx56Dj4MJKUJ+w/TmntZvz9uydtAJdMFLrM2sdZYSRcmi6YIKXzuJcw4BiuzC8pMxP0xvjhlzcTiad589DJzEbPUIS3jvYSTcXoPpjk8FAI23InCq2Sf7htOW5/nL0tHjLZ/LiZlKnYtWpSuTzxSbpPpnN52gIxukNxfnOwu1A8O1D4AjtRu5HNSxQZNJQZtQxMow8LwKA3RvEEe1mcDaNePe6UF0CpvhyZJB8JUiSpMFWWzecZihamek7U98hlMiyasXUpT7T080bfyaK/3YNB1pbaeOfCUn55oIt4NjflNNGr+/q4Y/MCjnT4iMbTvLKnl9+/2DLmdm8dGuSK5WXcelUdj29p5UCrZ2QaCwpByoAvRiY7+iQ54I1i0CrZ2+LBZtZw2XDa/FT1FVaaauz83XtX8r4bGvnl04fp6A8RT2b4yL89N7KUu2cwgsum463DA2e150kmk+OlZ46x5dlmhgYjVNedY5CSyIzUVp0gl8mw61T4EmfX8Gs+6AzFqLboqbcZqTDPzN9DfaOL9hYvPZ1+FjSN/QycymjSnFEmJZ3KFrJ7h4doXHrmUxlLV5XRftyLd5wavEIm5WSQotYoueNDq0d2fy6rtIzb1r+73c9//esLRCMppLyEzxMrBClxD/aSFSCTU7figxhtdTjK1qBUKahb6KSvz4RKV0ciIWPR8jq6+9eO1JpYnIvIZhMMdb2Cu/s1/AN78PS8SToZpLj6agASkf4Jn2fAF0enV03ZZVa4dFwwNSn7DwyQr7ESkhVO/MVlZg7s7uXGIhObVlewbW8vm9cU6jp6hqI4SzJk4lZee6oV2VIHequaL2xuwqbXcPmyUn702H7KnIZJp00molMp0CnlBBJpDKrx77+1y8MfW/pZYDNy1BfhbcVmDh8tTAEEkxnUchl5CiuJSgxa+qcbpPhjbDiLYr2zUe7czFBkAb50hF/u7ySQzFBi1DIUS9IdilNlGf3lYNWqCCVPfvFl8xLd4fioL8mBaJLra1xcVmpjR3+ASDpLMDVJQ768RK87yhffv5oX3uriD1taMerUHOnw0TUYprrETCab481Dg7y6v4//+Jsrcdl0PPJCM7XlFtYtOfmF4LLqUCnlDHijVJWczEb1e2OsX1rKa/v7uXPz+Mt6lQo5/+/vrgKg1GnkWKefL353Gx9+x2KS6RxHOnwU2/V0D0XYfFklT2xro9cTpbrkzAoA24652bejh/pGF7e/b+W4q0zOhO+0otkT7Do1/uTMBilbd/ewp9nNF95/2Ywedzy9kQRVMxScnFBSZkatVlBa6Rh3mfKpjGYt0fDUf7M9HX4sdh3/89+vsXRVGelUlpqzyI5Z7Xo2XlvPL773GkaThnQ6x8f+diMWm25MJgVg8YqyURviWe06QsEE+bxUCJ4l+ONv95LN5jl+ZIiS8kIm1WTOkc8msTgXjdSPNK7965HjLFxczCvPt5BK1vL225uw2HTs23FyGlah0lG/4kO07PoZUj6Lyb6AnmN/xFWxAYVKh9FaS8Tfhn6CAlqfOzpunxbh0nXBBCnpaBpZpZEf7eng/21eSnGZmcEnw0iSxNWrKnjo2WPEkxn0WhW97gglFTkMijpyQPZ4ANflZVQPf6levbKCl3b28PWPrz/rNLFVq8afzFAxzneQJEm81utDp1Rw1Beh3KgloZXT3hdCkiSCqQxNTjPueAq5TEapUcsR7/T6qAx445TYJ/4jzksSeUkayXCci2hehcpSTFpy0hmKo1MqeL3Hi1qpICdJFJ1Wt2PRKEdlUvoiCbJ5CXf85C/OwHDjLblMxpfWL+Ct/gCvnNIBtT0Yw6XXYFIXPpreYIJsLk+p08h1a6v4w8vHuXp1BUiwZVcPH71lCV//2Rt0D0b4/F+tpqHSCsADn72SiiLjqCBULpdRUWSkZ2h0kNLnidJYZeeu6xdSOo0TpEop5ysfXsv9D741ktE51unn2ssq6XVHWLOomKpiE90DkTMOUpoPD7H8snLeduviM7rfRPyJNPW2sc/JrlXPeCZlb4uHvc2ekcL02RRMZs65DuV0MrmMq65fQMk0moBNlUn582MHqaq18eTvD6BSKcjl8ry1rYMlK8tGdrM+U5tvWkT9Qhe5XJ5Xnmuh5fAQi5aVkE5lp2x6ZrYWuq/2dPj57c93sGx1ORqtktWXV9FyeIi+7iBLV5WRTflRa23IFWrU4wS3jUtLaGv2sOyyChqXFBMJJ/H74qOKeg2WKhrX/jWBoQO4Kjcw1PkK5QtvLrxu9joigXaKa64Zd5zuwQjFpwVcwqXtgpnuyStkbG4swahW4omnKCoxIUkSfd1Biu169FolbcN9DnrdUdCFcMqKQK9ClpMoScvY8mwzUl5i5UIX3/jrjaxdfPYV5HatmsAEv0R7wgkCyTR/v7aBd9QXc1N9CQdCUbJODX880kcwmeGGumI+vaqwrr/JaeKYL8Jz7UP8+kDXhI8ZS2SIxNOTrtx5pcvLD3a1n/XzOiGbz9MbSaBMpMlkmrl3YyNf3rCQDy2r5qPLqmlCTXJgdNFykUHDYPTkibszFBt5v6AQQIVOabwlk8mwaUevCnroUDdvnTI91OuOUurQo1LKuePaBRj1alY0uLh6VTmv7O0jk81zrNPPf37uaq445Zfjwiob+nEafFUWm+hxn6xL8YUSdA2EKXMZKHNNb5+QE9YuLiYST7Os3smxrgD5vETPUISKYiPVJScb+MWTGQ60eqasYcrnJY4fcbNwSfG0xzAebzDBr/98hFwujy+ZHjPdA4XiWf8MBykt3QGC0RSe87C/TSiVwTzN3ihnYt1VtVSN05bgdEazhkQ8M+6Gg5IkcXBPL3/87T6qau1U19v5q7vXojeoWbzi3LKg1fUO6ha6aFpeyvFjbtyDkcJCgim2BFAo5JRVWnl9SxuZdI49b3az/qpaGpeW0HrMw/5dvVy2odCoTWsYf+d0AL1BzZ0fvozG4c+oyazFatPR1x0cfTtzOeULbkKttVK56F3I5YUfC2b7AiL+VnLZ8T977oEIRaUiSBFOumAyKRmDkssrHBz2RYZ/HRpZtb6KN7a2856PXEaZVccT/7ODPy2w0zYUwWj3YsguRmcFf0ZO+KiHV4NJGhYVUVljG7M535my61T4J2hV3R9NUmHSUW3RU23Rj3w5PxZM8lyXmzzg0quxDTfYKjfpWOIy89ixPjQKOR9aVsUBd4jWQIw7FxWaWqUzOQ61eTHqVBj14+/2CuCOpzjsDY/0hDlbfZEkKrmcpWotLya287OnFlFT5OTmKwqB1W+O7ae1J8h1S8tHCnnLTTpe6T5Z0Nrqj7GmxMrWbi+xTGE1SV4qTAudcKKO5cQXuCeeHlnt09Id4HCHj4qiwknLoFPxw3/cjNmgJi9JpNI5Xt7VjVwun3adTmWRia7h4GHQF+Nz/7WVcpeBBcMZmDOxpqlwon73tQ3c9+BbPPJCMya9mooiE9WlZg61eWnrDfLPP36dZDrHVz+6btT00+k8QxEymRyV1ZMv0ZzKH7e28uSr7eTyEn5dbsLpnrbAuXedzeYl0rkcUlaizxPFadVxvCdI0QzWTY0nnMpiPoup2pliMGqQySAWSWM5bV+laDhFOp1j5dpK1l5ZM9Ke/W/vuXbGai0aFhXx8jPHqKyxjapHmUxljY3tW9pYsbYCrU7F0tXlqFQKPvw3G0gmMpRVWuk55kEzSZAynopqG72dAeobJ77fiZoXu6sUtc5O0H0QR9nYaUH3YFg0ZRNGuWAyKVa7nmKDFvvwNAsUGjO1HB4iFEjglMmRJGhr8ZIPJfAlPSiSGgw2HXGjimgwiVqj5NgMdQ61TpJJCSTTIwEIFAoVb6grZklOiVoCGWBWjz5ZvWdROe9fUokEdATj/N+hbnYNBEau/9O2Nu7/5Y5RWZRXuj083jx6d9hQKoNSLmNr17ktge0Mxaix6Llz0yLIy3luVwsHWgvHzOclugbCLKlz8MetrSP3KTfp6I8kkCSJnnCcPYMBNtcUFbIpsRSBZAazWjlqKsqmVZHNS0QzOWKZHIlsjqFYIfPyg0f38fsXW6g4JZVtNWmQy2UoFXLWNBXxx62tVBUbR20QOZnKYhM9wytwfvyHA2xaXcF/f34TDsuZB3QOi44ffOla1jQV846NNfz2+WbufudSVEo51SUmWroD3P/LHdy5eQGfefdyfv6nQ5O22vcORnGVmJCfZeM2KGRtXtjRzefft5pn3+ogks5ytMWLN5jgdy80j9zOqdOMmoY7Wy91uvnezjaO9wRw2fRctqiIlu7A1Hc8R+F0BsssZFKmSy6XoTdqiIxTl+L1RLFYdbzzr1aM2j9mJotBHUUGrHY9O17rPKMgBaChsYgb37UE1XD2pbLGNlIonIx70OonLxoee1w7vV2Tv+edbT5+9P+28seH9uEsW4Ovf9eY26SSWYL+BMUikyKc4oIJUtYsLPzhOHQn59ItNh21Cxwc3NOHPJYhhUSNQkE9SlQJHalIHr1DR1SnQK1R8rZbmzh2cBBJkgiHEux8vfOsx2PXqiYsPAwkM9jHOSEtrLKT8iXRKxUoTvtSLTJoubbaRZVZx68OdGJUK/En0iMbwe06OsTb1lXx7msLy2PbAjEePtzLjv7RJ4dQKsPqYisHPeFzatt93B+l1mrAbtZhVBvYuMpJd6CfoaiHQX+MbE7ig29v4q1DA2SGU96lBi2pXB5fIs1Dh3u4rqaIUqMWl16NO54aE7wBaJQKdEoFoWR6ZFroRJDi9sdRK+VUT7DkenVjEX2e2Kj6kqlUFhvpc0eJxNPsbXHzVzc0Tn2nSZwY26duW8Z3Pn8NG5cV0vk1pWYCkRSXLy3hzs0LuGFdFcFoatKNJt1DEVzF02sQOJG9LR5cNh2b11Tynrc3IeUk/vdPhzjQ6uXRF1tGgqRykxZfIk3ylOmKTDbPoy+18PDzzRMdfoydAwHagjGO9AapL7ewvMHJm4cGZnXfo1QuTzKbx6ye20Sw0TT+MmSfO4bDdW7v41RkMhkr11USj6YpKp5ukGJHrVFQVT/xdNZU0z3jHre2sE1JdpJeT96hKBabjuNH3Vhci4kGO8mkwvj6TgYrnqEIeqP6nIvFhYvLBROkuIZT/vbT5tKXX1bB9i1tpCNpesgjy0nI5ODKlBMOJlFZNKxaXMw//vsNLF9TQTSSor3Fy8/+61X+8vghYtGz+zVp16rxxFLjnoz9ibFfxgDXrCqnRqclMjRxmr3GYmAwluKupkrUCjnuWIpoPM2xrgDvv3ERV60spz+S4Ie723hHfTG+RJpoOjty/3Aqw5pSG6FUBk/87GoOcnmJg54wy4sKvwIdRgtLFxnx2l/lqWMv0tkfpqrYxKIaG0a9mj3H3Dz83DFe3tlNsUHL7470EkhkuLmhMLXh0mvwxAuZlPHal1u1KgLJDO54YVmzP5nGH00RS2b50Veu45pV468EWNVYhEwG1WdQaFfqMJCXJLbt7aPYrj+rJejjkclk1FdYR2pabGYtP/zHa/nUbcuQyWQoFHIWVlk51jXxHiyewQiuaX7hTORIh4+lw8uWFy10UmTUEEtmOdrpJ53NM+AtLGE1a1SY1Eo6/FGODu8L89r+Ph7f0srjW46TnWT5dCiVodkXwRtP0RtOUG3W0xKOUeY0sHF5Gdm8xL//4k0efWnsMvGZEE5lkMsK21XMJatNN27X2UJ7+dlfobJiTQVKpZzi8ukF6Xqjmi/+6w1jdoE+IZ/LkE4EzjhIKS4zYzRpaJ6k+7fPG6Wqzk46lUWusiKTKehve4HOw78nnQwi5XMMdHdRMtwOP5dNEnQfQspPr8mlcPG6cIKU4V+YjtOWTjYuLaGu0cm1dywmbO+jcW05JUs0mGNOwsEEURXUukwolHJUKgUNi1z86Xf7hhsc6XEPjG3uNR31diMapYInWsau+R8vYwCg16r43C3LcO/z0NId4Lk3xxbJLnKYaHKYWOQwUmIoLPfd2+KhqtiE0ajmkSO93P/6Ma6qdHLrglJceg1doZMnylAqg0uvoc5q4Jjv7J5bayCKQiaj1lqYWjKpDbzc8xKo4/QEh+joD1NTZkYmk7FhWSk7jw6xbV8ff9zaSplOQ084zkeXV6MZbgtfpNfgiacnfF1sw1kpTzxFg82AVimneSCIUaei2K6fcCrHYtSwYVkpS86gl4hCIaepxsHvX2xmUc3UBZLnoqrEPKoQd1G1nWOdEwcp3qHoqM6h09HRH+KRF09mPo50+Gka3jKhKxSn1mrAYdGONJ/rOuXzXmbS8uTOLv7t52+QzeVp7wtx5cpylAo5//vMUe79yevjPuar3V7+92A3+4ZCLLQb2VBhx5MrbD+gVMj50E1N9LmjM9J1dzzhVAaTWjVq24q5YHcZ8I/T8drnjs56JgXAYNLwD1+7fsqVPadSqScusE3FfcgVKlSaqVc3nUomk7FibQX7d028A7LPE6Oi2oZMLiMezaA3l+Pr3w2At3cH/sF9EPs9ZZWF4C7oPkTbvl/Tuu9XZzQW4eJzwQQpJ7aqP3XpZDqXwZfy8Zz597Qod6FuOMjKTQ5kjiT0mrHa9YRkjFrdsGhpCdFwijUbqykqNTE0Sfp9MhqFnI8sq2ZL19hVG/5kZkyXzxOMOhVlTgM/+sN+fj/OL80VxRa+sL7Qq6PYoGEwlmTX0SEuW1TES51ujvkifPWKRdzeWFbYe8eiHwlSUrk8iWwei1bFEqeZXQMBsnmJWCY75nEms3coyPIiy8iXgEljpDc8gDbYxEDEw85j/TTWFE5kyxuc7DwySJ8nSiCS4oXHjrAwJqPJeTIjcCKT4k+Mv1tthUlHdyiBJ5bCpddQrNfS4Y9Nq/jyno+so7H6zIKNd15dhz+coukcghRJknj6+MAZtZZfVGPn2ARz99lsDp83Nq1MyqAvxuf/eysD3hhf+cGrI8vvk6ks7X2hkU0zu8Jxqi16yl1GvMEEBq2SzlM+78U6DUf6g6SzeY52+OkcCFNXZmZxrYMnXmnlYKt3VDfdE9qCMdzxFG/2+VnqMlNnNZBSyUbqpTatruDTty8jHJudZnHhVBbLHBbNnuBwGfB5RgcpUl6ivzd03jbI0xsnLqI/U8m4G63edVbLx5euKqO92cNAb4jf/OTNMefEEy33DQY10UgKvbkcKZ+huOYaPL1vMdB5ALk8g8tRaMqZjHkw2uqI+FtFNuUSd8EEKSfYdWrimRy+eIyPP/GPfPPVH4LMyV9aX0Iuk+NLu4kZAyDJuOW9y/EnR3fcXLikhMuvqWNBUxFFpaZpZ1JS45ysq8w60rn8qPbi6VyeaDo77oqKExoqrLT1hvAG4pOm1YuNWgajKfY0u7msqZiD7jCba1yjVu1UW/R0hAonylAyg0IGBpWCa6qcdIXi/Mu2I3z+hQP8+2tH2d7rm/J5ZvN53uoPsL7s5Be4U2/jqup1VKkWE0wF6NW8TkB3CCi00A9GUpQ6DHz4HYu5rKmYQ6e1rC/Sa3DHUvRGEpQPd7d97OXj7DhcOCHVWA10heJ0hxOUGbVUmnV0hxNn1Vn31KDBl0iPW5ezbnEJ6xaXsGrhmRUIniqSzvKn4wPTbsIHhWXRA94YsXFWhQ31h9FolFimaCIG0NwVoLU3xKMvtbCo2o7NpKGjP8yhTh+OajNFtsLr1hmKU2PVj/R+WbukZGRlE0BXRwC9Tcc1qyrYcWSQroEwNaUWltTZUasU2C06DreP/szkJYn2YAyNQk5XOE5ni49inRrkMoJy2NFfyBSZDWrCsXMvzB3PbC0/PlN2l3FMJmWgL0Qum6e82jo3gzoHydiZr+w5weYwYLXreObxg3Qc9zLYd/Jzls3mCAbiOFwGDCYNsUgKvbkCmVyFs2Iz8ViGZOQIff1F5BNvEvI2k4y5sbiakMkUJGPj71kkXBoumCBl/5e+QiYSQa+Us9qW538PdpHP51AqFoPyOu5Y/B6urF5LZ7CXgORl48ftVNU5CKbS2E+ZYtBoldzwzsXIFXKKS8y4p5FJef3lVr57/8tj2pyrFHKc+kK2I5svXBdIplHKZRgnmS9vqLSiVMiRy2WT9pQoMWjoCsZIZ3JUlpnpCMVY5hqdim2wGWgNxArFwMMnb/nwXjp3NpVTbzPwjU1LaLSbeLNv4qkGKEwP/O5ILxqFnEbHyRTyB5bfzmfXfYRrljYgSaCwDdIfLayS0mtV1FdYWVRj5+Yravn07cto7wsRPeWL2GXQEExlGIwmR3Y+fnFHF99/dB/RRIYai57ucJyBaJIlLjO1VgOeVPqMg5Tv7mzls8/tY0e/n+5QnHtfOcyeweCY28nlMr728fXTatw2kRMrY9zT3HMJCl/cJr2agXGmCNpbvNQ0OKa1p8uJ1Ukv7exm5cIi6sqttPUFeaPDi6LWRCaXJ5jMEEpmqDIXMikAVywv43h3AEmS+MsbnRw6MAQGJauXFPPSzh4CkRTVpSauvaySf/zAZVy2qIgDpwWcQ7EUmVyejRUOFHmJp188zoHjXnLxLH9sH2Brl3f4uWoIx8YPEs9VOJ0dafY3lxxOA6FAgswpBaNtzR5qFzhRnMMKrblyNkWzp6pb6KKvK4hao6TllPqUvu4gKpUCk1mLwVhogmd1LaZ22fvYu3MAr78aUNLevYzi6ivpOPAQieggOkMJOlMp8UjfxA86iaD7CF2HHz3r5yPMD3P2l/Tkk0/y2c9+lo997GP813/9F8FgcNLbJ/r6SA656Tz0W9ZFHsEd8mI1XE5KWohOqWB56VoW2GvpDPTgifkoczg56AmhVynHrYMAKK20MNQfYetzzROeTL1DUV55voV8Ps9g39iN8EoMGl7u9HDPlsOkcnk6g3GcOvWk8+WXLy3lIzc3UWTTM+ibuIi22KDFHUtx2aJi9rlDVJh0o3qMQCGTks7mGIwlCaVGL8u8qtLJ3StqcOk1rCy2TLnk9MVON0e9EW5pKBk1frlcjlwu54b1NZSYXEiyPP3hkyehv7qhkXdsrAEKy3JLHAZeeKuLZKowzWQe3oXXrlNj1qhIprP0e2OYDWpe3NGFU6dGp1LQ5DShVympseqJkMc1jazCqdqDMTbXuHjsWB8/2N2GUa3k8DQ7+Z6pEyuR3GdYnFzmNNDvHbv/SsdxL3ULp/cF0T0UwWnVkZdg5UIX9RUW2npDdPqiIJPRE0nwREs/9TYDWqWCiiIjDouW1Y1FRBMZfv9iC79++jBf+8Aaqq160iYlS+rsFNn16LUqbGYt65eWsmphEW8cHBi111G7P0qZUcvGMhuxjjD15RZ+8vgBVJk8sUyOcLoQnJoNarI5iUTqzKYap8MTS43boO58M5o1qNQKAqcEne0tnkn7hcxnyZgHreHss4t1C13IZHDNjQtpHs6SBnwxHv75Tq68rgGZXIbRpCYWTaFQarEWLWX39i6qm66lbsUH+fDfXEVxzTXI5ApScS9aQxF6cznx8NkFKWFfC96+HQx2bMHT+9ZZPy9hbs1JkPLKK6/wxBNP8NGPfpR/+Zd/IZFI8P3vf3/S+yj0BhL+fgKDB1Dr7CwzeEnTxLU1LmoseryJFDW2CtoC3fgSQWw6O78/2sdtC0vHLPc9we408MHPrGfHqx20HTk67m26O3xUVNuoaXDS1TY2E1Fq1LLfHSKYyvBc+xCPN/fz9rrJO9mWOg3cdk0DJQ4Dg+OsDuj3RPnj1lasKgU5GaxdXcYfm/u5dcHYbpVKuZxam4Ef7W7np3s7xgQxJxQbtKOWNI+nN5zgjkXlXFk58Q7K5eYiSo1FDMY8ZIfnitctLhlVF/LOq+t59KUWnnqt0PlWJpPh1KtH2ph3D0Yw6dVct6aKA61eZDIZy1xmNpQXjlGk1ZCXQO/UTfuXeCqbI57J8Y76EipMOq6vKeLDS6vOunh4Ku7hqQzPGfYaKXUaxmRSMukcPR0B6hZOb+fq7sEwt19TT125hZpSM/XlVo52+kfG8kRzPwfdIT413NF4dWMR9316I2qVgssWFfPQc8e4622NLKlzcFWFk23dXv7hr1bx1Y+uG/U4ly8tQatW8OfXT3Ywfv34EK3HfTQ3e8Gb4l8/uYHLFhVTbzVg16oJDwcleq0ShVw243UpkiRxzBdhoX3ue2nIZDKcRUb6e07+eAn6E2dUyDpfSJI03CPl7AOsBU1FvO8T61i1rpKgP0HHcS8dx72UVVq46vpC64QT0z0ArcfcJJMZFq+sxl6yBLvTgEwmx+JajEyuRK2zojeVE59kQ8LJJCL9KNVG+o4/g69vx1k/L2FuzUmQ8vzzz/P2t7+dtWvXUlNTw6c+9SmOHTtGZ2fnhPfR11WTCA2g1tkwmCuwyfpZr9nPzfXFhcLMWIpqawUuvZ1razcSy2hIZLJcNckXLkB1nYP1V1oI9v6KfL5wgs1kchwY3ha9rztIWaWV6noHXW1jazpKjIUaixtqi3jq+AB1Nj0bKqZXkFns0DM0TiblL2908uBTh/nct7ZAJs/+WIx6m4GVxdZxj9NoNxHL5Pji+gW8b3HluLexaJSoFfJxv1SPeMLs7PczMNwpdzKXV67mrmXvRI4Md8w77m1uvqKWt2+oGdkZGApLqxc5Cl8sHf1hakrNLG9wcrjdRy4v8YmVtawbroM51OZFimV4pHOQPzRP71dUIFloYmdSK/nc2gZuqCtmgd2IP5GZNJB4vddHKDX5LszjccdTw6uWzixIKWRSRr/nXe0+jGYNtkm2Ozghk80x4I2xYVkZ3/3CJuRyGSsWOLGbtSh0SowqJUd9Ea6vLRrJICoUciqHC3IvX1aKXqvixsurAVhbZiOSztIVTeKT5fjJnpMBiUIh5wNvb+KpV9tHgsX+SJJcLMNPHj/A+9++CItRw9+9dyVffscy7tm4kEQ2RyaXRyaTDdelzGyQMhRLEctkaRhnP6K5sPryKl5/uZV8Lo8kScQiqQuyz0c2HSGfTaI5hyBFoZTTsKgIrU7Fhk11bHm2mb7uIOVV1pHbGE0ajh/18JNvvcJzTxzhqusaUCpHrziyl6zAaK1BJpOjN5URD/chSRP/uMqkooS8o3v7SFKeeKSfuuUfpKrp3aSTY7PgwoXhvAcpmUyGrq4uFi8+uYFaUVERLpeLtra2Ce8XXBgmEu1HZyhGayjGEB9kVe4IUsKNU6/Gk0ihVWr4jxvu4dNrP0BbME6D3TitZYqNTTpkMonB3h6efGQ/B3b18sTD+0insvR3B6motlJdZ6e7w0/+tL4odVYDDTYDdy4q5zvXL+fTq+qmvTSyxG5g0Dc2k7KvxcPf3LGcv33PSuqdJg57IxMGKAA31hXzL1c10egwTViwe2K10NA4NRRv9Pv530PdKOWFjMdkNtVuYGPVZZSaiukPD054O5dNjyeQ4Md/2M+fX+/go8urubqqEDB2DoSoKTVTW25BRmEZ7ale29/Hep2Bf7uqiVe6vbQGxk6PnC6QzGDTqketTNAqFfz/7J13eF13ff9f5+69h6SrvWXJK952nDghmywgzLB3S+FXSlsKLQVaWmihjFL2Hi17BMggO3ESO97blqw9ru7ee53fH1eWLEuyJFteiV/Pw8OTe8/53nPle855n894f1x6FSOxmX9jKBfZ/vjwEF/Z3Ut2gV06qYn6A38qS6fdMBlROZOhaGrWKFClTUv/WJQfP3Rssmh64GSAxhbbgroqhj1x1EoZNlNZHI/EUhwLJ/i3v9iCq9rIuiozCokwpzi/frWLb3z0xsm5RgqphG21Nn5+fJSfHhlhnydCfMJ3J5UvYKnUEk3m+NGDx/jUd3aQKBV51cYGvvUPN3H7pvrJdQVBwKCUI8Bkyke/hCJltzvEi2MhjgfjNJt1yC+Tmo9V62solUQO7xsjly1QKJTQXYEiJZP0o1CZkMqWJo22/tp6vO4YJw57pokUrV5JJJRCrpCi0SpYO5EmPh2DtZXWte8DQKVzIpYKZNNz19MFx/fQu+97xENl9+tCPj3hsVJAa6rDaO8gn41d7RK6QrnoZ3oikUAURQyG6S16er2eWGzu+gG5TkpaNo5Ka0elc6ItlW8OqfhY+Yn2tIthKl/gZChBs3lhYVeJUH6y3f/CQQ7sGuHRPxwDEUaHIvg8capqTVRUGRDFchfG6bj0aj66qQ1holh1MVQ7dPS7o7j9CR7ZMciRvgCf+s4Ohj0xrl3lYt2yCqon7NqX2eYObyukkgVZhDu1qkk319PxJjJkCiVcevWCBVaV3slYbKZ503jcRzQTw2FW4wunONIf5M87B9m+f4zekQgAg+PlSIpUIrCixc4Lh6bCuflCiZ1HPFy3ykWVXs0Kh5HuBaRsyh4sM/8GNrWSwBx1I+5EBqVUSjJX5GRofiG0zxPmbx4/yN7xML5kllLRTSSbnyFwQukcn3n+BIPR1IwW5Sq7jsHxGL964iQvTuTtB3oWXo9ydCBIW70FQRA4GUrw2Re6+cHBQfojScLZPNfX2vjEtR1zFm4LgoBZP93M69ZGJ1uqrdzbVoVLr+b4RB3Pfk+Ubx0YZFWrnd881cv+Hh8opKxvss/aHi4RBAxKGdFTtUhn6fB5fNcQP37o2IK+M8D2kSBPDPk44o+e9Vy42EilEq6/pZVnHu0hFskglUpQqi59Ue9iySR959zZMxtKlZzOlVWkU3mqpkVSVMhkEt7wrnW880Nb5p0ILZHIUOsqzlqXkkl4UOuc9B34MYnIEGM9D9J/8CeodBVIJDLkSgMIArns1WjKlchFP5vOtdr/J78+gkYLemuUG2+8BZsMBLmGVGwMW1UX/lSWsXgatUzKx58ut8fe0Tx3bUguE2Xw6C9oWvlWcumyd0U44KaiqgufN46zUs/eHYMYTGoME0KhtsHMUH9w2jwOgEK+OO8U0tlY0WIjFMvwX/+3lwF3jJUtdgbcMbqabOgnIhoVWhUOjRKb5vyfzsqRlPJNQxRFBEFAFEU8ybKJWo1h4d00taYqhqLTLxyFUpHPPvs/rK9ejVNejS/tpZTSUSqJfOH/9mIzqfnqR7Yx6I5Rf1dZpN51bSP//sNdvPYVraiVMg6e9KNRyWirLc8ZcenUjMbnn6pbjqTMIlI0CgJzTPsdjaWpMajRyKW442m67HN7W6TzRb57YJCNLivf3D+AUpLiD8d/jsP0Tn5y4DHetupGZBIZxwPxSV+a33W7GYgm+ey2rknRUO3Q0dlopa5Cz5+e66ej2oR3PEZ9y/yGdNFElqP9U46yz48Gua7Whl4h4weHhsgVS9g0SpSLjDIoZVJubSwPSwymcxz1x1hfZSGSzRHPFdi0zEEomqGpycIBclSZ5v6d6BVyYtmp4tm5IikD7ti0duizUSyV255zxRJSicB97bM7EF8quq5x8cyjPezfNYJWpzgnn5FLzbnM7JmPtVvq8I7HJq+fAPVNFt794a1odQu/nmkMLtLxMeIKLWHvIWo7Xg1AsZAjn42STnipaLyJQi7Byb3fQRSLNK58CzJ5+SFVECQolAZy6QhK9YU1cLwKPP300zz99NMA5HLnH0m96CJFr9cjCMKMqEk8Hp8RXTmdd7/mVajNw7Ss+wtUehePPPocnQ2bSIVOUtesJFcq8entx7mt0YlDq6Ldqqd2jpuuKJYIje8lHjyJb/gFcpkwIEenSXPdHV2YLGp2PNPPi9sHWLupbnK/uiYrB3eNEAmmuPXeTuKxDOMjUR7+7RE+9I83LnownEohY/2yCrYfGJt0Bf3yh6+noWpKBG10WWixLE0hnlWtoDec5JE+D4F0jjd31RLLFUgXinxwbTMK6cIvrvWmGnYM75322rODO/Ek/AxFRjma7UG0FpCkV3DH1gYqLFq2HxjjJw8dJ5XJT9ZIdDVZqXbo+PjXn+Nv37yW5w6OsWVF1eSF3qVX86L77K3T8VxhzlEENo2Sw77Zn6BG42mq9WpUMumsfieFksjnXujmtR0uIpk8No2caOIJMpkojTY1Veo2xtMhnh7qYUttIyNxA786MUaNQU2lTsXxiQiQO5GeLPTUqOR87gPXEk1k+buvbudj//Ek7VbNvBft5w+6+fxP96CQS7hhUx3ZQpE942H+bmMrVToVkUyegYh00QLlTDpter5/cAhRFIlk8ghARiPlCx+6jh2jQbz93rNG24xK+WTxrEGr5MRQmGMDQSx2LYF0ji67gZIoEk5kCUYX1r49Gk8jEQQqdCpKokilbmlGGSwFpVKB4WO/prHJymBv4IqsR4Fyusdoa1/SNatqTLznw1unvSaRSnAsYowFgFrvIjS+j3ioj3TCg7NuG6nYCIV8ivGBJynmkqh1TtS6lUilSjIpP2bnimlrKFRmctnI+X6lqyyAbdu2sW3bNqB8X//Rj350XutddJEil8upq6vj2LFjdHV1AeDz+fD7/TQ1Nc25n8u5nNHu48TWywkn/PwmLXJTxUpODD2LSgr/ffNKvn1ggEcHfNza6ORVbVWzrpOOe+je/TUEiQxr1Tq8Q8+gUBrRmBoxJX246kxIpRKclQYQobXTOblvU7uDF57q48DuUTLpPEcPjGOyqIlFMwwNhGhoXlh3xuncvrkeqUSgpcbEg88P0OgyTnsS0ylkZ/VcWQzWiblHI/E0PaEE94sinkQGi0qBZpGRoHpzNWNxL7lCDsVEHnvX2EE2VK/mmP8k6XwGmUmBrSTy+lvrMaj0KOQSvv27w1TadKgmvpMgCHz6vZv48s/384dn+9h11Ms/vXOqy8SlL48GKJRK06Ynn87nXugmkM7y+o6ZT9g2tWLO4taReIoNVRYUUslkiuN0+iMJRuMpvrrnBE6tBl/sAAZzns/f8mYqdHae7H+eHxw8hlTq4Jh/iMeGLHTaDBwNxHjHijqS+QIHvFHc8cyMbhSjTsm3/uEVfOPL2zkwGiGayGKcQ6hkcgV++OBRljfb6A0l+FG/m6RCwKJWUGtQIwgC93fVzrrvYmk260gVirgTGSLZPNdUmNjjCfPaDhePDfm4tvbsv3GDUjYtkvLIjkEi8Syt11azezzM2kozB7wRUJYIRuePkAF0B+M0mcuF1xfCd+Vc8Q0/T8izn2R0BJu5kb27XTS3L2004mIgiiKZpA9n3db5N74EmJ0r8I+8QD4bAwRGTvyedMKD0b6MfCaCIEhRasq/S6tr7axryFVGcunIxTvoqywZl6T67Oabb+bPf/4zu3fvZmhoiO985zu0tbVRX18/5z5qq43CEwHGkyEGwiPUm6tR65woVCb8IzuQSyWsrzRTFMXJLpLTEUWRqP843qFnUGkdKFRmajvuRSZTk06MY63owGTKcuo+WFVrQq2RU980FYavqDLwt/9yC2s21XLi8ADXXOMnEc/StbqKE4fmLiI9G8ubbHzk/jXcsaWBz37g2gsaKrZMzD3yJ7NEMnm+tX+A7xwYpGIRoddTWNVmtHI1w1E3oigiiiLjMS9batcSzyZQSOUgTxNxPsmTAy8AsLbDSa5Qov4My3CNSs4tG+p4bNcwgsC0dmarWoFMIsEzh7NrKF2e+SOTSLCqZ34Pm0Y5q/NsSRQZiaap0atx6VS4E5kZ2xzxxVjt1BNN7WU4msCsjPGRze+lQlfO3Xc52igW/WgULo76AphVCl6/rBoBaLHouLnBSa1Bw/gcx57PFQmNx5Fb1HTPYZefyRb42Neew2HW8Kn3bOLNr1lOoSTy6xNjbHZZlvz3IpdKaLPoOOqPEc3kWVNpxqCQ8ZXdveSKIjfUnb1uwaCUT3ZL1Tj1uOw6hj0xDvmiuOQKToyEeXNnLRm1lHS+NKvt/ikKJZEj/hh/6vVwbbWVWxud3NZ09vb+i4Uoioz3P47OWEfLNe9CxiBSSQHdOZxLl5JCLsmBJ/+JXDp0Xh4pFxK5Ukf7+g/Qtu4v0RqqiQaOk8uESUQGkCn0KDU2JJKzP8gpVOaJiPlVrjQuiUjZtm0bd999Nz/84Q/55Cc/iVKp5EMf+tBZ95EbjSiyRbxHD9EfHqbeVIMgSKjteBVjfX8mny1P7V1XaZ61PTEVG6F3//cJuvdQu+w1dGz8EBKpAnPlKgBMjk4AEpFBABwVev76n2+aUWsiCAIbr29k6/UFnNbjfPDj21i5robjh8cpzdEhks0U6D7ioVQS6T7q5cFfH56xjUwqWfRE3lQyx1BfcEbH0VyYVQoKJZGReBqdXMp+b4Rms5ZO2+LnjAiCQL25mj3uQ3ziiS/wu+OP4E0GaLTU4dTZabM1ohVtFIQs0Uw57WE1qml0GWmonPl5K5ptSCQCazuc03xtBEGgxaLj8ztP0htO0BtKsN8TmZw+3RdOUGNQ86/XLWO5Y+a6NrWCfEmcLOY8hTueoSiK1Bg0OLUq8qUSgQkxs88TplAqcdgfw6HJI+MkpfyveduqW6eJAofOxruvuZWCqGE0IaHBpKVSp+LftnVin6ghqtSp5hQpkXAamUxCW7ON43MMHtx7wkc6W+BT79mEVCLgTmWo1KkolkQ2uC5Mfr3TXo4GRbJ5zEo52+rseBIZPrCmcd6uGqNSNilSNq2o5F/+cjNZRflvlu+PcfKZEZq0Kkq5EkqzkkBk7mjK73vcfO/AALc3OVlTaV66L7gE5DIRCvkUVc23YrC2IlfbaWkaXtJZOheDVHwMqUxNbcerFz1Y8GIilatR6yvQmmpBkCBT6EjH3dQtezU17ffOu79KYyU94ZJ9lSuLS1aGfs8993DPPfcseHu5QU9JrcD0td9z7P6VrF93MwAGawtGWzv9h/4PuULLu5a/blZL6nioD4OtncrGV6DRT6WCrJXXEBrfj1xpwOJcSWh832SPvlwuLec9+5/AWrkajaGcTtAbVJiNbtLxIjJJmoYWGxJBoLfbT+uyqfRQsVgiEkrRfcTL4386jtmqIRHPUiiU2Hpz87SCsoWSSuTwe+PUNlp44ak+Xni6j+WrXbzq/tUzti2VRMSSOFlBr5BK0CtkxHMF7mqvJFsscft5PJne1nID39z1E0Qg2BdGKkiwacw0W+qoM1Xz6va7eGboeWLZqe6cv3/LWozaqQt5IpdEJVWikMt41fXNrJqly+UDaxr5yeFhdrnD7B0PkyuVuKelipsaHJwMJ2mx6OZsvZZLJZiUcnypzDSju5OhBE1mLVKJgBSBVoueXe4wuWKRh/q8vGlZDe5EmjWOBM2WOj629a+QzJJuurFxDXt93XQHG3FMlEDZTytyrjqLSEnEsuj0StrqLTyxZ2TWbfZ1+1i3rAK5TEIsm2cwkuJ1HS60irmdlM+XNoue33W7yZfKwypvMNvZ7LKiXkBKsFKnmrTG/+nREQKpLJYaA9VKJS/2j1Bl1/Lg84NkfCl0dXq8kTS1FbOL5KP+GPd31bL2MhMoAKnoCGqdE4m0/G/QsOJNpGJfQdD4gY5Le3CLIB0fR2uswV6z6VIfyoIw2pdRzGfIZWNE/UfRm5uQyue/jhrtyxg6/ltymQgKlenCH+hVlozLw2xgAQhSKZLP/Q2+Gj1C9xAN5inTspq2uygVcyQiQ4Q9ByZfz6amzMbioT4M1lZ0pvpp66q0DpZv/RiCIMFStYbA6IscfvbfJkP/Ifc+wp4DnNj1dbKpsplbOu4hk/AgU+jIpIJIJAKr1tewd8fQtLX7uv18+4vb2bdzmDte08Ut93Ty+neso67RwvFzTA/t3zXMj76+g4d+c5i+bj/XvqKZE0c85PPFGbOFnn+ylz/84uC016xqBWqZhBvq7OclUADWuVbyjbv+nU9s+38EU2Eq9A4kgoS/WPcW7my7iTZHHY2WGmLZqfZel12H7jQvli+98B0e7XsWgPtva6ezcWaXi0wiYYXDyAujQQolkde0uXjRHSJbLHHIF6VlnlbzRrOWk6HE5HwlgJPhxLT9bqq382DvOM+OBFnlNPKHk24ajFp8iXGqDVWzCpRT3NZYgSBIiKYHZ7xXqVcRyebpDc18iksmsqi0cobYQ89waIZdviiK7Dvh5Zo2B0PRFH/7xGF8qSyNZt2C2+vPhSq9CqlEoCSCaWIW1EIECkCtQYMvlaU3lGDveJj+SBKpVUV0LI5SIeW+G1t5/pCb+EAUpUbOM+MzDRIjmTzD0RRj8TStS1Q0vtQkYyNoDVN1QHpjBf5gNQpJ/1n2uvxIxcdR62Y6WV+u6Ez11C57NRpDFXKlcUECBUCu1GOwNBMaP3BhD/AqS84VI1IAqk2V9NhEGgMiNcapaIhcaaBj44eobLwR/+hOoCwkjjz3nxRyScRSkURkEL1l7sJcAJ2pjs5rP0o+G6OQKz/9B8f3Udl0M5bKVYz2PAjAWO/D2KrXo9ZVkk2XL7JrNtUxMhDmyP6pttxYJEM+VyQaSdO12kVbp5PGVhsdyyvpPjK3SBFLItnM7DNPgr4kK9ZWc3D3KD5PnE3XN6LRKvjR117gZ9/dPW3bnmNeBnsD02otLGoFNo1yyWoZFDIFdSYXWrmaSr1j8jWZpHxTMyj10yIppyOKIn2hYY77e+f9nDarnlyxRKfdwLoqM6PxNF/d3YtZJWd1hems+3ZY9Rz0RfmHp47QHyl74pwMJ2g+7Qa43GFkbaWZ/7e2iRvq7CTyRbocBkZibmqMZ7+Id9kNrHPmOeadOR9EK5dhVcv45yd/wLOD099PxLOESgEeHXycdRuk/Mt3X6RneCpvPh5MEk3m6Gy00h2MU2fUcFdzxQUfricRBFrMOrRy6aJN0wxKOSalnB8fGWaTy0qdQUNJKnBw3zgbuypprjYyHkiikkqpzUvpTWfwRdPEJ7xskvkCn9/Zw2d3dOPUKi+LacezkYqNojFOL9RuW70JoTR4VnfUS4VYKhIY3TXD0CydcKPWXzki5RQmeyf2ms2L2sdatRb/6I6rpm5XGFeUSKnUO0k02Kn0ZGCW+g9LxWpSsVHy2Rhh70FAJJ3wkE0HEcUial05clDKz12sp9LYkKtMZJIBsqkA6bgbs3MFrubbiId6GTzySxLhfiqbbkGpsU5Ga/RGFXe+djmP/O7oZEQjHsvQ2unkvrdcg0o9dbG1V+iIhObOxe/ZMcQvf7hn1vcC/gRNrTZWra+hutaEWqOgdZmDgC/ByGCI8dFyu20mncc9EiURzxINpxkfjdLX7ceiUmCfKDDd8XQfP/7GDlLn6QoqESS02ZupNsyMzBiUummRFIAD40c5MH4MfzJIKp+mO9A3b9eGTiGj0axlTYUJrVzGfe0uagwa3ru6YV4DunarnoFIimi2wGgsTSJXIJLJU2OYegqTCALvXFlPvUlLi1mHXiFjlcPIaHScasPZL+KCIHD/8uUMRoaJpGe2OxvkGbTKWr6792ek8lP/7sFwFHfOzeaaNcgdo2xeUcnHvv48+UL5IjrmS1Bp06KQSzkZTrC20szdrbN3rS01LRbdggwCZ6PWqGY8kWFztZU1lWY6zDo+8Y71/OVrVuJy6FHIpZh0Smp0KvLJPP/vey/w7d+X67Qe7fdhVStYV2k+q8vypSabCs6Yc9PSuRIQiQVPnvf6Y72PUMjNPXx0sfhHdjB07FfEQlPHlk54ySR8aK5AkaIxuKhsvHFR+5idKxAQCHn2X6CjusqF4IoSKQqpnH9583+gstnxPPTIjPelcjUKlYlM0k/YewiJRE464SGXDqNQmREECanhEXa/493ko3O7D6o0NrIpP9HACXTmRmRyDXKlgZqOewl7D9G06u3IFbppIgWgY3klMrmEvm4/AIlYBmeVgbau6TdvrV5JNpMgHiqPAcjnivi9U9GGg7tHCM9ilw8Q9CWwOnTcem85dQRw7U0tvPl9G1m1robdzw0CMNgbwGrXUlltZHQwzO7nB3n+yV6ur7VNmtwN9AbxexP85if7yGUL5M5jYu17176JO9tumvH6KZFySoQ82vssX9rxXb764g/42q4fUalzEM8m8Cdnhv3P5O83tnLNRNTkFfUOXr+sekF1GU6tknqjBpdehSeZYSyexqySo5XPHpGQSyV8/sblmFQi0Wwc1yzi60y0Cg1mtRFPwj/jvVxhHJOmCbPayDFfz+Tr3mAEtVbGfV2vZO/4Yd5wSysSgcnZPuOBJE6blicGffQuwkF5KdhcbeUNy87NNK3WoMGpVdJo0nBzg4MPbmhh3bIKJBIBqUSgocqAUafgrq2NrK+00LDMxvB4+fc/EkuxymnknSvrefUcNgKXGrFUJJeNojjDGEyQSKlqupmho7+ke/c3znl6b7GQwdP/BLFgz6zvi2IJ7+AzlIrzP1yIosh432OM9T6M1lRHaLx8g86kAhzf+RXsNZtRqOc3EnwpIEik2Gu3TP4NrnJlcEWJFACJVErj+97N8P/9nPwsNvpKrZ1YsJtMKoDVtY50YpxsJoJCbQLA/8yzFOIJ/Nufn/MzlBobmVSAaKAbo61t8nVr5TWs3PbJybRRWcxM3VwFiUDXahf7dg5TLBRJJmLoDTNbErU6JTVVQ5zc+12y6TCH9/bxw/95gbCvj8ETO3GPRInHMsQiaY4dLFvGl4olAr4E6VQeq12LVCqZ7CTQG1RU15lpX15Bf48fURQZ6g9R12ilut7M8ECIseEI46NRnFoldcZyhadnLMrdr1+B3xPnS//yOE8+fGKR/xpTWNQmdIqZXVUGpZ58Mc9I1E0yl+LR3md579o38Zfr38pxfy8ttgYazLWcCMw9t+kUEkE4pzSVIAh8fHMbW2tseCdEimueQYpSiYAn7seo1KNVLMyJ16mz4TtDbImiiCd2jEROyXLHMg56pqZtR6NJzCY9VTpn2TwtG8Xl0DHqK0eexgNJCnYlD/S4KYoidedQaH2u6BUyOs6h6wvghjo771vdgCAISAQB2RlTyBtdRkx6JWa9ilu6qkgIIqP+BKWSiDuRoWri3+ZydW49Za+uUM78+9hrtmCv2USpkCXiOzLvWrFAN4X89KhqOl6uX0pEh2bbBU//E4z2/Il4eP76l3R8DM/gMzSvfie17a8i4jtCqZjHM/AUlooV1LTffdn+nS8EGn0VmeTMB4mrXL5ccSIFwLRiObrWFsZniaaoNHaC7n1o9FVojbWTkRSlyowoigSeex7z2jX4n3p6zvVVGhvphGeyI+h0JNKpELjGUEMm6SObnqojWLOpDr8nzu9/+gdq7Y+jn2grTsXd9B34IaViHpVKSo3Lg1Su49gLXyAf/QVatZe+/d/C0/8nVqypolgosfuFIX794310H/Gw89kBvvWFZ9EZlChnsX8HqK4zk4hniYTK6R1XrYnmdgfHD43j98bJZQuTEZpEPEsilqW2wcqr3rya2kbLWVNQ54pGoUYiSPjs9q/x88N/YCTmpsPewurKTmoMlTSaa2mzNdETuLAFh4IgUKFV4UlkGYtn5hUpAO64d7LOZiE4tDa8Z0RSDnqOky34UUilVBnbOOSdEimpRB6n1YxEIsGiNhFIhqi26xmdiKqNhJN4JSU+uqmN/7hh+ZxmdpcbBqX8rCMWbt9Uzx2bGwCoMagpiCKiQsJoIEEwncN1GTnKzkYuHUahNCJIZhYTC4JAZeNN2Go2Eg/3M3D455Oi40yKhQy9+39A7/7vT0vtpOJjCIKUZGR4xj6lYp7x/idQ6ypJRmfvCDudsPcwRnsHeksTan0VIJCKjRJy76WiYXHpkpcCKq2dXCa8oCjUVS4Proyr3iy4XnUP4w8+TOmM2QAqrZ18NorWVIdaV0E64SWXDqFQW/A8/GeK2RxNf/k+Er19FFKzp1SUGjuxwAlUWsdZDY4UKiMGWzuBsamCSLNVwzs+uIVcegylMoVaXa5/ifqPEfEdZeTE70lE+hAkYHS9kcqmmxFIcc2qQcY8jUileW6+sxqlSsZQXxCLTcufHzhKzzEvGq287IQ7B3KFlKoaE4O9AcZHo1TVGGlsKTsxGgwqKlxGPGPlp0DPWBSLTYNSJaOh2cbKtdUkYguzKV8MEkGCXqkjmArzZP/zmFVGLGoTEkHCJ2/8G25u2kqbrZHuQB/f2/tzjngXHs1ZrPuoU6skkM4yFE1RrZ//Rjge91Gpd8673SkcWiveZDn9lyvk+Nijn+Mbu3/MfZ2vpMmsBcGOPxnimK+HDz30SfIpqHWU17dpzARTYWqcU5EUbzqHSSHDpVcvuLvmSqChysjqtvJ5JZNIqDdqsa62883Dg+gVMvSXabHsKbLp0LwzYPTmRhLhgfL4jdDsUcJY8CQKtRm5Qsvh7Z8lFiwXkKdiY5idK0jFxygVp9fPlX1NVFhd60gtUKSYHcuBsoBSae2EfUeQyjWXrXnbhUSm0CORqciclqa/yuXNFStSTKtWIpHJiJ3onvb6qWI2nbEOlc4Jokg02I2kqGDwBz+i/e8/gtJqRW40kB5zz7Y0GoMLnamB5tVvnzcUaqteT8i9b9prOr0Sm6UclZAKXvLZGMnIMFbXeoLj+4n6TxBPOMlmNTjrricQtCOXxbntda9Hb64hEx9Gb1DhHomw4boG8rkiw/0h3v5XW7jvrdec9XhqGy3s2j5QPjanHolUQtdqF9X1ZipcBtwjp0RKjArXlHmTzqAiHpvdPv58MSr1GJQ6SmKJZmv95OsGpQ65VE6rrZHhqJtHe59dUKfPKT711Bd5cbScX16IYLGoFUgFAV8qu6B5SOOLjKQ4dXb8ySDumIfhqBtPwsdNjddya/P1NJl1DMeyLHe28fVdPyaSViLJy6m0letdbBoLgVSIaoeeUV+cQrFEQixRpbt4KZ5LRbtVh1wqIZTN41AryOTOvTbqYnDqoedsKDV2ZAotUrmG1BwmYtHAcUz2TppWvZ2a9rvpP/hjMkk/ydgoJmcXMrmWZHR6NCUZGUJrqkNrrCEZHT7r7z6fjZNN+THYWk87LhsR72HUuoWL75cSgiCg0tjJJH2X+lCuskCuWJEiCALGFV1ED013bz31dKA11iGRyDDa2ynmU+RGg6hrajAsKxstqV0u0qOjs66tUBlpW/+XCzL90RnryGXCFAvToxAGQ4JEUk1g6E8cff4LJKJD2FzrkMnVBMZ2kStWcHDPKF//j6fp7XNiqdyIUm1GZ2ogERlAb1RRKorYnTpWrK3G5tRhtmrmTPWcYv3WelLJHJXVRiQTtQA3vrKdO1+7gvpmGyePeRFFkeH+INX1UyZZeoOKZDyLuED32sVgUOpY7mxnmaOVNuvMNnCL2oRNawGBWQtPZ0MURQbCIzxy8mkA/umJz/P0wI6z7iMRBN7YWcPHN7fNaqF/JuNxH1WLiqTYOBkc5K8f/jTPDe+m0VLLa7vuRCaV0WzW0h1KoFSsI5iRU6+7EQGQqMtiyaYti5TaCj3Dnjj/9+cTKHRy6i0z63xeatzRXMkGmYrg0SD7dozy3Qfmr+W4lGTTYRTqsxvMCYJA27q/oLr1zjnTPfFgL4aJmjebaz3WqjV07/oaxXwKvbkJg7V5WjcOQCIyhM5Uh0bvolBIk8tE5jyGdMKDQm1BKpuKGqo05XTHqU7HlyMqrZ1EqP+sf7urXD5csSIFwLhiOdFDRyimp2opFGozbes/gFJTftIx2ctDDNMnRzF2LZvcTl3tIj16btX3pyNTaMsWzYkp35NCLolMmsLjq6WQTyFX6ikVsmj0LvSWJkrFLKK0ip6jXoL+JCXBScPy1wCUn5Bio5MFtxablq03tfDat65Z0PEYjGre8hebuOnOKddLuVyKSi2nrdNJJJzGMxZjeCA8bS6R3qCkVBLPux15NlZWLOPauvV8ZMt7ub1l26zbvHH53byq47YFi5RYNk6mkKU70M8R7wl6g4P8aP+viGZmFlOfztYaGxULqHkoloq4497FiRSdlUKpgFwi48n+56k7zUejwaSl1axDLTej19xCLCAiamT4JyzkrWozgVSYGqeeN9/ewVN7RqiuNS2oduZKRyYReP1NbXzl7Zt417UtDHtm99W5XMimA/Ome6D8wKQ11JBJemd4p5SKeXKZyLSUi6vlDvTWFppWvR2ZQovB0kosML3DJxkdLj+ASeUo1VYySe+cn59OeFBrp/9+VdpypFn1Mo2kAKh1FfhHdzB8/HeX+lCusgCuaJFiWrGCeHc3L97/NrLBqa6K011ljfZ2zBWriB/swdDZOfm6utpFaglECoBa6ySTmLpYpGKjyJVm6tu30rLmvdR3vQF7zSYkUjkGSysKtQWVxkKpJHLdzS3TBIVK4yCbCqA3KpHJJOgNKlRqOfZFjDe3OXRU18180lMoZbR1Onn4d0eQSIRp9S2yCSETj5dTPuOjUTzus9/wF8o9Hbewpmo5GrkamXT2tt9r69azzrVywSLFk/BjVhnZUL2Kr734Y1qsDbTaGnl4IrJyvgyER5BJZVQZFn4xN6uMvGXla3jVstvIFLLUmaZEikIq4S/WNPIXa1r59h2buK/SjtaumRyceCqSAvCqbc187xO3EC0UqLzMi0iXCpVCRpVdR32lnvHA0vmDLDXFQo5UdHSGc/VcqLR2xFKRoaO/JujeOylWcpkwgkSK/LQOIYlUTuOK+9Eay27aemsLqdjoZFFtMZ8mn41Omq+ptPazdqpkEl7U+ukRE+WESDlTvLyccNRuoab9VVcjKVcIV7RIUdptrPzSF9A21BM5cHDWbaQyFTX1d5MZHcOwbKpTp5zuWRqRopoo0D1FIjKE3lLPhuvbMFib0RprqGkvzymyVK6mde370U60Dy9f46JrtWvqO2mslIp59PoSFpsWQbK07YHbbmsjFk5T12iZsbbOoCQeLd80H/rNYXZP1LZcLJw6G/FsglRu/i4jbyJAhd7OXW03E0yHWVHRzitbX8HjfdvJFec261soR309dNhbkAgLP0UEQeCu9ptYXVmO3p0uUs7EPx7HWqHHk8xM7KsnlLHys6PlOoNwJke+VMKpvbKm6p4vVXYdkUSWZHr6v2GpJFKYY4DnxSQR6UeuNKDULMxbRJBIMTmXI4oFxnofYaznIaBsBqdUW89a86ZQGdFbmnD3PQaUvU2kcg0yeblzqixS5q6tSCc8qM5I66g0dhRqy8s63SORKtAaa66KlCuEK1qkAOgaGzBds3pOkQKQ8XiQG43I9VPRCE1NDZnxcYrZ8y8WVeucpBPjFHJJkrFREtFBtMb6WbcVJNJy7YleiVojx2KbXnMgkcpRqExU1wpcd0vLeR/bmVhsWt7z4a3c8ZrlM97TG1QkYhm84zHGhiNEwkvfknw2dAoteoV2QdEUT8KHU2un0VLLq5fdxta6DSx3tqOWqzl0mhfJuXLMf5JO+7n9/RtMNbxpxb1ntdP3umO4XEY8iQy94QTfORhGpWjlqSE/oUwOdzyDQ6O8YtqOlwq9RoFeI58xx+injxzntR97kD9uX7pWdVEsERh9kXTcg7vvMWKB7nn3iQd70VsX97toXHE/DcvfROua9xIYe5HA6K6ySFmA0Kld9hoCY7vKVgepwDSXW5XGQXaOSIooiqST3hkRE6lMyfKtH1vwzJuXKgqViWI+NaN76iqXHy+JK6B59SqiBw8hlmZ/0sr6fCgd07s0lA47cpORePfsro6LQWduIBEZ5ODTn6Z719dIhgfRmevPuk99s42b71o265OUUmtDLouzbOWFcdzU6pXojTPTCDqDkicfOsF3vrgdi01LLHJxRQpAhc6OOz7/8EVP3E+FvnzBfsPye6jUOxAEgSZLHcPRc4+Q7RzZx56xgxzz9bDc2T7/DrMgkUi4t+NWpBLprDOYCoUiAV+ClgYr/lSW/z0ywi0NTj59/WoKxRDdwfA0U7OXG1U2HW7/9JTPgDuGzaQi4dmOd/CZJfmcsZ4HGTr+W9z9j+EdfIbQacNJ5yIRHURvbjynz1Np7TStejsj3Q8Q8uxHuQCnV5XGhs5URzzURyblR6W1TVsvk5pdpGRTAcRi/mVde3I2ZAotgiC9Gk25Ariwk8ouErrWFkq5PMnBIXSNZZOoUj7PyM9/SeD5F7Bffx1Kx/Q5G4IgYFzeRfTwEUwrZkYVFoNaV8HKbZ+mWEjh6X+S4Pi+ecOpRrOaVetrZn1PpbHP+YR0Ial0GUknc9x81zJE4Ltf2o4oihfVkXKZo5X940e5tm79Wbcbi3lY61ox4/VaYxUj0dlby+dDFEX+e+cPKJQKvHnlq6k1uebfaQ58nji/++k+vONxnFUG3vFXm1Eoy6dbKJBCKpNQX2ng7WIdjw34uKXBgVYhQybEOOrzI5cZqHqZ1KOcSaVdOzka4BRj/gTrllWgL+0hFZ9/FMJCiIVOUtlwI+P9jwPCnH4mp1OOgNjm3W4u9JYmHLVb8Qw8gaVy9YL20ZnqSUQGQRSniQ6V1kE+G6NYyEzr4IFyga3GUI1E8pK4xC85giBBrjKSy0Qni4lPkU2HKBVzV2xKLBbsQaV1olAZ59/4CuAlEUmRyGQYujqJ7NtPcMdOxGKR45/5LOG9+ynEE4R27UblnOl3YVw+s4X5XJHKFChUJlytd9C8+p0Ii6hlOJNyH//FFykbr2/kTe/ZgL1Cj9mioVAokUpcXGfGjTXXsMd9iPwsYdj/3vkDDntP4En4GY65Z4101BirGInO3vI5H+l8hkKpwNfv+jfubr/5nNYAKBZK/OhrL9DS6eTD/3wT2Uyeof7Q5PshfwKrXYsgCGx0WfnEtR1oJyYbW9Uig7EU7kT6ZVM0eyYuu25auqdQLOENpVjT7sCkjJGfY6r2YhDFEpmkH0vlapQaO1bXOnLZKLkJ9+hSqTBLR06OQi6xoM6es+GouxZBIkepXpjY0ZkbSIQHypGU09I9MoUWucpUFjBnkIwOoTXVntdxvtRRqEzks5EZr492/4HxiTqgK5Hh47+j/+CPXzLTnl8SIgXAvHolI7/6DSc+93mCO18kdqKbrn//V3StLST7B2ZEUqDcwpw42UshsXTdBFKZCr3l3MLBp1Drq0jGRhftqLqUyBVSNDrFRa9LaTTXolNo+ZtH/nXSAwXKUY69Y4d4YXgvzw3tYnVFJ3rlTEO2GmMVY3EPhXM4QWPZOFKJFOs8HhjzkUxmSafybLulFb1RRWOrnf6eKdEZ9Cex2mc3k6s1aAimBdzxDAfcZ/d9uZSUxBLp/NI7FOcyUVxmEbd/SqR4QymkEoE2lxS1vEAmff5dZ7l0GFEsoVRbaVxxP67mW9HoXZPzcPoP/oQj2z9HKj4Vlcumw0gkcmSK8xv0KFfo6Nj4/zAssLZFa6wll4mQjo9PdvacwmTvnHVGUDJSblW+ytwolOVIyunkMhEi/uNLIoQvBWKpSDYdIpMKLGh21JXAS0akmFatopTJIFWr8T76OLrGBmQaNbqmsmBQOWZGUlQOB+qaasL79s1471KiNVZTyCfJZcLzbzxB2HuI0e4/LulxmMxqouHZRwdcKARB4O+2vJ/Xdr6SXxz5IwfGjwLgT4VIFzLsHz/CE33Pc33Dxln3d2itSAUJPz/8AIns4sRnNBvHqNSfd3orncyjVMmQSMunV1Obnf6eKRvukD85o2D6FMsdDqT4yReLPN738KK/w8Xiib7n+eij/06huHTusLFgD0ef/0+MhR24/UkyuQKZbAG3P0GFVUsh7aFYEiZvIJ6Bp+k7+JNps7MWSibpQ6WxIUikaAwu5EoDWmP1pPFaOuFBFItE/ccYO/kwh7d/Fv/I8yjUliVJf6p1zlln/8yGVKaiafXb6dj04RmpCZOji7DnEMd2fJFcJkLfgbJrbSoxjs50VaScDbnKNPHvPBUxC43vRyZTTw6RPJNTD46BsV2M9z95SR8kZyObDiEIEgzW1peM9f9LRqSoXVWs+soXsW+7jsiBg2ibys6mp0TKmYWzp7BuWE9w566LdpwLQSJVoNG7Zg3jzkUyMkzIc2BJTxqDSU00svRPy/NRb67muvoNrKpYRn+4bAs+HBnDqbMTzyUxq42sc62cdV+JIOHOtpvYPrSLXWNzd3zNRiybwDBLdGaxpFM5NNqpuon6ZivhQJKx4fLNNBhIYrXPLlKarXWEE49QyD4AlA3lLkeO+nvwJPz8uXdpilihLLSVGivkPCTSef77Fwf49Pd2MuZP0lpZIjC2m3DOilhKI4olwt5D5FJBjj73HwTGds+65njfYwTde2e8nk56Z8yuUWkrSCc8lEoFcukwBlsbmWSAkOcAMrmGwOiu8071nCsm+7JZrez15ga0xloKuRTewWeJ+A7Tf+gnaA3VC3LMfjljsneQCPczeOSXk6/FQ32YK1aSz8ZmvZaOnXyIYzu+yMjx3+MfeZ7Dz/4bvuEXLuZhn5VsKoBSbUWlsZFNBeff4QrgJSNSALT1dZOiRNc88f8tLUhUqlnTPQCWDesJ792HWLy88nc6Uz2j3X+i/+BPFrR9LhMhn42RSy/dD7Oy2sj+ncPEohe/ywfKNvO+ZPn7DEfHaLbU8cbld/O+dfef1b/kDcvv5rq6DXQH5i+EPJ1oJo5RtXDTvLlIp/KoNVPjC9QaBZtuaOKR3x1FFEWC/iSWOURKhc7Ox6/7AFtqO2mzNV22IuVkoJ/bW27ggROPzlo/dC5k0yHMzlXkMyGcJgnPH3IzNDpOZuxXXOt8HIlUjlfchIBILh0hFR+jcdVbcbXeQdh7aNY1w97DhD3TxerA4Z/j7n0U1RntuWpdBemkl1w6jCBI0JubSCfc5NJhKhpuQBSLKDSXRqTMhSCR0rLm3VgqVuEf3YFEqiQdH8dSsbCi3JczOnMDLWveS9h7kGIhgyiWSESHMDtXIpYKFAvTr3ulYp7A6IuotA6qmm9l2eaPYHJ0kggv7jqzlBTyqWm1J+UOMDtKtZXsEt4LLiUvKZECTEVQGiciKDYr63/4XaTK2U2xtPV1UCrNOWzwUmF2LkdrrCXsO0IhP5VyyaYCdO/+BkPHfj1t+1OtdInw4JIdw5YbmqiuM/PD/9lBOHhx0z5QNnfzT0wVHoqMUWt0cWfbTWc1STtFm62JnsDiPDVi2Th65fmLlFQyh1o7vQNlyw1NeMdjjAyEScazc0ZSALqc7bxzzetxGSoYj19+g9BC6QiBVJjXd92FRq7m+eE9S7JuLh1Ga6xGoTLT4cojEeCDN4eocehYcf0/0rjizdRWN5AryokGjiFX6FCozOhM9SSjw8RDfaRi5XlcicggqdgY6aSXRGSAYiGHWCpSyKcJew7garkdW/X0DjK1zkk+UxY/CrUFldZOOj6OVKbCZO9EKlNfskjKfOjMjYilAhUNN2C0dWCumD3SeJXpqHVOVBo7Ed/RcqpPFNGZ65FIleSz02ufIr4jyBQ6Gpbfj7P+emRyDTpz4zmlG8+VkRMPEPZONXv0HfgxgbGpTEAm6UepsaPQWK5GUi5XtHW11L/9rairp9pHpeq5/SYEqRRtQwOJvvnVcNrt5sDf/N2SHOd86MzlKcxqXQXRwInJ10Oeg2SSPuLB6dOCc5kIOlMD8cjSmV1JpBLuet0KqutMbH/s5Pw7LDEOrRVvIkA8m+Cg5xgdizBXa7M14o57iWcT8288QSxTrkk5X9KpPGr19EGQCqWMukYrj/7xGM4qA2rN/G20VXoHQ9ExDowfO+9jWgpEUeSRk0/zb898lRpjFRqFmluar2P70ItLsHaJXDqMQm1BY6yh1RbkmiYlysIAaze/AcXEv0tHg5VYWkbQcxitsQ5BEFDrqygVc/Qd+BEDh3+GKJYYOvprevf/AKlMhQgcee5zjPc/QcR3GLW+Emfd1hmCozyHS0/UdwylxjrZaqyaqB+pabsbo63jzEO/LNCZ60GQYLS103zNO5Evwe/45YK5YiVh72ESkQF0prpye7LSMEOkRAMnsFSsnFaTpFSbF1U7eL5EAyfwDDw1+d/ZVGCydV4US6Rio6i0NpRqK/ls7CVhVveSEymCVIrrVfcgLMKpU9vUQKJvfgv41MgYyb5+Com5b3yiKE4beHi+mOydRH1TN6lsOojRvmyil7/8AxRLRfLZGLbq9UT9J2a0Tp4PgkRgxdpqBvsuvip3aG0EUmF+dfRB2myNtNtnTlCeC71SR7WxkkPehbvPRrNLk+5JJafXpJyiocWGezhC+/KF+S9U6Z3scx/m35/96oJGBVxonh18kd8de4RXtt7IX214GwBNlrpzbvk+nXINQAmFyoStah0unY87Gh5HZ27gwcHd/PjAbwBwmNVkikpSkX6MExOEJRIZGn0VUpmSUjHPyInfk02HyGdjaA3V6E0NiGKRiP8YQffes/qTaPSVRPzHUGlsyOQapHLNpGur1bV2snA1HM9cFjb9p5DJNXRu+Ts0hnP39nm5YrS1EQ/1EvEdxWBtBUCu1DPe9ziegacnt0tEBtGeUYysUFko5BKUihfequFU504qPkYqNjp53Y+H+xBFEd/Qdgr5FGbHcuRKPYJEelEF1IXiJSdSzgVdUxPJ/vkjELlQ2evibKmh2LFjHPzbf1iyY9NbmqYV0GZTQXSmeqQy5eTcjtyE4j+VS01GR5bs8wFq6i1EI2kioYub8rFqyq3Aj/Y+yxuX37Po/bfUruXZwYUXRS9l4exskZLG1vKT+UJFSp2pGqvajF6hZSCytP+m58L+8SPc3LyVGxu3UG8uGxG6DBVEMjGSufP7bWRTQRQqIxKJjJTKgvWat9Gx6cPUd76Ok8EBnhp4gUKxgCAIyBR6iigwV6wmnI4Sy8SxutZR1XI79V2vI+jei9nRhdHWjtZYR33X61m28a9Jx90ko8NYK+eeKF7ddjeCRDo1LVhjm9W19VPf2cn2A0sz+2upUJ2HydzLGbW+ColERjzUi9G+DAC50kAiMkDUX35AzGfjE+nI6SJFptAiSOQXJeWTTYcQEDA7lxPxHSt3IAkCxUKGbCqAb/h5atruQSpXIwiS8pTsl0CHz1WRQrkDKNk/MKet/ilOiZTUyOic26TH3GQ8nnnXWigag4t8NjYZesymQyg1VlRaJ+mJMe25TBi5yohEKsdo7yDqP7okn30KpUpGVY1xmiHZxUAqkWLTmOl0tEzeFBfDdXUbOOQ9TiQ91U74scc+N2etSiwTx7BU6R6tfMbrzioD9793A44FTrS2a618/a5/o93eTF9oaPL1eDbB/x68uGPmS2KJw75uVjinpzt0Ci1GlYGx2PyjDOYil4kQ8R1BMZF++dnhB/jyC99DpatAoTbjjntJ5dJ8e8//cczXg1pfSV+0EalMwf8e/B0/Pfg77NUbsVZeg97STMfG/4er9ZU0rHgzFY03IlNoUajNaAzVmBydyBRz1wOpdU46t/wdVle5XqWu83XYqtZO2yaTLTDojjLivTK9NK4yHUGQoLe2oNTYJ8WpQmlAIpGTTnoRRZFkdAiV1oHsjJlHgiCUUz4XQ6SkAig1VvTmJhKRgXJ6VGlAa6wj6N5DLhOZ5tGlMVSRWuIH1kvBVZECqGuqKRUKxLt76PnyV+ds452KpMz9BJX1+RELBfKR2fvsF4tUpkKldZCMjlAqFchnouUWM52TTMKLf2QHYz0PTlogl82djpJNhUjG5hZTi6Wm3sLY0MUPHW6pXcdrO+88p31tWgvN5jr2jZdNjYqlIv3hYZ4dnL2GIpqNL00kJTl7JEUQBJra7Ivy2Tg1j+iQ5zgP9ZR9GQ55j/OHE4+dk2HduTIUGaNQLNBkmem9UW2oYPQ8RIpn8Gl8w8+j1jkplUoc9p7Alwywf/wohVIRXyLA3e03c9x/kkd7n6Wm5SYeOFhJqSQyEnVzwHOU0mkpTpXWgUJlRCpTTLOFr132alwtd8x7PHKFjmJJwoPPDxDOaGcM4+sbi1ISYTxweXrYXGXxOGqvxdVy2+R/W13raFz1Nor5FPlsFN/IC3PObFKoLRclrZJJBVBqbOhMDSQjQ2TTQRQqM2ZHF96hZ1HrK6eNR5gcp3AaqdjYFVenclWkULbV19bXMfrr3+J/6mmSA4OzbpcLhlBXV5MePYtI8ZfDa9nA0oXZtMZqYsGTpKIjCBIpcqUeja4Sz+DTuHv/jFpXidlRnj9ksLWSTYfoO/ADxvseX7JjcFTo8V+CJ8c3rriHdnvzOe+/oqKDgxNTkcPpKKIosnN0H8UzbvC5Qo5IJoZNe/7dG2e2IJ8vjeZaDnmP86MDv+bJ/ufpDvQjIhJKXTzReNh7nE5HK9JZDMhchgpGY+del5KOj1O37DXUtN1DX7gcMbq99QZeHNmPLxlAIkh44/J7eNvq1zISG6ehykihWGLIG2U07iGaiTMcmT/1ojVUz9md8+zgixzzTQ0b/cwPXuQ7vz/M47uGZ2zbMxxGIZfOmC90lSsXnakOs3NqFphaV4HR1oZCbaH/4E8o5JK4Wm6fdV+VxoZ3aDsj3X+c5lC81GQnxiKodA4EiYyI7xgKtQmTczliqYjOVD9te+1E19t4/+MMHPo/4qE+und9bc52/cuVqyJlAm1jI+E9ZdOn8N7ZHWhzoRCmlctJjY6RC4c5+dWvzUj9ZP3+if9fOpGiMzXgH3me7t3fQKm2IggSbDUbWbbxr+m89qPUdd6Hs/564JQtfzPphIdCbuGdLfNhr9Dh9yzdeheLlRXLOOw9QalUIpAKYVYZERA4GZxeKO1LBlFI5ZiXYChXKjV74ey50mFv4a2rXsPfbXkfPz74Gw56ynnyQGr29Ft3oI9v7lqYv85COeQ5MedU6GpD5Tmne0RRJB13ozFUI0ikHPF20+Voo9pQiS8ZYDzuo0JnRyKRUGOsLPvGCCJttWZ29w5SEkusruzkgOf8OqAe7X2Wzz/3TXzJIId7A3QPhnj7nZ0c7Z9eMC6KIkf7g2zsrGA8kLjsHEevsrSotU6S0WHqlt03I6J2iqrmW6lo2EYyOoR/5MKNsigPtyxf/422dqL+YyhUZhQqIyZH14zOM7WuAgQJ/pGdIAj07PkWpVJ+sk3/SuGqSJlA11SenmzdtPEsIiWMccVyMh4PkYOHCDz7HEf+8RNkgyHGfv8HoCxOZHrdkkZSrK51rLrhX6huuwuToxModzSo9ZUzcqQAzrrrMDlXkM8tXeTD5tCTSuZIJrJLtubFoMlSR0ks8eLYfgKpEA6tlSZr/bQaDwBPwo9Tt7hUzGyMj0YnIilLJ1KUMgV3tt3EWtdKltlbGI/7sGssBGaJpEQzMb6843s8M7iT0hLVReWKeY4HellRMXv7rctQwdgskZRiPj1vrj6XCVMs5iaLU70JPy6DE4fWij8ZxB3zUmkov2fXWpEJUjxxHx31Fg6PDlClc9Bqa1xQJOVsBFNhNHI1T/Y/zwPP9nHn1kbWL3PSMxwhly9H3YolkW///jDdQ2Hue0UL6WyRSPzKOh+usjg0BhdGWwda49w1cVKZCptrPZaKayb9qi4EuWxs0kW4uu1OpHI1SrUVgKZVb8Von/4QIQgSatruomXNu6nvej322s04665b8saKC81VkTKBrqUZQSaj7q33k+g5STY4/QmqlMtRiMfRt7YikcsJ79mLZeN6xFKJ/m9+m6Gf/C/FbJZcMIi+vX1JIymCIEEqV+Os2zpnyPF0DNYWqppuppBbunC0UiXDYFLh91xZxYJSiZT3r3szX3/xx+xxH8aqtdBormUgPP1E9Sb8VOhmdyVeKEF/gu//9/M0t9vRG2c3Dzxf3rLqNVxXv4E2ezP+5PTfaCKb5NNPfZk2WxMiEFiiYr6eQB96hZYq/cwuFyiLFH8yRK4wvQ1zvP9x+g//jGhm7oGA6bgbtdYxWTsSzkSxqE3YtVYC6TADkRGqDeWhehJBQrWhkuGoG6szT3/qGC5jJVV6J2Pxc6+JKZaKhDIRrq1bT3egjyFPjOWNNiptWnQaOSdHIgB8+3eH2N/t5/Mf2kpDlRGrUcXju4dJZ5duftGlJpMt8JWf7+exF4fm3/hlQGXjTTSufMuCtlWoTeckUkRRXFBELp+JIlcagHL30bJNf4Ol6pqz7mNzrUetq0AQJNS234vVtZ5UfOyKmpB8VaRMoGts5JqvfQV1VRWGrk4Czz437f1cOIwglSI3GVG7qgjv3Y+mpgbT6lWEdu1GLBSIHjyEWCphaG8jduQoI7+ccoWNd/dw/N//46LZ78sVekrF7JL279sr9Pi9V17KZ2PNNax1rWDHyF5sGguN5hoGwtNrDU5FUs6HA7tHaety8sZ3rUcmW9jwuMVSpXfyVxvePmsk5U89j2NU6fnQhndg11jwJfxzrLI4DnnLqR5BECjkUzOexMwqI2q5apqFvyiKhL2HiEeG+PrOH865diI8gFTjmExdhVIRLGoTVrUZCQL73YenFevWGKvoCfTxqOf3ZCUROiwdVBsqcce804pnF0M4HQURNtWs4WRwAF84QZVdx1d2fA9bfYgBd7kI/sWjHj7w2pVUWMvdQdeudPHbp3p5au8II9442fzleeEPLmKsxe5jXg70+Pjm7w4zOH7+06avdASJFIl0YfVlCtW5iZSho7/EO3j2GVilYp5iIY1cOZWOPtWyvxhUWjuCIJ3sDIXydO+l9NZaapZUpBw/fpz//M//5P3vfz/3338/Hs/Mp5tIJMIXv/hF3vGOd/CBD3yABx54YCkP4bxQVZT9Kxzbrsf39PQfTXJgEFVlBYJEgrraRTGVQl3twnzNagSZDG1TI4HnXkBhNqOqcJIcGGD4f39Gxlv+MXgefZzQi7vwPPLni/JdpHI1CBLyS1iXYnPoCPquPJECsLqyC1EUsWnMNJrrGI17yBTKofqHep6kJ9B/XpEUsSRyaPcIq9YvvlX6XLBrLdNqUlK5NA+ffJrXd92FRCLBobPhTZxfNM+b8PNo77Mc9pyYbD0Oju2md9/3polfQRAmimenzvdUbIRiIUNOLBGJDM4QEKVinj8fe5jhwWf53+FD/Gh/WdCH0mWRIpFIsGksJPNpmsxTIuWW5ut4tG87qUIKZ+AWjLlGKnR28qUCoVTknL5nIBXGpDZQa6pCJsiR6ZNYjSr6w8PkNG6C0QyxZI5gNEND1dRN4t33dPHKLQ2cGAzxiW+9wAuHLq/RGgDJdJ53/9tj+BbocfTcoTFu3lDHxq4Knt57ZaUFLjUKlYlSIUMxvzjjxXTCQ8gze4nBKfLZKIIgRabQnM8hIggStMYakpGpSNnJvd8mFug5y16XliUVKdlslsbGRl73utfNuc1Xv/pVEokEn/zkJ3n729/OH/7wB55++umlPIzzxrJxA+nRMWLHTzD0k/9FLBYJ7d6LeU05tKZ2lV0dNdUubFs2s+wTH8e4vAv/M89i2bAe44rl1L/zbZjXrWH0178l8NzzhF58Eder72XkV79FLJVI9PbR/53vXbDvIAgSZHLtWYtni4XcoiItZquG8EU2dFsqVlV2IiBg01gwq43oFFpGo+OIoshPD/6OgcjIOYkUURR54qETjI1EyGYLNLZcHEMtm8ZCIBmiJJYYibrZNXaACp19shPKqbXhTZ6fSDns7eZ7e39Of2SY5c6yu2syNkohnyTo3jMRpi6Lj9M7fPaMHeSFI79F1FfjKYJTIs4YlDhy4gGso0+Sk8iprVrNcGSMfDE/MeXaBJRrUEwqA2b1lDBottbzF+vewruueQPLGhwcHwwhk8pw6myztkH/7NADfGXH98jk557mHUiGsKnNSAQJFapqTM4ECCL+VIgYbvzRFIPjURxmNbozxh2011vYeWScYDSD23/5dfuM+RMUiiK9o5GzbpfLF/nPn+xh9zEvW1ZWse2aap7ZP3a1MHgRSGVqJFIluczi7Cey6RDp+DjZ04zXxFKRgcM/4/jO/yYRHiCXjZVdZM8yWHWhnN6aLIoiuXSYTHJpB5lG/cc59sJ/MXT0N+e91pKKlFWrVnHfffexfPnyWd8fHh7mxIkTvOc976G+vp5169Zx++238+c/X5zowkKRadSYVq6g+/P/xeivf4v7jw8S3rsP89qyU6WmphokElSVlUgUCkyrVpYHGgoCVXe9ErnBgOueu3HefDO+p55h8Ec/RapSUfumNyAW8sS7e/A9+RTjDz5MLnTh2kjlCh35OWbXBMf3cfCpf+bQM/9KcPzsKv4UZqvmkgwaXAoMSh1vXfUa2myNCIJQLsxMBUnkkhRKBd6y8jW02mb3QTgbiViW55/o5amHu6muMyORXpwMapXeiSfpZ+fIfv7uz//GY33bWedaNfm+U2c/70hKLBtHKpFSZ3RhmhAKqdgoRnsnIc9Bwp6DHNn+OTJJHzWGKva6D+NPBnlhaA+y+Bh9BQGp3sVylZqBgWcZO/kwUA4vB8f38mxRib7pdl7T+Uo8CT+ehB+JIJmcn+TQWmk0184oZt5av5711avoqLdwfKAcTXLpZy/e7Q70sWfsEA+ceGzW7/ijB4/xpd+8QD5driHSiU4k+gjhdJRSqUSRAuNxDwPuGPWVMzu/WmvNpLPlNI8nmKR/LEomd/nUqIz5y+d//9jZb5wnRyIc6vXz4TdcQ12FgVWtdsKxDL7wpR/HcKUgCAIKlQn/6A4S4fnHrAAUCxmK+RRaY+1kZ1A64aH/8P+Rio2hNdUy2vMn8pnYZD3K+aIzN0weXzGfQhSLszrTJqMj51QukEn66Dv4Y2yuDciUcxsnLpSLWpPS19eHxWKhsrJy8rXOzk5GRkbI5S787IPFYNm4nlwwRPXr7itHUwoFDMvKIW9DRweVd9yGRD71VGVes5qWD30Atatq8jXrhnVs/NlPWPPN/2Hll76ARC7Hsn49wR07Ce3eg1StJvDChWtZkyl0c0ZSov7jVDTcQO2y1zBy/Pdk02Hi4f45RQ2A2aIlEkwhlmZ/uioVS5f1k9cr216BfsKszaoxE0yFCaejqOUq7mq/CZVs8cWup0TbwMkANQ0Xb0KuXWvFojbx66MPIooiJ4MDrK2a8nlw6mz4zlOkRDIxbm2+nk/e8GGg3K2TTQWwVq4mlw6TTnjI5+KMnHiAVzRtodpQwX9u/wbeYA9KQeRR70kqazejl4DKuwff8POEPYcIjL2I3trGi/EQdRWdmFQGdAoNBz3HMauMSCbmbt3QuJk7226a8/iWNVjoG4uQzRdZ5mhh99jBGdv4UyE21azhsPfELCvA4b4AOmOBVFzGr57oob9bSlrmw5sIYFGbqNbVEMi7GXBHaaiaeZMwaBVUO3Qsb7LhDiT4l+/t5PmDl0/aZ8yfQCoR6JtHpHQPheiot7B1dTlKLJdJqa3Q0zdPBOYq01GoTPhHXpj1wS8RGSSdmB6xyKZDSKRK6pa9Fv/IDo7t+CLHd34FqVROy5p342q+jUzST8izf1o9yvmgNdaSy0TIZSLks+VGiGxyev2ad/AZTrz4VY7t+NKMQYvz4e59FGvVGhx11+Jqvm3+HebhooqUWCyGwTD9RNfr9YiiSDx+eXWN2DZvpvbNb6L2TW9g489/yppvfwOJrFykpLCYaXzPu6ZtL9PpcNx4w4x1JHJ5ueBWP/F0eMP1jD/0CPlojJo3vA7fk09fsBu7XKmb1oYsiiW8Q88SdO8lk/CiMbgwO1ei1ldxZPu/07vv+7j7HplzPZNFTaFYIjFL22WxWOKHX9/Bw789ckG+y1Jjmyg8DWei5+WNEg4mUarKv4vaxosnUgRBYLmzndHYOK/pvJ21VSuoM00Nl6vQOXDHvef124pl4phUBrQKDYV8Cs/QM8iVRjTGGnLZKNl0EJ2pgUzSj0au5n3r3kwgHcYhZvEJCqLZJJ0VnWjqb2RHDqpa7sAz+BTRQA9xpQm1TIVVbUYQBGpNLg56jk5L7bTZmuiaSDPNhtOiQa9R0DsS4fr6jZwMDTISnRIIpVKJUCrM9Q0b6Q0Nkp4l5ROMpNFbcoT8En71xEnqTDUUyXPIexy71kKl3kGyGKVnOEJT9ey/k0++eyNvfWUH/WNRgtHMZVVw6vYnWd3moH8sctbtuofDtNaap73W6DLOG4G5ynSUGiuCRDbrjd3d+2cCozunvZZLh1Gqzaj1FdQvfyOO2mtZef0/U9/1BhQqE1KZCnvNZqL+Y8hVSxNJkcpUaI21RHzHyGfL/76nR1JEUcTd9xgta96NXGkg5Dmw4LULuSRh7yEqGl6xJMcKsKDS4O9973s8+eSTc77f0dHBP/3TP827zuX8lH0mMp2Wmte+BgBBLp8WNTkfjMu76PrXT5F2u7Ft3sTYb35HaNcerBvWLcn6p3NmJMU3/DxjJx9GpbGRSQVQaZ0IgkDjijeVuzYiw4Q8++deTy7FYFARDqbQG1XT3nv+yV4y6TwH94zStdp1UW/Y54JNY+ZEoI9wOjrtxrhYQsEU7V0V6AxKaurM8++whKxwtvNU/wvc0XIjujPCqi6Dk2wxRyAVQilVsGNkH7e2XL+o9U+fCh0aP0Bg9EWcddejUBpBFElGh7G51hMP9VIqFVDJlLyicQsm336kWicN6NEptXQ13sjXjj6OW1BTirsRxRLfHDlBnbVpMpVTZ3TxWN92Vld2Lfj4BEGgo8HCsYEgnY2tbHCtYvvQLt7QdTc/P/IHLGoTJVGkzdqIXWvluL+Xa6qm1i+WRELpGJnCGJlAA1atgn9+5yY+9dROnhnYSaejFafWTkk+yMhwnGUN1lmPo8KqRadRUCiWr2+D7osrUkRR5Bu/OcTb71yGRlW+TmWyBVRKGWO+BHdf18j+bh8j3jg1ztnnRvUMhXnlloZprzW5TOzr9l3w438p4Wq5A62pDt/gs9NeF0tFktFhJJLp95FsOjQ5s8rsnL1MwlF7Ld6hZ8rn3RJhq96Ad+hZnHXXodI6ySS9FAtZpDIl+WyUUjGHztSApWIlIc9BnHXXLWjdWKgXta4CpXrproULEilveMMbuPfee+d8X77AG7jRaCQWm34Cx+NxBEFArz/70LXPfvazKBRlg6xt27axbdu2BX3m5Yihox1DR9l4p/q1r2b017+5ICJFqbYSGNuNWCoiSKQkwgPYazbjG3oWQSJDqSlfdOVKA3KlgUIuQTZ99iGCJquGh357mJYOBzfe0T55k+k+4uX6m1sJBZM89qdjvPODW87bGO1Ccnq657wiKYEk9go9W29qoVjIcPDpz9Cx8a8nZyldSK6pWs4HNrxthkABkEvlVOodDEfdFEtFfrj/l2yoXsV43EerpRbpAlJb0cyUSMmm/FgqVlHRsK28vtJALh1CZ6pDECTkMhFUGhuv67qL488fx16/hQ51uRBZIpGwpW4dD/Vv53atk0jMzb0rXo3ptCfDeztupYRIs6V+UX+DjnorB0+WQ9XLHC28MLyXXxz5I3888Rg6pQ6z2ohMKqPN1khvaHCaSInEMwhmN622RtJOF8saLAiCwF1tN/Gfz30Du9aKy+hAps7gqjRg1M39N9Op5Ri0Cmor9EseSTnY4+f4UIh7r29CpZh5yQ5EMjy8Y5CNXZVc0+4gmsjyzs88xobOCkb9CZprTNywpoZfP3mSD79xpq9GNJElEM3QXG2a9nqjy8ivnuhBFMXL+ly+nJDKlKg0tvKE4tNIJ8YpFXNk09O9jXLp0JyjGk4hV+qobX8VGmP1kh2npWIlo91/JOI9jFpfST4bJZ0YR2eqJ5PwotRYJwbWdjJ84gHyuQRyxfxzzWLBHo715/nlo58CWJIyjgWle7RaLVardc7/nZnCmYumpiZCodC01uSjR49SU1MzKUDm4mMf+xif+tSn+NSnPnVFC5QzsV+3lURv3wzzuKXA5lqPWMrjHd4OlE8Ug7UFldY50S8//Z+/PCgrclajH7tThyjC0QNuvv3F7fR1+8llC3jcMWoazGzY2kAkmOLk8elPYFH/8Rn52EuJVT0lUkznEUkJh1KYreW2wFRsjEIuQSx4cdr5VDIl19VvmPP9WqOLkaibUDpCUSzxhee/zc93fIujz39+QWZO0UwM40Sx3qnhZqc45XypUFvKv5tU+fcrKeUpZCI4bK3Um6cuqq/uuA1fMsjvvYMobJ3c2XYT19atn3zfpDbyzmtef9bvMxvLGiycGAxRKok0WcpOws8N7+ZVy24jmolh15RvAIqinuHQ1HXnm7t+wgPHH0NROcIrGrfwN2+6htfd1ArAmqrlXFe3gVZbA3atFYkyTVfT7FGU09nYVcnrb2olksgSjs/dTbQQPvo/29nf7SOVyfPJ7+zggWf6ONBTFmOFYolYcuriPzheviGeHC0X4e884qHKpsWoU/CaG5qpduh57U0tPLt/dFaHXG8ohUmnnIzCnKKp2kgynWfUl6A0Rx3aVWYiVxop5BKUSlMF1InIEEq1lWwqONkRVyoViAZOoDHMLz5s1evR6Kvm3W6hSKQKjPYOooETKJQGbNUb6T/4E1JxN+mkD5XWAZS9WNS6CuKhvgWtGw/2cMtt907eqz/2sY+d/7Ge9wqnkclkGBwcZGxiSrDb7WZwcJBEopxyqK2tpb29ne9+97sMDQ2xZ88eHn74YW699dalPIwrCrnRiKG9jfDuvUu+tkQqp6btbrwDT1PIJcmmgqh1leitzeW5DmdwKpx4tha6m+9axnv++lre8+GttHU6efDXhxkZDKPXKzGY1CiUMjZc18jOZ/qn7TfW+2eCY7uX9gueBzaNhWgmjj8VxHKOIkUURcLBKZFyyuQsFuyZLEhbavLZGMVChsDo7JOcT6fWWMVwZIxQOgJAT7AfrZgjn40S8Z29dqhQKhLPJU+LpAQmx9hD2V0TBBRKI0q1ZTICl467UahMyBTTozs6pZZPbvsw79j2d2xd+46Ff+F5aHQZyRVKjPri1BirKIhFIukod7behFKqmBwYefh4ipPecr2KLxHgmaEXeWToYaQSgS21a6mwaidv0oIg8Fcb387qyi4cWislaZZNKxzzHssHX7eKVa0OKqwaBsbOPZoSS+Y4NhDiyz/fz47D41RYtWxZWcXR/iAHe/y85ZOPcP8/P8xzB8vX2cHxGIIAvRPOuM8fHOPGtTW871UreNOt7UglAlU2HbVOA4d6Zxr8+cIp7OaZ4zVUChkrWuz87NFu3vWZR0llrqzpuZeKcsRBmHYNSIQHsFSuRkQkl4kiiiU8/U8gCFIsFasuyXEarK2AiFxpwNVyB/aazfTs/gYR3xFU2il3ab25kUS4f+6FJigWcuQykQWJrsWwpCKlv7+ff/zHf+Tzn/88AP/1X//FP/7jP7J379QN+IMf/CBqtZpPfepTfP/73+euu+56SUVGzgXzurWEdu+5IGvrra3IlQZGe/6IVK4u/yCbbqW67e4Z2woSKQqVieHjv5lsFz0ThVKGTC5FrVFw3S2tyGQSHvrNYarrp3KQ12yoZXQwjHci7F0q5kgnxknFz2++ylJiUhmQCAJ9oSFM55CaKRZKPPSbw8hkEuwTef5kbASjrYOI9zCHnvnXRfslzEcyOsLh7Z/FM/AUQ8d+M+lzc2qq6ZnRkRpjFcNRN5FUiBscjTRZ6qhWaRGlCnwjL5z1s+ITXV5GpR6xVCSbDs2IpMiVBgSJFKXGMhnGjgZ60BrrZl3TojHRYF5aszuZVEJrrYmjAyFkEikNphqWOVrQKNS02hqxaSyUSiI+DySK5X+PR/ueZb1rFSt0m6nOb5h1svMpDEo9SqkCi23hkYT2unKdzLky4o1jMaioduj41u8OsbrVTmejlRePePjXH7zIu+7u5O/fspav/eog8VSOwfEYK1vsnByJMOyJcaQ/yOYVM5+6V7TYOHgyQKFYIl8o+6LsOurBF0rjMM9uErZumZPtB8YIRDPs7/ZzciTM85ehad3lxKlJ9aeKUkWxRCx0EoOtDYXKRDYVYPDILwi491Df+TqEs/z+LiQGa7koXa40IAgClY2vwF6zmUS4H7VuSpTrTA0LaqnOZcJIJHKk8vMznDuTxXnqzsOyZcv43//937NuYzKZ+MhHPrKUH3vFo2tuumBOtIIg4Gq5nd79P0BnLnuESOVq5jotlGorsWAP8VAfRls7OnPDHFuCRCJw39vWsOPpPjpWTLWVa3QKOlZUcmTfGJn2PAH3SRBFUrGxyya/LZFI6HK2ldteFxlJCbj38/tfxikV4R1/tQWFsnwapaIj1C57NQq1hYj/KKn42IJrU0RRxDf8HMGx3TSueisqzUxTuERkALFUwDNQLmJPJ9wkoyOMdv8Ba9U6EpEBuq796OT2tSYXY3EPzTKBNaR4/02f4cknP01Q60AWdxMP9aG3NM34nNHoOD8//Ae0Cg0yqYxM0o8gSCZTPAAKlWUyl65UW0lEBiciPDtoWr10kZKFsGl5JX96rp9b1tdyY+MWdBOunO+85vWoZSo8wSSpuAK1kCJXzLN//Civ67qT4yEFFv3ZPU0EQcCuteJLBqk2Vp5121Msb7bx+K7y2IWfPnKcV6ytpdK2cL+IEW+c2go9b7tjGR/+8jOsarXTUGVkPJjkxrU13LS+LAJ/+9RJdh/zMjQe474bW/jKL/bzL997kVduacBpmXmjWNli5z9/softB0b5x3ds4MUj47xwyM36zopZtwfY0FnBk3tGaKwy8v0/HiGWzJHLF/nhP9+K2aCadZ+rlFM++YmHlHR8HLFURGuoQaWx4R18hmR0mM4tf7tk3ifndow6bK4NaAxTXYGVTTeTy0TQmaeuCzpzA+mEh0I+hewsAiSXDqOY6NZbSq7O7rkMUDkdZP2BCzbXx2jvoGnVW3HUbpl3W6XGgsZQQ0XDDXgGniKd8M5q9HMKR4Wee96witZl04fPNbbaGOoL8dBvj9B77DCZfAXFYvaCTQkNjO4ik1xcJ8I/bP0Af73p3bRZF27ilkuHGTryf1AK8arXqfH1/5RCPkU2HSaXjaIz1lHbcS96UwPp+MKfOGPBHsb7H0etq6Bv/w9m7YRLRoYx2NqRq0zoTA2kYmP4R3agMzcSdO8hmwpQOM2S2zExNTif8iMp5Sjkk+gpMphJ46jbirvv0Vk/Z6/7MLvGDkyaqmWSXpRq67QaJmvVNdR1vhYoj4RPx8cJje9HqbGjM80tbC8Et29qoFgUeXTXMDc2bmZ99Sqg7IJr0Zg4ORJBI9MhliQMhEcYjY7TZmtixJvAapz/RuvU2fAkFv7bWtFs4+RImBODIX7xWA9PLdJe/lQXTnONic994FrWdjhxWDS8elszb71jahL1umUVPLJjkDF/kq4mG5/9wLVsW1PNm25tn3XdrkYrjS4jMqmE5w66qa8yUFuhZ/cx75yRFKtRzRc+dB23bKgjEM3wT+/YQKPLOFmsPB9Dnhgf+/pz82/4EkOhMk4Wz8aCPegtTQgSKZaqNYhikbrO+y6pQDlFXed9k/UnABKJjIblb5zWnSNX6lGqLSSjw7MtMUkuE572ILNUXBUplwFKW/mp+UIUz57C5Oias8XtdJx111Pf9XqsVWuJBXvo3f99xnsfXfTn1TVZGRsOE/Qn6FwuY2RYhVJtJzi2m2JhZvFeJp2nWFz8kKuw5xBjJx9m+MTvOfHiVxclVKQSKZtr1yCTTgUUR3seIneW6cGxUC8Ay1cqGD7+S9IJL7FAN1H/MfTmxvLMJECtryIVm1+klEoFxvsew9P/BI6aLdR1vpZM0j/NZ+FUAV4iOoSz7nqWb/0YOnM9vqHtFPMpWq55F51b/haZXDvNWlsiSKg2VmKeOMtTsVGkxQxHIh7sNVtIx8dnLYgbjo6xurKLGxs3I4olxvufmPHbkcpUkzUqGkM12XSQiO8IJnvHRY+UyWUS7rm+iSd3z34R7R2NsKmrEjGr5snendg1Vn715yF6hsNcv3r+/Hm1oZKR6Ew327lwWjRYjWr+48e7MeuV7Ov2IYoiqUx+mij0hlKzFqQOn9Yq3NloRTrhYvyOuzqxGqdqR9Z2ODk+GGLbNdXYTGra6yy8+bYO1MrZA+QqpYzPfeBa2ust7Djsptqhp6PeQqFYmjOScormGhM//fRtrGy1s7LFzoEFipR9J3wc7Q+SL1y+A+wuBAq1efJcTMXHJlOg1spraF37PszOFWfb/bJDY6whFRs96za5TASFaultGK6KlMsAQSpFabPif2Y73V/4IqX8pStQU2ntqHVOlBorGkM1+Ux0XgU9GyaLBoNJTX2TDbksjUprJZ3vJOTZT9+BHxINJ8idNuL+1z/ey6E9Zz8JZmP05INEfEdoWvlWtKZ6ooHuRa9xikI+jXfwKUZPPjjt2E7HN3oMAIslhEyuxepaS8R/jIj/KEb7ssntNIaqBUVSUtERxvufIBV3Y6/ZhEQqn8hb+xFLRYaO/Zr9j3+87PyYiaI1ViMIEtR6F9l0kKrmW5FIFai0DpRa2zSRAuUOH5tUgiBIifqOIZEqiRULjCVDOOuvw937MP5kgCf6pp52R6JubmzczN3ttxDxHaWQS1LRcOOc30Gm0KJQW4gFe9CZFz9aYCnY1FXJyZEI/lls3E8MhljeZENe1LFzdA8xv45Bd4zPvH/z5ETjs1FjrGI0uvComCAIfPLdG9m8ooqPvnUdJ4fDvOffH+f1//gQe0/48IZSFEsiH/7SM7x4dOa8oRFvnNo5/ExOp7naxO2b63nz7bNHTuairsJANJGj2qGjY8L7ZbbC2TPRa8odmKta7ezv9tE7EuFvv/Is+07M/WBwbCCIKEIg8vKy19caakhGy9ezXDqypL4hlwKtoXry+8zFqXTPUnNVpFwmKB0O3A/8kcBzL7D3fR/g5H9/7VIfEjXtd9O0+h1k00EKucUPT7tmYy1rNtWSz8Yw22x4Ay46Nv4/8tkYzz74W/a9OCV+Ar4EwUUOaBNFkXw2RtOqt2G0t6M1TFf7+Wx8UQaCmaQXqUxNxHeU73zpjwz0Tt3wC/kUYqlIItxLvmghFelFqbWVC2V9R0mEBzCdJlLU+iqy6RAHnvokxcLc7ajJ6DAGWxurbvg08on0ikprJ5P0Ew2cIOo/QfvGD1HRcCPNq9+BVFZOTxgszThqt2KrnmrZVWlsZM6wt64xVGCRSNBbWwmO70NnqmOZo4WfHPwt/9O7i2Q6zIsHf8739/2CdD5DsVRkLOahxlguvEzH3egtjfOOq9caqhEEKVpj7QL/2udOanSU1Oj0ImyTXklno5UXDk8XE9l8kd7RCJ2NVlzFtYgxJ4p4DZ96zybqKhcWbq82VDISKw+jTOXSlErzRwVqnHrec+9yOhutrOlwcuvGOu68toFHXxzig194kp88dIx4KsfeE9Pb8pPpPMFoZk7TtdORSAT+8jUrp0VXFsKp713t0NHZYEUuk8wbSTmdriYbZoOKf/j6cygVUj7zgxfJ5WemqkVR5NhACInAgqcwv1TQGmtIx92UivmJCIPpUh/SeaExVM8bScleTfe8tFE5HBTicZr+4r1U3HYL0cOHL/UhoTXWYrS1odTYJttrz0Y0cIJUbOrmsfWmFtqXV5DPxjBZ7fi9CZ58uJ+8sAaT7iRBXzmlUSgUiUUzRBZ5ISvmU4ilwuRMi9NPJFEscXznl4kFZp/ZMhvphAeNsRqVthKlLMRzj/eSjA5TLOQ49MxnOLLjW2TSArbqNRTySVQaO1pjDfaaTbSt/YtJczwotyF2XftRBEFyVn+YZGwErbF2WoW/Umsnk/IT8hzAWnUNWkM1loqVGO1T9QgyhZaa9run1YkoNfbJSEom6Wfw6C9p0loQETDZ2ykVszjqtrLC2cFh7wnqLPX8IRJCExtEIkjYP34ET8IPgkDFRConk/Kj1Mzffqsx1qAx1swrZpaCvq9/i2P/8hm6/+vLuP/00OTr166smjE35+RwGINWgdOi4Z51q1mnu5WP3/dK5LKFX/pchgrS+QzhTJTPbf8azwzunH+n0/jnd23kta9oZesqFzsOj5POFnng2X60avlkKugUI744Jp0Sg/bsvlHnQ/2kSNFjN6v5wSdumeGRcjZkUgkfedMarmlz8Il3bkCrknNyov35dMb8CdLZAh0NVjwvM5GiUFuRyJSkYqPks7GXgEhxkc/GJjsWY8GeyW5CUSwxdvJhMgnv1XTPSxmls3wjsGzYgOPGG8j6A5c07XM6WmMtgbFd08yJzqRUKjB45Jf4hqcXyZWKWUqlPFang4A3zsE9ozz5WB6JpEQ2WW5ri4bTILJokZLLRpHIVJPuqRqDi0zST7GQKQ+/y8aIhxdmQgRlkaLWViBVODAaknhG/Zx48X/wDT2DIAhkE4PI9NdhqyjXMSg1ZUO8mra70JpmRhCUGuuk5fRcJKMjaI3T23JVGjup6ChR/zHMC/RQKKTSFDxxosFuevd9H+/QMwTHdiOOPI3F3oHO3IjJ0YXB2sb19Rv5m83v4b1r30RX/VaMEoG7Wq7nDyce44f7f0WjuXZyyF8m6Z/mjzIXjprNNK5484KO9XzIeDzEu3uQ6/UEX9hB9OChyfc2La+ieziMP5zmZ38+wZN7hjk6EKSjwYogCGxd7eKDr1tFo2tx3VxKmQKHzsZwxM1AeISj/nMz62urs2AzqnjdTa0UiiXu3NJANJ5lzJ/g6b0jjHjjjHjmtq5fKqodOl69rXmy4+hsTrpzUePU8/G3r0ellNHRYOH4YNknxxNM8pGvPMOYP8HgeIy6SgMuuw5f+OUlUgRBmJiPU/YjuhyKZM8HqUyF3tyIf+QFcukwJ/d+l/hEW7J/ZAfB8X0YrK2o9QvrgFsMS9qCfJVzR11ZiaauFoXJiFgqIchkZLw+NNWu+Xe+wLiab6P3wI8Y63mQmvZ7Zrwf9h4iNH6AYiFN/AzTn3w2hiCRYa+wkk7lkUolFIsl/KEKFNJyuiccTCEIEAktLm+dz8RQnHbyK1RG5Er9xLRRD4IgJREZXPB6mYQXS8VqkskIZvMQWpMAiHiHn0Otb+L3v7fwt/9yA/lMOaWi0s5sEz4Ttc5BZo5ISiGfIpcOzTA/UmntJCID6C3NqHWVlPJ5Qrt2Y9uyedp26XEPJ7/033R95lP0f+s7+Pe8QMVHbieT9hMNHMdatYaw9zBNq9+BUm2hadXbANAo1GysKduj37fy1Rx65ijXVbSRLBaQS2Xc3XYzUH5Cyi5QpEikChTSC/f0fwr/s89hvmY1rX/7YaIHDzHwvR9OvmfSK+lqtPLDB4/y3EE3FoMKhUzCa1/Rct6f22Cu4bnhXWSLOboD/TwzsBOrxkSXc+H1IFKJwNc/+gpUCik9Q2E2r6hib7ePwfEY//PrgxSLIu315gXVo5wPMqmEd9zVuWTrddRbONpfLvo/eDLA4HicT357BzeuraHWqcdhUTPqnXu6+ksVnake/8gLk35CVzqu1lfSvfsb5DJhQCSdcKMz1zPW+whNK96MwTb3MNDz4Wok5TLBumUTnf/yKQAEiQSV00nGM7Oo7lKgUJup7biXoHsPpeLMWQz+kR3kMmHqlt03OQL8FPlsDLnSgFIlx2hWU9tooabejMnWhlEfIJcrEA6mqKwxkUrm5ixYnY18NjpjfLm9ZhPu3j8T8R7GVr2BVHSUUnFhEal0woNaV0G2YEanjVNTkyGfl1PMpyiIdvQGIzKZFIWq7A+iWkAaRKV1kk76yKZmzkTKJgPIFLoZ3gMavQuDrZ2G5fcjCALhvfvo/s//Ij02PZURP3GCeHc3x/713wnv3YdKZ8WQaKS+6/WYK1ZR1/l6urZ+7KyzQQRBQKOvRJqL8Y5rXse9tavxn/gtpWKeWLCHUqkwzcTtUpMcHELf0Y5UqUTX3EzG66WYneoWe++9y+keCvOKtTVIJAIKuZQb1py/gVyXo40Xhvfi1NrwJQJ8e+//8Z/PfZMD48cWtY5aKUMQBP71/ZtpdBmpsGg4Phgimyty++Z6jvQFL7hIWWo6G63sPu7lY19/jhODIW7bWEcwmmHXMQ81Tj1OswbvyyzdA2CwtpRTPWrTpT6UJUFrrKGq6WZC4/snbAfcJML9SKVK9NbWC/a5V0XKZYJEJkNhmrrhqiqdZDyXz6wbrbEOudI46W56OumEh5r2e7BWrUGjd01ra81n45MFoY5KPQ0tNt747vVsvnkrKlUWv3uUcDCFq8aIQildVMonNyGATsdZdz3FQhaJVEFl401IZaoFOd3mcwkKuQQqnYNUSodcloVCLyPucutgPGHCXlH+HlKZgtZ1f4FK5zzbkkBZpMSDJzny3GdndN5k00GU6pkzYWQKLS3XvAu5sjzQK7R7DwgCvqeenrZdcnAIVVUV8Z6TLPvEx7Ft3UJo9160xhoaV5QFzkKGgqn1laTj5RbbRGSQiO8Ig0d+Tu++76FQm5FILp+Aa9bnR+UoR3bkZhMyrZb0yFRBX12lgW989Eb+8r6V/N39a/j7t6ydbOE9H5Y72ymUCrTbm6k3VXNb8/WsruxiMLI4D5QzqbRp2d/tw2ZU8dobW5DLJNQusKD3cqGlxsRXP7INtz/JM/tH6Wy00lxtpG80Sq1TT5Vdx4g3/rJrQ9YYqpHKVFd8PcrpVDTcQMemD1PZeDOpuIeo/zhGe/sFtR24KlIuU1QVFZORlFI+Ty6ytBbri0UQBEyOrhm+Gqdu7qdmARltbdPmwuSzMeSK8kX33jeuYuN1DajUchRKNYmUlaDnOKFAEpNVi8ms4fB+94KjKflsdIajq0Qqp+vav6d17fuQK/VoTfUkwoPTtvENPUchPyWG3H2PkQj1o1CZkcpUxOMiydwqpDIFbSuv48iJVYyOKidFCpTnWSzkxFTrnIgT8zGiZxTxZhcwAVUslQjv3kvVPXfhf2b7tPdSg0NU3f1KNvzkB+jbWrFsWE94z15So2OMPfCHeY9t6hgriYf7KBaykz4zYe8hatruwdV8+4LXuRhkfT6UjnIESxAENLU1pIanCwW5TIpMKqG93rJk9R0VOjtWjZlao4t/3PYh7l/xKuxaK/7k+XkbOS1aRrwJKmxazAYV//N3N9DZMP8ww8sJQRCorTBww5pq8oUSrbXmydbmGqee5moTeo2CnUcW7jXzUkAQJOgtzZOR15cKGn0VakMVmYSHiO8IRtviWuAXy1WRcpmiqqgg4y6f1L4nnqLnv750iY8INKc9cZ+iXNFtmmyNtVSuJuo/PikC8qdFO9QaBTL5VG5WIq8j7DlBf7efplYbq9bXcOyAm8f/dHxBx5PPzIyknInOVD+tLkUURUZPPkh8wpStVMwz3vcY4wNPTEZGErEMEvUGlm36G5avawdZI8cP+XCcww1PrtSz4rp/wll/PVH/9O+VTYdQaM5+AUsNj1DMZnHdezdZn49iZqqdOTk0jLa+HsnEBHFdcxOqCidH/umTDH7/R+QikQUdo9m5HLnSwMCh/yWT9GGv2Yy1ah2OumuxVK5a1Pe9kBSzWfLR6KRIAVDX1JAaOb9oxkIQBIEPrH8rW+vWYVDqkEgkOJZApFTayqm+ygm/liqbDonk0o+NOBdu2VjH2g4nVqOKZQ0WFDIJDosGiUTglo11PLpz6FIf4kWntuM1VDRsu9SHseQo1RakMhU6cyOGqyLl5YmusYFEbx+iKJIcGppRj3ApUOsrSSe90wbZpRMeVKdNVFZpHaj1VUR8R4FTKZnZb+6tK9eiVHipqjXgqDSw8fpG3vCudRzYNYJ7JEIhn6KYT+Mf2YF/dOe07qKTe79DNHB81hk3p6Mz15OMDE62eRZyccRSYbKYNZPyAyLpuHsyGhSPZdEbyh0PgiBwx6u7kMkkOF3nFoaXK/UYbR3Ew/2k41N1RrlUcN5IStrtRu2qQm4yIVEqyfrKRbv5aJR8OIymbqqrSBAEKl95B4V4HFVVFeE9C5usLZEqqO96A9FgN+n4ODbXeuq7XncO3/TCkvX5kSgUyI1T/w5qV9XkuZH1+8nHzn368Hx0OdsxnTbnyTEx0+d8OGUmt5jZPpcrVTYdn3z3RgRBYE27k0+8awPSCcG1tsNJ93BoUb5FLwXkypk1Zy8FBEHC8us+TsPyN17wdPBVkXKZomtuopBMknGPkx4dIxcKXfKW5FMFlNHA8clC0GR0ePLmfgqdqY50omx+lYgMop1jdHdFTSNSqZzNW6fqJuxOPde+ws4Tv/sVB5/+Nw489c/4hp9jvO9xgmO7J7dLRkdoXfv+eSvKNYZqioUM2VT55p5Nl487PdEWnEn6kUjLguTU90jEMuhOG55mr9DzkU/fgs0xf33HXKi0diobbqR799cZOfFAuXMmHZq1JuV0MuMe1JWVCIKA0mEn4yunY1IjoyjtNmSa6RdAx43bWP0/X8Zx4zZCuxY+WVuhMqLRV1Eq5VFq5u/mudAEX9yN97HHKSQSJAeHEEulyVTP6Wm2UyIl0d/Pgb/+WwZ/9NOLdowOrRV/6vxuvFajGplUeEmIlNORyySsap2KeNlNatLZIsnMwgvjr3J5I7kI3XxwVaRctkgUCvStLcSOHyc9OgaiOPkUfakQBEl5AN6BH9Oz91vEgj2EvYewudZN206hNpNLh8sD73KJOa3SBUGCtaIVg36q8yUVG0MvfYDW1gjB+AaWb/04HZs+jLVqLcloOVxcyKcoFtJo9DPH0Z+JRCLDYGsj6C5HFcpzeYRJg7VM0ofJvgylxobWWINYEolFM+jPGDynVJ3/00Jl0800rXobQfdekpEhcpnIAiIp46gqy+JJ5bCT9funXq+a+f0FiQR1ZSXGrk7iPScXdXxGe8dE6u7iXHzORmjnTvq//T0OffTjHPzI3zP8s1+Q8flQOacLKLWriozHw/BPf4amvo7w3n0X7WndprGQL+aJZs49eiOVCLxySyMd9YurWyjl8+z/0IcZ/e3vr4johFYtR6OSvezs8a9y/lwVKZcxhmUdhHbvJRcKITeZyHgvfbeP1lSHydGFRu/i5N7v4Ky7ftoUTQCFykw2HS7PcjHVn9WFVK2vInVancvw8d/irNuKtf5tnDium+wu0ZpqJ11vs+kQUrlmcpjffDjrrsM/soNiIUs2HUJrrCGbLM/GySR9qHROuq79KCqtg2gkTaFQwmK7MCFavaUJg62V0ZMPIlNokavmNhYrJJNkxqdEitJunxSqGbcb9Swi5RRyk4lCLLaoG5jNtQFXyysXvP1S4/nzoxz66MeJ95wk4/Ei1WpRWCw0f+D9RA8eIuPxTqtHgbJTM0B4/wHq3/pmSpkMyf6Bi3K8CpkCk8pw3imfd9/TtWhr+9jRY+QjEUZ+8SuSA4Pn9fkXC5tJjf9lZup2lfPn8uktvMoMrJs3Mfq3H0VuNKJrarwsWpJrWu8CQYIgCIiiOGuHi1JtJpcJEw/1orec3UhLraskNL4fKHcKJaMjNK16OyVRTTSSJhJKYbJo0BprySR9ZQO01Oytu3OhMzeiMVTTvftrKFRm9JZmUnE36cQ4mYR32kRSvzeO1aZFJrtw5ktGWweDR35OVfNt02ztT2fkV79h5Be/QiKXT4oRpcNBoq9slpd2uzF2dc35GXKjEbFYpJhMItMtLE2lUBkvaaFs5MAhMl4vo7/6DRmvl7a/+xsMHe2k3eMkv/FtSrk8VffcOW0fQSpFVeEkF46ga27CtGoFkf0H0DVdnEGHLkMFfaEhWm0Xd7BiaPceLBs3kB4dI9k/gK6x4aJ+/rlgN6mvRlKusmiuRlIuY3RNjbjuvRtdcyNKp+OyiKQIEumkMJmrBVehtlDMp4iH+tCbz37x1OgryaT8k+ZhGn0VcqUepUpGZbWRkYFyKkiu0KFQW0iEB8u1HJqFixRBEGi+5p0olCai/mMo1VYcNZvp2fNt8rk4OlPd5LZ+TwJ7xbnXniwEo60dvaUZe82mWd9Pj7kZ+cWvMLS3UUylpkdSTqV7xsZRVc1tQS1VqxDkcvLRC1dIutSkhodx3LCNeM9JcsEQ6qrKcvqqqhJBJiM5MIBp5coZ+6mrqjB2LkOQStG1tJDo75+5+AXi+vqNPNa3/aKnXMJ79mJZtxZtfT3JwcGL+tnnis2kZtgT5/lDl74J4CpXDldFymVO3VvfTPvHPoqq4vIydzsbUpkaiVRJqZibYfl+JnKVCalUQSbpI+I7Oq2dze7UTZuMbHNtwN33SHno3Ty1HGcikcio6bgXQSJDqbHgan0lFQ030r7+g9PamP3eOLYLbUuu0NK69n1zVv3HT/aibain6S/fh3HFcuTGckpI5XSQGR+nkEqT8XhQu+ZO9wiCgNxoJB+9tP46C6WUy5F2j2O//jrykUi5i8dkAsp1NrqmRjT1dSgsMweYOW+9mcq7ymkqbX0dqaHhGdtcKDbXrCGSibHXPdPk8EKRj0bJeLwYOpehbai7YtI9drOaR3YO8rkf7V4yoZLJFnAHFme5f7g3wNN7L3zb+lWWhqsi5TJHEITJkH/GfWU8gQiCgEJtRmNwzTsVVxAENIZqho//jnjwJDbX+sn3LDYtocCUSHHWX4dYKhJ0711UuucUSrWFZZs/gs7ciCBIqGjYhvIMnxK/J35OfihLSXKgHL5XV1XR9a+fmoxY6Zqb0NTWcuSf/hlEcbIeYy7kRsMVE0lJj7mRqlRo6mpROh2oKpzTInWWDetwbLt+1n0ta9dgWrEcAE1dHWn3+DSr/AuJQqbg7atfy9de/BGHvQufuH0+JAcGUTodyDQaNPX1JPsHOPmV/6GQOr9USj4W5+RXv37B/nZ2k5pCUWRjVwU/+OPRJVnzqX2j/MP/PEcuX5x/Y8AbSvFvP9zF9/94lGLp8i84vspVkXLFoK6uJu0eRywu7GS81ChVZnSm+gVtW9/1elQ6Jw0r3jRNNJwpUiQSGe0bPkht+z0Y7R3ndFwqjW3OOpDRoTC+8TiVNYubkrvUJPsH0M5SYyBIpbT/w99jXnMNTR94P4L07HUzV1IkJTk0jKa2BkEQ0DU2oHROHzlQddeduF41c7jlmSisFqRqdbkj7iJxXf0GXr/8bj7/3DfZM3bwgn9ecnAIbX09AJraGsRCAd9TT5McOL+C4dHf/Bbf40/geeTPk6+JxSK+J59eknRWlU2HUafgPfcsxxtKkVnEnK65GPHGCcezPLF7YdGzB57tY3WrnZIocqz//Aqer3JxuCpSrhBUDjsIAunxy2Po4HxUt92Js37bgrZVqEzUd752hr1yWaSkKBSmhJlUpsJes3lOg7j5+PWP9xI4bSJrqVji4d8eYWw4zC9/uIcbX9mO5RJ6VoiiOCFSZi/ElBv01N3/RpyvuHHeteQGwwU1N1tKEr19aOvLtUG2rddi3bjhnNYRBGEi5XNx3U1va9nGbS3b2DGy74J/VnJgEG1DPQBSpZK13/0mxuVd52X4mPH58Dz0CLX3v5Gx3/wesVSes5MaHuHkV75K9PCReVaYn7Y6M9/+2E3YzWq0Khnu0x5AzpUxX4LORiu/e7qP0hyRkd6RCP/+w1184ad72XlknJvW17J5eRXbD148IXuVc+eqSLlCEKRSNNUu0iMjl9zUbSGotI5zFhKnsNg0ZNJ5vv4fz3Bo7+j8O8yDKIr0HPNy/PBUy/POZwfYu3OIH3z1BSqqDGzYemm7JHKBIIVUCk3t+U/ulZuM5C/xzKeFEtm/H9OqclGsbctmnDfNL8LmwrhiOeMP/Rn/M9svalHp2qoV7Bs/QrG0dNFOURQ59NGPs+vt754smk4ODk5GUqAcMVO7XKTHzv2mO/KzX2DdvJGqu+8kH41SSJQFRGai5X3sN7879y8xgSAIaFRyBEHA5dAx6otzsMfPx77+3KLX6huN8IftfYz64rzuplYyuQL7e3wzttu+f4yPfu05bCY1+7q9JNN5VjTbWbvMycGeS+s7dZWFcVWkXEGoq130f/t7dH/+i5f6UC4KSpUcrU5BJJTi6IHzr8fJZYsU8iX6ussXJ1EUee6JXl739rWsu7aeV9634oJO81wIqdFRVE4HUqXyvNcqR1Iuf5GS8frIjHswrlwx/8YLwPWqeyimU/R88ct4H318SdZcCM2WemSClO5A3/wbL5DU8AjJgUEkchmp0bFygfHoGNrG+mnbnT4eYLHkYzF8Tz9L7ZvegFSlQqJQTP5usj4f2oZ6IgcOLunDkcuuY8yX4GePdXOkL0givfC1SyWRr/7qAD/80zF84TQNlQZu21TPzx/tJl+YLhB3Hhnnvhuaee+9y/mLV6/knuuakMskLGuw4gkmCUavtkRf7lwVKVcQ6upqcqEQmfGXzzTRqloTW25sYqAngM8TJ7OIi9mZJBNZEGBkMEwmnScWyZDNFmhssXHrPZ0YzYsz1FoqxFKJ8L6yV0x6zI262rUk65ZrUi7/dE943370He0zLP7PFalSyfJ//1fq3vYWUiPnH4FbKBKJhGuqlrNnbOk6fSIHDmLsWoaqooJcMEhyYBCpWj3D1O58REp6dAyF2YRqog6oXHA9IVL8fvTt7SAI5Bc4sHIhuBw6nto7Sv9YFItBycnh8IL3ffGoh2gih8uuQ6uSYdIredW2ZoolkW/97vDkdqIocrgvQFdzeZzH1tUu3nRrOaWsU8tpdBk50ne1LuVy56pIuYJwbLuO6tfdRzbw8jmx3viu9dx4RztGs5pv/9ezfP6fH2V4IDRju0KhyHe+tJ3Robkvdol4Fr1BhdWuZbA3gHc8VjZuk18447aFEO85ybFPf4ZcJEp6dAy1a6lEimFJbyxLhftPD9H/3e9P/nfs2HGMy+c2pjsX5EYj+rbWJS+g9T72OJGDc4uQta4V7HEfWjLflOjBQxhXrkBhsZALhkj09qJraZ4R8VO7XGS9XkqFxRejpsfHUVVOee7IDFPiNuvzoap0IjcZyYUWLiTmo9quZzyY5P2vXkFno42ekYWvfbgvwMbOCm5eX0tthQFBEFArZfzt/Wt4YvcI4Xh5Urg7kCSRztNWO7NtHaCrycah3sCSfJ+rXDiuipQrCFVFBVV330kxlaKQevnYSwuC8P/bu+/4tqtz8eMfLWtZ25blveIVZ09CAoRNGGWU9U+k+QAAYHlJREFUFihQuBRo6aCDllsKBX60QEt3ubellKQXKKV0sNoCCSthZO/EiR3vPWRLsoY1bEm/P5QocWzHdiLHTnLerxevNl99x4kdW4/Oec7zcNtXl/C9H11K6Yw0WhqG/kLb/HED7S299HSNXDPB5wmSrFNSWJJKTaWdrnYP1vTJ3W4MxJMSfbW1+Ftbj1n/ZDySCwsJ2rtx7tiZkPslSue77+HYfLhZpKeqCl1JccKfo8mOzTwO+E48QRNin8wbX/wL+/7fj0cMVGamldLjd9HqGZzg/uq+t2n3DM2ZOJZwIEDv3gqMc+aQZDET7HHgqa4leVrhkHOVqSlIk5Lw1TfQ8PyLREKhMT8n0NaO+ogg5cit64GubpSpqSSZTISciQtS5pdZ+eEdi7lgQTbFOUYONLrGfO3++h7K8s1csayAh+44nGCdkZrMjAILD/7+U37x0jZ2HrBTmmsmaYQPIWfPzODTXa0EQqLp4VQmgpRTjDw5GalSSahn6GzC6SxZr0KpkmOyaHH2DH7TCfj7+eT9GgwmNV7PyDUefN4g2uQkCktSqa2y09XunjJBikQux1tTG1vuSdBMSpLZRO6tX6Bh1f8l5H6J0NfSgr+1jaC9m2BPDyGXi2CXHV3RsdsnHA+FXo9cr0/YbEqgvZ0Bn4+0Sy6i+9MNg17z1tUz0NeHSq6kyJxHdffg7cD/qnyX53f+Y1zPc27dhjI1FU1ONkqLhVBPD97qanRF04acK5FKMc6dQ8Ofnqf11dfj3bLHwt/eEa9qDLGv24Dbjb+9I9Z5egKCFFWSnEXlsWeW5JipbBxbN2l/cIC6NjdleRZkUgl67eBmmJ+7qIi8dAMf72zlP5/WsXT2yAF/aZ4Js0HNelEBd0oTQcopRiKRkGSxEOw+M6cpzSkaHN2HZ5EC/n4+fq8aa7qOkvI0fN6RP0F6PUG0OiW5hRZ8niDV+7uw2vQjnn8yRPr78eyvxHr+cly79xDq6UlYkAJgPmsxfc0tgwp0RUIh6lf9H/seezxhzxkr+7qPMc2fhzYvF8/+SjxV1agzM5EnT8y2b012Fn0tsbyUaCQS31p7PNz7K0kumoZpwXx6dw2uh1L11M+p/f0fAMjSpw+aSfEGffj6/ezrOsCB7rGX7Ld/9Akp5yw9+DNvxtfQiL+1bcRZJ/OiBbgr9gEw4PaM+TmB9nbUR7RYUBgNuPdXsv0rX2PA40GVZkVhMiV0uedI07KNBPvDNHWOPuYDTU7MehWpI+SPzZqWyv23LmBmYQrt3T7OmTPyz5JEImH5vCw2Vwyt5F3Z4GDLvlOj3MPpTgQppyBlSuxT1ZnIlKLF2RMLUnzeIL97ai17d7Rx4eWlaHVKfMeaSfGE0CYrUShk3Hz3YhYuzSNv2vgr1yZSX1MzErmc1PPPxb23AsPMGSgMiQucksyx4maBtliydbC7h53f+R69eytwbt9BoLMT187YG240HJ7Q4m+RgQE6330P26UXoy8ro2fTFro++DDh+ShHUmdlxmdudnzj27T969/HfS/3vkr0ZaUYZpQT7O6J1yyKhEIEOrtwbNpCb0UFmXobLb2Hk9s7vHZ0ymTOzVvMh/UbhtzX3x8YciwyMIBrx04sS84CIMliIdTdjSY3J94m4Wim+fORyOXI1Gr6PWMLUqLRKP629iEzKe6KfbHl5Ws+g1ynI8lsot/pGtM9x0shl1KWa+bVD2t44a1YkBWORGnp8gypCru/wUFZ3ugtMa49fxrXnDdtyEzL0WwWzbA7fNbtaOHdzaMXiHt5TRUvrz45lYbPVCJIOQUpUyxnVPLskcwWLb3OPta8uY8/Pb2e7DwT3/rhhWTnm9EmK0dd7knWxbb25hZauODyUlTqY5ftn2h9jY1ocnPQFReTd8ftlP3wBwndBi2RSGKzCc2xXiWtr76OOj2d2T/7CerMDKp+9isqn/oF0XCY7k83sOu+++NVjXs2baHqF79K2Fi6P/kUmVKJcc5s0q+6nN7de/DsryTnps8n7BlHU9lsBDo6qP/T8wz4vLi27zyu+4RcLnrWb8C8cAEylQp9+XQcGzcBsY7UMqUS6wXL6f54PZl6G63uw5/CO312bNoUzs1dzIbmbYTCg3eofW/1j4fMsPjqG5AoFGiyY72vlJZYMH2o/P9wFHodC1c9S3LRNAbGGKT07toda7FwVE5KJBRCXz6d/P+6LTaTk+DlnqPNmGbhg63NvPlxHZFIlLXbmrnnpx/w8B/WDzpvrEHKvBIrt10xfdTzzHoVDvfQILHL4cfRO/T40SrqutkrKtdOKBGknIKSUlIIjTNI8VQdmHIJlMdDb1AhlUnZtqGRZRdO4zM3zI6/qWt1ytg24xF43bHlnqnE19iENi8XqUJB5tVXJaQ+ytHU2Vn0bNjEgV/+hs73PyDr89cjkcnQl0/HW11N2OfDU3UAz4EDBO3duHbHtnG2/vPV+PLBiYiGwzi3bafu2efIueXmWGfj9HRm/fRxyh97eMSZgURQp9sIdHTS19hIxpVX4K6sigdhQbud2j/8Eff+0T8JN7/8CoZZM9FPj7VjSLvoAjrWvEc0GqWvqQV1dhbmRQtxbNlKps5Gl6+H0EBs6bHT201acipFlnwMSt2gZoShgRBdvh6aewfnRXgPHEBXXIREGvsVrTDoQSrFcIwgJXaeAblOR/8Ylnsi/f3s/9Wvyb/zvwb9u1PoYzN5hyoAA7EgxTFxeXDnzM5kxZI8wuEIXc4+NlV0sGRmOvVth7fQRyJRqhoclOWPr7noscSClOCQfJguZx89wwQvR2ts91Df1nvSu2CfSUSQcgpSp6ePqx192O+n8qlf0H4CU91ThUQqwWTRsHBpHnMWZaNUHZ4JSdYlHXO5x+sJxGdSpoq+xiY0uTkT+gxNdjY96zcQ7O4m7eIL44mXhhkzUBiNpCxbinPbdrw1tSitqXS++z6eA9V4a+sIOZwnXMSr4501HPjVb8i+4XOknrM0flxlsw2qnDoRVDYb/tY2/G3tsfwOqRRfQ6xkfu3v/0DXex8M2mk0nGgkQvenG8i85jPxY5YlZzHg8eDauYu+5mY0WVkYZs5gwOtF2eFEJVfSdnA3T4fXTlpyKhKJhHPyFvFRw6b4fbr6euLnHOLauQvn9p3oSkvixyQyGaX3fzdelfdYFHrdiDMpkWiE9U3bCEfCVOzdRMDrQXb2vMHXHwwaNUcGKeaJnUnJSE3mq9fPJiM1mZoWF9ururhiaT6evlC8x09TZ2z5Jz89ccuhJr2KgXAET9/gf+N2Zx9Od2DYUvv/+bSeVz+sxukJ4PIG8fn76XaNHtAIx0eeyJt98MEHfPTRR7S0tCCXyyktLeULX/gC1iMKD7lcLlatWsWePXvQaDRccsklXH316I3DhMPMZy2i9g9/xFsz/HbEo3W+9z7hvj78badHEbjrbpmH2TK08Jc2WUmfL0QkEkUqHbxk4vUEcTn92DInN1E2Go3Su2dvfNq+r7GJ7M9fP6HP1OblItNqKf3+/Sj0h3czpSxdgr68DHfFfpr+8jIhh5OS736byqd+Qai7G9uKy+h4+x2CdjvqjOPfFu1rbCLtkovJvPozo5+cYCpbGpFAAKlKhdJqRVdagnvfPrQF+XiqazEvXjhqETRffQPRcBhd8eEdSFKFgqzrr6Pu2ZUoUywY585BqlBgmjsHx5atZKdk0OhqIc+URafXTnlqLNn1nNxF/HPf27gDHvQqHV3ewUFKNBxm/+M/IRIKkX7l5YPGYVkytn5Gcp1uxPyRvZ1V/HrDc3xh1jV07tiALVlKtaOe1OTDuVmHcqK0RwTPSSkW+l29REIhpEnHzvM4Ebk2Pa9+WINBm8SsaSkkKWTYXX6y03Rs3NvOjMIUZLLEfbZWK+VoVHIc7kA8f8Xr78cXiAVGvb4gJp1q0DWVjQ56PUEKMg2kmTUkKWTUt/eOmMwrnJiEzqRUVlZyzjnn8PDDD/ODH/yA/v5+nnrqKQaOKDD09NNP4/V6eeSRR7j99tt58803Wbt2bSKHcdqTazSknncuHavXjOn8QGcXhlkzCXbZj6vY01Rjy9AT9bqHdIRO1imJRqHPN3SHT2NtD2npetSaifsFOxZBu52KHz5K0G4n5Ool5HCgyZnYmRTD7FnMf+Z/BgUoEPt0rrRYsJx9FlKFAiQSTPPnkXrOUrx19WReezVKayqBzvHV9zhasLMTlS1t9BMngEytRmE0osnOQiKRoJ8eC8pCPQ4GvF4sS5aMGqS4du7CMLN8SNfpjKuuQJ1uI9jdE0/+NS9agHPLVoos+VT31BOJRmhytZJliOV8pCWnkqmzUXmwdH6Xrxu5VB4PUoLd3UTDYWb+5HGMx9kmQKHXjZg4+17dJ8xKK+Ove96kr70NaaolPpZDlGlplP/o0UHLcIcSsE+kieFY5Np0VDe7uPrcQiQSCVaTmi5nHwPhCG+vb2DF2XkJf6ZZr+K9zU2s3tgAxGZRtCo5Ok0SPcPkpTh6AzR3eWlo95CXric/Q09d64knnHf0+PD0jb2+zZkioUHKV7/6VS688EJycnLIycnhzjvvpL29nba22D/spqYmKisrueuuu8jLy2PhwoWsWLGC1atXj3Jn4WgpZ58V35VxSM+GjXS+/8GQc/t7e2MzLhJJvEnZqW7vQ4/QtXbdoGNyhQylSj7skk9jbQ95hZO7kweI17fxVNfg2LyF5OKiCdt+e4hEIonnGQxHKpcz7etfJeMzVyKRyci97VZKv/89lBYzKquV4AkGKYGOznjJ9cmgSrehyY41bNRPL8O9bz/e2jo0WZloC/IIdHQMCXiP5K6owDBraMAgkcmY/vCDzP/90/ElNNP8eXjr6imqdlPXXk1LbzsD0Qh5xqz4dek6azwo6fL1UJJSQIfXHstvaW5BlW5DX1Yaz0cZL7lOx8Aw3a99oT62tO7iZsMiVl7zMz6TshBzVu6QpF2JRDIkQTeegN3UfFxjGqvCLCMpBhWXLskDwGrS0OX089raGpQKGfNLE//vyKxX8e9P6nh3U2w3T5ejj1STBoth+KTanl4/3S4/u6rtFGYZKck1sX+YKtjj9b//2MV/Pq0f/cQzzITmpHgORvNabeyXcG1tLWazmfQjMsnLy8tpbm4mNI4KiQLoSooJdvfEgw77Rx9z4Fe/pe7ZlQx4B1dd7Xf1kmQyoUqzEmg/9ff+h1wuAm1tuIZJBE7WKfEM84ulsbaH3CkQpBzaleWtrqHn0/WknL1kkkcUoyspJvfmmwBIMhoxL5gPgDLNOq7CYEeLhsME7fZJm0kBMM6ehWF27E1XVzSNAZ+Pnk/Xoy3IR3VwKfpYwbu/vRPNGPspKQwG0i6+CPm7myl7p5Kd7RUUW/KQSQ/PwqTrrHQczFfp8nYzw1pCcCCIK+A+WHH4xOrkKHSHZ1KOzCeq6DpAjsxE26M/Q+b0EOzswppXRIOrJZ7keyzqI3aJTZT5pVZ+998XojxYJTbVpGbNxgb++UE1939xATJp4huAmvUqwpEo9e1uwpEonc4+rCZNLKn24EzK+t1tfLC1mWg0Gp9d2VbZyZyiVGZPS6Wivof+gfHX4PnTvyr46QtbcLoD1LX20tI5csXsM9WEBSnRaJS///3vzJo1C8vB7XNutxv9UZ/odDod0Wg0HtAIYyNTq0kuLKC3Yj+R/n4aX/gz0752D8nTCul4Z/AyUH9vLwqjAVVG+imTl3JktvzRyZue/ZVIk5Jw7dw9pDiX0aLB5RjcMsDnCWLv8pJbmLhdAccr1NMDUimOzVvo3VuBZYoEKSM50ZmUYE8P0WgUZUpKAkc1Pjk33YB1+XkASJOS0BUXYf/oYwwzYks4Klsazm07BhW8OyQajRLq7iZpHOOf9tUvM/eXP8PqiuBY9TIlpgIA6v/0PH0trdiSU+lwd7H/iZ/ibm4iy5CORWOizdMZ6910gg0m5TodAx4v/b29bLrldno2bARgT2clM7WxpUVvbR2Bjg4s2fkoZAo6faMXh9TkZE/4TMqhPjyHpJrU1LT08vmLipmWZZyQZ5r1KlKMaohGae/2sq2yi5JcExaDKh6QvLa2hnc2NOALDBAIhcm16VAr5RTnGMmx6VAnyTkwjiaJAIHgAG+tr6fN7uP3r+7G7QvRahfvg0cbU+LsypUr+eCDocsIh5SVlfHQQw8NOvbSSy/R3NzMI488Ej8mtmkllr58Ou69FYT9fqQqFSnLzibs99OzYSNZ118XP6/f1YvCYEBlS48X9Uokf3sHMrWKJKPxuK5vevkV9OXTB00xV/7kZ6ScvYSUc5ay+/s/IOfGz2O94HwgVvkz5dxz6NmwAW9t3aAy4ZYULT32wWXzG+umRj4KxGZSDOXT6d2zl6zrr0OVZh39okmksqXRvX7jcV8f6OhEZU0dks8xmQrvuZtwMBRPOk+eVkjdH1cSDgbJuu6aQef297qJhEIoU8cXZCl0OrIe/h6yx35Ohl1KNBym4613iIbD2D6zDNXuWhyb2jFoMilNKSTXmEWDs5mcllbSLr4wfp9oNDruujmxIMWDY/MWZEolB379NAvKp7Ons5KbtPMZALw1tQQ6u1Cn27B1p9LhtZNtOHZytCY7e8gHoIlmNWlQK2VcclbehD1jbkkqaRYN721uYuPeDnZX27n383NYs7GR2tZeenr9VDU5kcukdPb4UCXJKM4xYbNo40m8M6fFmhWWF4x9tnZjRQdWs4ZbVpTy2MpNJMmltNq9x/U9P52NKUi58cYbueaaa0Z8XaEYXBDrlVdeYePGjTz88MOYTIc7UBoMBtxHrZV6PB4kEgk63bF7qDz55JMkHcwqX758OcuXLx/L0E9rqecsY88DD+HYuo2CO/8rlgiZmjKo0Fs0HKbf4yHJaECTnUn3J+uPccfjU/u7Z9Dm5ZL/pf86rusdW7YR7uuLBykhhxPHps30NTaiMOgJdnbhq28ADu6O2b2HjKuvIhIK0rNhI9rcHKRJSbS+/iY6ZR7N7YM/ETfUTI18FICQowfjvLlkXnfNmLaTTjZNXi7+5uZ4zsZ4gg1ffQMtf/8nyknMRxnO0YnKRd+6F01uLp6qA0PODdrtKAz646pfU14yH8WCs1B19xG024mEQnR/9Am5l1/AzM2d+JVSrrYsxKDSk2/MpsHZTEpzS3y5JzQQ4t63HuH753yNLL0NuSz26/oXnz7LQGQAi8ZEklRBpt7G8vwl8SUlhU5HNBym8/0PyfjMlfRs3ETrp5/Q5ukkS2egAeh6733kWg1KqxVbcuqYmh9qcnMJdHQy0NeHXDN0d91EWFxuI92iJXkCiy7OKbYypxhqW3p5eU0Vi8ptWAxqLjkrly//5H1+/8/dlOWZabV72byvE4tBzecvKh60PXlalpHKxvHlpXy6q5Vz52YyqyiVJIWMeSWpbKrowOEOYDGcujuF1q5dG98Mk4g0jjEFKVqtNp5XMpp//vOfrF27loceemjQ1mOAwsJCHA4HHR0d2GyxMswVFRVkZ2fHA5CRPPDAA6MGMmea5GmFpJ53Lp4DB+LLBrEgpRtfYxP9Tifa/DyIRJDr9Whyc+l76a8JHUPY78e9b/+gZZfxfhLodznx1h5O3uvZuAldcTEhRw9Vv/g1CqMxPs3cu2cvQXs3lrMWI9dqqX3mWbo++JCCO++g8c9/QXLR9Tjcgz/1NtU5WH5Z4rvsHo9QtwPlWRZM8+ZO9lDG5FB33MaXXsZXW0f5/3t4zNd2r99A2O8n94u3TNTwEkIikaArLqL93/8Z8lpsqSf1uO+tycnBW1tLX3ML6swMouEIdd9+EHuaEkN+AeGu2AeKPFMWe6u2MOD1xuvmrG/ehsPv4qPGTXzcsIn7ln6ZXGMmm1p2cPOsa/GEfITCIV7d/w49fiefn3EVADKtBuO8ubh27GTa179KNBqlbcOnWBdZkPmDyLRa+nvd5Nx8E1K5PLb85B09oT6WSJ2Kp7LqpP371agUlI6hwmwiXLAgmxSjmmvPi82wWQxqbrmslK37O7nz6hm88u4BPt7ZisWgwmYZ/H6YY9OxZlPjmJ8VDkfYU9PNDReVoFTIWDg9jfJ8C/Vtblq6vKd0kHLkJILH4+H5558/ofsltE7Km2++yb///W++9a1vodVqcblcACQnJyOXy8nJyaG0tJTnnnuOW2+9Fbvdzttvv82tt96ayGGcUQrvuZuwPxDfCZCUkkIkEKDt9TfwNTZT/K2vI1OrkSmVaHKy6e/tJeTqRaZWEQ1HkGuG/jB0vvsera+9gSo9nYK77kCmVoNUimKYILF3z95Ygaz6hnhwUvmTn8VKn6+4dNTxRyMR+l29hPv8RCMRml56mfa33yH35i9gXrQAx9btKPQ66p/7EwBtb/4L2+WXIVOrMc6dQyQYItLfT9PLfyPa30+0chfOpCXxWikD/WHsXV7SJ2g9e7yCPT0kWabGrM5YSGQyNHm5tP/rP8h1yeO6NtjZhXnRwmOWcp8qkgsLCDldtL72BqaF89FkxXbjBLrs417qOZImJ5uuD9bS19yCJjeXaV+/B29tHa2RemZ2J+F5Zy0A+cZs+pvbUGWkI1PF6nK8V/sJ08x5vH3gA8LRCGtqP+K6sstQypL4TOnF8Q8CFxYs5YF3f8oFBUtJ0ZiRSCSUP/IQ/R5P7Gf2rMU0/vUV8s8/j/5uN4aZM4gEAtgO/nym66x82nTsgnaH6KdPx12x75QJssejvMAyZLnmmvNiPYAAzl+QzVMvbGFa1tAKyTk2He09PvoHwijko8821rb2IpFIyM+M3et7tyxAKokl49Y0u/h0dxsLStPinaLPZAkNUt5//31CoRBPPfXUoOMPPvgg06fH+ih84xvfYOXKlTz66KOo1WquuuoqsXRzAiQy2aAtrHKNBplWg3PbDvo9HvytbfF6B3KNBqU1FXfFPpr/9nd0JSVM++qXB92vr6WFuj+uovCeu3Fu207tM38kGg4jkUqH/RTds2kzqecvp+u993Ht2EmwuxvHxk0kHbHM1/DCn0kuLCRl6dAk0QGvl2g4TKS/n54NG2l789+UPfh9DLNmIpFKSV9xKQNeLyGHg36PB09VNdmf/xwQK6g14/HHCHR2UvnETzHMmomropJIwWI2PfgEJpMKzVU3kJQkQ29UDXn2yRYNh+l3OlGmnDpBCoA2Pw/vgep4ArNUMbap90BnJ6b580Y/cQqQqdVosrNo+L8X8DU2UfytbwAQtHefYJCSQ6C9HV9dHZrsLORaLcZZM7memXhrarF3vAxAqtaCzR0llBb7uYlEItQ6Gnjk/O/w8Ac/Z0XR+bxX9wnz0mfEA5FDco1ZpOus1DubSdEcnnU49KFCnZVJRCohPxzbmqxMTaHgzjvi58WWe8ZWmkBfPp3O994/7q/HqWzprAye/Nqy+M6jI6Ua1SgVUlq6vORnjN7mYecBOzOnpcR3Kx363xVL8vjFX7bhD4bRKOUiSCHBQcpvfvObUc8xGo3cd999iXyscBRlSgp9jU1I5HK6128YVJRJk5tD9a9/i0ytItg5tEV5x9urSVm2FOv5yzHOmc3WO78Sm6WRSnFXVqE/olR30N5N90efMPsXP8V74AD7HnscuU6HypZGsPvwbgH33n2E/f5hg5SQ04VUpUKTnU31b/4H22WXDMnVkCcnk2Qx495bwYDbjTrrcM0JbV4u6ox0pElJmBctIDowgF4O7/bNZrm3Gtfv/oxON41Qj2PSg4O+pmYkMhlJ5snfZTQe2vx8lGlWQg4ngc5OksyW+AxcNBolGg4jlQ/9VRLo7EI5xRODj5T7xVvodzqpe+5PhO+5G5lSSdBuj/frOR7K1BQkCgXOrdsxf21wxVhVui22C+fgjMe8iJWN0hZe/s/D3LPoVsLRCIXmHL666IuclT2Pne0VbGzeTorWNOQ5OYYMmlytLMwcmuckkUjw6BVkBJLod3ehzhycIGvTWenpcxIK95MkO3YAaphZTu3v/8CAz4dMo8Hf3IImJ/s4vjKnpun5w/8OkUgkZKfpaOrwjClIqajrYeH0oblai8ptzCm20tThwe4c2p35TCR695yGDm33TDlnGY5NW1AYD2/71hUXo87OouDLdw3bMCzYZY/lsRBrKpZ67jmknr+ctIsvpOu9wzu8Bvr81PzuGUwLF6DJycG0cAFZn/ssi1/8E3l33E7oiCAl2NODv6V12LH2O50kmYwUf+deyn7w3yPmLyQXFtL57vsoU1OGLFFJk5IouPtLpCxdiq60hMXd75Ha34ni/KvozylB22fHvu6jMX3tEiEcGL6PR9eHa7EsOWvMMxFThfWC5ZT/v4dRWVNp+vPL7Pn+D+I79bre/5Bd3/7ukO274WCQfqdzyu9eOpJ5wXysF11IktmMc+t2opEInqqq+M/D8ZBIpWRddw0Z13wGy1mLBr0m12pRGAz4autoefV1lLVtnHP2VUgkEra07MKg0qOQKVievwSVXEmeKZtdHfuwaIYGubnGLBp7h/8Z29G+l25NFJMvQr/bPaSwn0llIEmmoMs7+jZkVVoamuwsHFu20btnLzu/870RC+F56+rZ+Z37z5hdnTlpepo6x9DYMRKlqslJae7Q76NEIuEHty/ipktK6HL2DXP1mUcEKaehpJQUVLY0cm+9mYyrrsB64QXx1zKvu4bZP/sJqvR0gj3DBCndg6e3p339Hgq/fCfGObPpraiIH6/7w7NEQiEKv3I3ALk33xQvBqZMTSFoj/3Ci4bDhBwO/K3D/wINuVwkmUyoMzIwzpk94hu4cc4snNu2o84e/lNb2sUXkWQ2oSstIdzWTIpegr3LR8CQQdaM/FGbyCVKX3MLm26+jdrf/2HQL+9oOIx93cdYL1h+UsaRSDKlEnV6Osq0NHo2baavsSleSM+1axf+1jaa/jI4ITtotyNNSkJxnNvSJ4vkYGuA3j178NU3EAkET2gmBSD7hs+Rc+Pnh/23nX7FCiqf+jnt//4PebfdyvwLPkOBKYeKrgOkqAfPmOQZswiGQ4OWdA7JMWTQ7Bpasr7Ta+dnn/yBvMIZyB0eBtxu5Ee3R5BIDibPjq0ejuXsJfSs34Bz23ai/f2DdhMeqeuDtfhqa/HV1g37+ukmy5pMq330Ymytdi/9AxHyMkauAn2o0q4ggpTTkjrdhragAKXFTO6tN2NZfPgTnFQuP9izxUzY5xvyCTho7x5UeEsikyGRydCXlRLo6CTY4yAcCNCzYRMFd90xpB8MgDIllQGvl7DfT8jlgkgk1iulz09fU/Ogirj9rt4xvZEZZsemsTXZWcc8T1cSW46yZhjpbHPT1uyiYFEZngPVsbFMsMYXX8KyZDG9e/dR87/P0PTXvxENh3Hu2IlEJov3eDkVqaypEIlgXryQA7/8DU1//Rue/ZWknn/ekO27wc4ulFbrKVnvwVBehrtiH86t22KB8zBLWYmS+dlrMc2fT+l/f4+0iy9CIpORrrPS4GrBojkqSDHF/u2naIZZ7jFm0ubtHFQ5diASZm39Ruakl1NSNh9/ewf9bk+8geCR0nRj2+EDkLL0bFw7dmJf9zEAgfahtZei4TDdn3xKUkrKSfuAMNkyUpNpG0OQUtXooCjbiPwYjRKtZjVOTyBexdbpCRDsH7l1w+lMBCmnofQrL2faN752zHPkej0SuXzQkk84GGTA4xk2UVCu1aLNz+PAL39N1c9+iTI1FU1u7pDzAOS6ZKRKJcHuHkLdPSiMRuS6ZDreWc2u++6n+ZW/x88NHVzuGY06MwNlasqo699JRgPa/DyyZubT3tKLTC4lb0YOuuKieOVNiBWQ6+8de1MwX0PDkOq2Rxvw+nBs2kzef91O6QP346mqovWfr+FraKTrgw+xnn/elCpqNl7KtDRkWi0l93+Xom99g5Z/vEqwx4F5wYIhX0t/W/uklsI/EfrpZfQ1t9Cx5j3MRy3RJJpULqfkvm+hKzm8Rd6WbCVKdGiQYoz92x9uJsWiNmFU6dnfXQNAYCDIHa/dx5tV73JB/hJU6ekEOjpiyz26oUGKLdk6plopEPtZzL7hcwx4PCQXFxHoGJzb1uJuZ+WbvyUSCpF78404tmwd031PdbGZFB9NHW7au30jnre3roeSnKGB5pFMOhUyqYRuV2w25fFVm1mzMbbFORwef/n9U5kIUk5DUoVi2K3FR5JIJCSZTYMa3nV/9DHSpCTkIzSjS7vowtgsSzRK+hUrRvyULJFIUKZYcGzajKe6BmWKBXVGJk1//gsp5yyjZ8PG+Dp1v8s1ppkUiUTC9IcfIuWcZaOeO+fXvyB3ySwkUgllM9ORSCWkLj8X+9pYXkq/20PzX/+Ga/feUe8F4Nq9h53fvI+uDz485nn+9nbkej1KixlNVibz/ve36Mun49y6DcfmraSev3xMz5uqjHNmk3X9dUjl8lj+xvLz0ObmorKl0d87uEhj794K9GWlkzTSE6MwGGJBcYqF1DH8e0s0W3KsLsvRwYhRpefc3MXkGoeWzZdIJCzOmsuG5u0ANLpaSJIpuG3OZ5mbPiOWzG7vJhIKDfvzlp6cSnNvG6u2vcIjH/yScOTwp3ZHn4vvvvNjnP7DgWjmZ69l/jP/Q3JhIYGOWD+w4ECINyvX8Kftf6Oheg/qzAz0M8rxNTQOamtxtEg0Qoeni/7wyOecCmwWDQMDYX7ywhb++m7VsOd4/f18uquNc+Ycu/WBVCohxaimy9GHyxPkQLOThnY3kUiU+//nYz7cNrHtCaaSiZvHFKa8JLM5PpPS9ua/Y1uHUywjBh/pl19G+uWXjeneytRUGl98CYlCgWneXNIuvhCZWo2upJjNt92Bt7oGXXER/rb2MVdeHc8uArlcRkl5GrMXHpwiX3o29c/9iUBHB77GWLfTvoYGOGfpqPeq/f2zmBbOp/HFv5CybGm8jsXRAu0dQ2YPdKUltLz6Otr8vDE3qZuqkgvySS7Ij/85/0u3E3K5kCYpCft8RAYGkMrlRAYG6N29h+zPXz+Joz0x077xtdjOnEmY+ToUpBw9kyKRSPj6WbePeN2S7Hn8/JM/cNf8m6h3NlNozuWSaQd7FqWkkP25z6Ivnz7sEq1NZ6Wyu5a+/gCtng7sfY74OCq6DtDU28rzO/7Ot86+Mz4WZWoqqvQ0PPsriUajVFZt4y8Vb6BWqJjuDSNNMaFMTUWalIS/tRVtXt6Q5/aH+/nNhlVsad2FQaXjofPuJWeYIOxUoJDLsJo1NHd6GQgPnyz87qZGctP1TMs2jno/q0lDh8NHjztANArNnR42VbRzoMnF9qouzp9/ZuyqEjMpZ7Akizk+k+KrrY31KElQI7j0K1aQf9eXiPb3o0yxYF64AMOMcqQKBeYFC+jZuIl+twdvTS2GWbMS8syjff72BWQc/GWg0OvRTy/DuW077op9SJVKfPWjt0Uf6Osj0NZG0Te/gVyrwbVj14jnBjo64hVaD9GXlhAJBE7JhNnRyNRq1Onp8Te9AXdsZ4P3QDVShfyEdsVMNn1pCcpJKrqnUyajVyZjSx7fz2JJSqxSaq2jkTpnE/mmw29iEqmUnC/ciHH28D9rmXobSrmSry66FZs2lXZPbAknEo1Q1V3L4qy5rG/ehjc0eBlDZbPhb++gZ8NGPI/+mpmWIv74mZ+S4pcyYNIhkUjQ5ubQ1zj8J/8trbtodLXw3DVPcUHB2fxi/bOn9G6gjNRkrGYNHT0+XJ7B+X67qu28tLqSmy8d2wzjrGkpbNzbwca97SycnkZTh5tXP6xhQVka++rHV4L/VCaClDNYktlMX0srA31+/G3taAsLEhakmBctJOPKy9GVlaI8qj2CacF8XNt34Nq5E21uDkrLyakbYpw7B+eOXfTu2Yv1/PPw1Y9exjrU3Y1UpUKenIxpwXwcW7eNeG6gvQNV+uDiS8nFxehKiklZNvqMzalKqlAcLLUeWw5w7tiJYfbseBVkYXwkEgm/XPEIBebhc75GIpVIKUkppKq7jnpnM/mmnNEvOsio0rPy6qcoMOeSrovlp9Q6Gvnymw+wrW0PZ+fMx6q1UOdoGnSdNjcHf2sbjc+/iCQ0QFFDH7u++k3Mvih+Q6zfkTo7m76mpuEeS6W9lrkZM9Apk7m2bAXdfU7aPEPrN50q5hZbuebcQrKsuiG9fN5aX8815xUyt2Rs2/LPn5/Njqoutld1ccdV5fQFB6hudvGV62bR7eyjp/fM2P0jfoucwawXLKfn0/U0Pv8CCqOR4u98k8xrr07oM8oe/H68/PYhxrmz8TU20f7vtzGexPLaxjmzcW7bTrC7h8zrro1VsT2q4eXRDu12kkgkmBbMj227HOGTXqBjaJAi16iZ9dSTw7YUOJ0oDPp4kOLasQvT3DmTO6BTnF45vhYEh5SmFrKpZQct7nYKTeMLcpLksf5p6TorbZ5OXtj5D5Kkcnr8TkpSCplmzqPG0TDoGpXNxrSv34NEJsOTYcT2URWBjg7M7V48utiWa21uTrz31tGqumspPTgDpJQnMcNazPa2seWKHctAJExf6OS/iV9zXiFXnVPA7GkpvPJuVTzxFcDu9JOfPnqht0OsZg3zS9O44aJisqw6bGYtc0uspJk15GUY2FUdK/NQUddDrzc4yt1OXSJIOYMlFxRQ+sD9dL73AcnTCtBkZSW8eqRCpxvSQVah06GfXkZkYICMK69I6POORZuXi8pqpeCuO1ClWVFarfHuyiMJdnfHK9Xqy0oJ9/Xhbx7+F66/vR2V7cwsY63Q6+l3u2NLeLW1p0SH59NRaco0DvTUsTBzNina45uhTNdZ2dC0jZbedp685AHuW3o3ZrWRaZZ8qnuGLpFal5/HvN89TXu6CpnLi1SlQhqJ4lDHgnlNTvawQUpfv5+G3haKUwrix+alz2R1zVo2NI88YzkW71Sv5UfrRq+APlFuv6qczFQdj//fZgYO7saxu/ykmsbXOPDB/1rE5y6M7fw6e1Y6l5+dB8RmWf7zaR3evhCPrdx4WifSiiDlDGecPYvpDz9I5jWJnUEZTdmD32fWU0+QZD72VrxEkkilzPvdb0k99xwAtPm5owcp9m6UqbEEQqlCQXJhAd6a2iHnhVy99Lt6UWdkDHntTKAwGOjvdePatRtNTvZJ/b4KhxWYcii3FvOFmcf/85yuS8MT8rGi+Hz0ymQWZ8VmO2MzKSMvkTboYzuCMq+9mqhUQldSrGaLOjODQFdXrD9Xn5MXd/6Tiq4D3Pn6/Vg1lkG7mM4vOJtluYt4dutfiETHv9U2Go0SCvezs72CWkcjDc6Wcd8jEZQKGd+8cQ4DAxGee2Mvof4wLk+QVOP4ghSp9PAmhtuvLGfh9NiHoEsW59Bq9/HYyk34gwPUNMdmMffUduPpCw17r1OVCFIEjLNnYZhRflKfKddoJrRI1kiO3K2hzc8fY5ByOE9HW1g4bJDi3LIFXXHRsDsnzgSHlnt6Pl2PedHCyR7OGUsuk/PI+d/Gpjv+dgTZhgxsyanxnUGH5Bgz6A248QaH1gDxBn1Up0L2l7+E7bJLiV6wGEcwtpSaZDaDVMKv//NLdnXs419V7/HMlj9zefH5/PTSHwy6T5JMwfXlV9Af7h82N6XL18Pa+g0jjv0/Bz7gv1c/wX57NcWWAtbWrz+eL0FCKOQyHvyvRWzc285L71Qil0kxJCtHv3AMNCoFD9y2kMzUZL5waSk1LU7cvhD/77mN/Pvj06vCrwhShDOWNi8PX0PDMc8JdneTdERjwuRpsSAl0Dm48FXPpi1n9JuzQq8n0N6BY+s2Us87Z7KHI5wAvTKZ317x2JC8GI1CjUGpo32Y8vnt3i7UWh05l19OktGA+Yar6e5zAhCKhulNltFeX8WW1l2oFSrsvh4uL7oAjWLozIJcKmOaOY8D3UPfbLe07OTlPW8MO+5INMLq6rU4A70YVHquKbuUnR37judLkDA2i5bPnl/E2xsaSDWpB82MnKjZRal888a5XHpWLm3dPv723gGkEgkb93Yk7BlTgQhShDOWNj8Xf0srkf7+EZNhQ92Hl3sgFqR4qmvYdvc9+BpiU9+RUIjeXbvP7CDFaKBn4yY0Odloso7dukA4ddl0w1embe5tJ8dweKkzx5BBt8+BO+ilousAXn0SBWE929v2cuvsz/L9c76KWWMc8TnFKQVUHQxSvEEflfbY7GWLuwOnvxeXf2i16L2dVQTCIR674D6+NP9GilMKaPd04Q6OXqp+Is0uSsEfHBj3Us9YmXQqzHoVb62v5/5bF9DY4abTcfo0JxRBinDGUlqtSJVKOte8y7a7voK3bnBS4IDXR9DejfqIHTvqjHQsZy1GnZWFe99+AHz1DUiVStSj9BU6naWedx7F376XsgcfmOyhCBMoPdk6bCPCpt5WsvWHgxSdMpksvY1Kew0t7nYkqWayQyqiRJluLWJO+rGXl0tTCtlvrwbg/3b8PV4/pcUd6xNU5xyaKLq1bTeLs+aQY8xkfsZM9Mpk0nXWYZN9T6bsNB0mnXLcSbPjceuKMn78lbNZUJbGgrI0Xhmh4u2pSAQpwhlLIpVScNcd1D27kv5e96DePgCOzZvR5OUOmkmRSKWU/vd3STlnKe79sSDFW1NDctG0U7KZXqIo9DpSli09aTVvhMlh06WOMJPSRo5xcNJ4WWoR+w8GKer0dEzeKGqFKl7J9ljKUouw9znY2LydTS076Ov30+ruoMXdTrrOSr1zaN2V3R37mW2bPuhYrG7M0Byyk0kikbCgLI0s68Tlq124MIfp+bFl6S9fO4v1u9vYW9s9Yc87mUSQIpzRrOcvZ8YTj5F/15dwbts+6LXuT9aTsvTsYa/Tl5Xi2rGLHfd+G/vHn5I8rfAkjFYQJle6zkqHZ2i35ObeNrINg4OU0tRp7Os6QGtvO6bsXBQdDh6cfycMhEcs7naIWqGixFLA7ze/yIWFyyhNKeTTpq34Qn0sy1lI3VFBSrfPQYfXTnlq8aDj5dZitrXuHnE5t8nVys72ic9b+dr1s7lu+bQJfw5AqknNsjmZbKo4PXJTRJAinPEM5eVYzlqEr76B9rffIRqJ4Nq5i96KfaSM0NtHV1xEdGAAiVSKZ38luuKikzxqQTj50pPTaPN0DmpA6A56cQXcQ4KU2bYyWj0d1LmayZy/GH1xEZ4nfkf1b/+HvQ//v1GfNds2nVA4xJXFF1JuLebd2o9I1VooshTQ0ts+6NyKrgMUmnPRJA1eUjkray7OgJt9B5eOjvZO9Vr+vOvVsf71j5tMJk1o0uxoZk1LYXeNmEkRhNOGQq+n6Jtfp+mll3Ht3MWBX/02VvTNOvxWTplazaIX/8T0Rx9GV1KCrqR42PME4XSSY8hAKU8a9Kbf5GohVWMeslNHp0xmef4SItEImeZMSu7/Lsa5s3Fs3Ey/00U4eOwqqRcUnM03zvovUrRmzs1dzLKchdww4yoy9Gl0+roZOCJQanG3k2scmhOWJE/igoKlrK5ZN+wz9nfX0NTbSnff6dULZ+a0FBraenH7QtidfsKRU7cfkghSBOEg6/LzMM2fT+vrbxIdGMB6/vJjni9VKEgyGpj11BMo9PqTMkZBmExSqZSzsuaxvulwRdg6ZzP55uH7BF1deglXFF+IQqaI5YB9+S4WrHoWaVISwa7By0aRUIjeior4nw0qPXMkNpr++jdStGZun/d5zs1bTIrahEwipct7+PpWTyeZusEdyA9ZnncW29r20NcfK1EfiUQIhftxBzy0uTvJ1qeflCWfk8mkU1GQaeCbv/iQO368hk92tk72kI6bCFIE4QiGGdPp3bUbw6yZgwq/CYIQc3bOfDa37CASiVWErXc2UTBCM8NUrYUvzvls/M8SiQSFTofSaiXYNTgB17ltO3t/8DDdn3waP9b6+ps0v/wKrt174sekUik2nZW2IxJ429wdZOqHb0mRZUgnI9nK1tbdALxV/QE/+eh/qeyuJUtvY2nuQna2Hw6O/l31Ps9u/ctYvxxT1o++spSvf34Oy+dlDWl2eCoRQYogHEFfHtsdYJwzfEt7QTjTFVnyCUcjNLhi24DrnE3km8bX80uVlkrgqCAl5HCiMJmo+d9n6Pd4CAcCdH/yKZalZ9P055cHnXuoCSLEmgl2eu1kjDCTArAkZz6bWnYAsfyVvV1V/GX36yzMmsPc9Bns7tzPQHgAgL2dlWxo3hbLtRmmHstIGp5/kZ3f/u4xO6WfTMlqBfNL05hfaqW6yTXZwzluIkgRhCOo0tNJOXcZ5oVnbmE2QTgWmVTG9NQi9nRW0dfvp93TRf4IMykjUVrTCB5VtTnkcmFeMB9dcRGtr71Bz/qNqKypTPvql/HW1uJva6N3bwUHfvVbMnRp8a3QXV47UqlsUA+go01PLeJATz3RaJQD3XXkGrMIhkNcU3YpecYsVHIlld21RKNRap1N9IX8/PfqJ3hu+19H/bu0v/0OO78Ta9SqLyul9Z+vUfvMH2l+5e/j+ppMlOIcE7WtvfQPjL8X0lQgghRBOIJEIqHkvm+LBnmCcAwz0krY21VFo6sFk9qAUTW+nCyldehMSr/ThcJkJOeWL9D+77do+9e/sV54AfLkZEwL5mNf9zHemlp6d+8hQ5cWn0lpcXeQkWxFKh357SzflIMn6GVPZyWBgSA/XP5NHrvgPlRyJRKJhDnp5exo30uP34k76OGs7Hm4Q15qehqG3CsaDtP57ns4Nm8BYqUKtLnZzPjRo2R+9lrclVV0vf8Bji1bx/U1mSjpKVpUSTJ++7cddB2jEm1Ll4dfvbx9ylWrFUGKIAiCMC4zrCVU2muo7qkf9ywKgCotDW9NLT0bNhJyHuzx43KSZDSiK5qGcc5sfA2NpC4/F4CUpWfj2LyFoN1OyOEgXWWOBykHeupHTNw9RClPIteQyev7V1NgykGvTCZVe7gn19z0cna2V1DnaCJbn8Htcz/H4xd+D2eglzf2r+Hxdb9ld0eseGPTX/5K89/+QdXPf0VvRQXemloyrr4KbV4uSouF5IJ8kswmvLV1DHiHNmM82SQSCXdcVU63y8+qf1eMeN4jf9zI1v2dvLc5VoPmlfeqjhnUnCwiSBEEQRDGJduQgUqh4t3aTygYZz4KxHK/9NOn0/jSy+x96BEgNpNyaAYz/47bKLj7TpKMRgC0ebn4W9viO4IsARm9ATd9IT8VnVXMtJaO+sxCSx57u6q4ouTCIa/NSiuj1dPJu7UfUZJSgEltIM+UTbY+g7/sfp3gQIh/Vb0HgGPrNvJu/yLZn7+eqp/9CgBN9uGvQfaNn6fwni+jTrfRWzE1dg1dvDiX+74wny37Omlsdw953eUJ0uXo44uXT+fjna14+0K89E4l//efyR+/CFIEQRCEcZFIJMywFtPptR/XTEqS0UDxt77BzCd+hL+llQGfj5DTieJgUKKy2UhfcWn8fFW6jUh/P56qWE8amdODTplMjaOBOlcT5Wmj1yk6N3cxN828mrOy5w15TZukoSSlgN0dlVxRfEH8+DRzLjZdKrfMvo46RyMhl4u+pmYMM8qxXb6CSChI8rTCQTsBzQsXYJwzG8OsmfTu2TPkWZMlxaimPN9MRX3PkNfq2nqxWTScNzeT7l4//1lfj0mnZFNFB00dQ4Oak0k+qU8XBEEQTkkzrCV82rR13Dt7jqTQ61GYTPgaGul39ZJkMg57nlShQGVNJdDRicJoJNDZSUaylTU1H5GRnIZZPfx1RypNLaQ0deT2FcvzlpBrzCLjiK3Mnym9mIsHziXbkEFfv5/mbZvQ5uagMBgAyP7c9UiTFMPezzBrJs1//duo4zqZcmx6mjo8g469t7mJurZeCjINqJRyzp2TySvvHuC8uVk4PAF2HrCTY5u8OlBiJkUQBEEYt7kZM1iQORuL+sSSzLV5ubj3VhANh+MzKcNRZcTK7uvLywh2dpGuT2Nz606W5i44oecfcn7B2dwx74ZBxzL0NgqM2cgjkGPIpHPn9niZAoDMa68m/YrLh72fYcYM+ppbCLnGvo15ouXYdIOClEBogP/9x07+9XEdBZmxwOuqcwroH4gwPd/MjAILe+uGzrycTCJIEQRBEMbNrDZy/7KvnHD3b01uDq6du5Cp1chUqhHPU2dmIE1KInnaNAKdXWTo0pBKpFxQMHx/rePla2waVOuk+W//YMPnv8CiygD+ugaSi8bWp0uh16HNzaV3z95BxxuefxH7R58kdMxjlWPT0dR5ePmmssFBsiYJrVpBaU5sC3d+hoH/unI6i8ptTM+3sK++Z8QGjSeDCFIEQRCESaPNy8VdWYXSmnrM89SZGSitqaisqQTt3cyxlfP5GVeOaalnPJpe+gv7f/QEB371G/paWvEeqEY/vQzrrhYU7Y5xdTzXlZXgPXAg/ue+lhZaX38T9/79CR3zWOWk6ej1huj1xvom7a7pZl6JlVUPXczs4sNf/+vOL8KQrKQ4x0hfYIBWu3dSxgsiJ0UQBEGYROaFC8i/43bMi45dQNFy1mKSzBbkWg39vb3kmbLIMw1tKngiBrw+nNt2MP2Rh+h4Zw0Nq/6PvqYm8u+6E/dPnyIkjaJKH778/nDUGen07t5L6+tv4ty2nUBHB3KtlqB9cjoUa1QKUoxqGjvczJqWyu7qbi5bkodGNXxejUIuozjHREVdD1lW3UkebUxCg5R169bx9ttvY7fbkUgk5Ofnc+ONN1JYeDjydLlcrFq1ij179qDRaLjkkku4+uqrEzkMQRAE4RQhT04m46orRj0vyWTCsnghfc0t9PdOTJ5Hz6ZNaHJzMc2bi8JoZM/3HyQSDKIvK0FXWsr+7hq6+nqw6Ybvjn40VXo6nWveo9/jQZWWhu2yS0ECLX/7x4SMfyxKc01U1DlItyRT0+JiQdnI7QQAZhRYqKjr4dKz8k7OAI+S0CDFaDRyww03kJ6eTjgc5p133uGnP/0pv/71r9FoNAA8/fTTRKNRHnnkEex2O8888wwGg4Hly5cnciiCIAjCaUhhMBAJBgkHAsfMYTkevvoG9NPLgNgylFShQKZRo9DrybhiBR9ve5VaZ+PYgxRbGoGOTiQKOQV3f4nkggK8dfWTNpMCMLsolbXbW1AlyZg5LQWjTnnM86cXWPjw780naXRDJTQnZfbs2cydOxebzUZmZiZf+MIX8Pl8tLW1AdDU1ERlZSV33XUXeXl5LFy4kBUrVrB69epEDkMQBEE4TcmTtSCVnvBsimv3HrrWfjToWLCzC1VaLACRSKXoy6ejzc0FYlVvlWfPZ0Pz9ngH6NGo0tKI9PcT9gdQZ2YCoExNYcDrZaDPf0LjP16zi1KpanTw9oYGzp2TOer5pbkmunsDtHUPzksJ9pycXT8Tljg7MDDAhx9+SHJyMhkHt47V1tZiNptJT0+Pn1deXk5zczOhUGiihiIIgiCcJiRSKQqDnv4T2NobDgSo/vXTtL3570HHA11dKK2HZ0nSL7+MtEsvjv/52umX0dzbxuuVY/tgLVUoUKZYUKfbkCljMxby5GSkKhWh7smZTbFZNKSZNRRlG1k+f/QaNxqVggsXZPPzP2+jptnFqn9V4PH42f7Ve/HW1U34eBOeONvU1MSjjz5KKBTCYDDw/e9/P77U43a70esHF4XR6XREo1E8Hg8Wi2W4WwqCIAhCnMJgoN99/JVQu97/EIlMSl9jI5H+fqQKBdFolGCXHVXa4V0uxjmzB11n0ZhYUXQ+O9pH7oFzNJXNhjw5Of5niUSCMiWFYHc3mpzjL4R3vCQSCb/+znKUCtmYt4/f89lZ/OrlHdz3m3VIpVJKVX6igQD+ljaSCwomdLxjClJWrlzJBx98MOLrZWVlPPTQQwBkZGTwxBNP4PP5+PDDD3n66ad57LHHSE5OPqG91k8++SRJSUkALF++XOSwCIIgnKEUBsMJLff0NTVhOXsJnWveo6+5heSCfMI+H+G+PpSpx94KnaFL4z8HRn4/PJqurDTeg+gQZYqFoN1+PENPCFXS6G/9h9oUSCQSFHIZ99+6gP6b5vL033Zi31dFChDo6Bhy3dq1a1m7dm3sHglYIRlTkHLjjTdyzTXXjPi6QnF4+5JcLsdmi23RKiws5L777uOTTz7hsssuw2Aw4D4q+vV4PEgkEnS6Y29veuCBB0Y9RxAEQTj9KQyGE1ru8bd3kLLsbLQF+fjq6kguyCfQ1YU8ORm5VnvMazN0aXT5uhkIDyCXjf4WmnvzTUOOKdNiCbVTVTQaZee3vkvJ976DYUZ5/LhCLqMg00Bgcz1IpcP+HY6cRPB4PDz//PMnNJYx5aRotVosFsuI/x29hHOkaDSK7GDzpcLCQhwOBx1HRF8VFRVkZ2fHZ0kEQRAE4VhOdCYl0N6BymYjuSAfb20sryLY2TVqQTkAs8aIQiqnw3f8MyGarEz8ra3Hff1ECzmc9Ltc+Orqh7yWn2FAYW/FMKOcQOfEB1oJTZx97bXX2L9/P3a7nYaGBlauXInb7WbOnDkA5OTkUFpaynPPPUdjYyNbt27l7bff5tJLLz32jQVBEAThIIVBT19LK31N498aG+nvJ9jdjTo9HU1uDv7mFiA2u3Jk0uxIpBIp6clW2j1d4372IeqsTPwtUzdI6WtsBMB38H8PiYbD5BjkmH3dvB+00tfWPuFjSWjirM/n4w9/+ANOpxOtVkt+fj4/+MEPSD1ije8b3/gGK1eu5NFHH0WtVnPVVVeJ/BJBEARhzBQGA67tOzjQ62bOL58a17WBzi4kMhlJFjPqzEz8rbESGc6t27CcvWRM90jXp9Hm7oTRd/AOS52ZQaCjk8jAAFL51Cv87qtvQJqURF9jU/xYOBhk+1fvRZuXS8hio1KRxgKnk0gohHQCV0IS+tW55ZZbuOWWW455jtFo5L777kvkYwVBEIQziOWsxQx4PLS++vq4rw10dKCypSGRSlFnZhByOOhracFTWUXJ/WN7b8o3ZrPPXs3VZZeM+/kAypQUJDIZgY5ONFnHGelMIF9DI+bFC3Fs2kI0HEYik9H98SdEggGcW7cx++v3sKfLSKRSjr+9A21uzoSNRTQYFARBEE4pCr0O26WXxIqi+XzjuvZQPgqAXKdDnpxM8yv/QD+jfMgunJGck7eI3Z376elzjnfoAEhkMlQZ6fhbW4mGw5PaZXg4fY2NWM5eQjQSwb0v1gyx45015Nz8BaY//CCpy88jx6bHY0rHs79yQscighRBEAThlCNP1iLTagl0jpwb4tq9h5ajZluCXUdUlZVIUGdm0P3Jp6Seu2zMz07RmJmdVsa6ho3HNXaIld3vXP0uO7/9XQ784ldEx1jFdqIN9Pnpa25BV1JMzk03sO+xx3Ht2o23ppaUs8/CNH8eUoWCnDQdTeo0eivGXjPmeIggRRAEQTglqdKsBDu7CDmdeI/YieJv78D+8ac0/N+LNL30MqEjtisHuuyDdvGoMzOQSKVYzjprXM+ebZvOgZ7YM2t6Gmhwji+JN/+O2wn7/Wjz8/HW1NLx9tRoD+OtqSHJbEZpsZB1/XWYFi6g8cWXUKWnozAY4ufl2PTsi5rp3VMxoTNBIkgRBEEQTkmqNCvtb73N1rvuYc9//4Dqp/8XgJZ/vMqBn/+SYGcnuuIiOte8G78maLcPKtimLcjHvHhRrCfQOOQaM2lytRKJRvjd5hd4p2bduK5XGAzMfPLHFH/7XtKvvALH5i3jun6ieKoOoCspiv/ZOGc23uoa9GWlg86zmjV0aa30uz30tbXz4e9fxjsBtV9EkCIIgiCckpRpafTu3kPurTcz7/f/Q/dHn+CtraNnw0amff0eir/7bdIuvhDn9h3xa4JddlRH9ue58gpK7vvWuJ+dY8iku8/BRw2baHG309PnOO6/h2neHHr3VhAOBI77HoniqapCV1IS/7NxziwA9GUlg86TSSXcdvVs7EkG3nh+NUnv/INd37k/4R2eRZAiCIIgnJJUaWnIk5OxXXIRyhQL1guWs++xx5FrtVgvuhDT3Dlo8nLpa2omGo0S9vsZ8HgGLfdIJBIkBwuOjkeyUotFbeL5nf9gZloJdt/xBymq9HSUKRZ6905sfsdo+t0eevdUYJh5uMqsymrFtuIyjPPmDTl/xdn5GArzUO3fTp9SR29KNq/8v2dw9HgSNiYRpAiCIAinpJRlSyn74Q+QqdUA5N72RfJuu4WS73473jxPnZlJ2O/HXbGPjnfWIFUqkSeoxUqOMROiUW6ceTXdfQ4aXS20uof2sxmNRCLBOHcuru07EzKu49X66mvoy0qHNA0s/MpdKC3mYa8pXlBOmrsNZW4u/4oWkNe8i/133oFj67aEjEkEKYIgCMIpSaHXoS89vAwh16ixXnA+upLi+DGZUonKlkb1r39Lw/+9gDI1dczdf0ezKHM2n5txJdmGDELhfp7b+jL/qnx39AuHYZw7B+eO2LJU9W//F/vHnyZkjGM14PPR/vZqcr5w47iu0xyskZJSOo2WJAtv2s4hfMGV1PzP7wj7/Sc8rqlX6k4QBEEQEkiTnY1j02a0+XkkmYefETgeFxYe3rasS9JS1VNHhOPb6WKYOYNglx1vTS32dR8h06hJPWdpooY6KvvadWhystEVF41+8hE0ubkApE0v5uYcI/vrrXRPSyF335Z4jZUTIYIUQRAE4bSmycnGV1/PjMcfG3fxt7FK0ZrxhHy0uNuJRqPjmq2pczSiV+nQTy/jwK9+S3RggMBJ6ItzpI7V75J5zWfGfV2S2YRlyVnoykq40WjkuTf20uMOMHvWTNwV+054XGK5RxAEQTitWS88n8KvfgW5VjtoZ08ipWjMFJpzCQwEcfhd47r2z7te453qdUz72leQqVVYli7B337ygpRAVxf+llbMixeN+1qJRELp978Xr9ZrMajo7vVjmDkjITMpIkgRBEEQTmvq9HRMc+dM6DPKUqexLGchNm0qzb3jCzBaPR00OJtR2WzM/vlPybvtiwQ6OnFu33HMirqJ4tq+E11pCXLt+GrFDCfFoKanN4B+xgx8TU2jXzAKEaQIgiAIwgm6suQirii5kCxDOi3utjFf1xfy4/T3Uu9qjlduVaZYkEilVD751KBCdIfUPvNHnNt3MOD1JaScvnP7Dkzz5p7wfQAsRhU9Lj9JRgPF3/rmCd9PBCmCIAiCkCC5xkwaXC1jPr/V04E2SYM35MPhd+EL9TFABJXNRiQUwltTO+j8aDiMfd1HdH+6gb0/fISWf752XOM8spS9p7IK/YzyY5w9dhaDGocnSDgSxbxowQnfTyTOCoIgCEKCFJhy2di8Y8jxgUgYKRKk0sFzA63uDnINmbiDXuqcTbyy51/IpTK+WDoNw4zpdH+yflAirq+xkXBfH46Nmxjwegk5XWRe8xmkCsWYxxiNRtn1ne/Fmwj29/aiyco6sb/4QWa9img0Sk+vH3UCIgwxkyIIgiAICVJgzqHV3UGgf3CJ+5998gx/q/g3HV47roA7frzF3UGG3sac9HKe2fwi/oEACqmcmotLyb/zDsKBAIGOwwXi3BX70ZWVEvb7McyehUypxLFl67jG6Kurx9/WjnPrNlpefR2FwTDu3kUjUcillOaa2bq/kz019hO+n5hJEQRBEIQEMauNGNV66l3NlKXGao5U99Szo30vXd5udrXvo9CSy53zbyISjbCjfS9XFF/IeXmLkUoklFuL2dWxH4ffhVShQJufh7e6BnV6OgDu/fsxzZuLRCYjZdlS+hoacFfsI+XsJWMeY/en6zEvWoBcm4z9w3WoMzMS+jU4b14Wr7x7AI/nxMvji5kUQRAEQUigAlMOtY7G+J/frfmY8/PPpsNnp9bZyJ6OSgDWN23F3x/gnNyFyKQybpl9HXPTZ2BWG3D6ewFInjYNb3VN/F7e6lp0xUWUP/pD0i6+EF1JCZ6qA+Man2PTllhtk9Ji+nt7UWdmsq+rmlC4PwF/e1g2OwNPX4gvXT3jhO8lghRBEARBSKCSlEL22w8HFg2uZuamlzPDWsyirDl0+brp8HTxyt5/87nyK1DIBueTmFRGnAdrrSQXFeKprqHh+Rexf/QJwa4utIUFSBUKJBIJutJifHX1hIPBMY2t3+PB39qKYUZ5vKWAzJbK4x89zYamxPTbMSQreeHRyzh3TuYJ30sEKYIgCIKQQDOsJezrOsBHDZvY0b6XVncHOcZM7ln4Rb6y4BaKLPn8cv0fkUmknJu3eMj1piNmUnRFRfhq62j713+oX/UnlGlWFEc0SFRarch1OnZ95/4xdVH2HqhGZUvjxeq3+VXV3+lTy/igr4r+cD+7Ok68QuwhyeqxJ/IeiwhSBEEQBCGBCkyxpnu/2/wCz237K0gk2LSpmDVGkpVa7ph3I6Up07hz/k3IpLIh15vVBhyBXqLRaCxfRCpFplbT73SRXFg46FyJRELOzTchU6txbts+6tjclVUklxTzft0nFKUUEPzmDaxOamZ+xkx2de4nEj3xuiuJJBJnBUEQBCGBpFIp5dYSunzdNLhayDdlD9p6nGfK4o75N4x4vUltpD/cj6+/j+QkLbqSYoyzZ9Gxeg3JhQVDzrddchEA9nUfjTo274FqJLOKkVLPdWUrkEqlJNsymJtezr1vPUKjq5V8U/Zx/K0nhghSBEEQBCHB7lpwE3KpnB++/3NyDOPLzVArVKjlKpz+XpKTtJT+93eRqVREinIwZeUNe42ueBr1K/9ENBxGIhs6OwMQjUTwHKgmdPEccgOZ8cBpeX5sZ1BGchqdXrsIUgRBEAThdGZQ6QG4bvpl6JTJ477+UF5KtiGDP+z9B1GibGnZxbWKy7jGfOmQ8zXZ2RCJ4G9tQ5MzfJDR19xCNBKhUR0kVzU0cDJpjPHmiH/e9SpXFF+ISW0Y99gTSeSkCIIgCMIEWZa7iNm26eO+zqQ20NPnpMXdzvqmrdh9DnIMGezuGL6zsEQmQ1uQj7e2dtjXAZz799FukrKm/hPyjEMDGbPagMPvIhwJ85+q96lznniDwBMlZlIEQRAEYYrJN+Wwv7uG6p56luYs5KuLv0i7p4v73vkR9c5m0nVWVHLloGvUWVn4W1pHvOeeje/jzTByefEFzM+YOeR1s9pIS2879j4H4WgER58r0X+tcRMzKYIgCIIwxSzKnM2W1l181LiJK0ouAMCWnIpRpee/1zzBRw2bhlyjzszA3zp8B2ZXwE24tomFyy7npllXY9YYh5xjUZvo8bvo8MTK2TsDroT9fY6XCFIEQRAEYYopthQgl8goSSkg1xhr/ieRSLhrwU3MTCuhu88x5Bp1Zib+tjb2PPBQfDty1c9/SW/FPt7b9hZGzwBFi88d8ZnmgzkpHd4ugCkxkyKWewRBEARhipFKpdw293qy9OmDjs9Nn0G9s5mW3vYh16gzM/C3tBINh/EcqEZbWID9k09xR4PURBvIzM9Grh25kaBZHQtS2j1dKOVKnIHehP+9xkvMpAiCIAjCFLQsdxF5w2wHTtGY6fE7hxxX2dLi/7+vqRnntu2EFFJ6t2ynsK2fjIVnHfN55oP1WWocDZSmFE6JmRQRpAiCIAjCKSRFY6LbN3S5RyqXo0xLQ1daQl9TM10bN7GjWIVEIiHDHiJ12dJj3vdQfZZaRyPl1mIcU2AmZcKWe1544QVWr17NnXfeyfnnnx8/7nK5WLVqFXv27EGj0XDJJZdw9dVXT9QwBEEQBOG0kqIx4/C7iEQigyrZAhTeczcytZrd9z+Av6ODjs9ksOjOe1GlpAzq+TOSK0suRK/UsTBzNn/Z/Tr94f4hDRBPpgkJUioqKti/fz9Go3HIa08//TTRaJRHHnkEu93OM888g8FgYPny5RMxFEEQBEE4rZjVRiLRKK6Ae8guHeOsmUQjEaQKBQNZqWizs9Hl54/53p+bcSUAkUgEiUSCM+DGqrUkcvjjkvDlnr6+Pp577jnuvvtu5PLBMVBTUxOVlZXcdddd5OXlsXDhQlasWMHq1asTPQxBEARBOC3JZXKMKv2wO3xaetsJRQbQTy+je1EhGbq0Ye4wOqlUiklloGeYZ5xMCQ9Snn/+eZYuXUr+MJFbbW0tZrOZ9PTD2crl5eU0NzcTCoUSPRRBEARBOC2laEx0eO1Djj/1ye9ZW7+B8kd/SHVWEhn64wtSIFaX5VDNlMmS0CBly5YtNDc3c8011wz7utvtRq/XDzqm0+mIRqN4PJ5EDkUQBEEQTltLcubzxv7VDETC8WOugJsOr53K7hq8IR/7uw4wzTz2pZ6jpevSaD9YM2WyjCknZeXKlXzwwQcjvl5WVsa9997L888/z/333z9kmeeQaDR6fKMUBEEQBCHusqLzeb/2U9bWb+CiwmUAVHXXIpNIqequ4/X9aygw51KaWnjcz0jXpVLd05CgER+fMQUpN95444izIwAKhYKWlhacTicPPvhg/HgkEmHlypV89NFHPPLIIxgMBtxu96BrPR4PEokE3ShZx08++SRJSUkALF++XCTaCoIgCGcsuVTG1WWX8EblGi4oOBupREqVvZYlOQtY37SVt6s/5PELv3dCz7AlW/m4YfO4rlm7di1r164FSEgax5iCFK1Wi/YYVeoACgoK+MlPfjLo2E9/+lMuuOACli2LRXmFhYU4HA46Ojqw2WxAbCdQdnZ2PAAZyQMPPDBqICMIgiAIZ4qlOQt4affr7O2sYpatjD1dVVxVchGeoIe56TOGLQQ3HhkHl3si0QhSydiyQ46cRPB4PDz//PMnNIaEbUFWqVRkZw/+gshkMkwmE1arFYCcnBxKS0t57rnnuPXWW7Hb7bz99tvceuutiRqGIAiCIJwRFDIFs9PKqOyuRZukodNrZ2HmbM7JXYREIjnh+1uTU+gPD+D092LRmBIw4vE76RVnv/GNb6BWq3n00UdZtWoVV111lVi6EQRBEITjkGPMpNHVwru1H7MsdxFqhSohAQpAkkxBnjGLDc3bE3K/4zGhDQZ/85vfDDlmNBq57777JvKxgiAIgnBGyDNm8U71WvwDAR4452sJv//Ns6/lF+uf5by8xeiUyQm//2hE7x5BEARBOEXlGjPp7nMgl8qZZslL+P1n2cqwaixUdB1I+L3HQgQpgiAIgnCKMqj0GFR65mfMHHNy63gVmHOpczZNyL1HI4IUQRAEQTiFXVSwjAvyz56w++ebsql3Nk/Y/Y9FBCmCIAiCcAq7YeZVFKcUTNj9C0w51DmbiEaj/Hbjn3D4XRP2rKOJIEUQBEEQhBHlGrPwhnxsatnBJ42b2XcS81NEkCIIgiAIwoiU8iTmps/gmS1/BqDuJC79iCBFEARBEIRj+uLs6wiGQyzMnE39SUyiFUGKIAiCIAjHlKG38fTlj3F9+RXUOZuIRCMn5bkiSBEEQRAEYVQpWjPZ+nT6wwN0eruHPWdXxz4ikcQFMCJIEQRBEARhTOQyOZl6G829bUNe8wZ9PL7uaap6ahP2PBGkCIIgCIIwZll6Gy3udgCi0Sh/2/sv2j1d1DgaADjQXQ9Au6fzhJ81ob17BEEQBEE4vWQbMmjpjQUpO9oreGP/Gt6uXsvCjNlIJVKqeuoYiIR54N2fnvCzxEyKIAiCIAhjlqVPp/ngTMoblau5vvwK5qbPYG3DBs7KnseB7lpc/t6EPEsEKYIgCIIgjFmW3kabu4M2TycHeuq5eNo5XF9+OVKJlBVFy/H1+9lnr8ag0p3ws8RyjyAIgiAIY5aWnArAX/e8yay0UpKTtCQnafndlY9j1hixaVPZ21mFRW084WeJmRRBEARBEMZMJpXxmdJL2Ni8ncVZ8+LHzRojAOk6K3u6KjGrTSf8LDGTIgiCIAjCuHyu/ArUCiVnZc8d8ppNZ2Vr225mm8tO+DkiSBEEQRAEYVykUimfKb1k2NcydFYAsdwjCIIgCMLUkq5LAw4v/5wIEaQIgiAIgpAw6QdnUswq4wnfSwQpgiAIgiAkjEllYFHWnPiyz4kQQYogCIIgCAkjkUj47tIvo0nSnPC9RJAiCIIgCMKUJIIUQRAEQRCmJBGkCIIgCIIwJYkgRRAEQRCEKUkEKYIgCIIgTEkiSBEEQRAEYUoSQYogCIIgCFOSCFIEQRAEQZiSRJAiCIIgCMKUJIIUQRAEQRCmJHkib7Zu3TqeffbZQcdycnJ48skn4392uVysWrWKPXv2oNFouOSSS7j66qsTOQxBEARBEE4DCQ1SAIxGI48//nj8zzKZbNDrTz/9NNFolEceeQS73c4zzzyDwWBg+fLliR6KIAiCIAinsIQv90gkEoxGY/w/nU4Xf62pqYnKykruuusu8vLyWLhwIStWrGD16tWJHoYwQdauXTvZQxAOEt+LqUN8L6YO8b04vSQ8SPF4PHz961/nW9/6Fr/73e9wOBzx12prazGbzaSnp8ePlZeX09zcTCgUSvRQhAkgfgFMHeJ7MXWI78XUIb4Xp5eEBikZGRncfffd3H///dx55510d3fz4x//OB6AuN1u9Hr9oGt0Oh3RaBSPx5PIoQiCIAiCcIobU07KypUr+eCDD0Z8vaysjIceeoiioiKKiorix/Pz87n33nvZsWMHixcvJhqNjnuAh67xer3jvlZIvFAoJALKKUJ8L6YO8b2YOsT3Yuo49L59PO/9h4wpSLnxxhu55pprRnxdoVAMe1yr1ZKWlobdbgfAYDDgdrsHnePxeJBIJINyV44UCAQAWLBgwViGKpwEzz///GQPQThIfC+mDvG9mDrE92JqCQQCaLXa47p2TEGKVqs9rgf4/X7sdjupqakAFBYW4nA46OjowGazAVBRUUF2djZJSUnD3sNkMvHb3/4WlUqFRCIZ9xgEQRAEQTj5otEogUAAk8l03PdI6Bbk1157jaKiIqxWK263m7///e9otVpmz54NxGqmlJaW8txzz3Hrrbdit9t5++23ufXWW0e8p1QqxWKxJHKYgiAIgiCcBMc7g3KI5MMPPzz+xaKjvPjii2zevBm3241Op6OkpIQbb7wxPpMCsWJuK1euZO/evajVai655JJjLiUJgiAIgnBmSmiQIgiCIAiCkCgJrzibSG+++SarV6+mr6+PGTNm8KUvfQmj0TjZwzrjvPHGG2zevJn29nbUajWzZs3ipptuGrKdXDi5fvnLX7Jt2zYeeOABZsyYMdnDOWPV19fz8ssvU11djVwuZ+bMmdx7772TPawzjs/n46WXXmLnzp0EAgFycnK44YYbKCsrm+yhnfa2bNnCu+++S11dHX6/nxdeeGFQtfn29nZWrlxJTU0NBoOBa6+9dsxV5qdsg8F169bx+uuvc/vtt/PII4/g9/t5+umnJ3tYZ6SqqipWrFjBj3/8Y77zne/Q2toqvheTbN26daIA4hTQ2trKE088QXFxMT/60Y949NFHWbJkyWQP64z00ksvUVdXx7e//W2efPJJCgsL+fnPf47P55vsoZ32gsEg06dP56qrrhry2sDAAD/72c/Q6XT86Ec/4tprr2XVqlXs3bt3TPeeskHKmjVruOyyy1i4cCF5eXncfffdVFZW0tDQMNlDO+Pcf//9LFu2jIyMDAoLC7n11lvZt28ffX19kz20M5Ldbuef//wnd91112QP5Yz397//nQULFnD99deTlZVFZmYmCxcunOxhnZFqamo477zzKCoqIi0tjeuvv55AIEBbW9tkD+20t2zZMq655ppBddIO2bVrFw6Hg7vvvpvs7GyWL1/OkiVLWLNmzZjuPSWDlP7+fhobG5k+fXr8mNVqJTU1ldra2kkcmQCx2jYKhQKlUjnZQznjRCIR/vCHP/DZz35W7HqbZJFIhN27d5OamsqPf/xj7rnnHp588kmampome2hnpKKiIrZt24bH4yESibBu3TpMJhPZ2dmTPbQzWm1tLQUFBajV6vix8vLyMb+XT8kgxev1Eo1Ghy2hf3QxOOHk6u/v57XXXuOcc84Z0uFamHhvv/02SqWS8847b7KHcsZzu90Eg0H+85//sGTJEu6//34sFgtPPPGEmGWcBLfddhs6nY6vfOUr3Hbbbbz55pt897vfRaVSTfbQzmjDtcPR6/Vjfi+fkkHKiZTQFSZOJBLhd7/7HQA333zzJI/mzNPa2spbb73FnXfeOdlDETj8e2rRokVceOGF5Ofnc8cddyCRSNi2bdskj+7M884779DR0cEDDzzAj370I5YsWcIvf/lLUSJ/kp3o+/mU3N2j0+mQSCTDltAXO0omRyQS4ZlnnqGtrY0f/vCH4tPJJKipqaG3t3fIzpGf/OQnLFmyhK997WuTNLIzk06nQyqVDurqLpfLSU1NHdT9XZh4oVCIf/zjHzzwwAPx3Tx5eXns3LmT9evXc+mll07yCM9cBoOB9vb2QceGm10ZyZQMUhQKBbm5uezbty++tbKrqwu73U5hYeEkj+7ME41Gee6556ipqeHhhx8mOTl5sod0RlqwYAEFBQWDjn3/+9/nS1/6ErNmzZqkUZ255HI5eXl5dHZ2xo+Fw2G6u7tFvtBJNjAwQDgcRiodvDggkUjEzPwkKyws5K233iIQCMQ/3O7bt2/M7+VTMkgBuPjii3nxxRfJz8/HarXy5z//mZKSEvLy8iZ7aGecVatWsX37dr73ve8BsarBEFtXPPqXgjBxRuqhlZqaKt4UJ8lll13GH//4R6ZPn05BQQGrV68GYN68eZM8sjOLRqOhuLiYl156iS9+8YskJyfz0UcfYbfbmTlz5mQP77Tn9Xrp7u6OB+xNTU1IJBJsNhuzZ8/GbDbz7LPPct1111FTU8P69eu5//77x3TvKV1x9o033mDNmjX4fD5mzJjBnXfeKYq5TYKR8k9+/etfD2p5IJx8N998syjmNsneeecd3nrrLXw+H/n5+dx2221iR8kkcDgc/OUvf6GiooJgMEhmZiaf/exnmTNnzmQP7bS3bt06nn322SHHH3zwQaZPn05bWxurVq2ipqYGvV7PddddN+ZiblM6SBEEQRAE4cwl5uoFQRAEQZiSRJAiCIIgCMKUJIIUQRAEQRCmJBGkCIIgCIIwJYkgRRAEQRCEKUkEKYIgCIIgTEkiSBEEQRAEYUoSQYogCIIgCFOSCFIEQRAEQZiSRJAiCIIgCMKU9P8BXbqrZQJMCNAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the data with Matplotlib defaults\n", + "plt.plot(x, y)\n", + "plt.legend('ABCDEF', ncol=3, loc='upper left');" + ] + }, + { + "cell_type": "markdown", + "id": "01f502ae-fe48-437d-8d4b-1be8d5b7291a", + "metadata": {}, + "source": [ + "**Seaborn**" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "d91be125-f7bb-43d3-9f4a-1b647a4f6343", + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f7d84ffa-8c7c-4b02-a70e-a02f05813192", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    xgroupy
    00.00000A1.764052
    10.02004A2.714141
    20.04008A3.475178
    30.06012A3.788246
    40.08016A6.058001
    ............
    29959.91984F-10.465950
    29969.93988F-9.613061
    29979.95992F-9.165378
    29989.97996F-9.004272
    299910.00000F-9.084870
    \n", + "

    3000 rows × 3 columns

    \n", + "
    " + ], + "text/plain": [ + " x group y\n", + "0 0.00000 A 1.764052\n", + "1 0.02004 A 2.714141\n", + "2 0.04008 A 3.475178\n", + "3 0.06012 A 3.788246\n", + "4 0.08016 A 6.058001\n", + "... ... ... ...\n", + "2995 9.91984 F -10.465950\n", + "2996 9.93988 F -9.613061\n", + "2997 9.95992 F -9.165378\n", + "2998 9.97996 F -9.004272\n", + "2999 10.00000 F -9.084870\n", + "\n", + "[3000 rows x 3 columns]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xy_df = pd.concat([pd.DataFrame({\"x\": x}), \n", + " pd.DataFrame(y, columns=[\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"])], axis=1)\n", + "xy_df = pd.melt(xy_df, id_vars=[\"x\"], var_name=\"group\", value_name=\"y\")\n", + "xy_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "0087a9f6-979d-48aa-ad73-2506510faeb4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAG+CAYAAACedH6uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOydd2Dcdf3/H7dn1mXvpEmT7j0ZZZYlZYqyVBABQRnq171ARf06fiKg+AURBERBNpTVAi2F7pE2HRnN3uOSu9yen98fn7tL0iRN0qZNoO/HP7l81r1ufT7Pz2sqJEmSEAgEAoFAIPgMoZxsAwQCgUAgEAgmGiFwBAKBQCAQfOYQAkcgEAgEAsFnDiFwBAKBQCAQfOYQAkcgEAgEAsFnDiFwBAKBQCAQfOYQAkcgEAgEAsFnjikncHbs2MGMGTNi/z///POceeaZLF68mPvuu49QKDSJ1gkEAoFAIPg0MKUEjtfr5ac//SnR3oP79+/noYce4qmnnmLdunUcOHCAl19+eZKtFAgEAoFAMNWZUgLnwQcf5Mwzz4z9v3btWtasWUNRUREWi4XbbruNl156aRItFAgEAoFA8GlgygicsrIydu/ezU033RRbVl9fT0FBQez//Px8amtrT75xAoFAIBAIPlWoJ9sAAL/fz89+9jN+97vfoVKpYss9Hg96vT72v8FgwOPxjOvYwWAQu92OTqdDqZwyek4gEAgEAsFRCIfD+Hw+EhISUKvHL1emhMB5+OGHOffcc5kxYwbt7e2x5Xq9Hp/PF/vf4/FgNBrHdWy73U59ff1EmSoQCAQCgeAkUlBQQHJy8rj3mxICZ926dXR1dfHss8/GEoyXLFnC6tWrB4mT+vp6pk2bNq5j63Q6AHJycsYtjgQTSzgc5vDhwxQXFwtv2hRAfB5TB/FZTB3EZzF1cLvdNDc3x67j42VKCJx33nkn9ri9vZ2zzjqLnTt3sm/fPu644w6uvPJKUlNTefzxx7n88svHdezoF9RoNBIXFzehdgvGR7TE32w2DwpFCiYH8XlMHcRnMXUQn8XU41iF5pQQOCMxb9487r33Xm6//XZcLheXXXYZ119//WSbJRAIBAKBYIoz5QRORkYGlZWVsf+vueYarrnmmkm0SCAQCAQCwaeNKSdwTibhcDiW8yM48URdv6Ib9clHoVCIfAKBQHBKccoKnHA4THl5OcFgcLJNOeUoLy+fbBNOOdRqNXPnzhUiRyAQnDKcsgJHkiSCwSBz584ViWSCzzShUIjy8nLhrRQIBKcUp6zAiaJSqYTAEQgEAoHgM4bwVwsEAoFAIPjMIQSOQCAQCASCzxxC4AgEAoFAIPjMccrn4HxauPjiizGZTLz44ouTbcqk8tZbb/Hkk09SW1uL0Whk9erVfPvb38ZsNk+2aSeV0tJSDAYDCoVi0PK//e1vLF++fJKsEggEgqmDEDifAsrKykhMTKSzs5NDhw4xc+bMyTZpUnjyySd56qmn+N3vfseSJUuw2+3cf//93HXXXTz55JOTbd5J55133iEjI2OyzRAIBIIpiQhRfQp45ZVXOPvss1mzZg3PP//8ZJszKTidTh588EEeeOABli9fjkqlwmKx8MADDxAXF0dPT89kmygQCASCKYTw4ByFf79XyaayluM+zpkLsrnugtJj2tfv9/POO+/wyiuvEAgEuPrqq/n+97+PwWA4brvGw4sH1rK5cddxH+e0vMV8fvbnxr3fnj17UCgUrFy5ctBys9nMQw89dNx2jYeN71VxsKz1uI8za0EWZ11QMgEWCQQCgeBIhMCZ4qxfv57Zs2eTlZUFyLkXb731FldfffUkW3ZysdvtxMfHi55FA/jc5z43KAcnLi6ODz/8cBItEggEgqmDEDhH4boLSo/Z8zJRvPLKK+zZs4fTTz8dAJfLRTAYPOkC5/OzP3dMnpeJIjk5GZvNRjAYRK0e/LXt6enBYrGcNFvOuqBkSnhe1q5dK3JwBAKBYAREDs4Upquri+3bt/Paa6/x6quv8uqrr/LGG29w6NChQRPXTwUWLlyISqXik08+GbTc5XJx/vnns3PnzkmyTCAQCARTESFwpjCvvfYay5cvJy8vj9TUVFJTU8nNzeXss8/mhRdemGzzTip6vZ5vfvOb/OxnP2Pbtm1IkkR7ezvf/va3mTt3LkuWLJlsEwUCgUAwhRAhqinMq6++ys033zxk+Zo1a/jRj37Ed7/7XfR6/SRYNjnccsstGI1GfvnLX9La2orJZOKCCy7gW9/61mSbNilcdNFFQ/rg3H333cN+ZwQCgeBUQwicKcybb7457PLVq1ezevXqk2zN1OC6667juuuum2wzJp1TLUQpEAgE40WEqAQCgUAgEHzmEAJHIBAIBALBZw4hcAQCgUAgEHzmEAJHIBAIBALBZw4hcAQCgUAgEHzmEAJHIBAIBALBZw4hcAQCgUAgmMJIoRDWrdsIeTyTbcoJwVa2l/0/+Tn2Awcm9LhC4AgEAoFAMEUJBwIcuP9XVPzmdzT+57PXwV4Kh6l9/Ans5fvZ/+Of46ismrBji0Z/U5jm5mbOO+88jEZjbFlpaSkPPPAARUVFk2jZyae0tBSDwYBCoSAcDpOamsq1117L1772tck2bVIY+H5EKSws5OWXX55EqwQCwURT98ST2PfuA6Bn+04Kb/7KJFs0sVi3bsPT3ELigvnYy/dT8+hjzP/j/6JQqY772ELgTHFUKhV79uwBIBgM8uCDD/LDH/7wlJtFBfDOO+/Epmfv3buXb3zjGygUCm655ZZJtmxyGPh+CASCzx6ellba336XhLlz0CQl0v3Rx/h7etFakibbtAnB3dzC4Uf+ispkpPjub9L2xpu0vPIavbt2Y1m29LiPL0JUnyLUajWXX345FRUVk23KpDN//ny+//3v89hjjxEKhSbbHIFAIJhwHNWHAUi/8AKSFi4EoG3tW7ibmpEkaTJNA6DvUAW7br8Tb0fHuPeVJImaR/+PkNvDjO/9D7pkC5mXfg6UStrfWzch9gkPzlHo3fQCzoOfHPdxzLNOJ+nMLxz3cQKBAK+99hqrVq067mONl8b/vED3x8f/XqSccTp51x7/ewFw+umnY7PZqK2tZfr06RNyzLGw/f3XOLxv+3Efp3jeMpadd/kEWCQQCD6LuOrqADAVFqCJj0ebnEzziy/T/OLLTPv6rWRefNGk2tf54Ua87R307txN5ucuPuq27sZGWl55jWm334pKr6dn+w769h8g/YLzSVwwHwBdSjJJixfSu2sPvXvKUBcfXyqGEDhTnFAoxJIlSwDweDwoFAoeeeSRSbZqahAfHw+Ay+WaZEsmh8997nODcnCeeeYZZs6cOYkWCQSCicRVW4dSr8eQmYFCpWLhI3+m7c21NP7r3zgP10y2edj3yblBjurDZI6ybcf6D+j8YAOJixZhzM2ha+MmUCjIvfaLg7bLv+F6+g5WUPHr/2XGn//fcdknBM5RSDrzCxPieTkeVCoVO3fuBCAcDrNx40buuusunn32WebPn3/S7Mi79gsT5nmZKGw2G8BJz0NZdt7lU8LzsnbtWpGDIxB8RpEkCVddHab8/FjCrdpoIPcLn6f1jbV4Wlon1T5fVxfetnYAnJFQ2tFw1TcAUPPo3wi53ACYiorQJVsGbWcqLCD/xuup/b/HcTc3g+rYM2lEDs6nCKVSyTnnnMO0adPYtm3bZJsz6WzevJnk5GTS0tIm2xSBQCCYUPzd3QQdTkzTCoasM2RlTorACbo9NP33JbwdndgilV0qgwFPSwtBp/Oo+7obGgFi4gYgaeHwN+mmwgKAmIA6VoTA+ZSxc+dO6urqTqr3ZqohSRLbt2/nD3/4A3fccQdKpfgaCwSCzxb2AwcBiCstGbLOkJ1NsK+PgMNxwu2QwmEclVVIkkTn++/T+Oxz7LrtDhqefQ6FSkXmms+BJLHj5ls5cP+vhrUpYLcTiHjcB5K4aMGwz2nMywWOX+BMmRDVyy+/zCOPPEJvby9z5szhF7/4BYWFhTz//PM88sgjuN1u1qxZw09/+lNUE1Af/2khFAqxMJI9D5CcnMwPfvADli9fPolWTQ4XXXQRCoUCpVJJVlYWd955J9dee+1kmyUQCAQThrezE11yMvby/QAkzJkzZBtDlpzx4mlpRTOj9ITa0/nBBg4//BcKbv5KzAsDEOi1kbhwAdlXXoFSq6Vn2w5su/dgK9tH6pmnDzqGK7KfIScbT2sbcx/4BUG3m4TZs4d9TrXJhC4tDW9b23HZPiUETk1NDb/97W959tlnKS4u5uGHH+ZnP/sZ3//+93nooYd4+umnSUpK4vbbb+fll1/mmmuumWyTTwo5OTlUVlZOthlTAvE+DEa8HwLBZw9/Ty+7br0DY14u3s4u9BkZ6FJThmxnyM4GwNvaSvwJFjjuBjl3pvnFl9GlpqC1WDAV5tO7aw+W5UvlvKBrrsaydAll93wbd309HCFwoseYdustGHJz0CUnj/q8poJ8bC0taI/D9inh2y8qKuLDDz+kpKQEr9eL0+kkKSmJtWvXsmbNGoqKirBYLNx222289NJLk22uQCAQCAQTjqelBQB3YxNhr5eEuUO9NwDGgjwAHFXVJ9ymkMcLQNDhwFVbh6kwn5L/+TbTvn4b6avPj21nyMlGoVbjqqsfcgxXfWPE7oIxiRuA+NmzkI6zx9mU8OAAmEwmtm3bxk033YTJZOKZZ57hoYce4qyzzoptk5+fT21t7SRaKRAIBALBicHX1Q1A4oL5mKYVknHh6mG302dkoEtPo3f3HiRJGtQuYqLxdnYO+t+Yn4/aaCTz4gsHLVeq1RjzcmMCRwqHCfT1oU1MxN3QiCYhAW1iwpifN2vN53D7fPQdh+1TRuAALFy4kL179/LPf/6Tr3/96+Tn56PX62PrDQYDnmOcphoOhwd1vBXdbwWnGkd+56P/i9/C5CM+i6nDZH4WnkhH4NwbrsNUNO2odiQuXEDHO+/hamrGkJ11wmzydXZhyM1FoVTgbmhEn5Mzok3Ggny6PtiAt7cX267d1Dz8V0p/+D3cjY2YS0vG/Z6mXXQBfYdHL0EfiSklcLRaOdr2ta99jb///e8YjUZ8Pl9svcfjGTR4cjwcPo43SSD4LFBeXj6u5YKTj/gspg6T8VkEIpO0qzraUTiO7rsIJcjekPKHHkFz9RUotMNnq0guFxiNx+TlkSQJX2cnysICNFddjnrffprNRlrKyobdPqjVALDvnXcJ7dwNQOVvfgeAy6CnbIT9ThRTQuBs3LiRF198kYcffhiQvS2BQACVSkV9fX1su/r6eqZNm3ZMz1FcXIzZbI79HwqFxMlEcEoxd+7cQRWI0d/AkcsFJx/xWUwdJvOzOPT6Whw6HQtWrhxVkEhz51Ld1EzP5i1kdHTJ5dpH4Kis4sAvf0PRXd/AmJ+HMS93XFO6/T297A6FSC0uonDFClix4qjbe9LS2PvOOpKsPXgNhkHhpfwlS0hbsGDMzw3gdDqPyzkxJQTOrFmz2Lp1Kx999BErV67kr3/9K9OnT+f222/njjvu4MorryQ1NZXHH3+cyy8/tg6ySqVy2C+rcAkLPutEv+MqlWrY38BIywUnH/FZTB0m47Pwd3WhS01BrR7DpVmlYtrXvkrP5i34OjqGtbX7gw0gSdQ8JI/3KbrzdjIuvGDM9gSsVgD06eljei/MubkYcrLp3bkLhUKJPisLTUI8jkMVJMwoHff7ebw9zqaEwElNTeWhhx7igQceoKOjg8WLF/PQQw+Rnp7Ovffey+23347L5eKyyy7j+uuvn5DnVCgUqNVq4cURnBKo1eoTmogoEAiOD0mS8HV1Ez971pj30SYmgFKJ39ozaHk4EKDl5VfpWLd+0HJnTd24bPK2yn1o9GmpY97HsmwpLS+/CkDqWauYfu9d+HttQ0YynAymhMABWLlyJW+++eaQ5ddcc80J6XujVCqZO3fulBg5f6og3PCTR7RBokAgmJoE+/oI+/3D9r0ZCYVKhdZiwR/xtESxbt5K43P/AcBcXBQbzCkFg+OyybZ3LwBxM2eMeZ+0c86KCRxDdhYKpXJSxA1MIYEzGYgT/uQg3PACgUAwmL4KuXmnqSB/XPvpki1DSrmtW+VZhTN+8F0SFy2kbe3bNPzzmSFCaCQCfX2ozWZse8owFuSPuXcNgDEvL/ZYmzL2/U4E4govEAgEAsEkY9tTBsjl3+NBm5xMwGYnHPHOhP1+enfvIW5GKckrV6DS6ci56gr0WVn4RhA48uTyeiRJwla2l+1fupnm/75EwN5H0qKFw+5zNGb/8j6MebnHtO9EIgSOQCAQCASTjG1PGbr0NPSZmePaT5tsAUki0NsLQOvrbxL2ekk+bXDFky4leUiuTpSe7Tsou/c7WDdvoWf7TgAa//MCIOfUjJfEeXNZ+PCDaJOSxr3vRCIEjkAgEAgEk4irrh5veweJCxaMuxggGj5qW/s2zppaGp/7D4bcHDIuGtxpWJucTMjtJjRMs1zr5q0A9O4uw75fHvJJOIwhJ5u4Ezzr6kRySufgCAQCgUAw2bS+LhfYpK8+b9z7aiMCp+WV12h/5z2kUIjCr96ESqcbtF000ddn7cGYkx1bLoVC9O7eA4B1y1ZCLhdKrZaw30/66vM/1dWXQuAIBAKBQDBJBPr66PpoE/GzZhI3vXjc+w+sugp5PKjNZhLmzR2yXVQI+a1WDNlZOCqrME8rxFVXT7CvD5RKQi4XAAU3fRmlTkfqWWce46uaGgiBIxAIBALBJBAOBOjZth0pGDwm7w1AXGkJRd/4Op7mFlpfe4OkpUtQDtMoMCpwvB2dhHft5tAvf4022ULauecAkLrqTLo2bESfkU7a+ecO8QB9GhECRyAQCASCk0ygr49dX/8GIZcblEqSli45puMolEoyLlhNwOHA19lF9uVrht0urrQElEp6d+xEnyUnMvutPbGeNQU3fYnE+fNIXrn8MyFuQAgcgUAgEAhOOj3btsviBrkhniYu7riOp4mLY8YPvjviem1iAonz5tK7ew+G9nYUGg1IElIwiC41BW1SEmnnnn1cNkw1RBWVQCAQCAQnGevW7QAkLV7ItK999aQ8Z8qZpyMFg7gbm0iYM5v4WTMBMB3jEOupjhA4AoFAIBCcREIeD7a9+0iYP49ZP/sJiQvmn5TnTTnzDFQmEwCmaYUkzJ0Te/xZRISoBAKBQCA4idjL9yMFAliOMe/mWFHpdCx48A80PPMcGRecjyTJPXCSV64YfedPIULgCAQCgUBwEuk9xrEME4E+LY3S79wb+3/Bg3846TacLESISiAQCASCk4htTxm6tFQM2VmTbcpnGiFwBAKBQCA4SXjb2/G2tZO4cPxjGQTjQwgcgUAgEAgmACkU4uCvfkPH+g9G3CYankqahPDUqYYQOAKBQCAQTADejg56d+yk/Z33RtzGtmcvKJUkzB06TkEwsYgkY4FAIBAIJgB3UzMArtpaQj7foI7A4UCAQw/8FtueMuJmlKI2mybLzFMG4cERCAQCgWAC8EQEjhQK4aw+PGhd785d2CLhqYyLLzzZpp2SCIEjEAgEAsEE4G5qij3uO1QxaF3nhxtBoWDJPx4j7eyzTrZppyRC4AgEAoFAMEYkSaLm/x6na+OmIevcTc1oEhJQqNU4Dh2KLXdUH6Z3124S5s1FF5nqLTjxCIEjEAgEAsEYCTqctL/1DlX/70EkSYotd9XX42lqxlRYgLmoiL6KKqRwGGdtHQd/8QAKpZL8G66bRMtPPYTAEQgEAoFgjHjb22OPnYdrADmBeP9Pfk44GCTtvHOJnzWDkMuFs/owB352PyG3m9Lv/w9xpSWTZfYpiRA4AoFAIBCMEW9bv8CxfrJZXtbeQdDhJPvyNaSuOoO4mTMAaH7pZYIOB3nXX4tlyeJJsfdURggcgUAgEAjGiKetLfY4mkjsjSwz5GQDED9zBigU9GzbAUDS4oUn2UoBCIEjEAgEAsGYaH39TdrfeRcAU9E0XPUNSOFwTPToMzMA0MTHk3xa/4RuY17eyTdWIASOQCAQCASj4ag+TN0TTxLotaHU60mYPYuw14u3owNva8SDk9k/PDP3ms8DED9nNgqluNROBqKTsUAgEAgEo9D6+huxx2GvF1NhAQC7v/5NAJR6PZqkxNg2psIC5v72AfSZmSfTTMEAhMARCAQCgeAo2PaV073pE+LnzIZwmKSlSzAVFg7aRgoGh0wHj48kGwsmByFwBAKBQCAYASkUovrBh1DqdBR/4+sYsuQwVDgQQGU0otRqCdhsxJVMn2RLBUciBI5AIBAIBMPg7+nF1dCA39pDzjVXx8QNgFKjYdGjj6A2GXFUVKLPyJhESwXDIQSOQCAQCARHIEkSu++8i5DHA4Bl6ZIh22gTEwBImDvnpNomGBtTJrV77dq1XHjhhSxevJgbbriBw4flSazPP/88Z555JosXL+a+++4jFApNsqUCgUAw8YQ7O9n3ne/hGdBITjB5BB2OmLgBME8vnkRrBMfClBA4NTU13H///fzhD39g+/btnHXWWXzzm99k//79PPTQQzz11FOsW7eOAwcO8PLLL0+2uQKBQDDhBF55HXddPe1vvzPZpoyZoMuFu7Fp9A0/hfi6umOPc6/9gij1/hQyJT6x1tZWbrzxRubOnYtKpeKGG26grq6O119/nTVr1lBUVITFYuG2227jpZdemmxzBQKBYEKRJAmp2wpA2B+YZGvGzr7v/4g9d91L0O2ebFMmHH9XFwDT772LvOu+OMnWCI6FKSFwzjzzTO6+++7Y/xs3biQrK4umpiYKCgpiy/Pz86mtrZ0ECwUCgeDE4W1pgUj43dPcPMnWjI2Qz4enSbb1s+jF8UUEji4tdZItERwrU0LgDOTQoUPcd999/OhHP8Lj8aDX62PrDAYDngExUYFAIPgs0HewIvbYfQIFjrOmluqH/0I4cHxeIk9bGwfv/1Xsf3dj4/GaNuXwdcohKl2qEDifVqZUFdWWLVu45557+O53v8vq1at56aWX8Pl8sfUejwej0XhMxw6HwyJBeZKJvv/ic5gaiM9j6uBukj0g5pkzcB6qwNfXh9pkmvDn6Vj/Pp3rPyDl7LOInzXzmI/T8K//0HfgYOx/V33jpH6PJEka0mTvWIm+Dm9nJyiVqBMTxW9kkgiHw8e1/5QROO+++y4/+tGP+O1vf8vq1asBKCwspL6+PrZNfX0906ZNO6bjR6uyBJNPeXn5ZJsgGID4PCYff0UlqNV4M9LhUAV7161HVZA/8c9TLZ8Hq7ZtQ+33jbL1yPiqqwHQfvkG/P9+gc6DB7GVlU2EiePG/+y/kTwedLd+dUKPa29qgjgze8Xv41PLlBA4DQ0N/OAHP+Cvf/0rK1eujC2/+OKLueOOO7jyyitJTU3l8ccf5/LLLz+m5yguLsZsNk+UyYJjIBQKUV5eHksmF0wu4vOYOuz+62MEki2UXLiagxs/QvHWO+jz8ij8+q3oUlIm7Hn2PvkMHiBVpSZ/wYJjOoYUDrOjp5f4BfOZecXllG/eir+rm/nz50+YF2XMtkgS237xawDmTC9BbRrewz8eD08oFGLfvn0oHU6M+XnMPsb3SXD8OJ3O43JOTAmB88QTT+D1ernzzjsHLX/nnXe49957uf3223G5XFx22WVcf/31x/QcSqVSnMSnCCqVSnwWUwjxeUwuIY8Hf3c3ytmziC8pYdptt1L7t8fwd1tp/td/KPn2PRPyPJIk4evsBMDX1n7Mn7nXaiXs92PMyUalUhFfWkrb4Roa//FPpt12y4TYOlYCdnvssbu6mqTFi4ZsI4VClP/k5xiys5l+l3yNcTe3oNJpR8yvkXpthFwuzIUF4rcxiSiPszR/SgicX/ziF/ziF78Ydt0111zDNddcc5ItEggEgpODp7UNAGVKMgCZF19I2rlnU/Gb39H10SZyvnA1xpyc43oOZ20djf/6N+FITqOntfXY7W1uAcCQkw1A3o3X46ytpW3tW2RfedlJTcqNvncA9gMHhxU47e+uw3GoAsehCqbfdSdSKMT+H/0EfWYm8/7318MeV4rkRMXNEMMyP81MuSoqgUAgOFUIOl3U/t/fAVBkpMeWq3Q6Mi68ACQJR2XVcT9P3eNP0LtzV+x/b1s70jEmznpaIgInWxY4aqOBjIsuBMC+/8BxWjo+vG39Aqdn2w6q//ww9U89HVsmSRLNL/Y3hw37/TiqDxOw9+E8XEPY7x/2uOFI+buYBv7pRggcgUAgmGDCfj+N/3kBv81+1O3a3nobR2UlGZdegvKIadT6rEwAvO0dx22PakD1qdZiQQoGj2kkRMjrpXvTJwCDvEoJc2YDYN9/cNj9ThRRD45lxXI8zc10frCBlldew9Ugl61729rwW63927e107NtOwBSMIirrn7Y44Ybm9CmJKNLnbj8J8HJRwgcgUAgmGC6P95M07+f5+B9w4feQU7W7Xz/AzRJieR/5UtDkmD16WkAeNuPfzbVwJlKqWevAqD6zw+z73s/JOhyje0YPh8Hf/lrHJVVZF12KVpLUmydLiUZfUY6fSfRg2M/cIDm/8qd7Uu+fQ/F37yD9AvOB6Ds7m+x7cab2P0NOX8pccH82PKWl1+NHcNRJVeDVfz2d9Q//SwAfmsPUrf1uMroBVMDIXAEAoFgnATsdvbc823sB4a/oHsjybyuunq8HZ3DbtO7ew/e9g7Szj4LxTCJrCq9Hk1SIt624/fg+K09qIxG8r98I7nXfgGUSpxV1Tgqq+jdtWdMx2h89jn69h8g45KLKPjqTUPWx8+Zjbe9fcTXO5GEg0Eq//cPgNxpWKXTkb76fIq/cQdp552LITsLdZwZIn1U0s47Z9D+2VddAUDd3/9BxW9/h3XLNlpeegUpFMK2pwyAxEVD83kEny6EwBEIBIJx0vXRx7jrGzj0wP8Ouz46wgCgd+fOIeu9nZ3U/PX/UOr1ZFxy0YjPo8/IwNtxfAJHkiR8VivxM0vJufpKVDodcQMmY9vK9o5+jHCY7o83o8/MYNptXxu25DopIgh6d+0+LnvHgq1sLwF7H4bcHEq+fe+gddPv/gaL/vpwLIHYkJMzaBJ46ff/h4KvfAnL8qUAWLdsi61zHq7BtlsWfAkL5p3gVyE40QiBIxAIBONEoZY9LqERhkxGOxMDQzwa7sZG9nzjHvxWK9NuuwV9WtqIz6PPyCDY1zemYZZSKITzcM2Q5UGHEykQQGtJji2bfs9d5N1wHfrMDDrf/4CqP/2Z/T/5OSHf0OZ/fRWV7P3O9/D39JC8csWI/WQSF8xDoVINSmY+UXRt3ATArJ/8cMREYE18PEueeIw5v7xvUC+hxHlzAZj5ox+QueZzg/bp2bET+759KLKz0MTHnyDrBScLIXAEAoFgnPh7euUHkkTlHx8cNItJCoXwtLTKeR9KZaz3TJSuTZ8Q9vsp+c69pJ937lGfRx+prKp74imCTiedH24Ysfqp6k9/Zu93voezZvBAYn+PnGSrTbbElhmys8j9wudJXrlCtmnDR9jL9+NuGDpTquWV13DV1gHEth8OtclE3MwZ2Mv3E3SfuJmBkiRhK9uLqWga+oyMo26rS0lGa0lCqdGgUKtRx5lRD2j4Gjd9cGJ362tvEHJ7UIn8m88EQuAIBALBOPFbe2KPuz/aFEtQBblSRwoGMRbko0u24O3sGrSvfV85KqORlNNPG/V54meUgkJB5/r32XbDV6h+8GGsW7cN2S7k8cSqmwb2hhlo60CBEyX3i9cw+/6fkf+lG4DhE5p9EQ9U4dduHhTqGY6UM04j7Pdj3bJl1Nd2rHhb2wj29Y07CXjZP//B4sf+NmiZuUR+PSqTkeyrr5TLxhUKVLNnTZi9gslDCByBQCAYJwNLjwF6d+zC3dhIyOOh+sGHAIgrLUGXljbIgxN0e3BWHyZ+9qxhE4uPJHHBfJb98wm0A0IsUW/KQLo+2tRvW0/PoHW+qMCxDBU4Kr2exAXzY1VG0ZL0cCCAr9uKFA7jaWkhccF8stZcOuq4g5QzTkehVtP14cZRX9ux0ndInrw+3h41arMJtdEwaJk+IwOtxUJcSQk5V12JJiGBhAXzUcTHTZi9gslDCByBQCAYJ0eKCIC2tW/T8f6HOKsPk3XFZSSvXIEuLY2gwxnLobGXlyOFQrE8kLGgSUgg7/ovxv4fLs/Gtqc/Udjf3T1oXVRgHW2mVTQU5o30xml49jl23/FNHFXVhP3+WNfiUW2Ni8OydLEcpnI6x7TPeIkKnInoMqxQKJj7vw9Q8q27UZtNLHzkQUr+59vHfVzB1EAIHIFAIBgnPqsVc8l00s4/l0V/fRhTYSFdGzfR+tobqIxG8q6/FoVCEetlExUZne9/CAoFySuXj+v50s87l+X/+idxpSU4a2qQJCm2TgqHse/fj7EgHxQKfEd4l1z1DShUKgzZWSMeX22Wc1O87XKH464PNxD2+2lb+zbAmAUOQHwkvBPtMTORSJKEvbwcXXoaumFCbseCPi0NTUICICcmqwz6CTnuycbrCfDys7tpbbJNtilTBiFwBAKBYByEvF5CLjeGrEym3/UNDNlZpF+4mpDHg6+zk5Qzz0Cl0wFyjxaA3t1lVP3pIXq2bSdp0YJjmtekNpsxFxcTdDjxDSgddzc0EnQ4SVq4AE1iAv7uwd4lV109htwclBrNUY+vz0jH296Bbe8+AvY+QM4vgv6xDGMhrqQEODECx13fgK+jE8uypRN+7E87e3c2s39PK39/8GP8vuBxHaurw0H1oU6ksDT6xlOYKTFsUyAQCD4tRGdDaZP7y67TzzsHf08P/p4ecq6+MrY8fsYMFGo1Df98JrYs83OXHPNzx80opW3tW9j27iMjUkHUs0Pus5Mwdw728v34BoSoAg4H/u5uEubOGfXY+owMnIdr6Fj/AQBKrVZOulUqMebljdlGU2EBCrWa3l278TQ3E/b5mfHD76EYZjJ0X0Ulvs5OUledOWi5JEkQDg/JU+reLCcvj9cDdipwYE//ANV9u1pYclr+mPbr6XaRlGwk4A+h1ampqeziX4/JiexX37iI2QtH9vxNdYQHRyAQCMaIu7mFg794AABz0bTYcqVWS/4N1zH9rm/EwlIgl2PP+dX9JMyby4wffo8V/3l22InXYyVp8UIUajXWzVsBuSS9/d11aJKSSJg/D21yMv7e3lgpeXTWkqlw9IudqbAAAOsnmzEXF5F1xWUAFN1+K9rEhDHbqNRqMRUW4KyqpnvTJ/Rs3zFsYjRA+fd/RNUfH8QdmVAe5fDDf2XX17+Be0DDRCkUovujTWgS4okXU74HYetx09zQS1au/DnZe0fvmwRQU9nFI7/5kPVvHuK3P36H+sPd1FX3C+S6w91H2XvqIwSOQCAQjBHbnjKkYJDp9941pjJvkKt95vzyPpJXLEdlMIy+w1FQm0wkLpyPbV85gT4HPTt34e/uJuOiC1Cq1XIicTiM32YD5JAOgKmwcNRjp19wPkq9nH+SsuoM8q79Akv/+Q8yLrpg3HZmrbkUy/KlFNz0ZQB6hmn+N3CSd8srrw1a1/n+B/g6uzjws/tjc7S6P9mMt72DjIsvGlMF2qlEQ60clly4XPa0uRzDT0k/kopyOal820d1IMnHaWm0odWpiE/Q01g3NJn+04QQOAKBQDBG+g5VgEKBZenk5YCknLYSwmF6tm/HEakoiootbYocNvN3y4nGrjrZc2IqKBj1uJr4eLIuuxSVwUDKGWegUKnG5bkZSOpZZ8Y6BauMxmHHNzgHeHW6Nn4U66IcDgQgEs7y9/TQ8tobSJJEyyuvodTrybz02EN8n1VaGuTGk0WlqahUSpzOoR2pj0SSJGoq5R5N4UiuTVe7g9YmG5k5ieQXJ9Pd4cTlGP1YUxUhcAQCgWAMSJKEo6ICY14uarNp0uywLFuKQqXCunkL7sYmFGo1hqxMAHSRvCBfTOA0oE1ORjPGvi5511/L0qf+PmEVSkq1mqTFC3FWVQ8pb3dGkpATF8xHCgRiYs3b0QHhMFlXXIY+M4O2tW/jPFyDq7aOtLNXoYkTPWqOpLmhF3OcjoQkA6Y47ZhESU+3C1vP4FDWofJ2Av4Q2XmJ5BXK34HmRtuJMPmkIASOQCAQjAFfZxd+aw9xM0on1Q612UzC/HnY9pbTV1GBITsrFrKJeXCsVsKBAO6mJkzTCsZ8bIVCgUo/sWXSOZ+/GhQKGp7516Dl0WTtnGuuBvqHfnojnZiNOdkkLlxAsK+PxmefAyD9gtUTattngYA/REebg+y8RBQKBeY4HT3dLl56Zjf7d7cMaikwkI/WyQIzJz8ptixaNZU3zUJSsizi+2wnbuzGiUYIHIFAIBgDXRs/AiBp4cJJtgRSTl+JFAwScrkx5uXGlutSoh6cbjzNLUjB4JjCUycSU0E+luXLsJXtjTU8lPvZ7MeYn0f8rJloEuKxle0D5FEXAPqsTMxFRYAsfoz5eYMSuwUyDbVWpLBEToEsVExxOnzeIAfKWnn5X3vY8E7VoO0lSWLT+mrKd7VQPDONcy+RBbslpd8rWVSSSlyC3OrA0ec9Sa9k4hECRyAQCEYhWq2ktVhIWrp4ss0h+bSVsccDS7ij4xh83dYBFVSjJxifaMzFslDxRKqi3A2NBOx2EhfMR6FUEjdzJq6GBsJ+P9422YOjz8jEXNwvaCzLl518wz8F7N8tV6DNnCeHKc1mXWydSq1k0/pqqg72902qP2zlw7crSU03c8lVcygoTuHuH5/LnEg5eGZOAiq1krh42ZPn7BM5OIITTOcbj9C19tHJNkMgOCVpW/s2/u5u0i9cjVI9+e3D1EZjbHjmwBEMSo0GTWIifqsVR5V8524umnyBExVh0anrtr2ytyY6A8uYlwvhMJ7WNly1dSj1erSWJIy5uSi1WgAsS5dMguVTG78vyKHydrLzEmMeGFNcv8D52j1nAAwq/e5sk5s4XnTVHBItRgASLUYWr8xn+qw0Pv9luY2BTq9GrVbiFB4cwYlEkiRcFVtxHvx4xHiqQCA4Mfi6rdQ//Sz6zAyyL18z2ebEmPOr+0k779whTe+0ycn4uq30HTiINjkZXXr6JFnYTzSM5mpoAuSZXAq1OjYR3JibA0DHe+txVFaRvGI5CoUChUpF3IxSdKkpMS+QoJ/WZjsBf4gZczNiywYKnLSMOLQ6Ne0tfbFlvVY5TGhJHpwoH5eg57pblsVybxQKBXEJehyfYg/O5N+KCEYl7O5D8suJXsG+LjQJaaPsIRAIJoqebduRAgHyv3TDcfexmUgMWVlMv/sbQ5brUiy4amrwAymrzhx1AvjJQJ+ehlKrpfODD0latABn1WFMBfmxhGZDjixw2ta+BUplLPEYoPS730EKBofthHyqY49UQSWnmmPLNBr5fVKqFCiUCtKz4ulo7UOSJBQKBT1WNyqVkriE0ZPJownLn1bEN+ZTQKC3LfbY39k4iZYIBKcevbt2o1CpSFy4YLJNGRMDQ1YJc2ZNoiX9KJRKNIkJhFwuDt7/KwJ2O+bpxbH1AweBWpYuwThguKcmPg6tJQnBUGw98o1vYrIxtswUycGZMUf26mRkxeP1BGJenN5uF4kWA0rl6MLXHK/H5fQTCoUn2vSTghA4nwICPe39j7uEwBEIThYhnw97+X7iZ81EbTSOvsMUYKBYmEqiLPvKKwb9by7uFzjR4aQAGRdfeLJM+tRji4xkSEzq9yyWzE7nmq8s5vLrFgCQkR0PwON/2sTOzQ3YejwkpYytj1O0kurT2uxPhKg+BQzy4HQ1TaIlAsGpRdvatwn7/ViWf3qmV6dfsBpjQT6mggLUpslrSHgkmZdcROqqM9l2gzy+YaAHByDrskvpq6gkcf68yTDvU0EoGGb31kZmzM0gLkGPrceD3qBBb+ifFK9QKGIVVQDFM9JiYaq3XioHwJIyNrFujpPDWI4+H/GJUyc8O1aEwPkUEOiVPTgqUwK+tsOTbI1AcGoQsNtp+s8L6DMyyLhw/POYJgulRkPC7NmTbcawqM0mDDnZeJpbBoWhAApvuXmSrPr08M6rB9i1pQGnw8c5F5di73UP8t4MR1yCntu/s4qDe1t58Wl5ZMaRCcYjER/J07F2OsnOSzwu2wP+EM2NvXhcfta9cYiv3XPGoIToE4EQOJ8Cgj3tqMxJGIsX4yhbj9/agjY5e/QdBQLBMeOorCLs85F1xZpYqbLg+Jn3+/8l7PWKgZnjZOfmenZtkYen9lpdhENh7DYv6bPix7T/rPlZ3PQNPfU13cxbkjOmfYpKU1Gplezc3DDmfQYSDoVRquRMmPVvHmLHJ/WxdfU1VmYvyBphz4lB5OBMcaRwCH9XI9rUXEylcjmou3LbJFslEHz2cTXI+W5ToVHeZwm10SCShsdJT7eLd145QFKyEYNRQ2+Pmz67FyksxXrZjIW8aRZWrS4ZFNI6GqY4HfMWZdPc0Etj7fgmi1eUt/GbH75DQ408F60+8jfKycjrEQJniuPvakIK+tFlFmMomItCZ8S2+RX6dr07aTZJwQAt//g+9u1v0v78r3Ee2DRptggEJwp3g3y3PLBTsEAwGeze2kg4LHHJ1XOxpJqw9XhobbIBkJJmPvrOx8lp5xahVCp497UDsanjY+FAWRuhUJj//GMH4VCYYCA0aH20H8+JRAicKU4050aXWYxCrSHtsrtR6k10v/M47tqyybGpvQZf22F6NjyH+/AuejY8hyR9OssIBYLhcFQfxlldgy4tDbXx05dcKfjsEA6F2bezmUSLkWnTU0iyGHE5fFSUy7mZRaWpJ/T5k1PNLF9VSFuznQNlrUiSNKYBnH5fEACfN8jBfW0xQRNtyyQEzilI0NlLsK/fledrqwFAlyV38TSVLCXzhvtQaPX0fPDspNjobZZbwEsB2cUYtHXiqSufFFsEn356rW48bv9kmxHD3dzCvv/5Pt72dgxZmaPvIBCcQOoOW3E6fMxfkoNCqYiFpPbvaSUlzTyuENWxcsZ5xWi0KrZurOXQvjYe/OX7lO9qPuo+1q7+BoGffCBfx8773Ay+c/8FWFJM9FpPfANBIXAmAOehzVg/eCb2f1/Zeqzr/znu47hry2j889dof/6B2DJ/Ww0qUyKquOTYMk1SBoaCOfg7GwgHT/6FwddSGXus0ET6JBz85KTbIfhs8PCvP+D3P31vyowhcdXWxh6bxPRqwSQT9dTMmi+L7YGCpmjGifXeRDEYtcxfkkNbs513XzsIwNqXykcMWYVDYWw9bkpmp5NoMdDRKjcZTM+Kx2jSkpRipKvDSVeH44TaPeUEzhNPPMGPf/zj2P/PP/88Z555JosXL+a+++4jFAodZe/JofPlP2Lf8ipBpw0pHKJ77aPYt71O2D+6Gw8g5HURdPbS9frDAPg75di/nGDchDa9cEi7dV3GNJDC+JoqCAdOXhMmSZLwNlehMiUAYCxahMpswddeO8qeAsFQom5s6D+RTzbuyMTr3Gu/QM5VV0yuMYJTGiksUXmgneRUEynpcq7NQIGz/MyTlwC/YJk8T8xhl4dv+n0hXv9PGaHg0PQEW6+HcFjCkmKioFjurG1JMVFQJN+oJ0Vew6O/24i1y3nCbJ4yZeKBQIBHH32URx99lKuuugqA/fv389BDD/H000+TlJTE7bffzssvv8w111wzydYOj6+1GoW6v5zU39WMPnv6qPt1/Pd/8TYeGLQsHPQTtHUiBf1o04YmOeoy5JBV23P3oy+YS9YN9x2f8WMk5LQRcvYQt+B8jMWL0WYUYH3n77hr9yKFAihUY8vOF0x9QqEwUlhCrTlx5bzOAZUUn3xwmBlzMyZ9dpKnqUmeh3T1laI8XDCpdHY4cPb5mHt2dux3kZ2XyLSSVFacVXhSwlNRMrMTMMfpcDp8FJWmolQp2LerhZZGGwA33r6ChEhPnmh4KjnVROH0FHR6NatWT4+dS0pmp7Nzs3wj39ZkHzRLayKZMh6cX/3qV+zfv58vfvGLsWVr165lzZo1FBUVYbFYuO2223jppZcm0cqhDPSe+FqqcOz7IPZ/oHtw1+H3dzRy/9+38s6W+v79g/5B4sYYKQUPu/tinhxtWv6Q59Vm9LvOvfXlSOGT49nydzfGbDKVLkOTkIY2oxDCQdFl+TPGv/++g0d++yFbNtbyyQcnpsGkc8Ck4tYmO7/8n7Wsf/PQUfeRJImP1lVTV919QmxyNzWjz0gX4kZwUvD7gjzzt61U7m9HkiR2bm5g15YGnnxkM9s/qgNkcRFFp1dz4+3LKZ5xcocuK5SK2HMWFCfzxZuWsPT0fKxdLqxdrkG/R2un7JWxpJqwpJi48PLZGIz9v6fiGWnc/p1VgCziThRTRuB885vf5LHHHiM5uT/XpL6+noKCgtj/+fn51NZOrVBIsLcj9ti2+WVcBz5GnZgOgH/A3ChJknj27UPsPNTBX17cS12rnWCfFXdFpKeNUk3i6VfLoScg5OqLDdYcTuCo4wb3kQj0tA3ZZiJx1+7FU7evX3Sl5sbW6dJlm33tdSfUBsHJIxgMUVvVRZ/Ny7rXD/L+2opB6/ftbGbfKEmGR8Pj9rPx3Sr27pRF8dLTC2LrNn8oJyS2NNr4y28/ZMO7lYP2dfb52PBOJc/8beuE5+2EAwE8rW0Yc8ff1EwgOBb27mymrrqbV57bQ2uTjbdeKmfti+U01fWwZ7v8+4iGpyab+Utz0Bs0TJ+VjlKl5OKr5nLLPacD0N3ZH2pqbugFxWBhdiTJaSYUSgXdHcOHqCRJIhw+vurcKROiSk0dmizl8XjQ6/tHuhsMBjyeseW1HEk4HD4h+Ts+a+ug/1WmRNKvv4/Wx+7G21xJwOPCWbYee2sT3fZcSvOTqGzo5d/vVXCj658EbbJASrvm+xgK5+MoWw9AwNmLr6MelCpUSZnD2p751d/jrtyG/ZMX6f3kZeIWrkaXXTLhrzHkcdD+718Mfp2WrJhN6lQ5hOZrrzvqexxdNxXzqE5FjvZ5tDb2Dlnm8/pjLub1bx5CAmYvGFuVkSRJMRe73x/k8T99HJuEDFA6Jw23y8eBsjaUSgWOPg/P/t9WfN4g2z6q48zz++cWtbfaYo9rKjspnN4/Pft4cTe3QDiMPjv7pH5PxW9j6jCez6L6UCeWFBPJqcc+82v/nhYANBpVzAsyc14GFeXtSBKggMRkw5T4buQUJPKd+88H+t+f1AwzSqWCrnYHoVAISZJorOshLSMOjVY5ot0KBViSjXS2OYbdZuN71Rwqb2LFeZZjtnfKCJzh0Ov1+Hz9LmyPx4PxGCf6Hj48wS72UBAUCnSNezACrlkXglJNIL2E7tom4gwWpJYq6v92D6BA6e5FxfXMz1UQDuipOFBDMLHf+1PV7UGyl6HpsGIG6g6Vo285DMYk9pbvH9EMpcJCAuDavxFH9U7sZ30DlPLHqvDYQaVB0g59z7RNewibkglaRm9iprY2EDfgf0mhYm9lLUplxAEYDpMIWJvraCwrG/V45eWipHwqMdznUVsh31WpNQqCAdlLsm3rHkxxaoKBcCx3Zsf23Wi0IzuCfd4QOzf2Yo5XYzCrMBhVuF2hQeIGoKmljoJZarx+EzUHXbz47GZ83v4+Glu37EJvkMVV7aH+O76N6/ZjdyUe+4s/glCF7C3qCgXpGcN3eaIRv42pw2ifRcAf5r2XOkjL0rH0rGO7CHtcIZrq5JsJl9NP2c46FErInwEOp4HmWg8Go4oDB6b298JoVtHSZKWsrAy3M4izz4clXUXZKL8htS5IR4uPXbv2oFL15975fWE+Xt9BfNLxSZQpLXAKCwupr6+P/V9fX8+0acdWtllcXIzZPDFuPvuWV7FtfA5VfAqGooU4gZJzrkQd1/8ld+mvp/vVP6Fy998JJyudXHrexSx0/RWjd3Nsub5gLvOXrgDA26ynY89LZFvM2Lx2jNOXMm3BghFtkcJhGj9+DAClz0VO23YSz7oOlTGBxt9diyrOQs43/jZon4C1ldZ33gYg/wcvjPp6bdtbsAP21HkkdO1DIYX442tdXHV2EVefI99ZN22KQ69RMP0otoZCIcrLy5k7dy4qMYdm0jna51G7fw8oHNz70/PYu7OFda8fIierkPyiZNpb+wBZnGemF5KTP3Lb/X89th2bNYDNGgBArVGCBKnpZvKLk9n5iRzyXLJ0PnqDBnW4hZqD+2iq8WA0aTjj/Om899pBEs3ZzJibAUBT1T7AgcGowe1QsOAo37nx0lJbTxNQsmIFcaUT7w0dCfHbmDqM9bNoqLGC1IHXdezfwd1bG4FO0rPi6Gh10NPpJ7cgicVLFkKggebag2TnWib0O34iOLxvN1UHOpgzey4V+zuALhYsLmbugqPPTLR1VNHRXENOVhHpmf0ztbZsqCV6jjkeprTAufjii7njjju48sorSU1N5fHHH+fyyy8/pmMplcoJO3F468oACPV146neiUKjR5uQjEKhZMfBdlq6nFxx1hkQ8NG99q+x/RZkhDC62zE29Iubgu88jVLf797URnJr/K3VIEloU3KObrdKRcrn7oRwCOv7T+Mq34C/pYrUS++UbXT0xPa3bX0NjSULb+PBAbuP/p7Ym+S8p1edC7klsYNa80Jc+wI883YFXzi/VD6OOZGw2zam46lUKnESn0Ic+XmEQ2HqD1vJyIrHaNKTmCR7AF0OPyqVCvsA70tPl5v8acOHiEKhMA21PaRmxNHd4UACggE5pn7hFXOw9/Z3MjWadCgUCtKz+mP2y84sjHVpbW6wMTtysuzucGKO11E4PYXyXS34PCGM5olJCPa1yydVU072pHxHxW9j6jDaZ9HZLnsS+2xe/L4Qer2GN/67j/yiZOaPcTBlTWU3CqWC084u4pXnygAonpmGSqUiL/K7Ss+Kn/LfibSMeCr3d9Db46WzTU4azsm3jGp3eoYsanq63GTl9N8odXdOTBPAKS1w5s2bx7333svtt9+Oy+Xisssu4/rrr59sswjYOmOPQ85eDIXzUShkN/2/3q2gptnO+Uvz0GUWDdpvcRb0bpI9JrXxS9jdpuDrIQ0DZ8GqjPIJ3tskV5Jokkefthq/4DxA7o3Tt2cdjrL1tP37V7H14YAP9+Hd9Lz/NABKo/yMKlPimF6vt70ef1hPWRtYfvFnfvib9YCftAElimpTIt5I12XB1CUUDBMMhtDpRy7nb6jtweMOsCzSYyM+Uc6D64v0vxjYobRrhARBAFuPGyksUTwjldPPKUJv1LD5wxosySamlaTQMiDPJ5qfM3CuzsqzilBrlMQl6Kkob+eCNbMIhcN0dTjJLUgiOy+R8l0ttDT1Mn1m+jG8G0PxtraiNptRx8WNvrHglKa9pS/2uLNN9iiWbW+ibHsTlhQTuQVHHygaDISoq+4mJz+JwhK57Do7L4nTzpavGxlZ8Xzxq0vJK5z6g0mzcuXrVv3hbjrbHKjVSiwpo+clpWbIv7Ou9sHnEXuvB71BQ2Ly8Y1JmXIC56677hr0/zXXXDNl+t64KrfhqS8n1GdFl12Cr0UeWaDPmwVAIBimoU3+0lc09LK4JAeFSoMUkt3zWV1bcTu6Mc1YgSftajbVl3N+s42kOB1/+e9e0ixGvnvjYlCqCXvli4gm+eguvoHosopJScvH23SQwIDk52BvB9b1T8X+D7tlG0MeB5IURqFQYnf60GlV6LWDvxJSKIDG2UZ9KJVwWOKNTbX0ueTuyVabh1AojEqlRGVKRPK5CQd8KCPdjQVTC68nwNN/3UKP1c0V1y1g+qzhu6BWlMsVedGQUHyCfJKJzp/piQgchVIxqHLiSHq65e0sKSbmRe5oS2b1C5HU9KEiQq1R8cWvLiUhyYBGK9/9zV2UzeYPa2iotdJrdRPwhyiakUZ2nnzib2mwTZjA8bS2oc/KnPRePIKpT3uLPfa4o61v0Lrtm+pGFTg7NjcQ8IeYNT8Tc5yOe396PiaTFoWy/7tXOntivtcnmmklqWi0KirK2+npdpGaEYdSOfpvKDnVhELBkI7G9l4PCUkGUo4jeRumUJn4p4Hej56nb+fbgIQ+ZwaqSM6NIX8OAI3tfQRDckJmRUMPCpUabUYh/oiODDu6UWj0JK++mem5iQAcbrLx4H/2UNnYy6ayFsISqEz9Ph2NZXQPzkAUag0ZX/wxKnP/j8tTv49QX/egcQ/6/NkQDhH2uvAHQtz5uw949KV9Q47nqtiKSgpSHZCrZf6zTk7CnJGfRCgs0RW56EU7G4dc9iHHEEwN3n31AO2tfYTDYV5/fu+gEus3XtjL336/EUmSaKrrJS5BT1rk7soUp0OhVNBn89LR2kd9jRWjSUtmTgL1h7ux9w5f2Tiw2ddwaHVqlq8qZM0X5g1aXjo7nYys/t/A/KWyOHr2/7bx1sv70Rs0LFqeR0ZWPBqtiobanmN/U5BL1h964H32bq0lYLNhyBrfb05w6mHtctLV4SQ7PxGQWxo01FhBIfepsXY52bKxlqb6odWIu7c20tZs5+P11cQn6lm8Qi70MEd+Z59GNFoVxTNSaaztwdnni507RkOtUWFJMVFR3s6H71QSDoUJhyX67B4SEg2xm6xjRQicMRLs6471gAFQJ6RiKJiH0hgfG4RZM0DRV9TLJ93US77O097VseXJF3wVdXwKBVnxKBVwoNZKfWv/ft02D9pI2TUKJSrD+BOjNUkZ5N75FzJvlEu7nZE5UYkrr0Ch0qDNKEKfLefOhFx2DtRa6XP5KavqHNJXxLbjbQKSEk/+SswGTWz2yJkLZc9Sa+QuPRruCrls47ZXcHJoa7aTlGxkzsJsvJ4AXk//mIQ925robHfQ3eHE0eclIckQ82IolQri4nX02b3895+7sNs8LDktn7MvLCEYCPPuaweQhplJE/X0WI5yF3bh5bNZuPzolXyp6XFcePksps9MIyXVxLmXlKLTq1GpleRNs9Bc3zto5MN4aarvxdbj4XC5XK471gGbPd2uEWfxCKYW3R3OCR3u+O6r8nf+/EtnkpOfRPmuFg7tayczO4HMnAQ62hyse/0gTz78yaCp2T3dLt787z4e/9MmPO4Ap51TdEI7hZ9M5i3uzztKyxx7iNccL3v8N62r5nBlF06Hl3BIIiHJQHpW/Ch7Hx0hcMaI+/DuQf+rE9NIuehWcm97MDaeoKbZBkBWiolDdT20W10E47Mod6eyPf1qLOfcSNz8cwHQa9XkZcSzu7KTsATJCXKeQ0uXk7TL7ibxtKtIueT2Y7ZXqdHF8neioTRD/hwyb/g56Vfe2+9xcfexu1LOKbK4G+ho6BdxQUcv/pZK9vrzyc3L4tYr5gJQkBlPTpr8BW6PnDRU5kT5eMKDMyWRJAlbr5tEi5GExEjIyS57XsKh/mZaB/e14XL6iYvXD9o/NT2OjtY+erpdLFiay9kXlVI8I41Z8zOpKG/nxWd2093hpM/uiZWQ93S70GhVQ451LCxfNY0vfnUpt//PWSw5rSC2fNr0FEKhMI11x+7FiQ4C7O2Ww236rKxRGwjWHe7mkd98eMI6PAsmDr8vyJOPfMLTj24lFAzj8wYJBI69p0yf3cPhii5mzsskf1oyqy+bFVu3eGUeyammQYL/vdf7O9VHv2sASpWCOQvHnoIw1SkZ4HkdjzDJn9YfWSjf1ULVATnRPzr24XiYcjk4UxVPw35AAchfXE1iGkqtnpCkIOBwoImLo7Kxl0Szjjuvns9P/m8zj760j69dLoev/FkLSDxt1qBjLpudQX0kdnvWwhxe3nCY1i4ni0rTsJxzw3HbrDIlotSb+vN5UrJRKFWRdXJCcMhtZ0+lB5PCy13x7+F44RMyvicnI3ub5e61VYEMzkgzc9bCbIKhMDPyk9Co5eO0CQ/OpwKPO4DfFyLRYoidOPp65aThaPIwRMtWIS5hcB5VUWkqNZVdAOQX9Z+QLr92AV5PkEP72mICSKdX871fXUh3hxNLsvGE5rMUlqQCh6ir7j7m1vXRi47NHqA6eQndh+HQ2+9wydVzB92VDqQyMhh0/55Wzjx/9Hlzgslj99ZGPO4AHneAzRtq2LWlgaRkI1+587RjOl59tRWA0jlyfkxuQRLXfW0p5jg9mTkJbNnQX2yRkGSg8kAHPd0uLCmmQQJn+sw0jKbPzjgQhULBTd88jdqq7nE13zztnCKKSlN57T9lHChr5UCZnD8avRE7HoQHZ4wEuptQJ/YnZaoT5Me1f3ucPd+8F0efm7oWO+fRSPzHa1k+O4PdlZ00RpKnkhOGfljnDDh5rjoi5DMRKBQKki/4KgC6nBkxcQP91Vp93d00tDs4O1P+4akC/c8fFTh1wTRy0swoFAouWJ5PXkY8KZEv35AcHKdtwuwXTBy2HtlNnmgxxqqi7JHPbmDTveik4CO9LgPFQ/60/n5PGq2KG29fzuKVebGkYp83iLXLRZ/dS27hsXchHQvpGXEYzVrqqo59LlX0ouMOKGlMmsve/b34fSH27hh5FEX0teoNRx8u6/MGefnZ3fz+p+9SuX9qTEs/1di9tRGTWYvRpOXDtyvps3lpqOmh6Ri9ftFuw4XF/Rfx6TPTycyRz4HR6iGVWsml18wDCXZ8XA/I3zWFUsGV1y/goivmHMermppodepxD8zV6tTkFlpYtGLwSKL4CfDgnLICp6nDwVubxzY7SQqHCFjb0CRnk/3V35G65psotfKbb9u7j4DNxsGNO8h2tzO97F1aX3uD+Umy23/rfrkiJRqCGkhOWhyZySaSE/QUZiWgVStpmeDR8XFzzybrpt+Sdvndg5ZHBUlHXQ2LtHWco9wVW+f2ylVfvqYKfEoDneF4so+Y9qpRK4k3aentky+I6kgCs6tqx6ABpIKpQTQRODGp34MTFTPRHIHUAfNujhQ4yWkmLCnGQR6ggUyfNbjaY8822RNUdIIHAiqUCgqLU2hv7cPlHP/3zu8LYj3ipuLiq+aQU5BEU30PwWFCGVJYiiWPRivLRmLn5nr272nF6w3yxgv7cDnEb+NkEg6FsXa7yMlP4kt3rGDmvEwWLJXn6D35yGZefW4Pmz+sYf/ulmH3f/HpXYPCkJIkUXe4m5Q0M3HDnNOhX+CkZ8YxrSSF5FQT+/e0EA6F6WhzkJJmZu7inAkJwXyWWHn2NP7nFxew5gvzSM2IG3Oi8tE4ZQXOC+urePSlfbEckqMRtHchhQJok7PRZRYRN+8cAPw9vfitsruyc9suVlnLYvtkdch5L1siJbcpw3hwAB76n7N59PvnoVQqyEwx0dY1cR6cKPrs6WgSB1+Aor1wEho38RXzJjRuOfwQluD1DdWEAz58HXW0KDJISTBg0A2NZlri9fRGpkGrTAkknnYV/vaaWK8fwdQh6sFJsBhjZd9R0WOL/C2e2S9Gool/URQKBdd9bRnX37p82LuzwuIU1Or+08m2TXUoVQoKi5OHbDvRTCuR76SffPiTcXtJ9mxvAkkWcFEWLs+lZFY6wUCYD96u5P/dv46K8v7jdnU4YmMk7DbPsCII5Ith2fYmjCYtl1w1B7fLT4Xw4pxU+uxepLBEYrKR9Mx4rvnKYi67dj5nXyQXWezb1cL6Nw/x+gt7Y4I/it8f5ODetkGDZnu6XfTZvBROH/l7nZRiJCHJQMnsdBQKOc/G5fSzeUMtth436eNIwD2VUCgUGE1aFi7P447vnoVOf/wZNKeswIlWPI0lJBTojgxDSxkcj3dU9yt7ffU+sr1dJC5aKDcJ278HpVKBzy+f/Ibz4ICcbBwVD2kWI10290mpzFAZ+5PAPtacTvzSS1BbMlEq4IOPy+mtPQThEJUeC9lpw1dyJcXp6HF4YwmZSWdfhyo+BVfFxE95Fhwf0TBUokXuL2M0aWO5N7aIB2egwBkuMTg51TyoEd9ANFoVF181h4XL5bvjcEgif1oy2mGE8UQTjff3dLt5/smd7NzcMMoeMn5fkE3rqolL0HPGGbmx5Wq1XPIKsHVjLc4+Hzs3NyBJEk6HL+bxiovXgSR7wHq6XUMqyRpqrFi7XMxdnB3LWxpYUfNZxd7roepgx5SoMOsdEJodyKrV07n1W2cC8tDHYCDMpvXVg7bps/ULnqh3sP6wfENbUDxyjolareKen5zHqtXyqI+5i7NBAR+8VYFKrYw10BSceE5JgeP1B2nplHNj2sYgcPzWiMA5oumeMzLA0zx9OkavAyUSliWLSZgzC29zM4UD7goTzKM3v0tLMhIMSfQ6vKNue7wolCqk+Wt4xnk64VkXknLBLcQvkKfE6gIOyjdvAaDKm0JRduKwx0iK1+Pzh/BESnQVCiWm6UsI9rbT+uT38TQeGHY/wcnH1utGqVIQFycLl4QkQ8yD09HaR0KSgczs/jEJw7nf6596mtrHnxjxORYuz+OsC/rnN80bY7v64yXRYuTaW5Zy/a3LUKoUVB8a2wybhlorbpef5WcWkqiRL2AFFjm0nJGdwJfuWMEFl88i0WKgtqqLR37zIf/vvnV8/L78u4+Klu0f1/HIbz5k28eDQ94fratGoYAlp+WTGAlHRD1pn2XWv3mI/zyxgyf+/DE1lV3HVbF0vETF+5ECByAzJ4FzL5nBZV+cT6LFQOMR/ZQG9ndqabQBkfwbBRSMwzNpSTFxw63LWbA0ly/evOSos9sEE8spKXAa2x1Eby7GInAC3U0AaAcIHCkUwrp5C0q9HuOXboktT1y0AG1yMkgSN56ZzfLZGXzh/JIxdXVMi5wEu0ZonDbRlMedwU5/EfOmy3er0TyaZI0XZXcNYYWKxmAKy2YP32wp6pXqieThBIIhXq2T3a++tppIU0TBVMDe4yExyRBrJGZJMdFn82Kz+rF2uSiekTooYfZI97C3vZ2WV1+n7c23cDePnHw7UBjNPM4mXeOhZFY6xTPSSLIY6e3uFxFSWGLje1W0NtmG7FMXqYYpmpGKOeRkeeOrrF7WHz4oLE5hxappsT49Ue9L9GI3rUT+3ezaIucbDQxjtbfYqT9sZe7iHJJTzag1KuLidaeEwOnudKJWK+lo7eNfj23jkd98GHvdHmcfvV0nL0wX9VwmWYZPETjjvGLmL80lOdVMT7eLmsquWNL5QA/Of57YwdoXy6mr7iYzOwGDcXzVT0WlqVx27fxjrvQTHBunpMAZ2JBvLALH21KFOj4llpgL0PnhRjzNLWRddim1Hg3rU5bAgmXoMzLQWuTKEfOG17mi/h2unju2ngCpifJdRmevmxfWV/GfdZW8/GE1f31xbyyZdyLZW92NWqVgVoFsb7Qzc5HBTqq/hQ5SMRj1zBjhjiMpbrDAOVTfwxuHdVSbFgJyjx3B5BPtgZOQ1H8XG50dU7VPTmoviYjYOQuzKJyeMiTPpu3tdyESdmx/690Rn0uhUHDhFbNZ84V5JyU8dSSWFBO91v4wb91hKxvfrWL9m4eGbFt/uBujWUtaehz+Hitmfy+GtKF35qVz5PdmwbLcQXlGM+ZmDBJ0ugGvtzsyo6tkVv8FLTHZ9JkPUUmSRK/VRW6hhTu+dxZnnF+Mw+7l+X/swO8L8sErT/HiX39JOBymp7OV5pqDox/0OIg29xvOgzMQS4qJYDDMvx7bxt8f/ITq/Q62bxrskdu1pQGPO8Cs+WNrBCmYfE65PjhVjb08s/YgSqUCk15Nm/XoVUshl51AdzPmOasGLW9b+xYqk5GPjKW88N+9kDiLb3zrAhQKBdpkWShYt2wDYN/3fsCcX96PuWjaUZ8rNXKXsbe6m/XbG1AoFIQiJ+qG9j7+95tnHtNrHvZ1hcIcqLUyPTcJfeTErI4InNORmxp+4JjGgllpqFTD62BLfFTgyO79/TVWwih5xbuSn6T1EhwwlHQ07OX7MU8vRqU//qZwgsEM7IETJSsyKqSrzYdWq4olTV5146Jhj9G7cxe6tFRURiOdH3xI3o3XozYOf1e8fBJzDCwpJqoPddJn81B9qJPNH8o9SeprrPTZPMRH2hu4XX7aW/uYNS8ThVKBzyqHJ6K/3YGkZcRx70/PIy5BT3NDL90dTrQ6NXqDhjkLs9iyoRYYHH6KNjs0x/V/n5MsBprqevB5gxOSQHmi6LW6aKzrHfNE7IG4nX78vhBJyUaSU82ce/EMNBoVH75dyfNP7sDTUYnf68bR281zf/oxAF//xWOoNUcvtz9WenvcmMzaUcW2JWWwAIoKf4Bv/vAc2prsvPTsbnR6NYtX5h+5u2CKcsp5cF577QCFnhDfvGIuJXlJtFuPntTrbZIz6PW5M2PL3M0tuGrrSF65gvJm+Q7h9HlZsZBN1IMDoFCrkQJBDj3wW6TQ0WPRaZE77Pe2NRCWiIkbkIVZcEDH2eOlpsWOxxdk3oBkuagHB+AN90K2+4vJGSGpFCApUmkT9S7tr5Fd/m3dTpQJqQT7rEjh0ePvrvoG9v/k55Td822k8MS9RoGMbZhEy4wB+TZzFmejVo/cLl6SJHydXRiys8n83MWEPB66Ptxwwuw9HpKS5ddYUd7O2y/vx97rkcPDkpwbEh3p0FBjBak/QdkfFTiW4XMr4hPl0RXR40d7CS1akYcpLvI7sLpjicYxgTOgGi36/k/lMJXT4ePhX3/Ia/8uOyZvU09kn+j7BHIYaMGyXBqq6/F75fW9XW2x9d1tjcdp9fDs2tJAS4ONjJyEUbc92jgRS4qJWQsyWbQijwsumzVq7yPB1OGUEzjuVgc6FLTubSMj2UggGMZqHzn8422SXajRieEA3R/Ls51SzzyDXoeXgsx4fvCVpTG3vi65/ySZeclFZF12KX6rFUdl1VFtSxyQiFyck4BapUClVHDRygKCIYmWo0xuHi/7DsvNquYN6Dip1OhIuehW9hbcyHqvPJYhI/koP/z4/hBVIBiiskG+SIQl8GgSQQoT7Bu9AZurVr4D9rZ30DlFL5yfZgb2wIky0IOw9PSj35EGHQ7Cfj+61BRSV52JymSiY936E2PscZIU6UGyO9KHx2jScu0tSykoTmb/nlY+WidXytRHvv/RZFF/Tw8qg2FEr1Ts+JELd7TKLDnVzHfuW83S0/MJBsM4ImK/34MzVOCcrDBVOCxh63EjSdKY++9sfLf/HHUsdkZDQgMFjkKh4LIvzqeoeMB2AwROR1PtuJ9nNFoae3n75f1YUoxc9sX5o24f7V0DsOzMAvKmD/boKBQKLr1m3qhz0wRTi1NO4IQiHoKGmh4selmJHy1M5e9uRqHWxiqoAg4HbW+uRZucTPyc2fT0+WIX+ihaS3/OiiE7G8uK5QBYt247qm0DE5Hv/Px8vri6lC+cX8KcyKyO6FiHiWBfdRcatZIZ+YNd8vGLL4LsubH/M5JHjl0nJxhQKRW0dbuoabHjD4YpjMwg6QnLnp+xhKlcDf13cO76sZX4CsbOwB44A/n8lxcxa1H8iKXfUXxdshjQpaai0utJWrQAV109gT7HiTH4OIiGGro7nCiUCu760bkUz0jjS7evwGTWxrrQ1h+2Ep+gj13Y/D09w4anjiQpIvijHpwjl0c9GM4+HxqtalBoJOpJOJ65WWOhorydR37zIW+9VM5Dv/6AZ/62lT/ety7WfXkkwqEwh/b1Cw97b7/AObi3lTee3zvsUNWBRBO8k4a5MVJK1tjjzpb62OOowNn05r956W+/JjwBXtx3XjmAQqngmpuWjGkW2kDv5uo1M5mzJB5znI5lZxQcty2CyeOUEjjhUBhVsP8HqgnIP6SjJRoHbZ2oE9Ni3pmWl18l6HCS/+Ub8QQk/IFQLFQTRWUwoDLKPxh9Vibm4iK0KSlYN28ZNUz13RsXc+fn5zM9N4lrV5dy/YUzKIiIhuEEjru5GW/H2MpiowSCYQ7W9zAj34J2mEm2AwXb0Tw4GrWSnDQzda12qhrkzq4XLJe9Ac1u+U44MIrACXk8uBub5GYUyM0TpyqhsERd69iGie473MX9f9+K3enDHwiNeb8TwcAeOAMpnZNO4YyRP98ovk65CaQuVfb2xc+eDUDfwRObIHosJCWbYoP+TGZtzFOlUCrIKUiivbWPznYHXR1OCoqTY79rv7VnUGh55ONHPDhHlNFHPUc9kU7kLod3kPcG5M625ngdhyvGnpt2NLo7nLz+n724Xf7YslAozLo3DtLT7ZLnikn9vVuis8SGQ5IkDuxtw+3yMyNS/Rb1/FUf6uDFp3ezZ3tTrK/MSEQ9OK2Ht/Dq338/KOTs7msiLBlQawy01PY3z+toqkWSJPZ+8h5tDdXUHdw95LjjQQpLtLf2UVCcTHrm2Ao8VColZ19UwhXXLQBkj83dPzmHi6787I1TOJU4pQROd7cTBaCM3H357bLbdiSBI0lhAvbOQV2A7eUHUMfHk7rqjFj10JEeHOjPwzFkZ6NQKEg//1x8Xd10fbSJsN9P2O8fsg/AqoU5XLyyYNCy7FQzapViWIFT/oMfs+u2O/G0jb30srqpF58/NCg8NRBLNJdIoyIp7uj9ewqzEujs9cQmkp+9KAdLvJ6N1fJ7U1Mx8rRln9XK1uu/jG33HkwFBajj4/H3nNi72/FS12rn549tobbFzk/+9gl3/3EDh4cpOR6IJEk8+eZBdh7q4C8v7uUnf9vM3X/cwG//uYPQBOZRjQW3009NZSdqtTLWA2e8+LqjAkcui06YLYdr7funnsBRKhV88eYlpKSbhwzBzC2wIIUlXnlWvoDOWZRN38FD+Ht6CXk8cnuHUcgrtFBQnEzp7MGdwbMjVWlRMeF0+IYIHIVCQXFpGt0dTt5+eT/r3jiI1xM45tf67usHKNvRxFOPbOaN5/fy2r/L+MtvN9BrlXseweBZWc0NI988bNlQyyv/2gPAyrOLgH6Bs2dbU2y70fKHrF0uTHE66it201xzkD6b7DFz9dlw2TsJhFPR6C24Hf2C397TSXtj/4DKPZveGdPrHwlHn5dQMIzlKN7n4Vi1umRQ76YTOSRWcHI4pQROQ4MNgLhUE/EJeno6HCgVI3czDjl6IRREHRE4UjiMu6kJU0E+CqUy1pAvaZgLhyEnG01iYixclbXmUlQmI4cfeZSt13+Zsnu/QzgYHJPdapWSnLQ4Gtr7BY6vqwtPWxtBh3zHWPu3x8b2JgDlkfyDuUXDC5zkiGDLGMMk6GhIaldFJzlpZsxGLSvnZtLgMhCSFDRXHMKx/yOCfdYh+7rq6iFyh6cy6NFaksbswfFZe05Kt+T3dzSxu7KTe/7fhlgS9eFm25DtOnrc/OudCoKhMAfrejjcZEOtUrClvI1D9T1kJpv4ZF8rB8cQngiHJXwT1Bzt7Vf209Pt5txLZsR64IyX/hCV/H0x5Oagjo/HcWho6fVUINFi5M7vnc3S0wsGLY8O/uxoc5CWEUemyU/5D3/CztvuAPpf39HQGzR8+Y6VZOcNbp1gjteTnhVPbVU3oWAYl8s/ZNwF9E+g3vFJPVs21B7TAM6O1j4e/f1Gaiq6QCH3ndmzvYm9O5tRKOTE52u/upSiGanc+q0zuOYri0lONQ1pZDeQxroelEoFX/r6CnILktDp1bERHm3N/WJk4GDWI5Ekie5OJylppliOTUdTHR6Xg+Za+bsSlNJA1e8pCyuz5Pfjgzdjy9obawYJoCjb1r3CBy8/Oer702sdOUwmOLWYurWKJ4DWFlkgWFJMGIxaDu5rIy3RMKIHJ2CTTz7qxDRau500HKgl7PWyx6amNBiKlUcP58EpvvN2Qh5PTCCozSZKv/MtWl9/E1vZXjwtrXRv+pi0c84ek+0FmfFs2N2MyxPAZNCw82tfH7TeebgGSZLGdNex73A3Oq2Kkrzh+9tY4vUoFJA5hhNEQWZ/hUI0n2flnEzWflJHayiJ2Zomul77M/q82aRf//NB+3oHeJ3Szj2b7s1b6TtwcNTX0XeogvIf/oRpt36VzM9dghQOo1AeXatX1PfwwFPb+dkty5meO3In0X2Hu/jDs7v44VeWMbPQEhMzi2akYdZr+KishabOobknf/zXLg7V95BuMbA1ctF64I7Tael0kpIoz/L67sOb+GBnE43tfVywIh/NCJVLz75ziP++X82z9180pg7YIyGFJWoqu8jKS2TFWUdvUXA0fF3doFDEPBwKhQJjbg7uhhNT/XKiyM5NYNGKPHqtbk4/txhXdTkAUkD2oqSedXxtGIpKU9n8YQ01VV0gMcSDA1AyO52b7zqd1sZe3n3tII6+8Q/f3PFJPV3tDnR6NVd/aRE1lV0sWp6HwaQd9JzRpnJJySYOV3SyZ1sTth73sD1hutodJKeaYlVliRYj9l4Pbpcfe6+HrNwEWpvs2HpH9uC4nH583iCJSSqamuQbr/f+8zd0BhPZ0+TZT4b4XPyhfqHl9mdjVrfSWLUXgEVnXcLujW/RXHOIkgUrYtuFQyF2fPA6ADMXnUFmwWDv3EB6h6nkEpyanFIenGiHyoysOHm0vQSZZh31bX1UNQ72HNidPlpq6wHQJKbz6Ev7+O9zGwGo8Op5a3N9rDz6yBwcAE1CAvqMwZ1ckxYvYvb9P2P5v55GZTDQ+vqbQ/YbiYLM/jycIz0XCrWaoNNJwD56nkc4LFHR0MuM/CQ06uE/fr1OzbeuW8QNF80Y9XjTBpQbX3uBfBKbU5zC58+djpRcEFsXdAz14EQFzqK/PUL66vPRJiUR9vkIuY/uBu/8cANIEk0vvIStbC+br7wG2959R93n98/uxObw8ebHdYTCErsrOodtD/D6R7X0Onz8/PEtuL0BDjfbmFecwv23ruTbNyxGq1HR3DE0Kd0a+S58sq+NbQfaWTEng1mFyaxens/C0jSKcxPRa1Ws39HI314p56f/t4VAcHgvzX/flyt9th84vo6vHe0OvJ4ABUXHN/DS19WF1pKEUt1/P6RLTSXodBJ0n5yu2xOBUqXk0mvm8aWvr2BaScqgWXKJixZizDm+0RJFkflVe3fInZ5Nw3h2FQoFuQVJzJwnN4tzjnMsixSWqDrQQUqame8/cBHFM9K48PLZpGbEDSuookTFzsAk4igBf4jeHjepA6Y3JyQZ6LN5Yh2go80O7Ufx4HRHqjxNhsGvyedxUXtgN2k5hSSlpmF39D9PMJxMWJLDaOYEC3OWy4OMow0AnfYebN3tdDT3N93btXHtiDYA9AxTySU4NTllBI4kSXS39uFGIiM9LtYHJFkn/7i+8+eP6Bxwd/LQ82W8t34nIHtwEvZv5er2DQB4ElJ5YX1VbPvhPDhHQ202ET97Fu7GpjH1ffG2t5Onk3N2Gtr7CPYNzsWxLFsq29U0cgv9KL0OL/5AiNy0o0+0PWdxLoVZo/ePSIzT8cd7VvHcLy8mPXJnqFIq+MrnZjF9UX/TOE1S+pB9ve3tKDQa9Onyumg4b2CYytPWzuarv0jP9h0AhINBrJu3glJJwGbjwM9/AUDnBxtGtLGly0lnxN3e2N7H25vr+PnjW3h+XeWg7YKR5ocAHl+Qv7+2H58/RGmkk7NKqSAn1Uxjx1APjk4j/5R2RuYgff7cwXeYapUSvbZfIByotbL2k3pAzvN5YX1VTLhqI8Jzc/nQi9FYkCSJYCA0pBT6WPF1daNLSR20LBrO8XePnLg61XFW16Aymcj/ypeYdutXj/t4eQUWNFoVlRFhmpA0csl5tHeOc5wenJYmG06HLxbqGivTZ6ah06sp390yZF1XhwMkBgmc1HQz4bDEc49vByB/WjJGs3ZIDk5Lo43tm+qQJAlrROColMNX180/fTX5RRb8/n4hFkaPJzQHs6WUy2/5LvFJKSQkp1FfuQ+fx83rT/4/Xnz0AeorygBQa7Q0Vu8n4B/5fTtaJZfg1OKUETi9PR6C3iDhoBtLnC5WaZGfaOSra+SqkI/L+n/8uyo6SFE6qPTO5MG/VTKzfb+8Qqnk9NVL6HP5eXerXNKcNE6BA6BLSUYKBgn0DU0cjlL72N+pfvgvlP/oZ0hPPgySRH1b35A8FcvSJQC4xyBwouG49An88ZfkJRE3zGyWlOJZuNoh6AVnQxe+7m6Cu/bgbW+n/uln6d21G316eiy8FE3MHpho3Ln+faRgkNq//wMAZ/Vhgg4HOVdfiSE7K7adyjDyxSSac6RRK6lpsbMlIhxe+6hmkBdnd0UnTk+Aq88pxmTQsG67HIIpHRDKy0k3023zxAaMguwV6xjQM2RecQql+UMrcm5eM4s0i5H/++F5pCYZ+Nc7h3jkv2X8Z10lz7x9iNoWOy5PAH9QFr1lVV14fWPL0xrI2y/v59c/eJv3Xpc7ducWjF4dNBJhv5+AzTYkP0WXJgueaH7ORLGromNQrtmJIhwI4KqvJ65kOjlXXYEhK2v0nUZBpVZSUJxMOCShVisHjWkYsq1KidGkjfXLGQ17r4d3Xz0Q8w5FPSpjRa1RMWteJu0tfXy0rpq9O5o4uLcVkMNTIHdsjnL6ucUsWJqLRqvCkmIiMyeBxCRDLC8H5ETqJ/78Me+8eoDuTifWLvncIgVlT7LRLJ9j5512Phl5RRTPXUrJLFmYGSzLCSlz0Rv0hNXTUcefTVKq/JoWnnkRboedJ3/zLXo6WvC6nezasBaNVseScy4lHAoNSko+kl6rC3O8Do125OaVglODUyYHZ1/ENXt652Y8L9rIvvN2zHE6utod3HTNXJ5fV8lHZS1cdc50wmH5BJWt6uX9viuAAD3mQhSqHlb96C6KEzN46r3DBIJhSvOT0A1Taj0a2hT5guHr6kabmDhkva+ri7a33onN/wEoiuulvjUZf0F/aEOp15MwVxZonqMMQYzSHrkQZ54E923AGaavEWgEaKVzy50A7Hv/Q8Je2Y0dvVACaJMiHpzefgHnt8knS7VZPvl6O+RqLXPRNBLmzZU9OOEw/p6hIbAozZE7y8vOnMZLHx6ONTl0eYOUVXVRkpfI8+ureG9bA3qtigtW5KNUKvjv+9XMn57C4pn9d8t56XGRYzpiuTxWuzcmSgCuOW/4/IBzl+Rx7hK5Udg9X1zIQy+U8e7WBqK5vxUNvQQiVVYGnQqPL0Rjh2PEXKnhCIXCsbv02fOzmDkv47jGAvis8vs6ROBEvr/ezonz4Hh9QX75xDZmFlr4zZ1nTNhxh32ujk6kQABTYcGEHreoNJXqg53MnJ856kBGc7xuRA9OKBSmrrobvUHDu68dAKl/yKc5Tkd2ZNTGeFh1QQkNtVY2vNPvubzlHgOdEYEz0IOjN2i47Nr5XHZtf5O8RIuR1mY7DTVW6mus9A7IXazc30HVgQ4MRg0epxWlUsV19/4Kv89DgqVf6KVnyf1lWtpzUChz+cJX5vPRuuqYDQCzl51NR1Mth3Z9PMj+RasuIbd4Nlvfe5nWukpyi2dxJHKis4vMnLGVhws+25wyAqemRr6oJXo76Hi3mZyrryQ9O576w1aUCgXLZmfw4a5mbA4fgWCYsN9HutmOUePDHdDTkDgHQ44bXU4+Zq2K5AQ9VruX266YO8ozD48uJdJBtdsK04uHrO/8YMMgcQOwNNjE2qZE3K39d7jGvFy0KSko9XqcNbX0HapAbTJhzMsd9nnbe+ST0tH627S/tw5Tfj5xpSXjfVmDcB4epkTcbCbs7M9hCav7y1hjIarufrHiqpNj71JQTgT1Ry642uRk4kqms/L5f7Hr69+IebW8HZ0ceuA3lHz7HkwFBQA0dTrQqpVcdc50XvpQtmn2tGQO1FrZsLuJNquLVzfWkBSn47s3LiErxcx1F5QyPTeJJTPTUQ+YxZUTEThNHf0CpzXS++TmS2cxrziV4jFcfOZPT+WHX1nKt/60MTbZvqKhJxaeOn1eNut3NNLQ1jcugdNYK886OvuiUlatHjkRczSiVVz9PXCOCFFFhKm/e+I8ODUtdkJhieomG6FQeMQZaBNBwGYDGFPvm/EwZ0E29YetnHHe0N/0kZjjdDRHKjuPZO+OZt787/B5ZaVz0o+pIi4hycAt95xBTUUXToeP914/SPXBTrraHahUylHLqlPSzSDBP/+6JbYsOz+RrnYHH7wl97VZefY0Oqo3EJ+cisEUh8E0OBSuUCg45+JSqg91suzMQgqKkqk60EFbs50+u4f4BHkkxrlX3UxSWhbhcAiNRkdfbzdLzrkUSZLQaPU01x5iOVcOsdHe68HvC5KWIQSO4BQSOJLDjS7owZSahK+jE19nJ3mFFmoquqjY105BZjxm4M2Xy9HlxJOpsqGQJLxBOV4cVmqosyfz8K8/4K4fn8sDd5xOW7drXBefgUTvgH0jXCCsW7ahSYgn/cILUKhUWD/ZTEHjXr7OPuor5StiyXe+hXl6MQqFAsuyJXR/9DHlP/gxmsRElv3zCVx19aiMRvTp/XdQ7ZH4dPoI03VDPh81f/kbAKe98t9Rq5OOhnNAEqc5G/pu+BVhbzcZZTsJz1/G2mfeo9GRz58jVVPRkFM01Bb2+2Odjb3tHUiSNEjgACi1WrSW5Nhy+759uBsa6d25OyZwmjudZKWaiTdp+eLqEp5fV8WlZxQSCIbYur8tVrH1p2+dRXKCHOrSqFWsnDt0anBupOtvUyTRuLnTwe//Jedq5WfGj0ncRCnKTsASr4/1U6qo78EQydM5fX6WLHDaHbR2OfnPukrc3iDf+9KSYZszRqk6KOcAHdmnZTxIksTPH9tCW7eLny2Sv2sjeXAmMkQVTfT3+UM0dTpjifUnAn+vDQBtUuKEHtdo1vKFm5aMaVtzvB6/L4jfF0SlHixYOgeE6QxGDZYUE1m5Cez4pIFZ8489nGYwapmzKJtwKMxH66o5XNGJy+knJc2EchRBOVyo8/Rziti/p5WDe9tAAQuX5fDC1i7yS0e+8Vu4PG/QyIOcgiT2bG+iub6XWfPl359CqWTRqouH7KsAcotnUXdoD057L+aEweffqCcoLfPoOYaCU4NTJgdHpVBiDPSRfeUVgHxiXrwiH7VGyeYNNWQkm8hBSe2+dv771iFy1D14JQNhSYHeJ+eEeFxBnA4ftZVdZKeaWTLz2C8i2lEEjrezA2NeHvk3XEfetV9g5k9/BDPnoaLfq5M4fy6GTDlunfP5q2PLAzYb7qZmyu79Dgfu+0Vs+bPvHGLjnmYSzNrYBPG+QxV4O/s7qwYGhIdse8qO+fWBnMSpTkykfl4J5ix49JW9rK/wUnzv3bTE57AxZRF1AUMsmVZtNqNNScHdIIua3l17Yp2fwz4fgV4bvm4rKJVoE/sToLXJFvw2G1IohLddvsB7Wtto7nRw8y/epbPHHRsaesOFM/jjPas4fV4Wqxbm4PGF+GBnEyaDZkzJ4pkpZlRKBU0dDgLBMP/79E76XH5m5CcNm3dzNBQKBcvnZKBUyD2J2q1u1m1vYFpWAgtL09BpVeyt7uLHf9vMh7ua2Xagndc+Gjn3AKClwYbBqDmuE/zBuh4O1Frp6fOy4QO5lFqXmorHF8TtlT1pKr0edXw8vq7jD1G1vPYGPdt3DKpkrD6iqnGiiXpwNMOEh08W0aqn4fJwbFY51yUrN4Fb7jmDW+45g4uunMMd3z0rVsp9PChVSqaVpNDaZMfe6xkUnhqJnPxEWWEge3MWLs+lZHYGF181hyuuW8CNty1HpXQTDodITB16czDicQtkkTKSNyvKnm2NvPnffWRNW4QkSVTu2Txkm862oflEglOXU0bghBVqLHlpxJXIbntfdzdGs5b5S3Jpa7YT7vMRnchTihJFIAdHSL6DtLiaUYf6Sx8ryo+vfBdAF5l7MzAcEyXo9hByuWMiCECflsb0732XN9NOjy1Tx/ff4Zry8yj82s3oI4Jn/0/lnjPeVlk8dPV6eH6dPEjPGKkcs+8/QPkPfkzVH/4UO070zhagY937x/z6Qj4f7sZG4kumkzstB4UCTEofVoecNFs3oCvze1v750+Z8vNwNzUTdLup+8dTqAwGsi5fA4CnrQ2/1YrWYkGh6vdiaC1Jch6OzR7r6OxpbWV3ZSfdkUGqKYmRO0OFgpK8JBQKBctm9Sdq5mfEjamHkEatJDPFRFOHg/U7Gqlv6+Pa1aX8/u5VmI9hyvBNn5vF7+9exTe/MJ/UJAPBkMStV8xBpVSQGGlh0G3z8M1r5pOVYuKF9VV4/cMnHkuSRFeHg9QxvpaReONjeTbQ4hlpMQ/Nw+828Kt/bOPnj/WHJ/QZ6Xhah1Z6We0enO7hO3Ufia+rm/p/PEXt4/+gqrGXeJOct1J5Kgic+JErqaxdTpJTTXzt3jNj87IUCsWYhMhYmTW/X4SM5bg6vYb0yHbnXzqTNV+Yj1KpwGTWMW9JDtNKUrFFGvwlpYw9CTol1YzeoKGp/uhNMD98u5LdWxv5+CMPepOZqr1bh2zTGTmvCA+OAE4hgQNQfNrcmKs9eue5cLmcq/LBKwdQRG5PNCjwh+NoDhUCkOjvweDpxGjWkpJmpupgB71WF0/9ZTOP/fGjY+qoq9Rq0STEx5I4BxLNa4jm6URJTTLQnVoY+//Ii1jWmkuZdustAAQGCJWg08nuStmzkZls4pbLZuPrtlIZETaOyv4S5YEVWrZ95aPOzhqJvgMHkUIh4maUMnum7I7OUNr4YuA13NU7qW/tw6BTsWhGGmXVXdidPnZVdKDNyUUKBjn80F/wdXaSe90XiZ81E5DLyn1W66Bp7dA/vd3f04O3PSJwWlqxDbgznlU4tFQ6M8WELlJpkTeOmH1uehztVhe7DnWgUMDlq4rG8c4MxqjXUJKXRFaKmQe/dTZ/vGcVcyIdpheUyHkuX7p4JheuKOD8ZXl4/aERR0U4+rz4vMHjunsNhyXKqroozU/ihzctI13lxadQ80lVL1WNvVQ12fBH8nOMeXkEbLZB/ZeeffsQN/3iPR54avuYns+6Rb5I+To7UbQ1s6AklZw0M5vKWiiv6cbuHH8jvLHgj+bgTAEPjsM+uG9MKBSm1+omeZQhqMdL6ex+ETLW70zxzDT0Bg15hcN7K3u75d9f0jg8OAqlgrxpFlqb7CNOPQ8Fw7gi3wW7zU924QysHS28/uT/k2deRc5fne0OEpIM6PTjv9kQfPY4pQROSnoc6rg4lDpd7M40Mych1q8idMRNb71fFhPGgIMzisPc/aNzmbMoC487wD8e+oTG2h7aW/tiM1vGiy4tDXdjIz7r4DuXWOVKymBXtEKh4NYbVlKTVMTe5FkEgmFCRzSrMw9IWE45Q/b2eFpa2VXRiVIBf7x3FaXhbvb/9D4Cvb1oEuQLezSZNFrBFFdaSsjlwllbx7HQs13OS7EsXYLOnAjAFxL2kKvswlW5nbrWPvIz4jlrYTbhsMQ/3jjAfY9vZV2DHAKxbtmKMT+PrEsviTVM9DS3ELDZ0aYMPrn298/pFzjBvj6s7fL7+Md7VrFihLLa6FiK8VTC5abHEZZg24F28jPiMR2D52Y44k3aQTldX75kFr/75pl84Xw52XtGJAeiYoSZQl3tcl5QSvr4Loz+QCgWemrqcODyBJhdmIxOoyJX6SaUmAwKBV5/iHBYoinSB8iULwvXf/5jPY++tJdQWOKVjXIIbX+Nlc37WqloGP6u/NADv6XhmX/RvXlLbNBqqauRrBQznz93Om5vkB/99RP+/vr+cb2WsRLotaHQaFCZJq8ZXP8E8sGd1HutbsJhieTUE9vHRaVWMndRNkCsL9honH1RKXf/+NxBM64GEvXgJKaOr4x9zsIspLBE+Z6hfXpAfk+i95GhYBhLWi5IEo1V5TTXHKSzuY4dH6ylr3MnGdnyOW3ja8/w6t9/N2hyueDU4pQROAqlgvRM2XWvS02JCRyFQsF5Z6cxLVtBcWo9C42bKJwl3zm7g/LFTx90klmUg1anZkbkQuly9rvgO1qPrW9H9pVXEHK5OfzwXwYtj3pwtClDvQ7LZmfgufxG3k5awlXff4P7BoQMADTx8cTPmU3KGaeTcsZpADibWiir6qQ030LHk09w4Kf34evqovDWW8j/8pfkbWrkC1M0Byf1nFUA2EfpEDwckiTRs2Mn+owMDLk5KA3yBdcUli+M9vYWHG4/BVkJLJ2VgUIBG3bLicWf9OoJKVUoU1KZfu/dKFQq9BlyrlPfwUMgSUM9OJEKH2f1YUKu/n407pY2EuN0sZDUcHznhsWkJRm4aGX+mF/fotL+pO0Zx9FjRgqHRxy6CrLgmTngTnl6TiJKpYKKEVz53R1Dy31HoqnDwaH6HjrtAW79zft8+8GPADhYJ4vCWYUW/D29BHp6UOUMfm+iQ1+jlXrN+6t5d2sDtS2ydyf6Vv/mnzv47kObhjy3v6eXnu07aHv7XRwVlXKjSoORfHcbmSkmzlqUw4Lp8mfaMMyA2YnAb7OjTUyY1IGKUQHTc8SomGjDvJQT7MEBuPza+dz943OP2pRwICqVckRxA9Db1Y7OYBpSPTUapXPkdgb7djbTa3XRfsQ51RqpVIw2SDQlDU603rt5HTs/eA2D8gApqUqkcJjyrR/QXHOI9f/9+7hsEXx2OGUEzmmrizFH79ZTUvB1d+NtraFnw3PE7/sbp3n+wenBD5mtP8ylK/tPeqmJKrQhb+wimpoRhyVFvus7/1I5dDKwh8N4SDl9JYkL5mMv3z8oFOTrjnpwhu9AW5yTGHtcVj00yXPuA7+g5H++hT7SvKz54GE8vhDLsjR0vLeeuNJSFv3lz2RdegnmYjm84jwsC5xoDk7yyhWojEY61q2n/qmnafzPC9jK9hIOjD792FlVjb+7G8uyJSgUClRG+Y5KUiixhQ0ErC1cbChjUWaIOKOWwqyEWMM9u8bMnwq+yOZzvoZ5muxBU+n1aJKScFTI/Tu0KclIkkRFfQ+hUDjWy6T7408AYq9J6mwfsVosSkleEk/85AJyRunsPJBZA0RHcc7Y7nyHo+3Nt9h+09cIDiibPxp6nZrCrHgqG3qHDYt2RSq7UtNHfy13/u4DfvjXzbyyuQe7009Ll5Neh5eDEfE0o8ASE73R9zNKTOBEPDipfhuhsMSrG+TtP3da4aDtrfbBHk5Hpfw5hlwukCT0s+fiS80mzd9LZpwKlQJ++fXTyE2PIxAcvdP3sRCw9aJJPLYKyIlCb9BgNGljDfKiNESGYo7Vq3I8KFXKYWdTHSu93W0kpY09PBVFo1FROjud9pY+nvnbNv75l80EB4wyib5H+dPk357O2H+TYTDHU1W2lVAogEIh4es7gMPefxPQ09l61M7Hgs8up4zAyZ5mYntzGSD38Ah7vXS88U9sn7yEvaIda0V/25lg/W6KdHJC7mkFPhSAPtL3Q6FQcM5FM1h6ej5LTssHxdg8OOW7mtm2aWi4x1iQjxQM4u3oiC3zxXJwhq+WOLIUebikU4VCIVdYKRRYa5sAKPHL4Zusyy+NjUcw5uag1OlwVsnzj/y9vZH8oARyrr4Sb3sHLa+8RtO/n+fAz39B/ZP/POrrlCSJjvc/BCD1nLMAUCekoVBrCZaeT00gHaPk5iLDPnL2Pw3InX8B0pIMnDYvk6BSTWWkqVmUaLUYgKmggP21Vr778Cb+33O7UZvN6DMzYrOt0s49G4B4ezvpSWM/eYe8Xlpff5OGZ58j5PHgrKml4re/I9A3WMAqFAp+eftKpmUnsHz2+E/mUfoOHiLkco2pA3WU4pxEbE7foPyiKE11PcQl6DGZj95gbqA4auvtF6y1LXYSP3iVmzrfJ8Gsi4nejLmDZ5JFBc7mGgdupY585P8/inQCP2fJ4B5M0caKUfoqBo/I+N1mB73mVDRSiJ7v3cXhh/8KyB6sPtfYkpXHgxQOE7D3oUk88QJiNCyppiEenJrKLsxxulio5dOCx+XE63KOK8F4INNK5XOsrceNzxukoaZfpEQ9ONHcn0BATXxSKjq9EX1Cf1l+WNJQW/4hbzz5/wDkMnJJorut6Zhsam+soa93Yrt1C04ep4zA+c2mR/jDJ/9Hl6ub3pwkmjMNtH1UjdcGfQ3g7wNd/jIA3FXbWWLcxi3XxGFyyMJjYEXT7IVZXHzVXLQ6NUkWI+0tdoKBkZNxqw918MpzZbz76gF83sFixJgjx8CbX3qFzg3yME9/txWlXo/KNHwM/khvQ0fP8MMplVoturRUgh3tJMbpUB8+iEKlInFBf3dShUpFXGkJjsoqwoGAnJeTlIhCoSBzzedImDuHrMvXMOcBudz8aDk5IY+HXbd+nY5338NUWIB5mjzBWmWMI//eJ8i95CZ8usT+7V02AOZGBM7imen88CvLWL0sjzari64BuU3RMBXIeUZVkTyUj8paaOpwDMo9Sjv/PJRxcWR6u0kbx91p96aPqXviSZr/+xJ1/3iKvd/+LtYt2+j+5JMh2y4oSePP3z6bxKMMOByNaL6Qt23sM6eyU+WwResRF0WH3UtXh5NpJSmjhl2sRyS1nrNYHjK5/UA7M7oOktHXQtDpou/gIRRqNVlzStColSgVsseqqrGXDbua+PMLZbQk5JDU18HiAVq8IDOen9y8jG9dtxDoH5URs7WyCqVe9qba1Gaag3q29PS35Or8QBbI8SYtTrd/SJ7Z8RJ0upCCwQnvgXMsJKeYcDv9eD2y0Oyzeehqd1BUmjqp4bNjwdZ9bPk3UaYdUf5edUA+93Z1ODhc0YXBqImFX10OP+defTOnX/pVaurjQKElLGlxK1aTkplLbyQXqGS+PJG8q7WB8RIKBXnx0V/x9O++i9Pei983vsGogsnnUyFwdu3axZo1a1iwYAE333wz3cfRPXXPpnfZtvVdupI0OANBeqv71xlnnI9SbyLksqNRBIlPMNP90SZ06Wkjngzzi5Lp6Xbz+J82DXKpDmTju1Wxx81HJIgaIhOMO9d/wOGH/oKjsoq+ikoM2dkjnuBUSgW3XTGXmZH8j4FzkKIEgiEkSSJsScXssXF2jhpb2V7iZ81EfYRwip89i7DfT+3j/8BVVx8bmaDS6Zjzq/sp/OpNJMyZTVxpKd7W1mFtAnDV1cdym3Kv/cKgdUqdEZ1Wzbw52bFlikgX44UlaVx5djGXnSkLoqjg+daDG2I5GAMns6uNxkEDLzfubo7l5WgSElDpdEhZ+aT7ekmLP7o3YyADxw50vLc+9ti+b+ITXSVJ6i9pbxt724HMSMlwW/fgsFZttfy+H3mRGI7GI0Kql6+ahlIB73zS32On6k9/xr6vnKQli1HrtORnxpOdZmbF3Ezc3iD/79+7iTdpWfmVqwC4Ml5+7ww6FVqNiuVzMjl3SR4FmfFsKmuJNTOUwmHs1TX4M3LpWHA2HyUvAKBD1x+OVepk0Rhv0hKWwOUZPSw6Hlz19cDg79RkYTkiD6exTj4/FJYcf6+bk01v1/grqAZijteTnhWPWq0kPkFPxf52QsEwb7ywD5fDx/mXzuwfUurwkVM0k7YOE0hqll5wE+ddczu3fvtiZi89O3bMkgWywOk+BoETTZgGeOq332bDq0f3XgumHlNe4Hi9Xu6++27uvvtutm/fTn5+Pr/97W+P+XidDf0ncb9JCRIkLpLvNH2dHWjTC/q33bCdkMdD4c1fGbGj70VXzGbxynzsXQd47cnHh6wPBkK0t/bFSkIbagaXhRtzc2KPpVCIfd/7IWGvl7zrv3jU17HmzGl86RI5B6j9iCoMSZL4zp8/4s7ffUCNR4dGCjH7kxeQQiHybrx+yLGiZdgd774HDPaWDMSQnUnA3jdszkjA4cBZI/dPmfXzn5C8Yvmwx5AM/W73kKOHsN+LRq3kq2tmxzxTS2amk5Kgx+70sykS9lDqdZG/8p1/fWsflngdBp2a8ppu0s49B5XJSMm37wGgVZeMijApr/1jyHDSkYj2JJrxo++jz8pi+j13YS4uwl5+9HL5YymlD9hssXlcUU/OWMiKCJwjPTh1VbLAGEsTuMYOWTTmppvJT9OSnxFHdlocCYH+Y/bu3IU+I4Ppd38DgB98eSk//eoKVkRCcpIEX7p4FiVnLUOfkYF36yf8723L+cVFGThra2PHufGiGXj9IZ57V27lb2tuQxkMsKdXzQvBafQUzOH+W1eSXpRLKJqYKklIkhTridPnmtj8Cfs+uXlhwtw5E3rcYyFanl1TIX9+zogQTJrAvJiTRX8PnGMP215x3QKuu3UZS04vwGH3snNzPa1NNopmpLJweR5ms3weqKnqonJ/O7s2N5CUbGTZqhXMXryI5FQzBTP7PdTJGbmY4hOPyYNzZFir7lDZMb8uweQw5QXOli1bSE9PZ/Xq1Wi1Wu69917effdd3O7hwzIjcXqXCYM3jMva7/1pTDdQMSuRvJtuBMDT1oF51hmoE9OIX3Ix9v0VaFNSsIxwsQbQ6tScf+kMDOp62mq3Ye+1Y+tx886r+/nnX7fQ3tpHOCSxaEUeWp16iMBRm/srJXTpaaBUkvm5i7EsWTzqa8qwyBe79iNCVI3tDupa+2judHLIJbv+Qz1WUledSfyM0iHHic2cUiqZ+dMfUXDzTcM+XzRp+cjmbkGXi+033kRdZOK3MX/kiqRgYg6G4iXo8+RBeYGeoeGZOKOWv3zvXAA6et2s396Afo580ir6+q0EQ2EaOxxMy05k9rRkqhp7UWZksuK5Z0hcMJ9QKMxmtyyk/NWVVP7+j2MSIT6rFZXBQPLyZSx+9GHSzj2bhPnzCDqcuBqGP0F2bfqErdd9iZ6du0Y9/kCiHZeBWO7QWMhINqFQyFVQjkgzPUmSqK3uJi0jLpZIfzSiHpxf3b6Sm89PQ6FQ8JVLZpIYGOzZyb76ipi3L91iJDPFRF5GHDlpZlISDZy1KAeFUknmpRcT7OvD8PHbWP/4G/Z+5/uxYyybnUFRTgIfl7Ww42A7H6/fA4BVG08oLHHzpbNZNCONP9xzFmf883FSz1pF2O8n5PESb4r0iXFNjAfH295O2O/Hvq8clcmIuWjahBz3eCiemUZSspFtm+oJ+MO4HPJnajqO0Odk0dvdjkKpJN6SOvrGI5CeFU9hcQrLzijAZNby7msHCYcksvMSAXlsBUBro43nn9yJ1xPg7ItKB83miktMJj23iGmzF6NQKEjJzMfa0UIoOHyDTIDXnvg97/77UaRwf1J7VOCs/sKtmOITUalOmclGnxmm/CfW0NBAQWSmEEBiYiJGo5HGxkZmzJgx8o5H4OnpZbHNTwA/+aXzaKjcR1ChIEiYvqAHhUqFr6OD+EU3E7/oAgJ9fXj++jYpq84cNRau02vQaryEAvDUQ+9i7+u/+6o+JI9ByClIIq/JRm11N4FACM2AvisZF12Ar6ubkv/5NlIwgCZ+bMmFlgQ9apWSdqsLry+IUqmgy+bh3W3yxfj6C0rJc8dBpOla0giiSaXTsfDhP6FJSECTMHLipSEmcFpjHaEB3I39dzoqgyHWl2b4J9OQ9vnv4anYgrfxIIGeVnQZhUM2M+o1mAwaNuxqZsOuZuYUJXP/iy+g1ahoaO8jGApTmBWP2aBh56EOKup7WFAiV1aU13RTTRJNX/0Jyzp207b2Laxbt5Fy+mkj24U8yFObPLjsO3oR9DS3xHKKBmLdspWwz8ehX/6apU/9PRbeG4m+ikp6d+zsn6KuUAzrwbFu207Xxk2UfOtulJoBA0k1KpITDGzd387+mvU8/qPzcff5cPb5mL1gbDOKalrsJMbpSDDrCNXUUf7svzHHx3Pv6gW0Pd2/XepZq4bsq1Ao+NXXT0OS5K7OAGnnnUfjv1+g9fU35Y3CYTxt7RgyM6h59DEucAZ41JvLL57YxlLbQc4Dzr94Kd9avXLQeAylRhN7/wO23lE9OGVVnWSlmkkbQyK5z9rD7m/cQ9p55+KoPoxl6eJB3bAnC5VKydkXlvDKc2XUHHRi1Ms2mT+FAsfW1U6CJQ2V+vgvK1qdmiWnFbDxPTm8nxUprDhyyGhRaSpzhvnef/6OH8fO26lZeTRU7qWns5XUrLwh2/q9HpoOHwQgMSWDxees4fCO9XQ1VKBQKimZv4KGynKq9m4l4Peh0X76PptTlSkvcNxuNzrd4C+UwWDA6x1/wlfUXZWckUtjVXl/98u2RnRpqXja2gmFQjiqqqn9qzxwMm5mKaER7v6d9h5cDhspmXmEIu59j7Mb6P8R7dnaCEBGdhy5hUkcruiisdZKQXF/zkHBbV+LPVbotCM+33DkpJmpqO/hWw9uJClObu3vcMt3vJevmgZ9Sex5St42bu7sEY+ty5ZzY4723NpI6Mrd3DJoO9eAKqCQx0M4PHxpb3SfUCiEKkl2Y/s6GzGUrujfxmmj+82HSTjjGlITDbH8i/01Vq7/6dt8+ZIZxBnlC19eupm8iIv/vW0NzC2S39NoWGvF0kKSfUm0rX0Lx+Eako7iiQO5PD+uZPqg16aJJJdHvxtHMlCc2A9WYFmxbMTjOw/XcPDn9xP2+mJjNjRmFQGHE093F9qkfnFV8ev/BaAhPU0eV3HVFbETdnQMgtMTYN32BjIU8je7oMgy6nfH5QlQ12pn5ZxMgv4AgdffIOCQQ46OKvliMuuX98lTttXqYY+XGKnSiq5T6LTM/PlP6Hr/Q3xdXdh276Fn127SL7qAjnffIwHQTLuOgFKDxS93PV50xmyMJs2Q46sjjSe9Pb2Y9LJYtDm9Q7bz+IL8/PGtrFqQxb3XLjzqawawlZcjBYN0vLcOJIn4+fPH9Ts7kcyYl0HKehP1lW5S0pX8f/bOOzyO8vr+n9mqrdrVatV7sy1Z7h3b2BTTe08CIZAGgfBLb6QXElK+pFJCgABJCKGYjsHYxsa9d8vqvUur7X1+f8wWrVUsW7Ix4PM8PFi7M7Pv7M7Me997zz1HqZQjVwhnzPjGglAoyEBvF7llUyds3JWzs2IBTka2IXZcdZICnzfIt35xISqVgrAYhlE+0pIpdfV1ttQjk8uRK5QYTPHnb3dHfIG2fc2rdLbU090olVQt6TmERRFdxNRzoK8H80mSqM/ixDHSXDJWnPEBjkajwX+MGJrH40GrPbEadZI+GZdNqnPbPf6EVtmjB3aTp9EQrqtn+y8fINzegRgpw7QKAu179gx7zIPrXsLe286UxVdCxARTLiTyU5wOH/pkBVVHD+ELSeex6f2DdPXoUSVJE1N7k4dQUCSn6MTr7gWp0NAewOEO0NIV/+yp+RoOH9qfcJ4HB3EjTgZiRAOn/fBhuv75NEJ2FrLUVAKDTDnlC+ezZ4TvK4r9+/dDKIhJEOiu3keDoSz2nm7PS6g6juDqauUrPgf/Ui5kT6AAAF8gxBOvHaQ0S1r1ewba6EdJUYaaD/a2UZYWICtFxQd72rEmK+htr6UnFAKZjI79B+gbZVyiz0fY68UpCAnjFyOl0LbDh+k+Zn8xHMbX0AgaDXg81G3bRlNSIqlZdLkI1zUgm1pO4IWXCXt9CEY9QbsdlRHUyUECDmh48Mt4rvl/BHYfJHTgYGz/tpdWAtBpMSOL2AqcO1XP3no3A64Q/1tdxXSVHEEGNmcLe/aMTAI/3Oxh42EHogjJKg97X3sNHE7kC+YR2n9Q0qUBar0ehM4O6DxBz7X5cxC9Xti9h6b319NujmcDZ4nttFlLsLTY8cpVVDU3IbQMbd0NRWwfqnfvpiNN0t85Ut1AqrIvdi0LgkCfI0g4LFLX3H3c6w0gENFIimpBtGs1dIxhv9MBUQyTmtZDT1cSnW0ONDr5mM7pTILH0U84HMIflk3o2LPyk/B5w1QdPRR7bdEKM+EwHDo0NvK/1yU9Fw/u2sy6l59CodYw5/I7EASBxv2bsHVIGe/iOefTUbufpqP7EQQZuVMXYErPZc+ePdgc0nNg765tmNKHZoHO4szEGR/gFBYW8vrrr8f+ttlsuFwu8vJO7CLLLiyjt6UGgGnTZ5HSX0NVbQ0+tZGQ10nmnNm01tUT2rk7tk/GFZeRf8H5QwjG3W1N1B3cgb1HmkxaDsTbiGU4uOXzc1Gp5fzzr5LPzrRZecyYMUnihryzivoqF72dIRYtL8Zp93JgWxehUJgLL52HOunEfhJrlpN1+9clvPbwt5eTZtYgl0vjtv/yZygNBjQ52UMPcILYYTQi7+nFd0B64Cx46Xmq3n6HfpmMWY8/gtJgGDH1HwqF2L9/P5WVlcjlctr25KLw9lE6Y4b0vtNGyztSW5vc3YccmKVuYE+gAKtZw/zydF7f2MCRFi8KuYzzF89GLpchN/Two8e28I93urn63CLcvjBXLi1hxgwpcNqXm0NoYIAZkc85Fr7uHo4++Ht8QEZpCbmDthNFkR2aR9EFQ5Qfs7+npYW9oRDpy5bS+dYqkgPB2LlEUfOnv9Czbj2ZQT+ddXWoU7UYs534BgRMlYW4aqSgM+CCzP5O6la9O+wYC43JmCPHjn7Em5saeOrVg3g8IjK9itlzZo5YTu2ze3ngf2vxBUJMcdSzyJmCeqCHPqD8059CdLup/fNfUaWkMGX28flfo+HgpDJcDY2UpWewP/LaNakuCr64gL13PYu6MI8ZM4fPugzIFRx+6RWyzWayZ1bw+DtdrN5jx2K2MPm1RzBOmULq8nPh0D7SfOAL5Yz4uw7Gvqf/RZSppisupnLpknGd40TBae9ny9sv0HV0KyrZHPzhfMwW/ZjO6UxCw5E97AEmlU9jygSOfSIOJYoih9a9SHejpL8U9Hk4sv5FLOk5tFXtim23YOkFqC++ivdXPkNQpuKi625DHnmWNSQJ1O9+n3SLeULP7yxGh9PppKam5qT3P+MDnAULFvD973+ft956i/PPP5+HHnqI8847j6Sk45MpByM5xUp7iQFdpxOTWoEouElLlXPIOpn6Q7tIu/NbmGdM48D3fwRA/q2fJuf6a4ccRwyHefOZP+F22ABJRdMxSAgqSe2hZFJaQq14UkUGcrkcuVxO5exs9u9sxW7z8vbLURsE6SaqP9pLxcyx8SiiyMtMZmFlJnqNkp1HurCaNeSkJ3J4zFMrTuiYo0FtteKqjXei9W/ZSv/2nSRlZqA5xkJhJES/C3VGEc7968DnRq414O2qh3Birnm6qonvWN9jzq33oM4qZdP+DvrsXvIyDKhUEjdlRlk6D967hG/9aQMr35cChnOmZ8ceTtr8PHrWf4Do86PQDpWk7353deyc1BZLbL/YOaen4evsGvK6p1HKQBgnT8a2azeelpaEbURRZGD3XgDaX3srciw/5vkXYF5yI3JDCg3/9wU43I/fCd1rE20Nsq+9Gmd1DQP7D+Bra0M+d07C+1csKSZLpeCN5/fT4PTRM+AjwzJUO8kXCPHISwfwRbSarurcgOsNcCsUCLk56LKzkMvlzPrrn4bsezIwz5qJ40gV/VvjhpsDu3bR8uRTiF4vuZddMuS7jCIpRSrTBQfsWI3x32rLGxsp7Oiku6OT7rXrALggKZ3ntakIggyZbGSenLulFXdjE6aZM/D39pJ56UUjfv7pREvtYVY+/mDsb7WsAX84H70h6YwY31jR29nK+lefBSAlPeuMHPviy27mvRf+Efvb1t2BrTsxQ2mypCHIZKy4+Uvs2bMn9pwCaf4AcDlsZ+T5fVwhG6F7ecz7T9A4ThmSkpJ4+OGHeeSRR5g/fz7Nzc385Cc/OeHjGMxWVOkWDhUqCfW14O9qRJ1RRNn0+YiiyOZ3XsRYXh7LciRPqxxyjANb1/LXH9wZC24yC0pZdPENsfc1eiNywUEoJJVyiiJu0Nn5ceLp1TfP4Fs/X4FSJSdZ+R5m1WqpY0KAw/vHJvjW0+mkf1Br+Pdvn8dXb5rJ7+9byg/vGJ1nMl4kpSW2IVc9+Pth/aHGgmhLvq/1KLbNK/HU74u8nkg6zgq14ti7BkEQYto/x5pjTs5PoTRCREwza8gf5Meki3R1NT37r2GtJqLt7QCa7KEBZlJ6Gr6eniGdWM7IykJfVIg2LxdPaxvhQZ0antZWAgMDaNI0KPUgyME8axrWy+5CYbQgCAK64koUWimD427pRJuXi2GS1OmWddUVTPrW1wFwNw2vdtxcJ7XA9yNyeASPqodf3Mu2Qx0smZHNv+9fHntdDAaRD3OdjxemmTMA6IoqWi9bihgK0bP+A/SlJViXDSUvR6GM6E0F+m1o1AoyIwHbZI/Eq/LKlBw2FBJOTiHH24XS7x5R7VgURRr++QwH7v8xCAI5113DzD8/RPoF50/QmY4PLbVSFnTSzEXkllSgkPUgw/WRIxhveedFXHYbwEmrGJ9qTJm9mJu/+lOWX3P7iNuMJAUCoDdJzx2HrXfEbc7izMMZn8EBmD59Oq+88sq4jmFKTcfUbsHv6uDPh17jhqAfdUYRGVPnkFtSweEdGyiumI35ykvR7j04bAvprvelVbggCNz6rQcxmlPx+7yxlcHUecvYvuZV6g/voXTaPG6+cw7hkIgYDhEIhlCq1AgyAY1WxbkXZrPrXakt9/NfXcBL/97P0UOdeD2BYc3s3nhhH/29bqbOzObV/+7FlKLh3u+fl1CSSDWNzTAvClEUWfmfPQT8IZZfMmlMHkaq1KEtoLKkJFKXnHNCnw3Euqc6XngQwvHAQF++iL7OekgygFf6joRIi+acKels3NfGpPyh3UrzKzKobrYxryIj4XsxTJkMgkD7G28hU6no27YdhdFI2dfuQ51qwXGkCsPkSRTcfhuGYdro1WnpEA7j6+mJWVwA2A8eQmE0osnNQZuXR//2nbgbm7AfOkT7G29hWbRQOp88LXLBgyBXknb5HQnHNp97C737++jbfgACAfRlpRR9/g583d2oIpwbhdGIZwQ7B7vNgzpJQdAb4nB9H8tnJ9okBENhNu9vpzgnmW9+ejaOg3F+j6BUIi8feyfiWKEvLkJh0OPvlSaDjIsvwn7oMGIozOTvfnvUiUSh1yMolZJdiSjybVMtO5MMGBqaCBrNPGS9HASBKw09lO9+k1JXM70DnmEVpV31DbS+tBKFwUDpvXefEbo3g9HZXI9CqeK86z5Hc/UhmmsOolNsQ51U/mEP7YTQ0yY1Upx//Z1o9GeuvURqZh5Gs5W1K/8Z9+UBFqy4jtyS0b9zdZIWrSGZ9oajiKL4kVOZ/qTijM/gTBSUKjXF6RInYw9uGpOUqDIKEQSBpVd+BkEm4/V/PsTbH7xI9hdvH8IjcTvt2Pu7ycgr5rov/wCjWcpkqNRJlE6bT7IlnakLpIBj1XOPUHtwJwqFHJVawarnHuHxn9/D5lUvxI6nUcbJoOGQkxlzcwgGwhzYnUgS3byultf/t4+dm5uoO9rDq/+VSh62Ps9Ju5iv/PduXnxmF3VHe9i/s5Uj+zt47fnhXcN3bGqgdZAvlNoaz+DoS0sovvtLLPzvv8i4aMUJjyMpdwq6KYsSghtBrUU7aQEIMlKXfwrlktsBCLmlcz1/bi4/unM+t14iiROGfR6633qUoL2X8+bkMbXYwsULCxI+J7minJl/fgiA1pWv4mltw3H4CB1vr8LV2ETI4yF5agXGKZOHfXBFfbAGe0YF3R6cdfUYy6cgCILkiA1U//HP1D/+JN72DtpeeU0KIoR+dGVzKPjaP1BZEwMQpSmNnBs+Hf+sdDNyjQbtII6ZNicbd0vLsAabTocPg1FNplEYNoNT1diP2xtkXnkGth07OPSzXwJQ9KUvMOVHP0DQnFhQPBYIcjnG8viEoU6zMv0Pv2X2I38Z0UA2tq8goM3Lw9XQQM8Hm+hc9Q45779IctDFYXU2Uavyd2wGgoKMxb176akfIfiLBHNlX/sqaectH3abDwuiKNLVUk9qVh5yuYLc0grCykkoZX30dxw8/gHOEPi9Hhy2XsqmL2DK7MUf9nCOC1WShimzF5NbIpXtBUFgxuKLSM8dXRNJEARKKucy0NtFV2vDaRjpWUwEPjEBDsDlU1bwZalJg1qtCnWGdFGbrRmcc4mkHBwKBjm0fT0gKVdueO3fiKJIa53UNlg+ZykZeYnuyitu/hKf+cYD6AzJ5E+eDqLIO889QjgUwuUYoO7gTkLBIDvXvUFzzUFCoSAHt78f23+gt4uKGVmo1HK2f1CfYPnw7muH2RVpNT//sslccu1Ull0sBWqH9o3dwygKnzfAvp2tHNzTxr8e2wqAXCGjpbGfdauqaKyLp2D7e928+eIB1rx5JPZaNMBRJhuZ/rvfnFRgE4Ugk5N+7TfI++rjaMukAEGhN6GyZJH31ccwzLyA3KVXIFNrYwGOIAjMLc9AFSlRuaq349j1DvY9q7GaNTxw92LyM4auIrW5OWjzckEUUZpNqCwWut/fQMsLLwGjq9oaK6Rgqvv9DTT/93+Eg0EcR45AOBxTgTZMKkNfWoq7UZIcQCZDDAYxlBUjCGFU1jxkScN7i8WEFgFBHJoC1+bnEXK5aHv2N4QDiZowLocPpbeLr6mep729N9YiH8XuKkmHadbkNGr+8jfCkY5E67JzMVacukxB9DsDUJlMKA0GZKqx2WboiwoJ9Nuo+evDCa8fUGaSnqLFatbglat5I+0cDCE3npX/Tdgu6HRy+Fe/of7xJ0EmkzJ4ZxgGejvxed2kZ8fLscb06YiigNc+vm7HU4ljg+zeDim4tGTmDLf5GYnzr7uDy267LyJKmIZCOTRjPhyivlZHd28+lcM7iwnEJyrAASj0hVGHw9SZTShM8XLDjMUruPuX/0CfnMKhHRsIh8O88fQf2bvpXRy2XtrqJQZ+dvHQh6UgCLGV/0U3f5mc4nJCwSCOgV6q90pBxKJLbkSuULLh9f+wb9N72Lo7yCqUyiEDvV2o1AoWnFtEd6eT916XAgrxGJPB+UsKmXtOAYvPL0WrU1FX1c1I2LWlKSYyOBg9Xa4hr624ohxEWP9ONa8+t5dw5HPrIvL/rU02wmFJPj9qOqqOlGr27Wihq/3kMklRKAxm1OlSsBn2SuNT6M0IEX0XmdZI2D0w7L7+Tsn809dSNez7g5FcKfFNUubOwXruEvy9vfRu3ETKgvkkT5824n7avDyUyUZ61m+g6d/P0b9zF46I+7oxMnkKgkDB527DNHMGFT/7cSxo0RdK2R/lMZmbYzHjz/+HaZKOQMc+RDFR+yF6LNuu7fS++1Ts9WAwhMcdQOXtRB32cI6xhd/9ayfPvnU4ts3hhj40ajkFyQoCA9LvVPC5zw5Ltp5IDM7gnKignq5YmvTDXi+6wgJA4t40a9JZPjuX4myp/fywoZBabQ7ymsP89Yl17D3ajSiKVP3+IfoiBGeFXo/iBCUlTgeiKrnW7ILYa+VzrRgtebhsDQT847OnEMNh3M7x3ZfHYss7L/HUr7+BzxtXTo+eR2rGR6t1WqFUMvvcS5mxeOwLtPTcIlLSsji0YwNe91C7mrM48/CJC3DMcy+lyBOkURZkwJcoTS+TySiumI3L3k9zdTxN3NfZSn93O0p1EkazlSPdNbxdvW7Y4ytVaoqnSm22tp5Oag5sR6lKYtrC85m97DL6OlvZ+OZz6Ixmll19GwADfVIgsvSCUrJyk9mxqRGP2487IuimN6q5+c65KCJZC5lMwGTR4rAP/xB02L28/r99/OfxbUPe641o5VxyjZSxyMozUT497h3T3+um6oDUXRANcPy+IO0tNv748/fYcURy+NZkZjLQ72Hlf/bwyO/W01Bz8gaoAEn50oSoLZ075D25NpmQK/6wdh7eTMMfPkvHCw/iqdsDgLf1KGJ4dIExy6IFIJNhXbqEzMsvxbpsKVlXX0npvXePWlMXZLIEY0ZfVxfuhkaQydDmxx/syRXlVPzkh2gyM7EuXYJMpUKTLk2uqtTRAxxdXh7p559L2NlH0JYYmOpLpeDP7wTH7ncI2qUsT1TWXyP3IShUXJXZRrZVx39XH8XtlcjUbT0usqx63EelALDoS18g++orRx3LREBfNFSdeuz7xssFpffdi9JsRjtnHj/98jl86qJJFGWbYu/vM5UiQ8S+YQOvbqjD19mJbddujFMrUBj0ZF91xXhO45TB3ifdW6bU+CJLLheYtmAhoWCAXevfoqX28LBlybHg0M4NPPXA12Ou2sMhOAzhfiS0N1SzY+1ruOz91B6QbEm6WhvYs1Hyr/soZXCiWLDiOioXnDfm7QVBYPbyywn4vezdtPr4O5zFh45PXIBjWnAVl5x/F2FR5N97Vw5535wmTfY71r0We623swVHfy8Gk9T58vjO53hi139psQ//8Ig+tDqb6+hsqiW3tByFUsXsZZeRnlOERmfgis99DXNqBnKFgoFeaUKTyWXMXphPKBTm8L6OWAAzZ1E+ZeWJBph6vRrR9X6M4Pzem0fYuKYGURTZvytephAjmZcoerqlACe/OIWvfHcZn7pzHjqDmhs+O5tPf3E+MrnAnm3NhMMi9dW9yOTSxL99YyP2AS91dQOUfeNr5N58A+0t8azKs49tZeW/d9NUP3wnz/GgyZ9K1u0PYFlxx5D35FojIY8DURTxdzfR9dLvEUNB3FVb8XdJ5TvR78HfPVQ4bjCSp1aw4LlnSa6citpioexr91H4uc8m+IGNhOxrro7929PahquxiaSMDOTq4TteMi65iHlPP4EQkr4jpeX47f/RbY4NcAjYkCkh4JVKPJ56iYflckrXh86gRlsyC7prWT5Nsqto6XLiC4TosXlY0vA+h38pGdRGS2qnGoJcTsVPf8S0Bx844X21BXEvM11hAbMf/jPzv/NVZpRJvlnFOXEBwVvvux5RnUShp53WbieuSOu+9dylzPvnE8NKPZwJsEekJQzmxK7EKbMXY7Zmsv29V1j5+IM0nKTBY0vtYcLhUKy0fiw+eOM5Hv/5PbHup9FwYOtaXnz0V7G/j+7ZghgO894L/8Bh62XhxdejN45uUfJxQem0+aiTtLTWHj7+xmfxoeMTF+AAzM+bzbT0Kaxr2EyTLZGzYIq0ObY3VMde62lvxjHQh9GcSvNAG00D0j7rG7YOe/xkixSMHNiyBlEUyS+Tyh9yuYJrv/Q9bvv2b0nNyJVqwGYr/V3tsSBkyrRM5AoZm9bWsGX1alSyRvQGSfOnv6s9tiJTyu2oZC0c3vkBrzzxe7avXcv7b67niV99nV1r/xMbyz/+9AHPPrqVcCjMurer+GB1DQiQkqrDYtWjjcjuT5mWSfEkK1m5Jprq++judOD1BKicKbXN79sh1do72x2knLMITVYWHa3S5D19bg7hkMi+na3s2NhwMj8JAEnZZciUQwMGudYI4RBt//wBti2vASLp13wduVGaHAS5VEP3Ng//ME841ggByfFgWTifhS/+F1lSEq66BrwdHejyR87KCIKAXKMh0NuG3Jg67HkdC6VJCk4Cts6E172NB1DpIeAIEA6BOxLg2LulYNKYYkSZIgXmuUaJsN3S5aSz10Whq5WMBolArramSjyk0wTTjOkJ/KKxQq5WU/HznzDrkb9If2s0yAb5G0VLVAAzJmdgnjKJLF8vXT12nA2SKq0uP++M8JoaCY7+HuQKJdpjuo6U6iQuvfWrpOVIGbCm6gO0N1SPmMlpqj7I07/9dsLzCuKdTR1NtUP2aak9zJ4PVhEM+GlrOHrcse7dtJoknZ4bvvIjCstn0lJ3mKo9W+jtaJEy0+deNqZz/jhAJpNhsmaOmhk7izMHn8gARxAEbqqUUtevVSWmGk2DfEayiyajT06hpeYQ4VAQg8nC+5GgRilTsKFx27APHkNyCnKFIlYDzyuLE1jlCkWCWVtO8RTs/d10NkvEwiSNknNXlGHrc9N06B208r3ojdIE/uKjv+Jff/g+/d3t+Bzxyby5+gB6xTb0is14nDbw1wISj6OteYD66h5e/99+1r8beQiKxMpdxyK/KAWfN8iebdJKuGRyGjkF8dVZKBimO+JG3dFqRyYTuPTaSpZcKJlvetwT4/w8GHKdNKH5Wqtw7lsDgDq7jJRzbwHAtORG6f2WI3ga9iOGRnYNHg9kCgWa7CwcVVUQDo/qmg4SITPQ144qJXPU7aKIcsKCkQAn5BrAsW8dA1teRZ2qA1FEVKTjqd+Hv6eFzp0fAGBMS0URCfYy1JJHW0uXg/YeF3NthxDlCmb97c/MeOgPo7Zon0kwTatEkzn892ZJ1vClayr5/X2Sno5hymTk4SCLu3fRtXU7AJrcM7tkYrf1YjBbhi2Nmq0Z3HD3D9HqjezfsoYXH/0VDUf2Dnuc/Vvew97XzYuP/ooDW9cihsME/D76e6Qyc0fz0ACnavem2L87W0YnNPd1tdHf1UZxxRzScwqlbiNRZNt7KwGYseSisZ7yxwbmtEw8LsdZHs5HAB+Np90pQKmlkCnWUj5o2o7TFyfe6gwmlCopY5KeW4QlIwePS5rQPUp4o2o12cYMluTPo9fdz4B3KJFPkMkIRQTfcksrEozdjkXFvGWAlAaOYvH5JUydkYJM8CETAhCy47LbYjfUmpeexNF7hJCoZ/rSG0nSmgCQCUFEpGBo3jmJKeM92+Plm8mVI4tx5RVJY926XiLvZuUlx7I4UURLUx2tA1jT9ShVcpZfPAmzRYvTfuImqMeDTHvMKjclE7nGgGHaMnK++BCmhVehtGTjPLiB9n/9BPuud8Z03LDfg23rq0M6k0bDYCHAwfyb4RBy9iMGvChTxqZOrYhlcKQSVd/af9H92p8RQwGs518ujVkwE3bbaXnsa/Qcln4jY1YmCqOkT5SME5kgZXDaelxY/TYUmdlosrNQ6Ifv4voo4vLFRZTlSde4MaJdNN92CH9tDaqUlDOSWByFKIo4+nswmlJH3EYQBKyDOqy6h2lNDoWCsRKURm9k3cqn2br6ZYn4K4ogCNi6O4ZMxB1NtRhMFpTqJLpahh53MOoOSlYGxVMlFe1ohtve143BnPqJKU0NRtRss/8YJeSzOPPwiQ1wABbnzSUUDnGwO56mFQQhlsXJzCshqyCeYt9nrwdB4OuLvkBOsjRptToSywlRzFl+Oem5xVx0y12jjiE1MxdrVj71h/ckZIOMhninwtZVT7HquUdif7c3VBPwOQmE0+mzZSLoL5TGLpOz4sbbAQj74inU7DxT5OTgS99YylU3Tx9xPHmF5pjsvUwmYErRUj5DWklnZEuBRmuTDafDh33AS8agcoHeoMbhGF/3x3CQHxPgqLNKY/9WWXMRZHKScuICfcfj4kQxsPU1+lb/k95V/yDkdWHbvJKw3zPqPoPJxslTRxeOC/RJmkZj4d8AyBQq5PoUXIc20vnyH/C2SsRg89KbSD3/KmQqFT5bEDEMYijMwIDUCaVPTkFulAJT0dlLukVHS5eDzrZeDCEP+oKPVofLiUJfVoqgVhNGum5dTg9VjSfHBTsd8LgcBAN+jClDRTMHI6swfp0PN5m2N9bg93qYf8E13PrNX5OWU8iOta+z9d2XASiYJJXG2+rjzzevx0V/dzsZ+SWk5xTS1VJPeBT3786WOmQyOdmF0nNwMCk6JW383nYfRZhTpefh2TLVmY9PdIBTmS5Nivs7E7kblowcBJmM9LxiispnxV6v83VRZikiNzmLbKN0o7fZhw9wFqy4jhvuvp8kzfFXzdbsAnweV0Jbpwxb7N8DvR2xNvWp8+OCZYGwlb07WmhtCeML5TN90YUUTJkBgoB7IC5+tnRFGQqljJw8M+lZRtRJI+s+qJOUnHep1PpszTBIdgJ6Nffdfz63f2URFquOqgMdNFRLJMm8opTYvobkJNxOP6HQ+CzuhyKxDKgpGGovoLTGJ/GwZ2ztsSGPtLJ17F3DwOaV9K15hu7X/jLqPukXnEfWlZcz98nHURpHV34O9EX4UmMsUQHINBLh2XVoI4GeFrQlsyXfKpUafUkxjiM1dOyCzt3gVegRxDAytwNFsjRZBu09FGUn09zpZN8myeoyuejjHeAotFoq/vwn/lb2KWq12bxpnsMr689cLRlHjGA8uujhjHMu4tJb78VgstDbOVTMsKNJsgrJKSlHpdZw6a33kqTV01J7CJM1gwUrJIJ1c028I7SzSfpeMnKLScspJBjwY+sZORPR19GKKTUduUJ6Zpgs6TGxRUv6ifnmfVxgtkr385oXn6Bm//YPeTRnMRo+ElYNpwrpeisWrZl3ataTpkvlikkXIAgCCy+6nvI5S9DqjQkkQIc8yHKrtKrKNkgr+VbH+NOUlnRpJdTX2YrOIGVE3APtiKKAICRO7tMWXRArZwXFeIrbFZrD4sukMoYpNR2XvROQVl3ZuSZu/8oiNNqxCVotXFaERqskc1C3SrJZyhZMnZXN+6uOsm6VFHDlF8cf0nqjxC1yOXwYT9A2YjRoS2ajzp6E5cLbkeuSY5P5YBhnnE/Q1oV91zsE+sb2mwTt0dZ2EdsmadXrOrIFX0ddTATyWCSlp1N45+fGdHx/ZwMAyuO0iA9GlDAdRdSvCyDzissQFAr8Pe142npwqs1o/QP429uQTa9EUGkI2Xv4/JVTGXD6SK6SPl+Xe/qIxR8WktNT+cN3LsIfuIA1f9+Mv+fM5Uf0dkpNCskpaaNuJ1coKCqfxeEdG2io2ofT3p9QErJHui+jZSO90cyKm77ErvVvsezqW0m2pGMwWWgaJHkR5dxk5BXT1yVlGPu720lJH5qNCfh9DPR3UzI1bvKqUKowJKfgsPUOu88nAUaLFVWSBr/Xw4GtaympHCptcRZnBj7RGRxBEJiRIUl2P7v3pVh3lM6QnFCauvDGL6IrLiCggPI0KcBJ1aaglCtps48/wEkZFOBE0dVajy7ZSuWSO7n6C99h6vzlzFp6CWZrJskpaVgy8hCRAorC0lRu+Ozs2L6m1AycAz1AGHWSAo1OSVauCfMwTtPDQRAEZs7PSyg/RVE5KzLWHjcKhQyzJc51iHZ7Oew+XE4ff/7VGvZuH1u5aDTINQayb/8VSdllKE3pMQHAwZCptaRedCea/HIC/R1j0g8J9g/+7cQYmXlg2+vjHjOAp/EAcoNl2IBsJFgvuwvTkhsRFFJ32+AAJ3XRQqb+/CfMevhRZj79NF6lAYO/D09LK4IgoEhOxd/XhUkR5oG7F3NjpRScaz4BAQ5AZqqO/Ewj2VY9bd2uk9aQOdWImmwOfsaMBktGDmI4zFMPfJ2XHvt1rLV7oK8bVZKGJG38vs4rm8rVn/8WplTJjy23tIKB3s6Y4nDUQduclhXLRPSPkMHp724HURwSyERL+J/UAEcuV3DzvT9FpdbgdgwvQHoWZwY+0QEOwGemX8NVkyU1y30dw7cZT5q5kP4pWQgyGWUWaWUvk8nI0qeNyME5EUQfFNGVncPWi3Ogn4JJUzj30sXkFE1m2dW3seiSGxEEgau/8G0uu+2+2P5X3zKDKdPiZRBTajpiOIxK5SUlVTehxnApqTqWXyKV9sqnZyaaWkYyOE67l52bm+jvdbPqlUMT9tljgcKcgRjwEnKN/uARRZFAfyeawmkozNID2zDzQpLyKnAe3EjQaRvXOEKuAQI9LWjyK07o+1dnFJKy9CaS8qXAW5VWMOx23T0SmdsQHMDT0srA/gN077DRsrqTXXffgxgK4WlpQaZSkZQ29gDr44DMVB0eXxCbM84HE0WRV9fXsvL9mhHdx08W4bBUku1srhuVzxIdR0vtYVLSs9Eahi4ghkNh+SySU9LInzSNtvoq3nz2L4SCAex93SSnWEe9vsrnLAVBYN3KpxHDYWw9HeiMJlTqpFiAYxuBLBtdcFmOCWTySqdiTLF+Yjk4AMYUK2k5hTgGzlyu11l8wktUADqVlusrLuONo2vY13mYKyZfMOx2Xa4eUjQm1Iq4n05uchYfNG3H4XNiUB9fLG4kaPVG1BodrbWHeetff6W9UaqtZ+aXDLv9sV1ZhuSkhL+jKesFi1LJmzTxPjxLLiglrzCF1LTEc9YbpXFsfr+Opjrpxk+xnt7OHWUkWAn2d6DQm0bcLuSyIQa8KMwZWFbcSe+7T2GcdRFKcybepoN4G/ajn7rkpMfhaZLKAkl5FSe1v3npzSTlTB6RvxM1WrUY5bjqa6j6/UME7RIxPTBgx9XUjLu5BU1O9hmtB3MqkG2Vrsu2bhfmSFaxrcfF3185AEBn3QFuvX75mAOMkSCKIjvXvc72Na8yZfYSDmxdy7lX3krlwpHVcfu72nA7BiidNn/Mn5OeU8it3/oNABvfep7d69/izWf/gsPWG9PLGQkZecVMnbeMA1vX0tFUi62nE2u2JG+g1mjR6I0jdgNFsz7HZmpmLrmYmUsuHvP4P67Qm1JoqT2E3+tBlXRqrU/O4uQwpgzOa6+9htc78e2/ZwrUChWTU4s53F2NP5So41LT28Ce9kN0u3pJ0yUGFtFy1aHuRJGtE4UgCOSVTWWgr4vaAztwO2wAZOaXjrrf1Z+akVCaiiIa4JjMQYrKTs3qPb/Ygs6QKF4XzeBEgxuQ+DinE9GWbF+E/zISgv1S5k1pzkCVmkPmLfejMKTEuDf+7qaT+nx3zU6a/nIXvaseB0GGpnBkj6vRkJRVQtKsK9n2QQOrXz9MY22iCWdnxP8ro8BCYMBOoL+fgttvI+N8KaCy7dyOv6cH7SekPDUYWalSUN3WHefhtEYsSoyCjcDRV3j96T+O+3M6m+vY8s5LhILBGC+uqebAqPt0tUpChCMtXo6HhRddT+m0+TRWSeKNyZbReTwAJdPmAVBzYAd+nyehE8qcmoGtu33Ycl5nSz0qtUYiFp/FEBiSpQaLs1mcMxdjCnCefPJJFi1axHe/+102b/54OqlOy5iCPxSgqkcSxgqFQzy+8z98f/Vv+NX6P+Pwu7BqEwOcijSpVHOg8/hGj8fDipu+xKe//gDX33V/7LXjPbymzc5JKE1FEX2ADfSOv3x2IjClaNEb1EyZlskXv7GUsvJ07ANewhPeVTUyNHnlIFfgPjrUh0sMh3Ae3oQYDuHrkH7nYzVqlJZMkMnH3Gp+LDwN+wkOdBFyDWC98t6YOvGJwtbn5vGHPmDVyoNsWlvL049sSdAY6u12odEqmXLnp7GcsxB9aQnpF11IcrnUut69TnKrP9MF704FsqIZnJ64vlVbhHSsF6TAsKulftyf09MuBcHRDiOQWrLF8MjXu71f8qAaS2AyHGQyGcuuuS32t9E8spZOFOk5hchkco5EhCGjCyAAkzUTn9c9xJgzHArR1VJPem7hR0Yc8nRDlywRvp22xAAnFAyw8vEHObRj/YcxrHGju62Rf/zyPupP0ibkTMKYrtyXXnqJF154gaysLH784x+zdOlSfvvb33L06PFlvj8qmJYulXJ+vu6PfOvtX/Dc/ld5pybxArUek8HJ0FtJ0Zg40DX+AEcQBMzWDDLyirn2i9/jmi9+96S5M5JYoTrWJXG6oFIr+NqPLuCGz84mI8uI2aJFDIsjmoKeCsiSdGgLp+Op34tj7xrEYDwjN7DtDbpe+j3965/HeWADgjJpSMu5IFeitGSddAYn5JYmity7/4ph6tKTPo/N62rp73Vz4ZXlrLiqHDEsUlcdNzTt7XaRYtWhNBiY/O1vMv13v0GuVqObVIkgB3ez1KKuyTi5ifSjjAyLFpkQD2oAWrulYCcvOWJQqjMOu++JIHp/zb/wGkCyWfB5XPR2thIKBti6eiUNR/YmZEeiHlRG88lnVtVJ2ljnzuBgZSQoVWqsWfkxF/DB+2TkSRnLwebCAD0dzQQDftJzi096nB93RDM4TntigFOzfzsttYdZ8+KTH8awxo2m6gN4nHbeePqPuD7iJOoxh+ZFRUV89atf5Z133uF3v/sdmzZt4qqrruKaa67hueeeI3Qcct2ZjgJzPJXfONDKOzXrMaj1/GjZ/4u9fmyAIwgClemTabV30O1KLCGMB1mFZWQXTjr+hiNAUkEtoKulIUaAHAvaG6tx2MZ3HoIsHpQZI63ltn73SJufEuimLAKg+/W/0v7cL2JKxdGgZWDLK/jaqtFNXoBMlTRkf5U1j6Ctk7D/xMuyIZcdQaGK2S6cLBx2H4IAC5YUxtze645Kk6PXE8Dl8GFJHcpvUqcVoBz0cv+6R87YbiLb1ldxHt50/A1PAD3tzbz73N8oNvTT1j0og9PtRKOWk6KUVMmj3mAttYdwnmSJob+rHYVSxYzFF3HhjV/kvGsl+YD2hmoaqvax/b1XeP2fD1GzfxtN1Qep2r2Z/q521Ela1JrxKS1feNMXufrz3yK7aGwcu8xBooGpmfFnXeHkGQiCwL5N79JUfZCA30dvR0tcLyfvbIAzEvTRAOeYDM7BbVL29HhBrL2v+4Qc3U8XHP3xOSBaCv2oYswkY6/Xy3vvvcfrr7/Oxo0bqaio4Cc/+QkZGRk89thjrF+/nr/97W+ncqynFDJBxrT0KezrlFxiPUEv01PLKUmJ+w2l6VKG7Dc3ezrvN2xhe+teLi0bmVx4upGRV0xbfRW9HS1Ys44v9BYKBnnxEckx+J4HJmblYYoEOPb+0dWBJxr6qUsQ5HLcdXtw7luH68hmDJXLCDmkB5EY4VkZpg//e6msebjYSMNvP03Ol/+EyjL2bpGQewC5LnncnWset58kjRJBJmBM1mBN11N3tBsxLNIXKb2kWIcS22VqDeZyC51behFkIBO8hBx9KIyji8qdboR9bvpW/xOApPumoNCPX/I/4Pfx0mMP4Pd6yEnKYkOXhYdf3Muiyizaup0SN2dAKhF53Q76OltZ+fhvAZh73pXMOvfSBJ+4KJprDpKRVzLkvf7uNszWTGQyGZNmLsQ50A9Ab2cLgUH2H7s3rEooiY3lfjwe5HIFOcXlY95+9tJLMVnSyS1JtI7R6I2k5xbR0VTLq0/8jvyySpqqD2BOy0IQhLMZnFEQDXBqD+6kbPoCzGmZuOy2mIFpaBhPPFEUObJrI8GAn/WvPoslI5eZSy4if9I0krQn36gykRgs/Gjv6/4QRzJ+jCmD8/Wvf52FCxfy0EMPUVFRwRtvvMF//vMfbrrpJs4991x+9KMffSy4OfcsuJ3/t/DO2N9F5jySlPEV/rEZHJC4O0q5ku2tw5vhfViIEpS3rHoh1g0xGlz2/ti/TyTrMxqiYn+9g1bSpwOCTI6+Ygmm+VcCcUVhf1djbBtlag6a/OE7nHRTFsUUhd01u07os0OugSHWEicDjyuAVhfv2JtUmYHT7mPvjpbY92kZoUMtuXIGaTMhtUISnY1aRpxJ8LbFifn9G56fkGMO9Hbh90rBtCrYTzAU4s1NDdz/6EZUjiqKnKsI+aVsYsjvpbkmLmGwfc2r7Fw3VP+oq7WBV/7xO3a9/2bstXA4zO4Nq3AO9MdarQF0RhPqJC19na0J/Ldj+T7G4wj8nQpo9Eamzl8+LPdnsBt449H9iKJIX2crOSXlaHRnxqR7JkKVpGHSzEX0dbWx5mVpUdjeGL+u3c6BIXysjsYa3nvhH7z/yjMIMhk97U28+/zf2bnujdM69tFg6+mIXdcDfV0f8mjGhzEFOHq9nscff5x3332Xe+65h9xjOjOys7P597//fUoGeDphSjKyMHc2yUnSBFUYKVtNz5gCgEUzdJWZpFBTmTaJw901+IITq68xHmTkSV0ajUf38/Z/Hk54L+D3Ub1va0J76OBOgCh5crywpuvR6lR8sKaGQ3tP/yQbNa8M2iTSb8hlQ1NQiXbSfDJu/N6I+6ksWeR95WEQZPhahtdGGg6iKBJ225Fpx9d+DOB2+0kapDy9aFkxWr2KNW8eoSvi5j5SgGNZcQeW825EkydlCgK9Z16A42uJ8/ece9ceV7doLIiuNhVKFQQ9JOFBIMxcxQdUKnaj8PdRNG0hbSGJeF13SApeP/f9h1CpNbTWVw07IQG01B6OvVZ3cCcb33wOSGyhFgSBlPRsejtbGejtRqlSx1b5IHFngAR19DMBheUz+fyP/hKzYIhi0oyFH9KIPhoQBIELb/wCJVPn0N4glfejvl85xeWI4XDMqDmKgxHisdaQzPnX3ckNX/kRwKh2GRMJURSpP7Q7Zgbt87p5/5VnYoKFAb8P50A/qVl5aA2mT0YG52c/+xmzZw9tR45Cr9czZcqUCRvUhwlBECg2SxNDUaQ89e3Fd/HkNb9HIR++oldqKSQshmNKyKOhob+FQ12nnpyt0eljvlX9XW0Jkfjzf/kpq/7zCOtfezb2mnMQ96a9YWLGp1IruO2uBWi1Kl58ZhfVh0/vakCm0iDTGgnYuvB1SqtobekcMq7/dkwvZ8R91VpU1jy8zUfGzGER/R7EUAD5OAmsoihKGRxtPIOTpFEyd1EBToeP/TtaQJBEF4cduyqJlKU3kXHDdwDwn2EZnEB/BwM73gS5AuuVX0UMBbDvWjXu40Y7lKIEXKNgI03WToqsF1P+dO68/yEuveWLoJEysa11R0i2pKEzJJOeW0R7QzWP/uQu9m58F4etl3/84qtseOM/gLQyX/vyP+nvbufo3i0AzFx6CRXzliWMISU9G5/HRXtjNcmWtFhHo9ZgorB8JsAZ2ZWUpNGRmiEFfrkl5aTnFFFUMes4e50FQNn0BQBU79tGe+NRNHpjjEPpikh+gBQ81OzbRnpuEXd8/yEmzVxIek4hxhQr9v6J43COhrqDO3njmT+x5sUnANi3cTX7t6zhvRf+AcQ7b02pGSSnWD8ZGZxPGq6vuIxbp1+HVSutvpRyJTrVyKTAwkhAVN9//MzHP3Y9x283PnpaiJ/Lrr6NS2+9F4D6Q3uAuJswSO2AUQzO4LTUjT1rcTykZRq5/R6J9Lt3+/FLZRMNpSmdoK2TgS2vAAKagrHr0iTlTibkshG0ja3dPtpBJR9nBifgDxEKhdEMKlEBFE2SSIv2AS95hSmo1KNT6BTJVgS5Evu212n/z8/HNaaJwsD2N2l+5KuE3XbUmSXoKxYj0xhOuBQ4HOx9Egm7OOKdVCI/wgzFdmQyOSvmTEHuk0p7Vmu81BzNdEbJtMGAn22rV7Jv02o8LkdCRufgtnVseO3fNBzZR05xOedccuOQEk40oxMKBjCmpJEc0ZBJScti8eW3ULnwfOYuv2Lc53oqkFs6FUEQWHbNZ7nhKz9EpT4rXjcW5E+qRKlKomr3Znram8nML0WXbAKg7uAuPJEW/M6WeoIB/5DA0WhOxdHfc1rmhIGIf1nVns2EQyHCYak5qKNZIpVX75PMQ1PSMjGmWPG6nLGy70cRZwOcYVBiKeCKyReMmShaFCll1fUfXzulx9WHy++m3ztySn576162NI//gQ+QW1KBXKGMseGjFziA1+XE65Ee+tFOAFNqBs3VBwkGJq7clpKqIzMnmaa6vtPe0aMwpRFy9uOp34e+8lxUaWMneCblS5oy7uodY9o+WmaJelqdLNwRK4FjzVGzc5NjQc2UyuO3BwsyeYxQ7anbQ9Dx4QqShf1eelf/E4UxFctFX8B6+VcQZHJU1jz8va3jvjbs/d3I5ArySqdSVD4Lg0K6tgtKy3GueozmR74KQG52vMMtmlUZrAjs87rZveHtYT+jqfoA4VCQshkLhn0/fdBxDMkpMc5LSloWSRod5175GTR6IwNOHw89t4t+x5kjoDrv/Ku46d6fHNcE9CwSIVcoyS6aRG9HM6Iokl9Wic4g0Rm2r3mVVc89CsTLnccKuBpMFvw+T6yN/1RiYFDJqan6QKyE5vO46GyuY+f7b2DNyqeofBbJKdYh+3zUcDbAmQCYNMmYk5KPm8EJi+FYYDOaSecze17kqd3/m5CxKVVq0rIL6GqpRwyHYzXV1Expou+PaHk4bH3I5ArK5y4lGPAnEDAnAvnFFjzuAA7b0M6CUwnloHZt89IbT2hfbcksZGotjn3rYq+FPE7se1YjhofKIsQCnHGSjD1uKSjRHpPBkcllFJZI2YdJU48f4AAYZq2I/dvXXhv7dzjgI+w9veRvb/NhCAcxzrmE5DkXo7JIIovK1GxEn5uQs/84Rxgd9r5uDCYLghii0lPHzZddzmW3fpX5syUlXzHoJ+joo7ggTgwuKK2g88XfYVGGyS2t4IrbvxbLAEWDngUXXccNX/kRFfPOlcarTqI0og58LDLyiimfK+kfWbMLYj5Og1uzAdbvbuW97c1s3t8+rnOeSChV6thz4SxODLkl8YaFgsnT0RlNsb+j5qodTTXIZHLSsgsS9jVExBod/T2cagwmvzfXHEr4zO1rXgVRZMnln0KuUMaCc1vPmXONnig+8V5UE4XClDz2dhzC5rUTDAdJ1Q5tKbf7nIRFKeXdau9kavpQDYuwGKbH3U8oHCIYDqGQjd9HKC2nkPbGamy9XbGaauGUGfS0N9HX2YZGZ6C7rQF9spniitlseut56g/tonDKjHF/dhQFJRY2r6ujt+v0ErFlkTS7TGtMCHbGtK9SjW7KIhx7VuPvakKVlkff2mdx7H6XsM+DaX5iqWGiSlQe9/AZHICLrq5g9qJ8TClj01FJvfiLGCrPpe2fP8DXXou2ZBaCTE7L378uualf/P1xjfVE4KmXOg21x9hXqFIl7kegpwWFYeh9czyEQyFef/qP9HW1kVtSgbfxAIHuJgJrn6HgW89i3706tm3Tn75A9tJP4SMJt7GSQHsNriObcR3ZzFU/eBGQSjWNVfvILpqMz+NCZzAhk8vxOO0c3PY+k2YsHLadPIrl19zO1PnLSc3IBUHg0lvvJX9S4jkfbZaCufae0xtknsWpQV6plO1NyylEZzQhG8TXVChVhEMhOppqSc3Kk0jwg2CMBTi9WLPyOZWw9XSSmpmL095PW8NRQoOEUBuO7EWuUJCeWxg7F4COxtoT8k47k3A2gzNBKDLnEgqH+OHq3/KdVb8iEBoq4NTntsX+3eoYPoNj9zoIhoOIiPR5bMNuc6KIps27WuqxR0pUBZOnA7D25af49//dj9sxgNaQTLIljZT0bOoP7+HFR37Fvk2rRzzuiSAnX0rZ2vtOr7CVrmIxSXnlZH3mpye3/xSpk8RdK5UMo1ka15Ghsgghlw0Yf4nK45K+I41WNeQ9U4qWksljLyEIgoA6Q+KX2D74Hy2PfY2QxykFNwDDXKenCp76fch1JpTWxCyBMhLg+HtOjqPV391O09H9gJRBcdftib3n2Ls21iYf7aoLtx/FXnQbu225eHviBOyo6rVMJqNwygxU6iQMJguyiFlpflkly6+9nQUrrh12HEGnDVEUJVXy9Dwee+Ug13/vDRzKXOTHNChUN0kBTttpllA4i1MDkzWDuedfxcKLrgekJo/l195OTvEUggE/r//zIbxuJ3mlQ6UpohmcrtaGhIBjohEM+HEO9GFKzSArv4yetkb6OlvJKpyEJtLZl5ZTGLMeMaVmkKTT095YjXOgH6e9n572Jl567NcnLY55unE2wJkgRInGna4eHH4XR3pqh2wzmHfTZu/EE/Di8DkTtul2xy+cXvfEXETRSPzd5x/j0I4NqJI0pGUXkBQhSOpNKeSWVlA+R3LPLiqficfloL2xmvWv/WtCxqDRqtAZ1DgGTnOJKjmNrFt/jsp6cqn3pNwpCHJlLPtApDTla68l7EusmUfJyIrk8XEY3LEMztAA52QgKJTINAYAAr2tdPz3l7H3ZJ7huWABWxf+3uN3BY4VQacNf1cjmsJpQ7htKks8g3MyiMoaLL/2duaefxWeur3IkqQOM2/LEQK9bQgqDbl3/w2lNQ9/dxPlBSkEgmG6G+L3qbf58LDHj0KQyaiYe+6wgmz+rkaa/ngnPW8+AsAbG+t4Y2M9gWCYjfsSu9icbn/MOmKwncRZfHQhCALzL7ia3JK4+GLF3HMpnS5lPpqqD5BTPIW55105ZF+TJR0EgR1rX+ORH3+Zqt0Tq+4dRZR/aUpNJ7OgLMZ5S06xUlwhdUkP5gcJgkBmfildrQ089euv89Svv8Fzf/oxbfVVVO35aOjenQ1wJghF5sQJdFfbUFfh/kEZmVZ7B3/c/A/uXPkt3jy6hmAoSDAUpCchwBkfJyGKZEtagnqpGA4jyGTcdM9PuO5L3+eW+37OVXd8k/I5EnegcMrM2LYm69i4HmOBNV2P0x5EDJ+Z1gHDQaZUk5Q3BW/TYcIBH0F7pGYdCuJtSpwQA/2dyJJ0MZHAk0W0RKXVDS1RnSzSrrqPlPNuJSm/Al9rXAZA5rUP2Tbo6Kf5r3fR+sS3J+zzvY1ShuVY7y8AuSEFQaXB33uyAY5E7s8qKEP0ugj0tqItnYtcZyI40E2gtw1liqTMq7LmErR1MTlHCoA8HfFOQk/D/pP6fIi71zv2rGageg8vrqnBkpyEQavicH3iQuWdrXGuXkevm9BH6H44ixNDSlpcJ2nZ1Z9NMGaNQmc0cf2Xf8C0RRcghsM0144eaJ8sovxLY4o1lsEHSQSyfO5SknT6WKATRXqu5FUmkyvQG+M6cIM11M5knA1wJggpGhNGtTSxyQQZu9r3D+kKiZac8pOz6fX0s6tdCoKe3fsy31z1C77zzq/odg0S3JugAEcQBG7+6s/49NcfIKtwErPOvRSQ2PuZBaVD+ARp2QVMmim1dgf9E8eZSU3XEwqK2AfOnM6RsUBTPBMxFKDn7ccJDHQjKKTMSlRbJ4pAfzsKU8a4bBpqjnSx7m0pAJmoDA6AtngmpoVXY7nwjoTXj83ghH0eOl/6HQCi30t4gsQr3XVSF5+mcGibviAIqFJzCPQkZoxEUWTdyqePu1rsaW9CoVSRbEkn6JD0RJTmdBSmdPxdTYScfTFCczSTV6hxIpMJyB0dqNLyQZCddIkMIOSI65i07FiPzenj6nOLmVFmpbHDjtPtRxRF/vnGIZ58/SCZqTqWzswmGArTY/votuEOB38gRHe/54z1QDudsGRIAU5eWWVME2k4ZOQVs/SKT6NUJw3xtpooRDV59MYUzNYMKhdIVjWW9GzSsgv4/P1/jgU0UUyZtZiKeefymW88wKW33htrcT9WnftMxdkAZ4IgCAKTUovRKTUsK1xIu6OLBlviA7MvMplUpCcaaQbDQdocnTTb22keiKezmwbacPnjZZAmWystAyfHaFdrtJitGVz7xe8OmyZNOBeZjAtv/AL5k6bjcdkn7EFlTZcCwO4Ox3G2PLNgnHURmqKZOPetQfS50ZbOllSOj+lKCjn6UKaML+O15s0jyOUyKmZkYUweagQ6XqjTCzAvuQlVhJdzbAana+X/Jag3B23jF/oSRRFPwz6UliwUxtRht1Gm5hBy2Qh54iWb7rZGDmxdy443/42ratuIx+5pb8aSnoNMJosFGnJDCgqTFTEgBdNKq9TFpEqV/h/uqOIn5pfRhp2o0gtQmjMIjKMkF7THAxyxU2oHLs02slh1GKUY4FBDH7urunlhTTWT8s389t4llBdIhOrP//Jd2ro/PqWqh1/cxx2/eIcfPLyJUGhibF8+qlCpNdz5gz9y2W1fHdP2BpPlhA2PJeuQt2NqxCPBZbcBoEuWMjFLr/g0137xe6MSiHVGE8uvuR2jOZW07AIu/cy9FE+dQ39XGwG/b8T9zhScDXAmEF+a+xkeWPE9ziuUsh/rG7YmvN/vsaGUKymzxKPk84sWJ2yzo20fckH6WT5o3MaP1/xBsgAIh/nmql/w9bd/NoS3c6qg1RsIBYP4fROzwkyNBjidH62HuUypxrLic7G/lSnZqKw5+DvqYq/5u6Syw4l2ag1GR+sAHa12ps/N4bpbZyU4s08kzEtvjJGuZZ54gONtPYq7Zie6yQtIvfTLAGMWORwJYihIoKeZkL0HTaGUFl/9wj/YtnplwnaxTqpBZaraA5L+UL/DQcv/fjPs8Rs3vobH5UDv6cV5aGNM60dhsKAcxIVSZ0qCfqp0qUulf/3zJIt2AqIMb/YslJZsAv0diMMYJI4FQXsPyBRoy+ahcbWhJkBq9w4yalZyi24Tbd1OqiLE4i9dU0myXs3MSWkoFdK9vnJ9Hc+s7T4jszmH6/t44rWDhMdQSvMFQnywVwoU99f2sK/m1Lc+n+nQ6I1DSOYjwZCcgnPgxPTCmo7uZ+Ob/2XlP3476nbOiN9gtIVdkMnIKiyLkejHirTsAkRRpLtVKu/a+3t497+PnRYdnxPFGRXgvP3223zuc59LeG316tVccMEFzJw5k/vuuw+3+8z7EqMwqvVk6K2UWgpJ11vZ2LQdb9CHy+8mFA5xtKeOPGMWOcb4Kn9O9jTSdfFVrcvvJnWQqWfTQCvVvfUc6o6buP1n/6uAJBo4UZ1WwyHKrI8qcY4XUe+k/t4z9zccCcqUrNi/FUYLqowigvYeQm47jn1raXvqu5HtMkc6xIgIh0W8ngD7d0kTw4x5ucfZY/yQqTUSX2hQicq2eSUA5qU3xawsAv3jC3Da/vkDWh77GgCagmn4PG6O7PyAbe+9ktCJoYw4tvu7pQDH215H9d7oAkHAFpLHupxAytxsfuM/vP7GywBkulsZ2PZ6LMCR680oBgWb6kxpUaE0Z6CvWIIY8BLQpfOt/k9xNJSLMjUbwiEC/YncAlEUcexbm5ChGQ7BgR4UhhSS8soREJms60cVloKVqaoWemxeGtoHkAmQlyHdV1lWPf/++SXIZALvbG2itt3H6xvPvNT/6xvreHldDU2do2deA8EQ/3vvKF5/iEsWFQCwbtfpVy//KENvSiEUDOB1jT3L7Y48n/s6WxOUt8PhMLUHdsQMQF12GwqlKuaJdrJIj6h+tzdJx63Zv52qPZtprj44ruMeC6e9n9ZxquqfEQGOKIo8++yzfPvb306IXDs7O/ne977Hb3/7WzZu3Ijf7+fRRx/9EEc6NgiCwMLcWdi8dr759s/52ls/ZWfbflwBD7OyppJhSIvxNLKNGXxt0Rf49uK7YvsvzpvLPfNvZ3kkE3T/e7/lZ+seAkAtV7GhYSveoI8frfk9D7z/l1NW646aArpHCHCajh5g/av/4tD29YTGsPLV6lTIFcJHMsARBCEW5AiqJIm3Afi7m/E2x29ChfnEMzhr367iwftXcXBPG1qdiuw804SM+XiQG1OReQewb32N7tf/hqd2N0kFlaisebHzCIwjgyOKIr72mtjfmvyKBHuQvZtWc2TXRhqr9iVkcMJ+L1VP/hB7fw/mCCezP6Sgq2pnLJvYcHgPOz94BwCzLIhRHiY40ENoUAZHYbLGzzXSRQaQeskXMcy4ANPFX0JExqH6PlSRAOtYHpC/vZbu1/5C05+/GMvSHXuOH+xtxd3XCfoUknIlT75KfV9MNkAlhOizOahvs5Nl1aNWxlfMSSoFhVnGQccbyzd7etEaKZ/VtdpG3e6xlQf477sSf+yG88oozTWxeX8bwU94mepEEG0GsfWM/b4bLNYXtVwQRZFNbz3PW//6qyT3sfk9XPZ+dAbTuDiCIMmOyORy2hukACdaGptIw9DWuiP8+/9+wOa3xyd4e0YEOH//+9959dVXueOORALku+++y4IFC5g5cyZarZZ7772Xl1566UMa5YlhXvYMALpcvdi8dn63UQrMZmdVopIrSdOlopApSNNaKErJY052nHx5UclSlhbM5655tzLJUoRaoUZAoNCcy02VV+IL+Xn50Nv0uPtoHGhN4O1MJDS6kTM4HpeDV5/6A/s2r2bNS0+y/tVnh2xzLARBQKuXY+v76AU4ABmf+iHGuZehm7wgVv4I2nsI+6VJN3n+FSRlTxrtEMNi43tSEGC3ecktNI/7ATRWqKy5yD0D9K99Bsfe9xCDfnSlkoqvwmABmZzgODI44qA2enVWKbIkHV2tDbHXWmoPs/p/j/PaU/9HbUMtMrUW+6536Fn1D9q80kxfKnehlAk0BZW88K/HeOnRBwgFA2xf+xoAk1VeLrzpS+inLSfk7MPf1YggVyLT6FEYrQwHmVqL9bK7SJ88nTSzhiONfTEtHl9XQ8K2gwM8+86h9g1Vjf384ektKIIeOjxJ1LoN+EQFBfLOBP5SuLOWjl4XBZlDVa4n5cW7U3Yf7ea7f/2Arv4z4x4RRTHGD6ptHZ3jsa9a6tL5/u3zsJo1TC+14vGFaOn6aJWkP0zok6UA58VHf8X+zWvGtI99UICz9d2X2Lf5PZ7/y0/Z88EqMvJL0BqS2bnuDZy2vhj/ZjxQqtRYswpob6xBDIdj3J5jO6tqD+5k5eMP0nSCmZ1wOMy6V54hHArFiNAnizMiwLnmmmt4/vnnyctLbLVuaGigoKAg9nd+fj5dXV04nWf+DVOUkkeKxgTApFQppZeut1IQ8a26rOw8rpx8IbJBzsLfX3oPX1/0BUyauFDcj5b/P/5x1YP8/eoH+eGy+5ifMwOAlw/HH7abmsfmlXSi0BoiAc4x6VKX3SZNVKLI3POuJKugjIPb3ud/f/s5L//9N6Ne0Fq9nAGbd1jyYTAQYtPa2jM2AFImp5G64g5kChXyCFk2aO8l5OxHpjFgueB2hDHW2gfDaIqTifOKLKNsObFIyh/a0aSNBDiCTI4i2UrAdvKrsmBEFFE/bRkZN/8AIFa3T0nLorcj7t12YOs60m/4LjKVBue+NXQEFaiEMBZ5iNlzFuIXZTFC8XsvPEFXSz2FaakUqfxYSqbFMmq+tmqp7VwQUKZkYl72abLv/N2IY5xckEJzpxO/IRuZ1ohz//uIYvzaDA7EfXg8jUOlHzp6XZhlkqbNoW6R7z68hcZgKin+NgJ98YYAha0FUYTCrKEikJUl8RJ1U4eDg3W9bD80vtLgRKHP7sXjk7Sf6kYJcBxuP209Ls6dmcPCSqlMW5yTHNnPdsrH+XGB3hRX8j6ye2PCey67jSd+eV+MmxaFvb+bJJ2e8rnn0lJ7mPWvPoutp4PKBedx+W33Mf2cC3HZ+/F53egMpgkZZ1ZBKT6Pi76utlh31uCsU0vtId76119pqT3Mq0/+PqZVNRZU79tKf1cbMxavYNKsc8Y1ztMW4Kxfv55JkyYN+e/Pf/4zVuvwKy2Px4NaHW9h1mg0sdfPdMgEGbfNuJ6bK6/kZ+d9g0eueIAHV3wfWYRAfHHpMm6uTOxmmpFZwYLcRKdZpVyJSqHCqNajV+mw6izMzJwae9+sSWZt3Wb8E9TOOxjRDM5gdv6u9W/x5ANf4/V/PgRARn4JCy++AYDO5jpa645QtWvjkGNFodUrEMMi9mHIlO+8eojVrx/mxWd2jYnQ+GFCYZQCkZC9h6CjD7n+5FZGoijGvKcA8gpP3KrgZJFUEL+OlClZaCfNj3FvAFSWbAJ97YihIKIYHtZ/azSE3dJ1o0orQK4xsPp/j1O9byum1AwsGTmEQ/Hj2fu60eRXkLzgSnxhAZcoxyoPIigUzLj0MxSZdUzX+jGYLBzduwUAk70Juc6EXGtMMFGN2j0IgoD5nGtRZxQyEqKdTEdaHBhnXEDQ1omnThJ19HXUx4IUTeE0Ar2tQwxLewa85Ckkfk6rR+I2dCmzkYcDBHpbUUS+zxS5tCgryTUNGcM507L49d2LKMqIP+sa2ieG9zZWBIJhuvuH3pODlZbrWgdGvC+PRgjUk/Lj90FxtgmA2pbRMz9nEYc5ddD9l5To5l69bytup513n/97wuv2vh6MplQWX3Yzs5ZewoU3fpE7fvBHzr3qVpK0eqbOXx5zhh/skTUe5EasKY7u3RLL4AwuUTVW7QdRZPFlN4MoUr1v+C7I4VCzbxuCTMaMxReNe5ynzYtq6dKlVFVVndA+Go0G/yAdlmhgo9WeOEkqHA4TCp3YA3q8mB8pU4XDYZLVEgdgIsbw9YWfZ1XN+1h1FvrcNv659wXePLqWKyZdMO5jD4ZaK5GCXY4BQqEQbucAm956HiBGZjOlZqBPTuGqz38brd7Iy3//DQN9XcOeZygUQquX+Ac7tzSx8NxCkjQSyaK7w8GOTY2oVHJam2zs3NzArAVnsPFfkh5kcgID3YSc/ahzJp/Ub+t0+Aj4Q6RlGigosaBWuTm4fR+Tx7lyGQsEnZmQNgW5z07G536DTKlOOAdFai7U7MTb00rfqr8THOgi5+6Hx3x8v10KBmQaI36fL6bQOv2cFQmmf4JMhttpx+txo526DPsqST07WSGizp6EoFCx6Pwr6Hv7MfxpVg5H2mgt8hByQwqhUAhFavxakelMY/4tyvJNAByq62HagmXYNr2Es2ob7ro92Le9HjmgHO2Uc/DU78NVvw99xZLY/j02N3PVtYSRsT+QS1GWkWuvvoyu53YCoM6ZjL+/kxSZFOCU5SYPO7bS3GSStXFuTn3bwIQ/r8JhEdkInXkvrqnm+feqefjby0k1aWjssLNpX3usXJqXYaCpw8Guqk5mlg1dkB5pkH7rkhxjbNypyWq0SQpqW2yn/dk7HkTH+mGMOUln4NNff4DXnvwDzoH+hDH0RzIkGn38Ow4FA7gcNjLyipErlMxfcV1s++g2CqWainnnsnvD2wn7jgdZBWUYU6wc3L4ef6R7yudx4XIMkKTV09vZGjFvXsbO99+k7uAu5l1wzXGPGwoFaak7QnpOEUq1Bt84qzVntNlmYWEhW7fGW60bGhpIT09Hp9Od8LFqamqOv9FHCNlYwA2pogG9XMvrh1eT47ZMKH9DFMMo1Rqq9mxBk1aEa2Boy2d1XSOCEEk/2twoVFp6u9rZs2fPsMeMBjib1tSyf2cjU+cmY7YqaayWbpKKOQYO7rKz5q3DiIpe5IrTw0c5GRjVBpxtdcgDPgZ8YdpHOOfR0NctBfApGWDN9bH65X/S03SUPocXbfKpL1cppl6K4Hex7+BQ9VSVO4wOqN6+Hn3ExqD6qZ/Q4Qvjy6okNbd0yD4J+zcdRAfUd3Tj6NuAKIpklc3CrzRiczbEtjOmZjPQ1cz2zR+gTbbQlXcOHN2DYspyujIK6NizB8GvI1mmwNApEboNshCkl9KXWUln5HtXzroBVfMeHLpcWsf4W4TDIiqFwPYDzVRmeElWabHvX48sGBejDKkN1NnDJAOtB3bgCRhADKNqO0B/vZoLFO0MGItx9SVRlCZQ1R/AJJMjhEP02t2E5HpSZE4EAaoODy1zRREIxbMj9a02du3ejewk72e3L8TRVi+VBVoaOn28tLmPUEjk7ssyMGqHtgVv3ddNIBhm1frdVORpeWZNN7UdcZ2T5RVqnuly8OQruxEuHGpFsvdIL4IA9u4G9vTFieRWo4zq5n527do9YnB1pmL//pNXth43FCrs/T0Jz9H6Kmk8fp8v9rrH3g+iiMcfHvGZCyA3ZZNWWI5P0Iy63YnAlF1K0/5EW4l1b71MRnElna2NqHVG9h84gMGaS1f9QTZvWIfmOCUye08bAZ8XhT5lQsZ5Rgc4559/Pg899BDbt2+noqKCv/zlL1x22WUndaySkhL0+vFJ6J+pOCjU83bNOixFaeQlZx9/hxOAQRHi3f8+irOtCnOa1EVUMW8ZB7etA2DmzJkJ23dXbaNm/zamVpQPcc0NhUJsc+0BQKGQ4RgIsnl1L0tXlCKEZICdZRfOJjW1jXdfPUzYa2b24gIABno7ef4vP+XCm75IweQZE3qOJ4uOg1n4mg8BYM0vxjxjxgkfY9/OVqCXisoSJk/N4NBaKUOmU4SYfhLHGyui2kr790NlZSXyYbQw/Flm2ve9SpYGogUTVcchDjiN0NzG4vMvGdaXKQqb4ygDQFnlbNr6+tkDlJVXMmXGDJLV0LBnPQCTps1m2+pmMtMsFE6ZQdeRLSAIzLv8UyjVcX6SU+OD1/9GukJH8ZzllF5+2zGfOAO44YS/i/Jdfg7W9VJROY3+msl4IsaqgkKJGAygTUknZeo8bB88iizgY8aMGTgPrKd3/+tciwKZAGUrbuBn5FFemIJCLsOf9QDdK/+PgqVXUrWyG0ughfx0AzNG+E1DoRBdtl3YPHLSzBp2VXWTlVdGhuXEF3MAT7x2kFe3tBNWmugdCOPyShnXoCqN9NwU3t3aRDgs8qmLJqFSyvnzG5KpblBhpmRSCY3/lTrUlszIojDTyNXLimke2MuaHS1Ys0vItib+7s+8v4EUo8ic2YnPg/mdVTz/XjXNzmSS9SqWzco5qfM5nQiFQuzfv3/E++J0oKd6O9XdrVSUT0GpUuP3ednyopS59HucVE6tQK5Q8v6rzwAwfd45CfYLw2Hu/IUTOsbC3Ez+HQlwyqYvoK3hKPW738diMuJzOyiumM2MGTMwqsKsqj9IcpJA+XGeaTvWSry8uYvPIyOvBKfTOa7kxBkd4GRkZPDggw9y//3309PTw7Jly7jvvvtO6lgymexDu1hPNebmTOftmnXs7jhIYcrElnUmzVjAwW3rOLp3C9mFUofQ9HMu5OC2dWQXTR7ynSZbpPT1wW3rmDxzEVpDIqlSo5Pz5W8txZKqp6PNziv/2cPmdVJro8Wqw2DUMGdRAR+srmHHpkbmLylCkAm01h4hGPDTXH1wiF/KhwVlciq+CE9WabCc1PXV1mQDINVqIODzxAzxNr31PM6BPpZcdguCbOKocrUHdtDf3UF/Vxu23i6K5l+CXC4fduxJ1lxJsbkxvpIdlGTg6J4tzFwycp08HBERVBlTsNdI7cMpaVnI5XKSU6TrRCZXkFVQBoDT1otcLqenrQlzagZJ2sTJPXnG+SiNFq5KtsbauicC5YUW9hztpqHdSXpWKZ7aXcjUWvTTz8O+7XVC7gEONjnRhbTIezqQyWQ4drwFgJIgXbI0CsvmMHNQtkWTVUze3X8BwJqTh99Rz3duqRj1GkkzKfnLN5exdmcLu6qk8WSnDe26Ggs6eqVy/qsbJF0dk0GNzeHj9Y0NPPn6IRxR3pcgcOMFZfRG7FNqWwbYeaSLYEjknhtmcNGC/NgxF0zNZM2OFg7U9ZGXkYzXF6TP7iXLqqfb5iHbqh9yfvOnZvL8e9U8+bq0EJhRloYlOZFbcqZipPvidCDaLu512UnSZNDVXIcoisgVCkLBIM6BPuoO7uTw9vVkFZRRVD7ztHVfRpGSFtcGS88tYtElN/Lqk79nR6TDMSU9G7lcTk5k3uhorDluV1TUL8uamYdcLk9owjkZnBFdVFFce+21PPXUUwmvLV++nFWrVrFz505+//vfk5Q08fL1H3VMsZaiUSaxt+PQKTn+zCUXEw6FaK45hM5oJiUti0/9v19w6a33DtnWGJm4Nr31PG/+6y8JwlNRWKw65AoZ2Xkmll1cRsAfIuAPkRshfCqVcmYtzKevx01NlXTBdzRLtgjRLpwzAYNtB+SGEyMZB/wh3nhhHzs3N5GeaSA1XU9XS0PCNvs2rT4hPQyA3s5WWmpHvg7e+tdf2fLOi1Tt2Uxncy0Bn4f3Vz7NS48+QO2BHRzdsyW2raBQorRk4Wuv44hPzUFfEq5w/JGxb/PqEfWPgo4+yR1ckCHT6GOcm+SIH4/BLD3ADckpJFukkoe9r5vO5joG+rrILBi+/KUtmjGhwQ1AeYTYvae6G3WW1PGoKZyGJl8iUqozCqluttEb1qP29eHvrMffUYumZDZ1QSv7LReOOrnorFJXkVXhGnGbxPFI382B2h5EUYzp0JwIOvoSP+vCeXlYzRrqWgfw+IJ8//a5TM4388r6Wjbvj3d7HW7o459vHEallLNgaqLtSGVxKjIB/rOqipfX1fD0W4f50q/f4xdPbMXu8pOeMpQbWZJjSvj7of/s5mv/t44f/33zWa+qUaCLGFs6ByTydnOt1Jk6dd5yQHq+bnnnJUypGSy/5vbTHtxEodFF9aVE9MlmrvnCd2LvRQnTGr0Rc1oWbQ1HhzlCIpwDfaiTtEMI1ieLMyrAOYuTg0ImJ9uQQYej+/gbnwQKJk0jp7gciIv/paRnD6uIaTTHCYgdjTUc2rFh1GNPmZbJZddXUlSWysz5cQXfmRE13+0f1POHn7xL1V7pBu/paE7ovplIhIcJxkaDtmxu7N8Kw/AeS8PhyK6NPPHr77Bzcx15hVouvy4PuVxGZ4uUyVpw0XUx1+HuE2ivPLj9fZ77049Y+fhvObp365D3fZ6h7fd9bfUc3rmBtoajvPWvv/LOfx9NmHhUafmIokhzQElLWIP6fEmryqjV4ujv4cgIHXNtT30Pb9MhBLkCQSbH1tOBUp0Uu37USVo0OgMmawZ6oxm5QoGtp4Od778JwPRFF475vMeLKQUpWM0aVq6rwW8pQVs2F+Pcy9CWziH9+m+Teuld1LTY6A0bUIte3NWRNt3J5/NH+yWQNjoXSWGKaCaN0dcrM1VHijGJfbU9vL2lkS//+j32Vo/93g6GwrR1O5lXnhHT3ZleasVilBaHF87LZ2FlFjdcUIYowvOrpYmnKDuZQDBMn93Lp1ZMIlmfaMKr16rIsOiwOX088dpBNuyRRBG3HpS6Z6zmoZOSTCZw84WTyEyVsnF7qrupaRlg15GuMevjNLbbqWo8NQaUZyr0kW4nV8Reobn6EBq9kcKI2WXDkb3ojGZu+MoPMaeduHr6ROHKO75JRl4xJRE/K43OwFV3fouMvGJySspj22UVlOKw9SZo9gwHR39vbPEzETgb4HxMkKaz0O8dwB8KHH/jE4Qgk3HZbV9l6vzlLLjoulG3ja7GQTKa2/PBKv7zxx8mZAYSji0IzF6Yz2e+tIDcQS3SZouWZLOGmiPduBwOCEutpqFggP7ukzMcHQ1Hdm3k7z+9m90b3h7zyjIpu4zcu/6C9cp7UWdJXkehUDCWZh0Jq//3OAFPL6nJdThbn2Hl479goK+L5ppDKJQqZpxzETfd82OAMelHiKJIwO9j89svoDMkozOaWPvyU0MCts7muiH71u9ahyiKCY7yg5WrVdY8/KJAABmhUIj2Tmkym2bVodbo2LHmNULBxCxOyOuSvJkAMegn4PfR096MKTXutC4IAld//tssu/o2BJkMS0YunS311B/eTV7pVCwZp4+roVLK+dzlFbi8QV7d3ErGDd9Fk1eOIAjoJs1HUGmpbbHRF5J4J4797wMCO/ukSXu4iX0wovYd/t6xCXIKgsC0klSaOhz841WJlLzlwNiv+fYeF8GQSG66nl/dfQ7f/PRsppWkcueVUzlneha3XSZNPNNKUlHIBTr73CgVMn7wuXl86ZpKbji/lKvOLR722DddWBb7t82RaLaYZh6+u/XTF0/mse9dEMsIfeqiyQBjDtru+d1avvmn0RdKHzfEMjj2fjxOO70dzeQWl5ORW0Tx1DmkZRdw/vV3xtq/PyxYs/K4/q770Q2iIuSWlHP9XffHFjMAGXnS83E0F/JwOIzT3ofedDbAOYtjYI34V+1uP0Cnc+IzOUqVmmVX30Z+WeWo2xnNqVz8qbu5/Xt/oGjqbPq72+ntaGHjW/89oc8TBIH8IingUauklV4wLN30Lzz8yyGTtd8X5O2XD+A85qF7PHQ01fLoj+/ivRf+QcDvY+Ob/6WtfuxyBsqUTAyVy2IT975Nq3n6t9+m4cjeYbcPBgbpFfmljiAxHObIzo20Nxwlr3QqCqUSU2oGcoWSnrbjBzib3/4fj/74y3jdTmYuvZTSafMJ+Lw4+qUSR+3BnWxf8yo71kltz9d+6Xvc+YM/Sp8thkm2pPGZb/w6Vh8frGehsubhHFSWqj+8BwBtfzMzF6/AYevl8M4NiOFQTCcn0B0fs+XCz7Ft9Uq8bidTjml9t2TkxLgGadkF+DwuxHCYvLKpnG6cMy0LS3ISG/a0DglwW7udeHwhesJSgBPs76Bfkcqjr9eSadGxfPbo3mExG4qe5lG3G4zZk6WFgs8vfafv72rh+dVH+ecbh/D6g7Fx/f5fO3F6Ehc1zRHPqLwMAwatinNn5SAIApMLUvjubXPRR6QZklQKUiJ8mEsXFZJm1nL54iJuu7QchXz4qeG8OXn89t54m/z8ingZa6QAJ4qv3TKLJ+5fwZVLipDJBPYc7aarzx1rMR8ODnf8fvH6Ts4I9aOIZItUyu3rbIspBFuzC1AoVVzy6a9w4z0/Jq+04sMc4gkhLUfSohotwHE7BgiHQrFnwkTgbIDzMUE0wPn9xse4940fsaZuI232ifMGORGUVM5FbzRTNn1B7LVwKHTCNff8YumcMrOkbixfuACDpZhwOMjrT/+R//5jPb0RfkL14S62fdDAgd2tIx5vOLQ31hDwexFFkcWX3RJ5rfo4e42Mmv3bAVj3yr9Y9/YRQsHELEpbQ/zY4VAAdZIWmVzB9jWvIooiBVOkTgiZXI4lI4em6gNU7xtabhqM6shnag0mpsw+B5NVmnT6u9vZtnolbz37F7a++zJt9VUolCrScwpjRqoACy66Hp3RRF4keB0YxPtRpeXhGBTgeJx21CoVirCffHWQpCQNW1evpOGpH9Dx/ANA3Fk946bvY5x7GQe3v09KejZTRyEYpmUXxP6dWVA24nanCjKZwDnTsujodQ+xJDhUL03AyVnxQOag08y88gx+8eVFQ0o5Q46t1iI3puLvHnuAc+6sHO67aSbnzcllfkUGDneAZ946zAtrqnn6zcP8/B9bee7dKtbtamHj3sTMUDTAyU03DHfoBNx7w3TmV2Rwy4qxW4zkZcSPO7U4XppNSxk9m6BNUmI1a9BplEzKM7Onupvv/e0DvvXnDTz84vALgsODgp/OM8S+4nRAo9NjTLHS2VKHI6L7NJGlm9MNszUTpUqdYNVyLBw2Ket7NsA5iyFI0yVyQB7Z/iyP7vj3hzQaCbnFU1h40fVkF03G43LEbtTRMJiUXFaeTlaeiZw8aQIJiUaMmZdRsfAGPE47zVXreftliZsTNfAc6Dsxletojfu2bz3I1PnLEGSyGNnX3t/D2pf/GTN4HAsCfimD5LR1s3H1NjaulcjRXa0NvP/KM2xfl+gvY83Oj3URKZSqhBb4zEhad9V/HsHlSJx0o/B53Tj6eyipnMtt3/oNKrUmRu7r7Wxh36bVmKwZXHnHN1l65We47Lb7Yvyec6+6lcyS6RROkVp7TRECcDSD47T34xZlOIXEdv/siJuwY92/KBP78Djt7K1vxlO7m6C9F38kg6NKy8fttOP3esjMLx21IyItpwAApSoJa+apFXh0+d188+1f8E7NejY17cDmlUpy50yXukKODRgO1UvX7bQF83jJNYfD/iw6LHP4wefmkTYMsXY4qFJzCPS2EvI46XnnCULu0ZWKBUHggnl5fO2WWVy3vJRUk4bPRkpLr22oY9uhDtbtlJy6d1UlEtGjrt85accPcGaUpXH/HfPRRbI6Y4E2SRk775w0PRURexHrcTI4g3HThWX4/CG6IurJb25qSMjWRHGoLv7M6DpDLVxOFdJzi7B1d9DbKf3OhuTTp3I+0ZDJZFiz8ulqbRi28SRqwwITG+Cc0W3iZzF2pOniF/+Vk1fw6pF3aLFPPFflRCDIZMxedhk6o4nWuiN0tdQBqhG37+9q5/m//oxlV9/GpJkL0RnUfP6+xTH1ZK0+mf27WgERo8KIStZIKGJREfWv6j/Bh2A0wNEZTcgVSlLSsulqldKo+7es4eC2dWTml4xJWTgUDGLr7gBBAFFEIdjYuWELtpbXCPi8scxQUExBrXISCvgxpWYwacZCDGYLMxdflFC3Xnjx9bhddqr3bqW/qzWhzh1FNBjLyCuJ6Q6ZIgHOvk3v4fO6mbXsUvJKK4aktMvnnotfmRwrrxnNVgSZjLrDu5k8ezFv//tveJx2VDItCpmfYESmf9aF1+J+RsoqFebk0lDfSVdQgSiC68hmfO2ScabcYKE/Uu4zWxM7co6FOS0LdZKWzIJSZKe4NXdj03aaBlp5fOd/ALio5FzunH0zk/NTsCQnsXFvG7ddOoX9tT2U5Zo5XN9HZqqOc2bksK/2ImoFgc9eOOmEhOtU1lw8dXuwbX4Z+/Y3UBhSMC28ekz7TilM4ckfrgBg79Fu9hzDXdl7tJtQKIw8UlZq7nSQZtagUZ+6x3tBhpGuPjc5aXp++sWFuDyBBJf042H25HRuvWQKDe12JuWbefyVAxxp6GNueQbNnQ7sLj8VRRaONPbH9vnEBTg5RVTv3RrznppIbsqHAWt2AW0NR+ntbMVlt7H13Ze48s5vkqTRsfXdl9ixViqhnw1wzmIIUnXxi+K68kvo99jY0LgNT8CLRvnhttZn5ktdJltWvUjRvOF1U7xuJ1vefYmA38uWd19i0sy4KFXU68SSnordMQAI+MLF6BS78dqrgSWxDM6JGnU67f0k6fSxrEZaTgGHd2zA7RigOWIa2t5YM6YAx9bbSTgcomzGAo7u2YJcGCDs7abpaEtsG1EUmHXutbRUvUVfZyum1HQyC0qHbYtWKFVMmb2E6r1b6etsi3WyDUa08yo9N+63pDUko1QnxYK30sp5I465zz9AbV8jpamF/HXHMwgKGbbuDp77049i3WoeYPKsRSRpDfi8bjLySnDf9H3EUIik3MmYHryXJp8Mv1xF77tPSmMonYsgCNgihHBT6ugBjlyu4Iav/HDYzryJxrr6RMJ7g036fWQygUXTsnhtQx3PvVPFv9+pYsHUDNp7XZw/Nxe1Us7/u3nWcIc8LpSpUnnLdUjqOvO2HEEMhxBkJxbMLZ2ZzZ7qbtJTtHT2uUkxqumz+/jfmmpeeb+WSxYV0NzpZFrp2Lv6TgZXnVtEbrqe9BQtgiCcUHATxY0XSJnL2hYbIJWj5pZn8Ltnd1LXNsC9N86gsd0eO8fOYbyyPs5Izy0CYKC3C5lcgVZ3/IzcmYySyrns3fgO21avpO6QJKbZUnOIZEt6rHuypHIu1qyJy+CeLVF9TKCSSxO0XJChUSaRrpfatU8F4fhEkWxJ47xrP4djoI+mA5uHvG/v7+Efv/hqbKXi93oS0pguxwBKdRLWzLjWjD+cjSiCx94AMCjA8ZwQ18dlt6E3xo+bHiHDHdz+fqyDaaycnL5Oif+TXzYNBBUK2QBKWbwtUqUrxiFeyuKLFmE0SxPQ8Sb+qJjWSJ1jPW1NIAikDirrCIJAwCcJt5VNX4Axxcp/9r3Cz9Y+RFhMTA8/0/Iq96/5Lc8feJ0PGrdRY5U8yKLBjdZgQqM3cs6lt7D4sps5/zqpTVxbMhvdpHnItUbylkvqwcKcK9FNWUh42goUC2+IjFsqd5mtx29lNaVmJHCDTgX63DZq+hpYmj+fh6/4FYWm3IR7ZHGkTPXvd6TM05YD0vgXTB1fK25SpMsu6k7uPrqd+t98iq5X/ogYHHvn4wXz8vj79y/g3htmYDVruPpc6bhvfFCP0xPgf+9VEwyFyRsD/2Y8mFZi5fbLKyZEf6Ug04hGLeeFNdUcrOulrk0qxz784j6cngAzJ6UhCJ+8DE5adn4sK6tPNk+o4OeHgcz8EoqnzokFNyBl7fdvXo0YDnPjPT/m4k/dHVtsTgQ+2t/YWSTg0St/zWNX/QaAjEiA03EGBDgA5XOXkldaQX97Ay6HLeG9zohKJ0irFp/HRW9XnCzsdtjQGUwYBymgiqgJiWaEcAcOu4eBiDu53xdMcOceDaIo4rL3oxvkj1I2YwFavZGt774MSFmUvq62YTVkjkU0wLFkZBMSk1EIvciEuKeRN2DGkpaGTCbEiMDH07DQGU0o1Uns37KGNS8+MaR+PdDbhSE5JaHNG+CcS28mt6ScZdd8lmA4xDs173Ogq4oj3XHZ87AYxhuWOEMvHpJWUO1WBTk3XUflgvOYNHMRN3/1p9x070/Q6Ea2ZEjLk1bibrWJ9Gu/ydubtvDc337Bxjf/y96NkuS/wXxqMwpjRfR+KErJw6I1k2/Kwea14/RJwnhTClJibcxR5+/K4tSEbqGTgdKah1x3TIkxHMR5YD3OI0OD/pEgCAIZFh3Ty6w8cf8KppdK97nNmdg9mJP20bGlkctlTC1ORRThu3/9IPZ6MCRd60VZyViMSXQeI174cYdcoYzx8zTaj3b2Jopzr/wM+uT4grKno5mGqv2YrZkJjQYThbMBzscIZk0yBrX0YEvXSxNKp3N0YaXTiSlzloIoDtHEiQYGN937U+YsvwKA1tq4+aPLMYDWkEx2xPl5yQWl3PO95WQVTUEmBNi/bS/iIKfksZapvG4XoWAQ3aAbTqXWcM5lNyMIAkUVs5h73pUginQ0xQMDURQTtF/EcBivx0VvZyuCTIYuOY1AKJ6JCItSidDhMmJNl36f2edexhWf+zrJKUONCwdDEAQEpPM6tGPDkC4Ee193TD16MGYuuYir7vwWKnUSVT21uAJSALiuIf7dd7niBE6jWs+vL/wuCpmCnW37WXjZTSy59ja0emNChms4RDVrejtaEgLB3RveBiRRv/FKrk8UuiPnnKqVOGs5yVKA2WyXiMWCIHDLikk8+9OL+e29S/jc5eX8v5vHL4MvCAJJEWVkeUQBW1MkkbuD/Sff7ZhhiZf0Mi26GFG6MGsoX+tMxjc/PZsL58WzkFcuKYr9OzfdQF6GkYZ2BwPOE5OB+KgjWqZyDHw8hA61hmQ+9bVfcv1d92OyZlB7YAduh438ydNOyeedGU+ds5hwHFuieuXwO2xp3jXaLqccuSUSybX7mEm6t7MVQRAwWzPJLpqMQqmKtT4HAwF8Hhc6g4n8Igt3f3sZyy4qIyVVR3aRxEk5sns3ANl5JgAe/+MHdLaP3qUCgwnGiRP4pBkL+fLPH+PSz9xLboSYO7hMVXtwJ4/99K6Yb9S+ze/x+M/uoe7gTpItaXg9YbyhIrTJBZLis/kSnMG5hEQT1kiLrUZnOK6mUBSl0+McmsH6Ol6PC5/XHSt3jYQdrfsAMKj1bGvZE8uWNQ1IgeWds27mr5f/kqKUfKZlTGF/1xG+seoX3L/6t2Mq96k1WowpVuoP7+bI7kR34cmzF3PedZ8b03meDnS7pQAnLcJZy40GOAOJJcBkvRqFXMa1y0vH3Cl1PGgKpYe4edE1ZN/xW9Ku/n8ABGwnn2XVJikx6qQyRmaqjm9+eja/v28pZXknZh3yYUObpOSOK+P6R1csKSIaU+ZlGFg+J5dgKMzanWNvtf84ICrdUDBpbM+KjwJUag0ZecVY0uNingWTRjcKPVmcDXA+pkhWG0hSqGlzdOIPBfj3/pW8cuSdD3VMSpWaJL2J3o6WhNf7OltJTk1HoVSiUidRVDGLjsYaBvq6cDulenzUtDM1XY8QydRMnTMdUVQw0FOLIMBFV1dQPMmKAKxaeTDhM46dqCVRv+cAhs1QyOUS/z41IxelSk17YzyD095QTSgYjL2254NVsfcs6Tk47V7CGJmy4DOSZ9dNS/CH8wCBtIwTTzWfc+lNfOr//QK1Rkdj1b7Y61HF5OEyOINR01uPXqVjTtY03AEPTr+U6m+ySQFOsTkftUKaJFcUL0UURTqd3TQNtNI6Ri2l5dd8lnAoxIbX/gVIpb1pCy/gguvvpHjqnBM74VOIaNYqqhuVa5QyHqej49Aw9VwsK+5AX7kMdWYRco0emVpLcODE/MaORWbEcTzDokUhl33kgpso9BolN11QxtKZ2WRYdBRkGjFolaQYk1hUmYlBq+S97Z+sACczv4Qb7/kxS6749Ic9lAlHdPFYufB8sosmn5LPONtF9TGFIAgUp+RT09tAq70DURQTShIfFrTJFvrb6ggG/CiUKoKBAAO9nRSWx7tTyqZLXUh1B3djzZbcjAfXbaNINuvRJufhHqineJKZrFwTn/7ifF75zx727mjhlX+9j0FTTzgconrvVpItaVzy6XswWzOo2b+d5hrJlHI0WwCZXE56bhEdTbWEQkHkcgWOiJ9KX4QnlKTVxTR+UtKzcdgl3o0h4v2TW2Bm1oI89mxrJiP7xEsHKrWGlPRs8idVcnTPFnase53KBeeNOcBpd3aRZUiPTerdrj4Maj1NA20ICGQb4/ySGZnlZOrTaHdK2amdbftjZZzRkFtSQdmMhRza/j4AN97z4wS34Q8DPa4+TElGFPL4Y67b1YtWqUGnkrIyKVoTKrmSdkcXXc4entrzAldNvpBJqcNbFYwHgkJJ8tzLEl5TmNIJjiODA5Bu0VLV1E9m6keHdzMSPnPJlNi/v3bLLNzeIIIgoFLKmZSfwp6j3YQHlaM/CTgV3JQzARVzz6Vk6hyStKfuuj2bwfkYY3JqCb6Qn41NUrnH4XPiDny4rZbaZAuiKPL4z++lavdmmo7uRxRFUgcFGdbIDW3v64pxcaJeJseiYs5sBEGktCxOvp0514hFt5Gm/c9waPv7HNn5AVpDMn2drdQd2gkQc+m++vOSMdxoyMwvJRjw09Us6eNEDeP6OiVZf3v/IC6LORWnXeIJ6I1x4u+l11Xyle8uJ/k4vkWj4ZxLbsJkzWDLqhd57k8/jnGXBhucHgu334Pd5yTDYI2VZXrcUj2/1dGBWWmMdeAByAQZP1j2VR5c8X3UCjW72vePeXyFU2bE/n08btGphsvv5u7Xf8D3Vv+GP2z8O3/b+jRtjk66Xb2xQA+k883Up1HX18gPVj/Ijta9PH/g9dM2TkWylaC9J2ZzcTKIZnAyLSdWSnP6XHzQuJ3gCI7wHzYKs5JjIoIAVpOGYCjMgOuTxcP5uEIQhFMa3MDZAOdjjSlWKSh4rzbemdDl/HCzONpk6YEVDPh578UneP/VZ1GqkqiYtyy+jc6AXKHA3t9Dc81BVGpNrH37WJRMler2IZ+UcfC4nKx98W8Q6iIkJpOcfRk3f/Wn3PLVnyEIQszDKpr9GClwGoxoiWX/FkmF2N4v7dvX1YbHacfniXd35BRPiYkNGk3xYEYmEzCf4AR0LHRGE9ffdT/lc5fi6O/h4Pb1ACSPksHpiGRiMvRpWCNikF2uXsLhMJ3OHszKoW3ZaToLBeZcisy5tJyA3UdOcXz1LVd8OMnhA51HaOhvpt0hnXejrYUtLbtY17CZFw++Sa+7PyHAAcg0puPwuxjwSQrAR3vrCZwC09rhoDClgRgmZD/5+3LxjGzmV2Qk2CaMBf/e/wp/2vIE31/9m9N2vuNBauR+6rF9svRwzuLkcbZE9TFGqaUQQRBiHTQAXa4eCsynz6n5WOhT0hEEgcz80oiiZT+LL7sZndEU20aQyTCYUulpb8btHKBg8vQR1W3N1ixkMjk9EV5P9b6tOGy9LL3yM2zbqqKj040lPRdBJmDJyKGjSWpJH+jrQmc0xXQmRkNqZi45xVOo2b+dshkL8Hul79Pe3xPralp82c1MP2cFgiDQ01mDQiHDNEHk1MFI0uiYsfgiDm1fj8veT3JK2ojaMdta9rDysMQPyjRYsWojGRxXL93uXkJiiBTVyCUzo9qA01dLOBweUxeUUqXmolvuGtKyfrpg89r52TrJRLQiLe5ntSR/Hke6a9jVtp+QGI5lsqLIMsSzTcsKF7KufjOHuquZnjFUWHGioUyWgtPgQNdJH6Mg08j9d8w/oX1EUWR7yx5AEjqs6WtginWo2OSZhKhre3e/h9LcjybP6CxOL85mcD7G0CiTWJiTqLza5fpw28bVGj23f+//uOaL3+WO7z/EF3/yMDMWD1U3NpgsuOz9iOEwucMo+EYhVygwp2XSG/Exaazaj0wmZ/LMReQXW/C4A3R2SCvz9Nwi3A4bzoG+EdurR8K8C65GJpfz+j8fAiTPJESRXevfAiQhu2grcXeHg9R0/SnjCQwWzZu59OJhW5g3N+/kdxsfpaavAZAyOGZNMnJBRpe7L5bhMCtHC3D0iIg4/M4xj6102jwKJp+ajojjIUqaBjjYdRSAnyz/GvfMv53ilIJYoF9+zESeZYhzkC4tlQxBD3SO3VF+PFClSRwzT/3wZpOnCvX9TQz4HOQnZwPQ0N9ynD0+fJzN4JzFieJsgPMxx+dm3QjAJIukp3Am6OIkafUIgoBcoUClHt5GYrAw3PHcpS0ZOThsvbgdA7TWHSazoBRVkoa8SP2+rUlqB4+Wo6p2b8brdo7KXTkWWQVlXPul78X+nr38MrQGE231VSRb0mJWCz5vAPuAN9YOfiogCALnXHoT6blFTJ61eNht3qxKNPXM0FuRy+SkaM30uHpjAU7KKAFOcpJ0Dnbf2AOcDxPNA21DXstLzo4R7kHi3ExNS3TOjmriKGQKcpMzUcgUNA1zrFOBpPwKFOYMnHvXwGnkwuxul7oMr624BJBKeWc6rJEA5++vHOB7f/uAQPDkeUvjhdMTIBAcahp5FmcWzgY4H3MkJxl58prfc/+y+1DKFGeEdcNYMFjbxZKePeq2UZuCTW//j2DAT16ZxMtJTZPIl73dAbWdVAAAayZJREFUEkemeOocdEYTW955EZAsJE4EadkFFESItLnF5Vx15zeZseQirv/yD1CpI+nzTikYsJ5iqfyZSy7mhrt/iEI5VNY8HA7TMNDK1LRJXFd+KbOyKmNdQxn6VFrtHaxvkMwyh+PgRGFUS+cw4HWcgjOYeEQDnIW5swESuqWiAU6ppRCtKpHoPSm1iMvKzudXF3wHuUxOjjEjIRt0KiEIMpLnXELY4yCpZsNp+UyAuv4mZIKM2VnTSE4yUtPXGAt6xwNvwHvKujUtg5TMD9T28uxbRybkuP984xCvbagb8/at3U7u+Pkq/vK/PRPy+Wdx6nA2wPkEQKfSolaoyDCk0eoYn+bG6cJgTs7x3KUz86XMzJFdG9EZzZTPWQqAyaxFkAkxnyqVOokll38qtt/JdPpc+ul7uP6u+0nPLcKSns3iS29O4MB0RQQGo4rFHwY6nF34gj4KTDncVHkF311yd+y9a8svJSyGqe1vRC1XYVDoRjxONMD5KGVwktUGpmdIZOd0fWqsfFdiKaDAlMP5RUNNU+UyOZ+deX2Mm5ZnyqbX0x/TCzrVMMxagSqzBE39Znpe+zPhwKnvEmq0tZBlSEclV5JlSKNpoJX73vwxfW7buI77h01/5+tv/TTWqTeRUCoSp6t3tzWN+5iBYJgX1lTz2Mr99Nm9x91eFEUefHoHHl+INTua8frOzA60s5BwNsD5BCHbmEGPqw9f0P9hD+W4iKoLj4XPkZlfysWfupvckgou/cw9aCKuu3KFDJNZQ193fKIqqZzLDV/5EfMvvIbiqbNPeFyhMHj8iWUdURSxD3iwD3hYt+oocoWMrIiq8oeBqDt2gTl3yHsVaWV8Z8lXWFGylLvm3jqqBYExYvth9535GRxRFGm2t5ObnEWhWcropeviJcgkhZoHL/oBywoXjnSIGPIivJQm2+kpU8kUKtKu+zYBSyGugxtw7F17Sj/PHfDQ5eol3ySdZ8Wgkl1U3fpksK/jMHs6DuEPBXj50Nux1188+CbfXvXLCenUKsmR7r3z5uTicPuxu8b3LOvojT8bVr5fO+J2obDItkMdfLCnLWYGCrD90EdjwfhJxdkA5xOEHGMmIiJtH4EsTm5JOZd85h4uuuWuMW1fUjmXq+78Zsy7JYqUVB1dHQ5Wv34Yj1t6GKbnFDL3vCvH1EF1LPZub+aZh7dQdzTOZXr3tcM89LP3ePpvW3DafVx18/SYyN+Hgfp+iXBdOEyAA5KY3+dn38L8nJmjHifOwTnzA5xGWyveoI8Ccy65yVksyJnF4vy5J3Ws6MRf1984kUMcFXK9CefMa0GuwF29fUKP7Q54WFO3iU1NOxFFMVZ+yzdJGatrplzE52ffAnDSz4awGObf+1aikCnINmawtn4zwYi2z38PvEaDrSVWFh0PHrh7Mc/94lJyIyXg1i4nR5v6OdJ44hkjp9tPTYst9vc7WxqGzchsPdDO3b95j5//YysPPrsDgO9+di6CAJv2n54g+CxODmcDnE8QciKKtc/seZEj3SOvVs4ECIJAccXscbccp6RKHIxNa2v54L2a42x9fETLXdWHpYmgrdnGlvVS/b6vx8X0uTlMnTk6Z+hUo2mgFaVMQZYhfVzHiWZwPgocnD0dEml2RkY5Cpmcr5/zBeblzDipY5WmFGJQ6Xj+wOt89sWvnT4PN4WapLwKPI0HCPsmrlNo5eFVPLL9GR7a/DjNA23xDF8kwFHKlczJknyyTjbA2dK8m7r+JlaULKUirYxgOIgjUtrUKKVg/7Wq1eM9FZLUCnQaZcwtvabFxjf+uJ5v/enE+Etub4B7freWP/xb+m3Pm5OLyxtk3a5EsrXHF+TXT+/A5vQxsyyeEVw4NZPCrGQO1PaOya/tLD4cnA1wPkGISvIf6KriNxv++iGP5vRAq4sHSI114+cFuJxSFqiuSiJrH9zTBqLkgzV9Tg4rrjz12inHQ6u9gwxDGnLZ6Nyl48Gg0iMgfCQ4OLvbD6JWqGPiluOBVqXhztm34A368AS97Gwbu5rzuD+7ZDaEgrjr90zYMfd1HI79u9vdF8vwRQMcALMmGbVCTftJBjibmncgCALXll8yiLvlIBgK4o1witocnXiDE8MvyrZKAc4Trx2IvXYi7eP/e6+a3oE45+YzF09Bl6Tg2bcP09odv94PN/QRDIW5ZcUkfnjnfGZNSuOOKyqQyQQqi1OxOX20dJ3598cnFWcDnE8QMget6P0fAeXSiUBpeRoymYBcLqOtycZTf93EB+/VEAgMbTH1eYPs2tJEODRy+6fLIT2guzudDPR76OpwIFfImLson6tumYFGe+Jlr4nAW0fX8usNf8Mf9NPt6ht39gZAJpOhV+vOyBLVrrb9sY5AT8DL0Z5aKtLKUMqHdpWdDBblzZbsKuSqCekuGozRJnlNiaSa7T66Y0I+y+FzUt/fjE4pdSD1uvup6WvAojVj0sS5ZIIgkKVPo81+cufa4egmTWvBqNYP4m456fH0IxLPcNg8AyMd4oSQEbGnCIbixz4akYM4HkJhkTc31ZOkii8ArGYNX//UbBzuAH/5X1yT6ECtVIqeWpSKUiHnp19cyDXLpCC6sliSodhf++FLb5zF8Dgb4HyCoJIruWPWTdIfgvCJSK1m5Zr4/m8u5ZpPzwCgqa6PNW8e4eiBoSvVpx/ezOv/28fRQyM/5KMBDkBtVTdd7Q6s6Xpk8g/3VlpV8z672vazt/MwIuKEBDggudJ3uXoJjcMraaLR6ezm1xv+xj/3SO3+tX0NhMQwFdbR9ZJOFAXmXIpS8mi1t0/YvVLVU8tnX/oaf9ryZIyjMhiK5FRUaQW4a3Ym+FOJokjQObYJfDAOdFUhInJuwQIA2h1dtNjbY23zg5FpTKfX048n4MXld4/5M8JimA5nFxkGqYQzOIPTE2kZT9dL7/V7JybAUSpkRPnxd14puVKPNcBp6rDj9ga5eGEBIClBA8yryGD57BwON/TzwSE7rV1ODtT2ok1SUDiMSW5FkQVBgJ2HJzYAPouJw9kA5xOGi0uXcX7RYgKhAI7T1Ab7YUMmE5gyLZMvfG0Jn/2K1EXT25OYVu5os9PeIj183aOY+TmdPlJSdSDAgd2tOAa8pGWOrCVzOtDnscW4ExsatgEkOISPB3Oyp9Hr7p8Q/sREYXOEE1PVXUNYDHO0VzJBLbUM71c2HmQbMnAFPAx47RNyvJ1tkrnsB43bRiTdasvmEPY48LVVx15zV22l6Y+fx3Fg/Ql93vbWfQAsL1oEwI62fYiiSElKwZBtC00SKf3rb/2Mz738jTEHOf2eAfyhABl6SXYhRk73OulySWXhsshv0++ZmO8R4Jd3ncOP7pzPFUuK0ajlVI0xwDlUL42psjiVZ35yMb/+SlwsMxr0rN5j5+dPbuNoUz9Ti1KRD6NKrteqmDkpjR1HOsfUYn4Wpx9nA5xPICxaEwB97hNfEX5UIQgCmTnJpEeCkf6exIf3+2/HpfmdjuFbT8WwiMvpx5quJyvXREONtDpNO4WqxWPBoa74RLilRZr8JyqDc33FZVh1Ft6qHtq6fLi7+kOR+N/cJDnCO/wu2hydHO2tRy7IKBqha2w8iAaKJ2I6OhqqeuLk/igxWjp+O081v0xdfxNJuZKOj6+jPva+u3Y3AN2v/BFxjIrHvqCfHa17KbUUkpecjVqhjpX1SobJ4MzKkgQyez3Sc2GsWjYdkWNmRjy9oiWqd2rW88j2Z4B48GmboAwOSAHK3PIM5DKBsjwzR5tsY1I3PtIgndfkghRMBjU6TbysOSnPzIXzpOuoo9dNKCyydJSmgYvm5xMOi7y3fagmjz8QIhT++GfJz2ScDXA+gbBoJI2Znk9QgBNFkkaJRqukr0fKXjnsXl77716qDnaSHdGuGVyGGgyPO4AYFtEZ1JRMjndUpGV+2AHO0SGvTVSAo5IrmWItod8zEBO+cwc8/G3b0/x4zR/47QcPn9ZSZ6OthXpbc+waPtxVQ3VvPQWmXFSKiec/ZRsl369WewfugIcXDr5Bj+vkyOqBUICa3gamZ0yh2JzP/s4jhMMS32tLy246fb384L0HkaVIQVWgJx48hn3xgNxVNbZ2693tB/AGfZyTNwdBEEiJcG7kgmzYDE6OMTPBiNQ5xgxOlKOUoY+WqKQAp9URDwrjGZyJC3AGo7I4FX8gxNaDHcfNphxq6CMnTY9RN/R6EQSBr1w/nTsvlM5Fo1Ywf+rI2dB5FRko5AKHGxKvCX8gxJ2/fJfn3z2+p9n7u1ro7j/rr3UqcDbA+QTCopUmhz7PJy/AAUkbp6/XTUtjPy89u4vd25oxW7RcfoPUKutyDh/gOCOv6wxqFp5bxAWXT2HhsiIKS1KH3f50od7WjCnJSHbENHJx3twhdgTjQc6gSV4URX71/l9YV7+ZJIWabncfP1n7fzy+8z+AtGpfV785tu/RnrphPaJOFu/USCWaO2ffjIDAv/evxOFzMj1zyoR9xmBkGaVAsWmgle+88wDPH3j9pMt11b31BMJBJqUWU5kxGZffTV2/tPIfnC3ZZmtEUCXh742L7gX6O0EmB0GGc//7CccN2nvpW/svxGMaB/Z1SlYGc7IlsUxTkhTglFgKSVIO1WkSBIFFeXNifzvG2D0X7bzKiGRwDKpEFe9Ly86LBdynKsCZWizdg795egc/eHgjAK9/UMdDz+2KEYUBegc8dPW5mVKQMurxclJVzK9I57rzSkhSKUbcTiGXYTYm0X9MUNXZ58bm8HG02Tbq57R0Ofjdv3by39Wnx9z1k4aRf7mz+NgiGuCcaAbHH/SjlCtHVb/9KMBs0dLaZOOJP0kPwrnn5HPJtZUAaLRKnCNkcKKZHb1ejTpJyaLlxadnwKMgLIZpGWhnUmox15RfTFVPLVdNXjGhnxENcKp66uhx93G0t45lBQupTJ/Mn7c+yeHuao721nFL5VWxQGdBzkyCYoj73/stAM/f9PC4xxH10Co05TI7q5LrKy7lfwffIF1v5eopF4/7+MMhVWNGLpPzQeN2PEFpEqvpjZeORFGk29VLqi4FmTDyelEURf574DUEQWBe9gw8QS8rD6/ig6btlFgKaIuUwAT+f3v3Hd5WeTZ+/Hu0h4cs720nzl529iCTMEIIEGbZo4XSMgK0pYUCL/CW/lqgLQVaXqC0tNDSAoWyySiEkBCyhzOcxI73krcta4/fH8eSZxyv2I79fK6Li+jojEc6sn3rGfctsacsm7GRie16cDz1FeiSJiCptdjy9uFtbkBplAOWpoNfUv/Ne+hSJmMY25q88URNPhH6cKJbiokGhoe6mmAccPWUi4kxRvHK7r/T5Dz9HL0aWx1f5H9DmDaEGKMcZCgUre/DBRlLuSXrKkDOJj1Qk4w7Gt8mc3iJxYrV5uLVDw7h8/nJK2nghR8vBwj2tExO7z7AkSSJh26eg/I0ZWIAzGG6Tj0wljq596u2ofvepPwyeU7SydIz876MdiLAGYUi9SZA/uXUUzW2On748c+5bOIFXDv90jPUssERZmrt3bjoimlkzm3NBxISqj3lEFVguzF0aJaCd8VircbpdZESnsCUmPFMiRnYlUQASeFygPPmgfeC29ZOvhBNmyXZXp+X9bmtPQvfluwb0Pw57x/5nE9PfInb5+HGzMuRJIkrp6wmLSKZVFMSOlX/EkKeikKhIMYYGRyG0am0nKwrkpd6+/08+sVvKKwv4e55t7Akbd4pz5NdmcPRqlxWjl1MiikRv99PYlgcXxV8y3XTLqWksYJkXRw6g4795Ye5JjINb3kePkczfr8Pn6MZlSkOw5jp2PP2YT2ylfA5q4GW3h3AXVsOLQGO3e2gqKGUOYkzgl9IYoxRlDdZmBh16sBcpVQF5zI1uU5///617XWaXTYePOdOVF3kXQpkhQY5185ALRPvSK1Scs154/nXRnm49uNt+fha5r9U1jbj9/uRJImj+a3zbwaKOUzHiaI6vD5/cDKypSXgOdVw2f7jFtLiwylsqV1XWNHU7nhhYIghqlFIp9YRbTBz2HK8x8t//7r/Xfx+Px/mbDjDrTvzzFFyDo2556Qxe2EqKlXrL2ZjqDaYzK+jhpZEYiFDWIaho6KW4Z8U05nLnhxjiGz3+MopFxEfGkOkIQKVovU70r+PfBb894bcLXx+YnPwsd3d91UmNredt7I/wOf38YM5NzI1diIgf8uekzij3byRMyEwtwRg5djFeP0+cmvy2V9xhMKWrMC5tQXdnmNfuTyh+MKMpYDc9pVjzqHZZePtw59g9ziI0kQwM34ado+DghA5A7eruiQYwKgjYjGMn4uk0bcbpvI0tAQ4deWAPOn85vfux+/3Mz6ytXTJXXNv4s45N5y2REdIyxwa6yl6cOp3fEjxy+vwNNZQWHoIg9fHdHVEl/sG6noBROjCqRug1WhdueHCSfz4erm+3Dub5EBnxrgo7E4vVrs8fHckv4YwoyaYKHAgmMN0+PzQ0GZou6qlB6fe6sTTIa9WVZ2dR1/ezoMvfE1BS4DjcnspqxIJAwfasAhwtm/fzqWXXsrMmTNZu3Ytu3e3JrnatGkTK1euJCsri3Xr1mGz9Tw/g3Bqy8cspNZe36MsrXa3I5iuPjCOfzabMSeJa26bw/mXTun0nDFEi8PuxtPFaoyik7UolBJxCUO7LHxz/nae/volfD5fsDhiSnjCGbueQqEIZr1944rfc/XUNcHnXrz4f3nlkl+RGBYXLKY4I24SubUFVNtqg8M2VS35UPrCYpWPvSBjKUvT5/f5PH0VKNoZqjEyvyU4yKnOC2YEBk6bAfhg5VFMujCS29ync8eeQ7QxMvilIVJjYlaCPFR6SJIDQmfFSTwtgYs6Ig6FWotx4gKc5Xm4auTg1lMv9y65a+VhrralJSZHjwv+26QPZ8WYRacdYg7VyF8Aukoj4fe6adj+H9zVJZT+9WFq1ErMbi+Okpx2++lV8peAtq83ymjG6mruVY6d3kptWSXp8vhITwhjyhh52Kyqzk5RRSO5JQ1kjY8Z0GF2c8sXnuNFdcFaVpW1ra+xYy9ObaP8Ram8ppnCitaAL79MDFMNtCEPcOrr61m3bh0PPPAAu3fv5rbbbuOuu+7CZrNRWVnJQw89xDPPPMO2bdtwuVy8/PLLQ93kEWHFmEUoJAWbC75tt93udnRKQNY2B0iNve6sqEbeHaVSQfQYLX/c9ddO+U1CQuWhjuYOS8V9Xh9F+bUkJpvQaId2ZPePO//G7rKDlDZVcKKmAIWkCM6TOVMeW34ff7rsGbQdViqZ9SZM+nCundY6bHn77OtRSgqMaj03zrgcAEtz37O9Bo6NNQ7NZO5AAruk8ATGRKSgUao5WpVLfl0R6pbikmXdZDuutzdQ3FDGtNiJ7f6w6lRafjDnBgxqPfEhMaQZEkkKiyfaGMkBazl+wFl6HGeZXENNEyPPnTGMzQTAVXESv9eDp1EOAD11coBTbpWDrceW3UdGZFqvX69OpUWpUHYZ4DQf34W3uQGFPgRHUzWNqpYAp7T9JNlnLnyEx5bdF6xDBa1zuUoay3vdpp5q2zNz+bIMYiLk4WhLnY2Pt8lzp1YvGth8SYEA56m/7ORXf5MLpbadk9MxwGlbIqKixhZMNNjfeThWm4vHX91OXpsCoqPdkAc4ZWVlrFq1iqVLl6JQKFizRv52WFRUxMaNG5k/fz5ZWVkYDAbuuece3nvvvdOcUegJs97E2IgUjladwOeXu1B3lR7gjg9+yh93/LXdvg0tqfoDcy4CuTTOZl/lf8uWgh181SHZmjEQ4HRYSVVR1ojT4SE148wOh/TGwYqjHKw8yrTYCWdkiXRbIRpjcPlvV+YkzuDCccu4ZuoaYoyRrFvwXe5b+L1gxWpLP3pwKq0tAU7I0AQ4gSy8SWFxqJQqxkWmc7wmn7zaQlLCE0kOS6C6ufaU5U8CiQi7mh81NXYir1/+W3574WNEakxIksTshOlU2ev41ZgYcstzcBTnoNCHoo5qKY4ZIQcK7tpyPI3V0PLz66634Pd5KW2sJM2UxNTYCX16vZIkEaoxdjlE1XxkG4dCdLw7cw7qGx4DIFqpw1nSPsCJMUZ2un4gwCluOHMBjlqlYExiOAadisVZSUS3BDj/+SqP9dsLyEg2MTGt6+G0vjK3GbLekyMHuoFJxtA60dhSa8Pp9lLd0H5C8vJZyYTo1X0q+eD3+9l9VE40uP9EFXtyLHy9v/T0B44SQx7gTJ48mSeeeCL4+ODBgzidTlJSUigoKCAtLS34XGpqKhaLBatVjFUOhEkx42h22ShpKKe6uZbfffMnnF4XW4t2BVd1QGs16QktkxMrRkCAc6xGrgDethAhtPbgNHVY/RBI6pc2dvgEOP/M/hCvz8v8pJlD3RQkSeK2mddwxZSLAJifPJMZcZOJaQlK+hPgBHpwYoYowBlnTiMhNJY5LcutJ0Zl4PQ4aXI1kxaRTEJYDH78pwz8A0vA287l6c6KMQtJCU+kWSHx1xAvNZY8dMkT8eOntLECdYS85NpRW0520T78gKTRgc+DtaaUalstCf3MZB2qDQnWsXr38Cd4fF78Pi/2gkO8GRfGzsrD7GmUh+hiw+Jw15bjdXS/6io5/Mz34AD86q5z+Muj56NUSMREyHOZDp+swRSq5ac3zh7wVaDm8PZz8hqbXdQ2OoJ5dmoaHNQ2OvjBr//L3z490mll1cyJMUzLiCK3uJ5me+9qBO49ZuGJP33LzU+s5+OtciBdKubyBA1aX/uWLVu4/fbbO22/++67ueeeewC5N2fdunXcf//9GAwG7HY7JpMpuK9eL0fjdrudkJDeTRLz+Xx4vcOnns5wMN4sT0A8XHmMooYyPD4Pl09axXtHP+PT419ya9bVQGuBvPHmdLIrcyhtrOjTexk4ZqDvg9/vJ7e2gLHm1OCcD7fXzeaCb1mcOheb284/sz/k2mmXEqEPl9P7t2SUPVp1ArvLjkYp/zIKN8u/rGqqrO3aWZBbjUIpEZ8cNqSfI5e3dejM6XWhlBTMjJ82rO5HWyZNKApJgcVa3efrVFqrUCtUhKqNQ/LeG9UGfnPBo4D8Xk2MbF2FNDNuCla3/G39wfVP8fT5P++UZDEwhyhCF37K9re9F0mh8fz6vIf4dMufecOylz8mmXk4Lp2NuV/z2t5/cu+8W0kyhPGq9QSHco5yh07NlKSp2HN3U1giV9eOD4np13sVojZQbC/j/3a9QX5dMfX2Rq6Lm4XPYQXkoGFXqVyUMjYsDjiIs7oUbfypV2iZdSY0SjXF9WVn9D5qVBIg4fV6MYW09mxee/4Eok260167tz8X4cb2BV7f/OwIfj8syUrk46351DTY+OZgKS6Pj/3Hq0jvUNolKdrAtLGRbM8u52BuFXMn9zxJZ9sMyodPyp+zEot1xPytCyTC7KtBC3CWLFnCsWOnTmaUk5PD7bffzlVXXcXNN98MyAGNy9X6C91ul7v2DAZDr6+fm5vb62NGOpdX/ibx+dHNVDqrSdTFkuFKQKvQkFN2gv3SfgCO1cqlAJQN8rLLw4VHSbH37NtoV7Kz209sdnidfFDxBQvNmSTrez+X5Li1gPcrNjE/YgZLI+cAsK/hKBuqtnE4/yiVzhoK7KW4Gh0si5pLtasOq8uGRqHG5XPz8bfrGWOUl8bWW+U/VsePFaENkwM7n89PQV414REqjhw51OfXPRDqXO3H6ZdHzuPk0f59tjvej4EWrgrhZFUh+/fv7/WxHp+HHEseoUojBw8cHPjG9YHf7+eS2OVEakwoLF48LvnnyOv38e7OD1nS8hkMyCuXv1kXHy+iTOq+tEXbe5EQksmKigK+UNey2Wbl2DE5geI7+z/mRl0oh1Tyt/2KMDPREeMJZTeHWqqQu2vs7N+/H8lhRVN5FGfKbILVKb1uVPVl+LQG/NoQ/AoVdKjC7rV7sLpswWzGG/K2MO5kKcmAFiVOvBS0rCDz2OVViLn7v8Vd2X3l+QhVGPk1RX36LPSXSVnD/v09z0Ld058Lv9/PzLFGXB4fhwrtfLa9ELVSYkK0g88UsHVfEXqt/MWrqKIJl7O1ByfMoOTAgQOo3PK9/PLbo2hcPevhcrp9bM8uJzlag9frp6xWPkdZtZU9e/eJJecMkzw4e/bs4c477+S+++7j+uuvD25PT09nx47WORIFBQXExsZiNBp7fY2MjIxe9/qMBjvch9lRIte5uWXu1UyNmUBs9ec4PE4yMzMB2LfvONTC0qxz+Kx6K3aVK/hcb3i9XrKzs5k2bVq7BFpbCndQkF9KuiaVNZmren3egpxKqIAcez7rMuVewk+2fA3A/qYcnC29HiERoWRmZvKfo+sBuGrKav6e/R9yvIXYFR5SwhN55cRbTFevRok++BrLihvwuCuYND2FzMyBzzPTG0eqTkARnD92CVNixjM3MbPP5zrV/Rho4+y72VV6gMYIJ9GGSCZFZ/ToOJ/fx7rPHsfhczIpJqNPn7kzJYv2S60XzpzP9z/6GU1qR6d2vluzEbPPxKysUw8lnupeRGck8MWGXyDFmNDVW6EZqtx1vBupAr/8B80/axmTJ6+iePdbWCUb+GHhtPmkmhKp/uhFmo9uITEpGZ+tkfCFl9O482Pqd/2j3fU1selEX/UzVCHy/JRd3iMczy8AYGb8VPaWH6LYX0OypMCgM+JsmZwfY4wiK3MJluzPSAzTYjrNPZrkOczmgu2kTEjD3JKP60x72pyKSqVgTELPVoD25eciK0ued3PH//sCgHPnprB4wTRO1h3l/c1yb7FSIeH1+amoc5MSF8oNF0wgI9mEOUyH1+fnT+s/w+HT9/hz/u2hCjzeMi5YOI5Si5Wy7YUA+HwQnzyOhAFcCj9UrFZrvzonhjzAqa+v5+677+bhhx9m7dq17Z4799xzee6559i1axdTpkzhxRdfZPXq1X26jkKhOKO/xM9WN2deyf6KI2SYU5keNwlJkogyRLCv4jAPfP4kC1JmBVdTROjDSTElkFdbiEKh6HYsu6SxnJO1RUyMGttp7oRSqWx3Lw5WyvNgCutLUCqVeH1e/ntyG/OSMgnXnX5JtrIlwVi9oxGlUskRywmOVJ0gRGMM1k8CKGmqwOv38nnuZiINEayeuJKtxbvJtuSQbclBo1Tjl/wojB7qamzBNpYV1QPy/Juh/gzVt/xhmRo7gfnJAzP3puP9GGhpEcnsLN3PSy2FF3ua1bjB3hScv3LNtEuG/L3vjlFpYExECnl1hfgl2iW9q7bXEWuM6lH7O96LhPA4VAoVpU0VwdpOHp+Hk3iY32BjR7iBSnsdap0BdWQixc4GVDoVKaYEcNqw5ci9PnUb/wyANioJT528vDx8wWX47Fa89iZsx3ZQ+8kfibv2USRJYl5yFtuL9+L1e7l15tUcWX+CA/Z6lkQltKtRtWbCSgxRcq4bb73ltK9xcsw4Nhds53jtSRalzOl234EyKb1vc7d6+3MRFxnClSvGEWbUcPE5Y1AqFVyzcgLZudWYQnWsmJXM02/KPWzmUB0LprfmCFIqISk2lOLKph5f81CePCQ1a2IsU8dE8dn2QialmTlaUEt5jZ2qBidTxkSiVQ/fn5vTaZsVuy+GPMB5++23qa2t5cknn+TJJ58Mbv/zn/9MVlYWTz/9NI888gjV1dUsW7aMdevWDWFrR54oo5nfXvgoRrUhGLBEGcz4/X7KrRa2Fe4iymjGqDGgUqpICU/ksOU4pY0VrM/9ivnJMzutDsmpyuPxL3+Lz+9DpVBx55wb2Fm6nxVpCztd3+fzcaBloq88D8jLvw9/yr+PfEpRfSnfm30tfr+fveWHmBbT9WqhttlRvzz5TfAP6S1ZVxGmDSG/rphvi/dS3FDG7rJsGpxN3JR5JSqFkkUps4PJ2gKrYBpVdXhqlGw6sZXZSdOoLJe73eOThj4HUKDSc6DcxtkgkEOntwJzV26YcTljzCkD2aQzIsOcRk51Hte9czcPnvMDZidOx+V10+Bo7HOGaZVCSWJoLMeq82h221mSOo9LJp5HSXkOY44f4qTCQmWTPLlZE5tGafNRkkITUClVNB7d1lKfSgLk4eXG/RsBUOhCiFxxY/A6lg9+j/XQFtxVxWhiUsiKn8qrl/6aZredCH04mTET+LbsILboJNwueYL+1JgJLE9fgEKlQWEIkzMpn0YgL89RS+6gBTiDRZIkbl49ud02o17N7+5fBoDX62N8ionjRfWYQjtn3k6JDWVzaQPNdne7CuenciC3iqhwHYnRIUiSxDv/bzUFZY385IWv+c0/9mBzeLhl9WSuWDHutOcaqYY8wLnjjju44447Tvn88uXLWb58+SC2aPSJ7pAJNsrYmsa8srmaemdTsLxDIHHXA5/LwWhpY0W7X95en5eXdv0NpaTguzO/w98Pvs8fd/4Nn99HUX0pN8a2JokD2F9xBKurGa1Ki9Pj5IZ37w0uW29umbx5oiafX3/9R27KvJKLJ5zbqf31bXLZvLTrDYxqPT855wdMis5AkiQy46dQY68jv76YfeXyHJppLUtYV49fQVxINB8c3UBeXSESElZ1PXp/FJ++c4hX099iYfGlGELUGEPOTDmA3qi11wOtFeHPBmkR7QMcu9vRLj/KqQRXT53hTMUDpW3OmU+O/5fZidOD5VCiDH0vDZAcnkBhS0LHpPB4UkyJcubqSecSt/l5jlXn4ff7ccem0lh0nMk2B805O4LFOg0ZM7Hl7kEZEoGj8DBICjTRye2uYciYhfXQFlyWQjQxcjCpUWmCXyiSVPK0gOLQEKiRe25uzLwieLw6Ij6YSbk70cZIIvUR8lDrKKNUKvjVXefwybZ8Zk3sPJE4JS4UgOLKptOWkqhtdFBcaWXF7OTgF1OdRsWE1AgmpkaQUyh/7kb7iqohXyYuDD8d/3g6PU7CdfIPX8eMuV5/+1nuFdYqypssrBy7mPMyFrMifWEwYKmwVnHUejK4r9/v593Dn6BSqLimJTuuz+8L/sAGhpcCeVACWXs7qu+QrO+SieczOWZcuyG0QLu/KdqNJEnBlS5qpZr5yTOZmTAVgAXJM7Eb5R4hU00S4Q2x1FXZsCjKya0p6PoNGyR+v5/syhxCNUZMPRi6Gy46fp7+cfA/7C5tnTD8xclvOi3Xh9bsxzFDlOCvt2YlTOfSieeTFBbPkaoT1Dsag5/dqH70uLXNBtwxoWNcaDROr4s6RwMnY+TPdFRZIZX/fprmnB0gKYi88HuYz72JiKXXygf5fajC2r+ngaDGaSnosg1mpzyPrVAp/yyHdsiJpDbH47M14jvNUnFJkpgSM56SxnKqmmv48uQ3vHng/VPuX1BXQk7VyFkgolYpuWxpBsmxoZ2eS2nZVljR/URtIFhTa1qHtBWSJPH9tdPRqOQ/7dZeLjsfaUSAI3QSZez8yzhM2xrg6FRa0k3JJIbGUdfSoxAQ+Maa2JKH4/xxS1Er1Zw3djESEies8kQ4r8/Lb795ldzaAlaOOYdzUucQoQ/n1qyr+ceVL5AYGkd1s3yuwLBMWWPX6fAbHE0khsbx4Dk/4KeLf8glE8/rtE+GOQ0At89DXEg06g6rRs7PWMLFE1ZyU+aVNEVUUjxmPwBL9StR+FQ49I1sL95zurduQJysLeRf2R+1mz8EkFdbSGljBYtS5vR7bHowSZLEb1c9FizxsD73K57e+hJOjwu728H/7XqDX3z1fLCgZUAgd05MyNnRg6NVabh+xlqumLIKv9/PrpIDHLLIK0fHR/Y9e+7ClFnMTczk2mmXkhnXfggkMVT+OfvDjr/y4u43AUhv6THzNtWgDDWjDo/BNP/Sdku4VeHtV0GqzQmgVOGyFNGRvSAb3cGtAJxsWcXXMemjOkJuh7uugtOZm5QJwI6Sfby06w0+zNnQZZJEv9/Pb7a9zC+3vHjKJIojSUqc/KWl+DQr0QByCuUAZ0Jq556ejGQT//71GqIj9O0SDo5GZ89vSWHQtO1Ov3f+baxIX8iqcfIwoU6t44XVT/LL835KlNFMnb0Bv98f3D8wKTTwjTUuJJqX1vyS7878DmmmJIod5fj9fvaVy6u35iTO4LoZl2HShfHyJb9i1fjlKBVKoowRVNtq8fv91NrqAShtqmh3rYB6RwMmfRizE6czK2FacNJxW2kRycH6OF2VNQjXhXFT5hWYDSaSTQk0Rci/qAuOyNdWmjzsLjvzy5QDgd+/j3zKT9Y/Ra2tPlgQ9auWshpDUY+pv5LC4pncYfXUO4c/IbuytYbRv7I/bPe8pbkag1pPiKb3qyaH0vTYSQAcqTrOvrJswnVhpEUkn+aoU4sNiebH53yftZMvRKVsP6tgadp8IvThZFfmkBAay51zbmDOyjuDz6vCWoNDTVRim+3te3AkpQpNZBIuS2Gn69d+8WawByevZb5apwDH3JJduQcBTmbcZLQqLf/K/ii4ratSHnm1hVQ2V+PwODliOX7a857tYswGVEqpR8NKxwrrMOrV3RYNjYkwYKkVAY4gtBPRMt9mnDmNc1LncOfcG5kc0zpRLVwXhlKhJEIfjtPrwuZuTT3eGuC0Bklh2hAUCgWTojOweR3sLjvIl/nfAHBz1lXoVJ3ntkQazDi9LppdtmAPTrPLRnZlDv+7+blgoUOX102z237aIRuFpAgGXeHazt3DbY2PGoNP6UUTKuH1yF3y48YkUN5kCWZh9fv9NDoHfnz7q4JvsTTXEK4Lo8ZWx10f/5w7P3oYq6uZbUW7SQqLZ0zE8J9w25WOQ00f5mzg2W2tteUqO/yRszTXdJofdjYI1YaQHBbPtqLdFDeWkxU/JZiAcqAZNHrumXcrU2Mm8ODiH7BizCI05tYAvm0gI7XptVSFdx7208Sm4m2qwWuTexBcNaVYPvg9zvJcoiYuIkRjxN8yWbnTEFWgB6cHE401Kg0LkmcG0zdA6zB0gKepjq+Pt1ZMbzukOVIpFRLxUcbTVhV3e3zkltQzISUCRTe5bqIj9DTZ3NidHppsLn77jz1U1HQ/hDjSiABH6ESlUPLKpb/mseX3d7tfII9FXZtVTNXdTKqc1LKC4rfbX2VX6QHGRaafcgJpIBipttUGe3AAfvHV82RXHgvmsgkUy+xJlfMFKbMA5Ama3ZiTOB2lpCCmZUzcZDawaMp0ALYVyss8N+dv544PftqupEV39pcf4bffvHraSsoHW3o0fr/qcS6fvAqv30eDo5G3sz/G6mpmadr8AU81P1ja5j15+ZJfsTB5VvBxUlh8u4DR5rZTbavtcXmD4WZSmyreZ7qUxtTYCTy2/L7gvDKFWosyVP7569hTE6DQdE6WqkuWe55seXI18vqt72I9tAWA0BnL29UC6xjgqMyt9bGcFSdxlp9s97yrugTbidYh3psyr2gX9FW0GZ70e90UPf89Dh7/GpMujLiQaPZVHO7uLRgxEqJCKKtu5v7nvmJ7dtfB4qG8atweHxNTu5/XFShTYamz8Y/1OXy5p4TXPz6CzeHmH+tzaGw+u4sm94QIcIQumXRhnSpHdxT4g1Vrr8fudnDnhw+xOX87epUOg0bfaf8p0eNJ0cezIHkWcSHRrJmw8pTnDgRID274ZXB1U1v7yw/j9rqDE4x7Mun28smr+Nniuzh/7JJu98uKn8obVz6PRiG//vikMKbFTiRCF87Wwp34/X72lGXj8/vIaSn50J0GRyMvfPtnvi3ey7uHP+1238qmKsx6EwaNnu9Mu4QnV/wYgPV5XyFJEovT5p72esOVQqHgiskXccfs64nQh3NDplxpPEIXTqTB1C7AOWw5jt/v7/Py6qE2Pkoug5IUFk9W/JRBv36gIGfHACf+xifRj52JLm1qp2OM4+eCpKD5qJw7x1khBylRF96OLnlSsOgodP55U+qMKAxhWLM3U/raTyj728/xuVsL1lb865dUvP1LHMXyZPIQjZH/u+T/8cjSe4HWHpzqz18l/1ffAaBGrSQ+JJqMyHSqmmva9RS35ff7qN/xEZYPn5cnVp/FAkNOucX1fLG783wogE+/yUeSYNms7oc9A5XUq+rs5JfJvyddHi8vv5/NWxuO8c5/R/6w35AvExfOXma93GtSa68nr7awdQnzKVaM6NU6rk1cTWZm5mmTWXVcdZKVMJX4kBiWpM0ju/Iobx54nwMVR4O9Rz2pNK2QFMHVUqejUihZev54GursnLt6EgqFgkWpc/j42CZyaws42rLMNZCuvjsbcrfQ5GomVBvC5ye+ZM3ElV1mcQ3kHmqbN2aMOQWlQk5+OCNu8qBlfz1TrpnWmiYgymDmqZUPEqoN4e1DH+P0OHF6XGhVGg6UHwFgRodJtWeLhcmzaHJaWZI2b0h63NTmeBxFhzsFOPqUKehTug64lMZw9KlTsJ/cj8daj7umDOPE+YTNuhCAi8efi0kbyoKUWRjUnb/A+Gytqxn9Hheeugo0Man4fV489fICgerPXyXxe79BkiRMujDCYkNQK1RUWC18lf8tuSU7WQ7YFRIOpYIoTUhwFVlJQ3kwcGyrZuPrNO76BABr9ldEXXgHYbMu6P2bNgy0zT6cU1CH3+9v9/nJKaxl5+EKZk2MJT6q+7lpsWa5Bye3pJ4TRXLPekF5IzUtxT5LLCN/CbnowRH6rG0PTmBODHRett0X46PGcn7GkmDPjQTcnHUl6RHJwfIEe8uy2Vd+CIWkYFrsxH5fs6PkdDN3/Ww55pZfJHMS5WGqT45/EczuXNiDACdQff26aZfi9fvYW9Z1PSurqxmb295uWEajVAfn3CxNO/smF5/OuMh04kKig5NWG53y/I8DlUeJNkaetUNUKqWK1RPO7TSUM1i08WNb8t30LsmiPmMWfq+bpn0bwO9DE9caUGREpnHLzKuZENV1Qc1AIGRaLBfpddWW4bIUUvvlm8F9XJZCvE2tleUVkoLYkGhO1Bbwh51/ZX2oiuIxEzmQKX/WIxXa4KKA4oayTtf0+7w0HfgvmphUku58HlV4NLWb/4Hfd3YWm4yLbB06rLc6qahpHdJusrl4/NVvUauVXH/B6X/fTUqPxKBT8e4XJ3C1zCWsqrPj88nzqI4V1gb/PVKJAEfoM3NLL8uBiiOcqMkPbo8fgD9KGqWa7826lh8tkpNATo5uHaqIC40hPjSGXaUHyLYcY0LUGIxdzCkYaOMix6BTafmmSJ6Ho1QoKawv7XJlV1s1tjqMGgPzkrOQJCmYbLCjQDd9bIf3b2naPMaaU5mbOGMAXsXwFJj43ei0UmGtotJaxYy4yWftfKOhFpp5Lsk//IO8/LsX9C3zcBpaekS0cZ17TE4lcuUtpN73Zwxj5TpdrspCyv/1Sxq+lVfHGScuAMBR1j7J3/ioMe3mpr2sqOM/jfLQb5RfSXL4qQMcl6UIv8uBIWMmmshEQqYtw+ew4iw9O4dfxiWbSIsPY/5UedL2wdzWydf5ZXKW4+vOl2tYnY5WrWRxZiJOl5dQg4aVc1oXJ6xakEaTzU2J5fRL0s9mIsAR+sykC2Pl2MUcrcrl25K9xIZEc9+C73H/wtsH7BpzkzL53ar/YdX49tmss+Kn0uBswulxkhXfs2Gn/lIplMHu8lBtCEvT5mNz26mydV+huNpWS5Q+ghCNkQmRYzhYmYO7i7weFVZ5omVcaPsA5/yMpfy/837WZZmKkaJtD87BCnl4qmPOF6HnJIUStSmm18dp4tKR1Fp8ditIil4FOJJKjdIYHlwyXr/1HbyNrX+gw+fKdQSdZe0T992SdVW7oUgPrV8YItxeoo2RaJUaihs7T7p1lMiT8rVJco+GIUOeuN58bMdpv3icTuOuT2g+vqtf5+gtg07NCz9ezg+umIFGreTl9w+y87C8kKGqTp6D1N3S8I4unJ+GUiFxy8WTSYqRjzPq1cycKH82dh2pJL+sgR8+/V/yyxq6O9VZSQQ4Qr98b+Z3mJckf2MbE5HCwpRZ7Uo9DITEsLh2xQuhdWXKhMgxnJ/R/aThgXTe2MUA3DPvlmDytu6GqXx+HzX2eiJb3pPpcZNwepzthvQCAkNZcSG9/8N0tgtryZTd6LCyv+IoCknB1JgJQ9yq0UdSKJFacu2EZp6L0tj7+mtKfShSSzCuCo8h4eaniLnsPrSJ45E0Opyl7XtwdCotP196Dy+OuwSpQ1AS4XSgkBQkhcVT0iAHOD6nDa/dir3wEDXr/ySfI0n+rGgTxqI0mmjY8RGW937T67YHSM5m6v77V6o/e2VIhrvMYTr+3w8Xodeq+N1be6mut1NVLwc40RE9763OSDbxz6cu4vx5qSzJSiItPownbp/PrIkxmMO0fPj1SR57eTvFlVbWf9s5B9LZTgQ4Qr8oFArunX8raydd2O2qqIE2MXosf7z4KZ5Y8aMuJzyeKUvT5vOXtb8hM34KqS2TgQu6CFYCGhxNeH3e4KTpQEblk3WdV0gcrz6JUqEckCG+s01giKrGXsfhymOMi0zvciWecOZFrrwFdVQS5kBphz7we+QlyOHz1qBLmkjIlMVICiXa+LE4K/K67F1RNdQS6/KibLN83NAkz+eLC42mztFAQ9Fhyv/+OIW/vZnKfz8LyPONlHr58yNJCmKv+AnqqCRsJ3bj93SRIdnn7TZoadq7AUOOXJTUa63FfvJAH9+F/hmfEsG9V2ditbt54k/fcrJU7mGJjujdz4VOowoe98KPlzMh1YxapeSSxWOpbXRQb5VXu1XV2TleVMd3f7GB3JL6AX0tQ0WsohL6Ta1Uc+30Swf9ugPdU9QTkiQF5/skh8UjSRKF9V3XyAI6FVsMTBjOq23/bcnudnDIcpypMePR9aAQ5UgTGKLanL8du8fBvJZ0/sLgC52xgtAZK/p1jojF19B08AtCM9sXx9VEJeMoPIy3qbZdlmUAd30lF1c3obv0HnwKBfn//Qt+pfzzE6ORl6Uf/tcTxLnk4MRnbyJs9irMy69vdx5d8kRCJi+ibsu/cFbmo0tsn2qg7G+PoAqPJnbtA53a7a6roHbDn2g7GNyUvRlDxpnNZXQq86bGc9NFk/jbp0cpKG9Ep1ES0oNK4z1xyZIxuL0+8krqOZhbTW5JPX9fn4Olzs6mnUVkJJkG5DpDSfTgCEIfaVQaEkJjux2i6li6IkwXSrTBzFcF3/LijtfxeD0A7K84jMfnYXbCyJ1I3J1ArbMKaxUSEguTZw9xi4T+iFhyNcl3vYRC3T5LeWtJh87zadw1ZUxQhbFk7CKWpS/gfKUZT4MFv99PSJFc06ta3TpULam1RCy9FkUXPX3aliGrwBydAJ/LgbP0OLa8ffg7FAoGaNy3sd1jTUwajsLD/Z7P0x9XLB9HqEEOaqIj9AM28V6tUvKd8ybw81vncc6MRGobHezNkecBfnuofEhf80ARAY4g9EOqKYnK5mpKGsr55Nh/8fna/9LsKrNzfEvG2S0FOzhRK68+C+R9mZU4bTCaPezo1bpgyY6pseMxG0xD2yCh37r6QxxIQNixpIPf58VdXRKsag7y0JO3uQFPfSWhlfIwcI1aHnQIm3sxsVf8BKWu61wwuoRxIClwFOfg9/uoeOfXVK9/DXeN3Nvqd9rw1LUv3uv3+7Ae/BKVKRbbpPOJueYRdEkT8DbX42mwdHWZQaFQSEwdK+czMmgHpvemo4yk1rlWcybHUtPgIKeg7oxcazCJAEcQ+iEwp+aBz5/kr/vfZX/LCqCAnKpcJEkKptEHuGDc0jbPy8thc2sLiTREdFniYjSQJImHltzFD+fexD3zbh3q5ghnSNuSDm256yrwe91oolsDHF2KvLLKlruHiHo5d05tSw+Oad4lweXoXVFoDWhiUnEUH8V6aAu24ztp3P0pzsqC4D6BTM0Brop8vM0NGCbOx5k6G336dLTJ8uosR8mxPr7igZGeIAcglWeoeObC6QmcNzeFF3+8nBtXTUIhwf+9fxCPt3Mv19lEBDiC0A/nj10cDHIA9pZnB/9tc9vZV36IydHjgquEAOYkzuDNK36PUqHkm+I9bC/eQ3FjGWPNqYPZ9GFnUvQ4lqUvwKTv/cod4eygNsWApOgU4Lgs8qT7tj04gdpYjXs3EOL1o5WU1BqNKEPNwVpb3dGPmYHP1kjVhy8Et1mzNwf/3THAsefLk4l1adNb2xAY6mopMTFUzpkhp6e4fHnGGTl/eIiWe6/JIjU+jPSEcK5YMY6TpQ1sPdA599DZRAQ4gtAPGpWGh5fezU/OuZNoYyR7yw4Fx653FO/D7fOwoE1RybbHxYfEUFhfwu+++RN+v79doCQII5GkVKEyxXSag+Oqaglw2vTgqELNqCLicFeXIAHxuggKNQrKzr2GNw68x5sH3uv2WoYxmcF/61v+7Sg6AgolkkqDq0OAYzt5AEmlCQY1IC9zV0XE0ZzzLT5P5+KUfq+Hoj/eRe2Xf+/Jy++z5NhQ3v7lai5b2nUW6YG2aoGcAuPgiapBud6ZIgIcQeinEI2ROYkzmJ0wnWpbLY9seprC+hL+tv9djGo985O7XoGxMKV94JMxyntwhNFBE5mIu7Ycn7O1eKbLUgiSAnVkYrt9QyYvCv77pqkXo1XreO7Qe3x8bBMf5rSfENyRLqm1nEH0mruDuXnUEXGoo5JwVbeufvT7fThLj6NLmhDcD+Sh07BZF+CzNdJ85JtO13BWnMRTV0HTwc1nfFKuXqsatMze0RF6EqKMHGiTSflsJAIcQRggV01dzZzEGZyoLeDpr1+i2W3n7vm3BpdAd3T5pFX86bJnuDnzSuJDYkQPjjAqGDJmgteD7cTu4DZXZQHqyIROq67CZq8K/ntK2mx+ce5PMOlbK5m3LfHQkaRSE7P2AYyX3oNToyXqwtsJmb4M84obUZvj8TbV4HPJhSc9DdX4PS7UbXqQAkJnnIuk1nZaYQWtQ1dea60cpI0g08dFY6m18e4XJ/jdW3tpbO7cgzXciQBHEAZIiMbIDTMuB6DKVkukPoKZ3ZSRUCgUhGlDWD3hXH6/+olRmf9GGH2MExeApMB6ZCsAXrsVT31ll2UhVCERRJ5/GxGLr0FSKIkPjeG5VY9z0Xg5T4+luabd/n/e8y+e2/4anpZEfoaJC/hF4Rc8+t9n0U9bSsyaezCOnxPsKQrMBQqsrtJ06EECUOqMGMbNxlmSg6dBHrJp2P059qLD8pBXC3ve3uC/rUe24ao5u+evzJkkL4z46ydH+GJ3MVsPnDrf13AlAhxBGEBxIdFE6ORJstPiJopikYLQgdIYjj51CraT+/G5nbgq5VQJmlPUvQqfs5qIJVcHH+vVOtJNyQBUdQhwPs/dzDdFu/nrvncAOGQ5RqW1ipLGcjblfR3cT9NShNRdKwchgQBHHdU5wIHWoTLr0W/wNjdQs/5Vyt94DEdxDprYdCS1DluuHOB4mmqxvP9baja81ot3Bfx+P3vLDnGoMgfvMKiGPndKHM/dv5Tvr5VTVxwrPPuWjYsARxAGkCRJTIoZB8D02ElD3BpBGJ70YzLB68FRnIOzQg5welPYMyZEzoLctgenbQ6qDblbKG4oY3P+dgCMGgMf5mzE5/eRV1uIRS8PhblbellcgQDH3HWAox+b1RLE7Gm3ZNznsBI6fRn6tKk4So7hdTQHi4naT+6n4l+/pDlnx2lfT05VLv8+8hm/+voPPLn597xz+BP+m7eVWlt9T9+SM2JskomLzxlDjNnAieKzL8ARpRoEYYCdN3YxTU5rt8NTgjCa6VuWYjsKs3G3DPtoY9N6fHyMUU58Z2lunQTb6LICMNacSl5tIX/d9y5Hq3OZGDWWCVFj+SBnA8eq8/j99j8TqTfxXdr34EhaA8oQU6dknQAKlUauo1Weh6Okdcm4JiaFsFkXIilV2E7sxp5/MNgjBXIOH0fpMYwT53U6p8vrRq1QYWmu5rEvftPyuiJxet18dGwTbq+blWPO4Y4513c6drCNTzax9UAZFTXNxEV2nVwRwOv1UVVv73afwSR6cARhgE2JGc+jy9aJYpGCcAqa2FQUuhDsBYdwVZxEFRGH4hRZibsSoQtHqVC2G6Kqt8uFOWclTGNuYiYHK4/i9rpZlr6QxalzAfhv3jZq7fVUWKtQhkTgrinF7/fjqipGY07odkhZmzgOv8tB0/4vkLQGEm75f8R951EkpQr9WHmlpC13L87yPFC0lpTwe9y4LIU4Kwvw+/34/X7ePvQxt7z3AC/teoNj1fJy9eSweB5eeg+zE6bj9spFQg9ZhjbBYMCEVLnUzO2/3MSenMou96mut3PXM19w+y83cfhkDT6fn5oGe5f7DhYR4AiCIAiDSlIo0aVOwVmeh7umvFfDUyBP0I82mDlQcZSfb3qaTXlfU++QAxyTLoxrpq1BQkKr1LAgeSYppkRiQ6LZXiLPk2lyNeONjMNVW467phSfrRFt0vjuLimXf0AeltIljkOXOB5VS8JBtSkGdVQS9ry9OMtz0caPJe6ahzFOXIDf7aTk1Qco/dOPqPvqnxQ3lPHu4U9QSBKb87fz4o7XAfjJ4h+QEBrLnMTWRIMV1iqqm2t79d6cCctmJrNsVhIAf/vkKD5f5yXxG3cUUlrVDMDmvSVs3FnELU9uYOeRikFta1siwBEEQRAGnT5tGvh9gL/XAQ7AVVMuZkLUGIrqS3nr4AfUOxoAMOnCSQ5P4NaZV3PrzGvQt6xOTAqLC/aMADSER+J32rAelicf61O7rwOnbQlwAEwLr+j0vGFsFt7menx2K/rUKRgyZmGctKDdPvbCbLIr5QKgd8+7hYiWrN16tY7YlmG36XGTWTVuORePlyuxD4deHFOolh9dN4vLlo7lZFkD2Xmd8+PklTagUEjERxr55mAZn2+Xh+pe/U92lwHRYBABjiAIgjDo9GmtAcWpVlB1Z3HaXP5n+f0sTp1Lk6uZ/Dq5IKdJJ+fJuXDcMlaMWRjcv209OIB6o5yfqnHvBpAU6FKndHs9VVgkoZkribzge+i72NcwtjWhZ9js1YA8rBWgT5+OqyKfQ5U5KCUFmXGTOX/sEkCeIB0YHlMplNw682rWTDwPgEOVQx/gBMybEgfAydKGdtvdHh/5ZQ0kx4SwYk4yjc0uckvkfSpqbBw+WdPpXINBBDiCIAjCoFNHJqIMked2aOPS+3yeFJO88ulgpTz5t20iwLY6BTgauTK3z9aINm7MKSuTtxW9+geEt0k+2JYueRLq6BRM51yFKlR+XerwGKIvuZekO59HG5+Bx+PiiOUEGeY0dGodF45bxlhzKt/vYiJxhD6cpLB4DlmOnfEsyT2VEie/t0UVTcFtOw6Vc/lPP8JSZ2dMYjgr57QmS8xINgFwqIsen8EgAhxBEARh0EmSRPjciwmZugSloeugpCdSWwKc0kZ5rke4NrTL/eI7BDg1itbVUiHTlvb5+gGSSk3yHb/DvPQ77baHTlvKpppjbFLYyDNosHudwVQSRo2B/3fezzinZRJ0R1NjJlBrr6fcaglu8/v9HKrMweF29LvNvRVm1GAK1VJU2Rjc9vm3rRmcU+PCiDLpiYmQF1hcOD8NjVrJ4XzRgyMIgiCMIqYFlxFz6bp+nSM5PCH47xCNEbVS3eV+CWFygKNX61AqlFR7Wlf4hA5AgBPg9Lh44LMn+e22V7G6mrE01/D6vnd4t2Ivf2/pAelpWZapsXLhz7bDVF+c3MaTm3/Pv498NmBt7o2U2FCKK5uCK8IKylqHq6ZlyPOIfnHnIlYvSmfpzEQmpkaQU1iHx9t5+f2ZJvLgCIIgCGetEI2RSH0ENfa64ETdroRrQzGq9UQZI7G57dTa6zGdcxVKo6lXS9RPZ09ZNiWN5ZQ0lrOn7CDz2hTbdSrkPoUx5s41r7oyLlIeuitqKOWI5ThKhZJ/Zn8ItPZYDbaU2FAO5lZTVW/H4/FR3eDgooVpXLp0LAlR8rym+Cgjd14urwabnB7Jwdxq8krqmZBqHtS2igBHEARBOKvdOfcGihvKWZgy65T7SJLEXfNuRq/W8/cD71Nrr8d8wXdOuX9fbSvahYTEDTMu553DH7O1cCcg58c6bDlOiNeHWdN1Ad6OTLowtEoNe8qy2ZC7pd1zbp/7FEedWSnxci9UfmkD1fVyL9j0cdHB4KajqWPkrNOHT9YOeoAzLIaoNm/ezEUXXURWVhaXX345+/fvDz63adMmVq5cSVZWFuvWrcNmO3X1WEEQBGH0mRE3mYsnnItZb+p2v9mJM5gSM54wXSgNzqYBn7zr8rrZV36YyTHjWDNxJVNiWnPrXDxhJQCJDjfu6pIenU+SJGJCoqixyWUSksPi+eniH5IYGkd189CUTpicLgcpB/Oq+fpAGRq1kpkTYk65/4TUCJQKaUhWUg15gNPY2Mj999/P448/zr59+7j22mt54IEHAKisrOShhx7imWeeYdu2bbhcLl5++eUhbrEgCIJwNgvXhuL1ebG5+5dpt9HRhKtNbp3q5ho8Pk9wjk0gwIkxRjIjbjJzTenMa7DL2Y57KC4kOvjvBxbdwayEaUQZzVTbaodkdVVKbCgRoVq+3F3Mkfwa5kyKRa899WCQTqsiI8nEkfyaQc+HM+QBTlhYGFu3bmXu3Lm4XC4aGhowmUwAbNy4kfnz55OVlYXBYOCee+7hvffeG9oGC4IgCGe1cJ280qrB2XSaPU+t2lbL9z54kD/v+Wdwm6Ul63C0UR6WmRIjTxJOCU9EpVBy36LbmWz3UL/9P3gae9ajEdsS4KgVqmCwE2Uw4/S6sLqa+9z+vpIkiWkZUTTZ3Pj9sHRm1wVK25oyJhKr3c3uo5X4/X5sDjfFDWX8afdbeLyeM9bWIQ9wAIxGI8XFxWRmZvLcc89x//33A1BQUEBaWlpwv9TUVCwWC1ardYhaKgiCIJztwlqWkjc6+h7gvHngfQC+yP8muC1QGyumJcBJNSVy0fgVrBq/HABVSASR538XT10F9d/07Mt6XIg8cToxLA5lS42rKIOcZ6faNjTDVIumyyvXLlqYxrwp8afd/8IFaRj1ap79+x7ufvZLbvyfz3n/0CY25G3hRG3+aY/vq0GbZLxlyxZuv/32Ttvvvvtu7rnnHuLj49m/fz8bNmxg3bp1bNq0CbvdHuzNAdDr5bX1drudkJCeTdIK8Pl8eL3efr0GoX8C77+4D8ODuB/Dh7gXgytUI6+aqrM3dHrPe3IvnB4X24v2ACAhYXU0o1frqLTKldEj9RHB42+cfnm78xkzV1K7+U2cVcU9ut/RejlYSgqLD+4fmGtksVaTEpZwqkPPmHlTYvnb/5xPmFGD3+/jdC8jJkLHQzfN5vdv7w8mCTxeJefPKW+0MN7cdSbrriq798agBThLlizh2LFTp5xWqeSmXHzxxbz22mvs2rULvV6Py+UK7mO3y+OlBoOh19fPzc3t9THCmZGdnT3UTRDaEPdj+BD3YnBU2eSK2Edyj6Kp6nqf7u5FlbMWP36UkhKv38t/d28mSR/HiQp5bk3piWIsivJTHh+qNeGtLGy3oOZU7F4HoSojZmdIcP96m9xTtP/4QVSWwc8v0xP17kZ21mezPHIeaoX89/0HF5gpr3Pz6voKqhwVIMGBvEOE1+vOSBuGfJl4Tk4Ojz32GG+//XZwm8vlIjQ0lPT0dHbs2BHcXlBQQGxsLEZj73MWZGRk9LrXRxhYXq+X7Oxspk2bhlKpHOrmjHrifgwf4l4Mroj6KN4u+5ywaBOZkzPbPdeTe7Gr9AAUw8LkWXxdtBNVlI7McZm898UmTLow5syc3e31q4vH0nx4K9MnTUCh1Z+2vQtmzW/3OMmWwltln6I26cjMzOz6oCH2z+wP2ddwlBVTFpOZ0Foh3evz87dv3sYvyYGZFKI85WuwWq396pwY8gAnPT0di8XCO++8w+WXX857772H3W5n5syZjBkzhueee45du3YxZcoUXnzxRVavXt2n6ygUCvGLY5hQKpXiXgwj4n4MH+JeDI4IgwmAJlfzKd/v7u5FZbNcW2lBihzgFDSUoFQqqbLVEm2MPO091EQm0gz4Giyo43tfaDQ6JBKtUkO5tXLYfl6KG8sAKG2qYJ4yK7hdqYSoBBe1LY8tzTWnfA0KRf+mCQ/5JGOtVssf//hH3n77bebOncsHH3zAq6++ik6nIy4ujqeffppHHnmExYsXYzAYWLeuf2m9BUEQhNEtVCv35n+eu5n3j3ze6+MrWubajItMI1wXRlljBU1OK/WOxuAE4+6oI+WVR+7a0l5fG0AhKUgIjaW0sbJPxw+Gwgb5tRXVt77Galst/zm6Hn94GX4/+Bx6yhtPMUY4AIa8Bwdg8uTJvPPOO10+t3z5cpYvXz7ILRIEQRBGKpWitcfgw2MbWTv5wl4dX2G1oFfrCNOGkhAaS1F9Cd8W7wMgM27KaY9Xm+WVR67qvgU4INfW2la0G4fHiU6l7fN5zgSrqzmYnDAQ6AD8afdb7C0/BICvIQq/R0Ozrgyb245Bffqhut4a8h4cQRAEQRhsD57zAyQkPF5PrxPmVViriAuJRpIk4kNjaHbb+fzEl6iVauYkzTjt8eqoJCStAdvxXX1O1pfQUh29vMlymj0HX1F9WfDf5U0W3F43jY4m9lccCW6/bdEq/HZ5Pm1Jw6knZPeHCHAEQRCEUWd24nTOHXsOTq+r24R/Vc017RLqub1uam31wQR8gUCjuLGcWfHTetQToVBpCJ2yGJeloFdZjdtKDIsDIK+2gA+ObsDSPPilEE6loL4YkIuF+vw+3jjwHlsKd+Lz+7gl6yrumH09502ci2ST8/kcqTpxRtohAhxBEARhVArMl7FYqzs95/f7sTqb+fH6X/Dbba8Gt9fY6vDjDx4bCHAAFqV2v3qqrdBMuTZV8+Gv+9T2MREpSEi8svsf/P3g+zzx5e+odzT26VwDLbemAIA759zAmIgUPj+xmfePfIYkSSxPX8jKseegUamINySBX8ERy/Ez0g4R4AiCIAijUoxRzhL8TdFunt32Mi/tfIOq5lp8fh8//+JpbvvPj7G7HRyyHAtOlg30lEQZ5KKTCaFyoUm9WkdW/NQeX1sTl4ak0eOszMdjraPoDz+k6eCXPT4+LjSGdQtuw6DWMyNuMlXNNXx2vOfHn0nHa06SEBpLcngCd827GZBXrKWFJ6FXt+a8SYkx4bOGk1Odh9fn7Xdiv45EgCMIgiCMSoFemE9PfMmukgN8mf8Nz3zzfxTZy8mvK26374a8LYC8Egha603FhEQToQ9nWdoCNEp1j68tSQo0MSm4LIU07PwYT30l9oLeJXpcmDKbP699locW30Woxsj+isO9Ov5MqHc0YmmuYXykvPw9KSyeCH04ABOix7bbd2ySCW9jBA6Pk//5+C9855/r+Ojw5gFriwhwBEEQhFEptqXOE8Bd825m9fhzKW4o492y9QBcMvF8nlr5IJH6CI5XnwSgKlBQs6UHR6VQ8uLq/+XmzCt7fX1tTBo+u5XGXZ8C4GnoPFR2OgpJgUKhYFrcJPLriod8mCrwPo2PSgfk4pwzYicDMDGqfYBz8aJ0orTyXKJjtj2g9PDGoX/x0d49A9IWEeAIgiAIo1KIpjUr/sKU2Vwy8TzUChVefKSEJ3LDjLWMi0wnOTye0sYKvD4vlpYkf1FGc/BYtVLdp6R0mphUAPweFyDhaeh7TpjMODmIOFhxtM/nGAgb87YgITG1pZI6wIXjljI7YXqnJfQ6rYr71y4BQJJat79x4k+8vus/eM+WWlSCIAiCMJxIksTjy+/HoDagUiiJ0Ifz8OK72XJoOxfOXBHcLzk8gf0VR7j2nbsBMGoMA5K3RRMrBzjKUDOa6FTsJ/dR/Mr9RJxzJSGTF/XqXDNaApz9FUc4J3UO3xTtZlbC9HZzXs60I5YTHKg4yuLUucS1zE0CGGNO5cHFP+jymIlxyWiUalxeN9TF48WLMsLCpyfXY9LoSCa6z+0RPTiCIAjCqDU5ZjxpEUnBxxOjM5gbMY2U8MTgtuTw9hW7m122Abm2JjYdXcpkIs+9KZj8z11VRPOxHac5srMIfThppiQOVBzh0+Nf8vy3f+Ff2R8OSDt76tPjXyAhceWUnpdUUigUJIXJr90oReEqmIyrYDJmTQxf5n/Tr/aIAEcQBEEQutExwJkSM35AzqtQa0m48X8JmbIYVXjrfCB3dXE3R51aZvwUmpxW/n7wfYBBzY1TY6tjV9kBMuMnE9+m96YnAsHkNYtmMzUlEa8lhbGamfjo3xCVCHAEQRAEoRuBpHoAz1zwc9Yt+O6AX0MV3joU46opw+/z9vhYj7We4lfuZ6pCnlPkbTnW7nEMbCO78XXhTvx+P+eNXdzrY89JncOUmPEsnTCdB2+Ucwmp7H0fmgoQc3AEQRAEoRs6lZZ75t1KbEgUqaak0x/QB0qjqfWB14O7rgJNZOIp92/LUXwEd1URCSUFfHfmd3gr+wNsbvuglnE4UHEErVLD9Ja5QL0xPW4S0+MmAaBV+lEpJawNSqKTT1+4tDuiB0cQBEEQTmNx2lzGR405Y+fXxqWjjkpClyqvNHJX9XyYyl1dAoCzIp8Lxi3lL2t/w8KU2dTa67n1/R9xqPJYu/39fj+7Sw/i6UUvUXdsbjs5VblMiRnfq1xAXVEoJMzheqob7Iw1p/bvXP06WhAEQRCEflNo9CR///eYV9wEgKsXAY6rJcBxWQrw+7xyEdAQeR5Ms8vGBzkb2u2/q/QAT299iQ+OruelnW9Q3ZLbp68OW47j9fvIjD99JfWeiArXUdNgZ+WY3g93tSUCHEEQBEEYJjTRySApcFbm9/gYd7VcRsLvduIsz6N6/WuEOp3B521ue7v9D1nkHp13Dn/Cl/nf8O6RT3vdTofbwecnNmN1NpNfVwR0TuTXV1HhehqsLjQKTb/OI+bgCIIgCMIwoVBr0UQndaoy7ve4qdv6DiHTlqGJbF3V5fd5cdeWgaQAv4/yvz+B3+0gRqUgJCMJq8dBQX0JHp8XlUIJQE5VLgA+v7xK6evCnVw3/TLCtCE9bueHxzby7uFP+Wf2h4yJSAEgvk3h0f6IMsk5hix19tPs2T3RgyMIgiAIw4gmLgNvYzUea31wW8PuT6nf9m8q//005f94EnvREQA8DVX4PS6MkxYgafT43fLKKbPHx29iF3H55FW4vW6KG8oAsLnsFLYUDgU5m7Pb62Znyb5etXF78V75fG47hyzHiDKY0ar61+MSMHOiPLz29qb+VRkXAY4gCIIgDCPaeHmox1Uh9+L4vW4adn4CyJOP7fkHaNwr18tq3LcRAOOkBSTe/Ev0Y2cSe9XPAPBa68gwpwGQV1sAwPGafPz4WZA8CwmJ66ZfBsCxlhpSPVHcUEZpYwVzEmcEtyUMUO8NwNSxck6g4kprv84jAhxBEARBGEYCAY6zLC/4f29T+6R99vyDeBpraNz1KZqYVIwT5qGJSSH+Oz/HkDETJAWeployWlYi5dYUkFOVS25LoLN6/ApeW/sMK8eeQ6wxiuM1PQ9w9pUfAuD8jCXBiuwxCi2lf34QT2P/kwsqFRJXLM/o93lEgCMIgiAIw4g2Lg1JrcVeeAhPYzXOCjn4MC2+GgBJo8Nna6Ty38/g97iIWHYdktT651xSKFGGmPBa6zDpw4nUR/BF/jc89sVvePvQR0iSRKopKVhsdFzUGMqbLGzO346vBwUuj9fkIyGR6vQwVicXHTWVF+Isz8N6tH/lFQKuv3AiD98yu1/nEAGOIAiCIAwjklKNLnkyjqLDFL3wfWo2vAZAWOa5JNz0C2IvewAAZ9kJtIkTMGTM6nQOVYgZT5O8/LtjPpmk0Lh282XGR6YD8Medf2Nr0a5u2+b3+zlRnU+SNpzaN58g4cgeAKJL5N4m+8n9fXjFnalVSiLD+1fQVAQ4giAIgjDM6NOntXus0BpQhkaiS56EPiML88pbME5aSNSFtyNJUqfjlaEReK11+P2+dqUmACINEe0en5MyJ1iN/Php5uLU2OqoczSQ6pNXZC0ft5T7qlykOjwgKXAUHcHndnZ7jsEiAhxBEARBGGb06TPaPVZoDcFARpIUmOatIfbyH6GNS+/yeFVoJPh9eJsbgsFLuDYU6Fw8NERr5OEldxOuCwvO0TmVwFyd5GY7Cn0o0Rfeztybfo1p0RWYFl2O3+PqtMR9qIgARxAEQRCGGW1sGvE3Pol55S0ASKrelUBQhsi9NN6mOiZFj+WZSVfw+1m3cgNmLouf2Wl/SZLIMKdSWF+Cy+s+5XmP18gJCBOrLGhj05AkCVVYFOZl16GJTQPA01iN3+/DXT94tbC6IhL9CYIgCMIwpE+ZgjY+A5elgLBZq3p1rCpUnvzrsdbi3H8S76cvUQFMBZwRXxJ6fueenwxzGnvKsimoKz5l3a3jVbkYURJptwUDmtZryiuqvE21WLO/ouqjP5B0x+/k7MxDQPTgCIIgCMIwpVBriVlzD7qE3i2bDvTgeOotNOz8SD6X1gCAoyVJYEfpLRmJ2yYCbMvldZNfV0RSsw0JughwWoKqphqcZbmAH1dNSa/aPZBEgCMIgiAII4w2IQMkBfXfvI+7uoTweZeQ9uM3ME5ehKsyn5JXfxQs0hmQECYn6ytrquzynDmHv8ALpLp8hM28AOP4ue2eVxpNgIS3qRZ3XTkgD5ENFRHgCIIgCMIIo9SHok+dgtdaC5KCsDnyEFdg8rLLUoAtr315hhhDJCqFioL6Yj49/gUurxuvz8vu0gP4/D72H9oEwOzz7yRq1R3BHqEASalCaQzH01SLu1YOcDxN/U/811diDo4gCIIgjECGCfOwF2RjnDgfdbhc3ylk6mKcZbk07duAt7G63f4KhYL4kGgOW45z2HIch8dJiNrAn/b+k+9PuIgcZy1qg5bJqZ3z7gQoQyPx1Fvw2hoBuVzEUBE9OIIgCIIwAoVOXULojBWYl10X3KZQaYi64DZA6rKsQnxYa02pWls9O058DcAX+z+gQKdmYkQqGuWpV3SpQs14m+uhpVK5tyXZ4FAQPTiCIAiCMAIpdEaiL76r03ZJqUYZEoGnQw8OgFlvCv67uLGcE01yFfITejmomZHSeYl5W4GJxgGeIQxwRA+OIAiCIIwyqrBIPA1Vnba3DXCOVp3Ag59YpwcAo1LLOSlzuj2vsk2AI2kNeMQQlaygoIAZM2ZQUtI6s3vTpk2sXLmSrKws1q1bh81mG8IWCoIgCMLZTxUehbe5Hr+nfVK/1eNX8L1Z1zI3KTO47XtWFT+Z/11euuzXmA2mbs8bMnkhxsmLiF5zN8Zxs/E7bfhc9jPwCk5v2AQ4fr+fRx55BIfDEdxWWVnJQw89xDPPPMO2bdtwuVy8/PLLQ9hKQRAEQTj7qcKigc6rnNRKNednLMGkCwMgzOMjJiKBOamz0am0pz2v2pxA7NoHCJ2+HFVYZMs1hqYXZ9gEOG+++Sbjx49HqVQGt23cuJH58+eTlZWFwWDgnnvu4b333hvCVgqCIAjC2S8YfHSYaOyut1D+jydYGDkOpaTk6soG1JEJXZ3itJShUfI1uhgKGwzDIsApLi7mrbfe4kc/+lG77QUFBaSlpQUfp6amYrFYsFqtg9xCQRAEQRg5VC3Lxp2lx9tttx7eij3/IPGlRfwp61Yy7G7U5sQ+XUNtlquYB3LiDLZBW0W1ZcsWbr/99k7b77rrLvbu3ctPf/pTjEZju+fsdjsmkyn4WK/XB7eHhISc0fYKgiAIwkilHzMDVVgU9d+8R+iMFSiN4QA4S3IAcBQfxVF8VN43ZVKfrqE2yz0/gazGg23QApwlS5Zw7NixTtv/+c9/Eh0dzdKlSzs9p9frcblcwcd2uzxRyWAwdNr3dHw+H16vt9fHCQMn8P6L+zA8iPsxfIh7MXyMmnuhUGFafgPVHzxH3Y4PiVh6HX6/D0dLgGPP2wuAYfIilJFJfXo/JGMEKFW4a8r6dLzP5+v1MW0NeR6cjRs3sm/fPmbPng3IH6pLLrmEV155hfT0dHbs2BHct6CggNjY2E49PT2Rm5s7YG0W+ic7O3uomyC0Ie7H8CHuxfAxKu6FX0+YwUz97vUUGjNQOBoIdzS326U8agal+/f3+RJhunCs5QWU9eMcfTXkAc5rr73W7vHkyZP58MMPSUpKIikpieeee45du3YxZcoUXnzxRVavXt2n62RkZIhhrSHm9XrJzs5m2rRp7SaTC0ND3I/hQ9yL4WO03YtG32XUbfwz4/QuPO5m6oGwuWto3P0pkRf9gNSpS/p1fkteOva8fcyYNhVJ2buQw2q19qtzYsgDnO7ExcXx9NNP88gjj1BdXc2yZctYt25dn86lUChGxYf1bKBUKsW9GEbE/Rg+xL0YPkbLvTCOmUEd4Lbk03xsB0pjOJErridyxfVI3ZRk6ClNZAL2E7vxNVahiUrq1bEKRf/WQQ27AOfIkSPtHi9fvpzly5cPUWsEQRAEYeRSm+ORVBoadn4Cfh+mhWsHJLAJ0KdMpeHbD2n49kOiL/7hgJ23J4bFMnFBEARBEAafpFCiiU4JFscMmdp5wU9/6DNmok+bRtOBL3DXlg3ouU9HBDiCIAiCMIppYlIAkDR61L0cRjodSZIInXkB4MdRnDOg5z4dEeAIgiAIwiim0MkrkzXRKUiSNODn18aPAcBZkT/g5+6OCHAEQRAEYRQLn7MaXeoUotfcfUbOrwqPQaELwVmRh9/rwVlZcEau05EIcARBEARhFFOFR5Nww5No+lhz6nQkSUIbl46rsoCqT16i9E8/wlmed0au1ZYIcARBEARBOKM0cWPwu51YszcD4Cw7ccavKQIcQRAEQRDOqJApi9s9HoxhKhHgCIIgCIJwRmnj0jFOnB987Cw/ecavOewS/QmCIAiCMPLEXHYfzop86r5+B3vBQfxe94AmFexI9OAIgiAIgnDGSUo1usTx8rJxrwdXVXGnfZqP76L0rw/jc9r7fT0R4AiCIAiCMGg00XJiQVd1CQB+vx+fSw5orNmbcZYcw1F05FSH95gYohIEQRAEYdBoopMBcLf04DRsf5/azW8Red6tOEqPA+AoyQFNWL+uIwIcQRAEQRAGjdocDwolrupifE47dVv/DX4fNRteC+7jKD2Gz+MD8+Q+X0cMUQmCIAiCMGgkpRq1OR53dQlNB7/A73ZgWri27R44y3LxNtX26zoiwBEEQRAEYVBpopJw11XSdOBLJI0O0zlXoUubBoBx4jz8bieuyv7VrhJDVIIgCIIgDCpNTCrNOd/iqszHOHkRCrWWuGsexm0pwlVdQnPOt/g9rn5dQ/TgCIIgCIIwqMJmXRj8t3HiAgAUKg3ahAzUA1QTS/TgCIIgCIIwqJSGMBK/+yxN2Zsxjpvd7jm1OX5AriECHEEQBEEQBp02Lh1tXHqn7Up9KAp9SL/PL4aoBEEQBEEYVtTm/g9TiQBHEARBEIRhZSACHDFEJQiCIAjCsBIyeRF2t5emfpxDBDiCIAiCIAwrhoyZmGPHUX38eJ/PIYaoBEEQBEEYcUSAIwiCIAjCiCMCHEEQBEEQRhwR4AiCIAiCMOKIAEcQBEEQhBFHBDiCIAiCIIw4IsARBEEQBGHEEQGOIAiCIAgjjghwBEEQBEEYcUSAIwiCIAjCiDMsApxXXnmFqVOnkpWVRVZWFosWLQo+t2nTJlauXElWVhbr1q3DZrMNYUsFQRAEQTgbDIsA59ixYzz++OPs27ePffv2sW3bNgAqKyt56KGHeOaZZ9i2bRsul4uXX355iFsrCIIgCMJwN2wCnPHjx3favnHjRubPn09WVhYGg4F77rmH9957bwhaKAiCIAjC2WTIAxyXy0V+fj5//OMfWbBgAVdddRX79u0DoKCggLS0tOC+qampWCwWrFbrELVWEARBEISzgWqwLrRlyxZuv/32TtuvvPJKZs6cyS233MLMmTP56KOPuPPOO9mwYQN2ux2TyRTcV6/XA2C32wkJCenRdX0+H4CYuzMMBO6F1WpFoRjy2HrUE/dj+BD3YvgQ92L4CPzdDtyT3hq0AGfJkiUcO3bstPtdccUVvP766+zfvx+9Xo/L5Qo+Z7fbATAYDD2+rtPpBKCkpKSXLRbOlNzc3KFugtCGuB/Dh7gXw4e4F8OH0+nscadGW4MW4JzK8ePH2bp1K7fddltwm8vlQqPRkJ6ezo4dO4LbCwoKiI2NxWg09vj84eHhpKWlodVqRTQuCIIgCGcJn8+H0+kkPDy8T8cPeYBjNBp54YUXGDduHAsXLuStt97C7XYza9Ys0tPTee6559i1axdTpkzhxRdfZPXq1b06v0qlIjIy8gy1XhAEQRCEM6UvPTcBkt/v9w9gW/rkv//9L88++yzl5eVMmDCBJ598kgkTJgDw5Zdf8qtf/Yrq6mqWLVvGU089hU6nG+IWC4IgCIIwnA2LAEcQBEEQBGEgiUkpgiAIgiCMOCLAEQRBEARhxBEBjiAIgiAII44IcARBEARBGHFEgCMIgiAIwogjAhxBEARBEEYcEeAIgiAIgjDijOgAZ8+ePaxZs4bMzExuvfVWqqurh7pJo9Ynn3zCBRdcwKxZs7j++utFnZdhYNeuXUycOHGomzHqlZaWcttttzFnzhzWrFnD/v37h7pJo9b27dtZvXo1s2bN4rrrriMvL2+omzQqvfbaa/z85z8PPv7Xv/7F4sWLmTVrFo8//jher7dH5xmxAY7D4eDee+/l3nvvZefOnaSmpvKrX/1qqJs1KuXl5fHEE0/w7LPPsnPnTpYuXcrdd9891M0a1RwOB48++igiz+fQ8vl8fPe732XhwoXs2LGDW2+9lQceeGComzUqeb1e7rvvPh599FF27drFvHnz+J//+Z+hbtao4na7ef7553n22WeD2w4dOsTzzz/P66+/zsaNGzl8+DDvvfdej843YgOc7du3Exsby3nnnYdGo+G+++5j/fr1wfLrwuApKyvjhhtuYNq0aSiVSq6//nry8/Npamoa6qaNWs899xyLFy8e6maMenv37kWhUPC9730PhULB2rVreeGFF/D5fEPdtFGnoaGB+vr64HuvUChEWaBB9otf/IJDhw5xzTXXBLd98sknrFmzhrFjx2I2m7njjjv497//3aPzjdgAp7CwkLS0tOBjk8mEwWCgqKho6Bo1Si1evJh77703+Pirr74iISGB0NDQIWzV6LV//3727t3LLbfcMtRNGfVycnJIT0/n4YcfZt68eVx77bWoVCoUihH7q3nYMpvNXH755dx6661MnTqVf/zjHzz66KND3axR5e677+aVV15pVyC7oKCg3d/y1NRUTp482aPzjdifIpvNhlarbbdNr9fjcDiGqEUCwNGjR3n88cd5+OGHh7opo5LL5eKxxx7jySefRKlUDnVzRr3Gxka+/PJL5syZw9dff81FF13EXXfdhdvtHuqmjToej4eQkBBef/119u3bx9VXX819990nhnEHUXR0dKdtdru9XU+aXq/Hbrf36HwjNsDR6/W4XK522+x2OwaDYYhaJGzfvp2bb76Zn/zkJ5x33nlD3ZxR6YUXXmDFihVicvEwodFoSE9PZ+3atWg0Gm666Saampp6/A1VGDgbNmygpKSEBQsWoNVquffeeykqKuLYsWND3bRRTafT4XQ6g49783d8xAY46enpFBQUBB/X19fT3NxMSkrK0DVqFFu/fj133303Tz31FFddddVQN2fU2rhxI2+88QazZ89m9erVAMyePZuysrIhbtnolJaW1m4umt/vx+fziV6DIVBZWdludY5CoUCpVKJWq4ewVULHv+UFBQWMGTOmR8eO2ABn/vz5lJeX89lnn+FyuXjuuedYsWKFmDQ2BAoLC/nZz37Giy++KHpuhtjnn3/Onj172L17N5988gkAu3fvJiEhYYhbNjotXLgQj8fD66+/jtfr5S9/+Qtms5kJEyYMddNGnfnz57Njxw62bt2K1+vl1VdfJSYmpt38D2HwrVq1ig8//JDjx49TV1fHq6++GvxydjojNsDR6XS89NJL/N///R/z5s2juLiYxx9/fKibNSq99tprOBwOfvjDH5KVlRX8r7KycqibJghDymAw8Prrr7N+/XrmzJnDJ598wvPPP48kSUPdtFFn0qRJPPXUU/zv//4v8+bNY9u2bfzhD38Qc9WG2PTp07nvvvv4/ve/zwUXXMCMGTO47rrrenSs5Bd9oYIgCIIgjDAjtgdHEARBEITRSwQ4giAIgiCMOCLAEQRBEARhxBEBjiAIgiAII44IcARBEARBGHFEgCMIgiAIwogjAhxBEARBEEYcEeAIgiAIgjDiiABHEARBEIQRRwQ4giAIgiCMOCLAEQThrPP++++TlZVFaWlp8PG8efNEfTNBEIJELSpBEM5K9957L83NzTzxxBNceumlPP3005x77rlD3SxBEIYJEeAIgnBWqqurY82aNahUKs4991weffTRoW6SIAjDiBiiEgThrBQREcGqVasoLy9n7dq1Q90cQRCGGdGDIwjCWenIkSNcf/31rFy5khMnTvDOO++gVquHulmCIAwTogdHEISzjtPp5MEHH+S73/0uv/zlL/F6vbz44otD3SxBEIYREeAIgnDW+c1vfoMkSXz/+99HrVbz1FNP8dprr7F3796hbpogCMOEGKISBEEQBGHEET04giAIgiCMOCLAEQRBEARhxBEBjiAIgiAII44IcARBEARBGHFEgCMIgiAIwogjAhxBEARBEEYcEeAIgiAIgjDiiABHEARBEIQRRwQ4giAIgiCMOP8fA4qUaY+EAfYAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set(style=\"whitegrid\")\n", + "sns.lineplot(x=\"x\", y=\"y\", hue=\"group\", data=xy_df)\n", + "plt.legend(ncol=3, loc='upper left')" + ] + }, + { + "cell_type": "markdown", + "id": "55bd026a-dc9a-4a4d-b5ba-634ae7dd2016", + "metadata": {}, + "source": [ + "### Analysis\n", + "\n", + "Hera are a few examples of basic libraries for data anaylis in Python and R, with a bit of predominance bias towards the former:\n", + "\n", + "- **Statistics**: `scipy` (Python), `statsmodels` (Python), Base R, `lme4` (R), `blme` (R).\n", + "- **Machine lerning**: `scikit-learn` (Python), `caret` (R), `xgboost` (cross-platform).\n", + "- **Deep lerning**: `keras` (Python), `pytorch` (Python), `tensorflow`(Python)." + ] + }, + { + "cell_type": "markdown", + "id": "6dd9490e-58df-4082-9432-5de004bd1c68", + "metadata": {}, + "source": [ + "**scikit-learn**" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ca4b6254-5841-4b60-857e-664d243dabf8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the average accuracy in classifying the types of Iris using a decision tree and cross-validation is: 0.9666666666666668\n" + ] + } + ], + "source": [ + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.datasets import load_iris\n", + "\n", + "X, y = load_iris()[\"data\"], load_iris()[\"target\"]\n", + "clf = DecisionTreeClassifier()\n", + "\n", + "res = cross_val_score(clf, X, y, cv=5)\n", + "\n", + "print(\"the average accuracy in classifying the types of Iris using a decision tree and cross-validation is:\", \n", + " res.mean())" + ] + }, + { + "cell_type": "markdown", + "id": "85c40ab6-f17a-40af-8bd5-3034edba44cf", + "metadata": {}, + "source": [ + "**scipy**" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "31c80388-db68-487c-83ff-8893cadb9fd8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "TtestResult(statistic=-2.0456709273958644, pvalue=0.04105049135941344, df=998.0)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# A two-sample t-test, adapted from https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html\n", + "import numpy as np\n", + "from scipy import stats\n", + "rng = np.random.RandomState(1234)\n", + "\n", + "rvs1 = stats.norm.rvs(loc=5, scale=5, size=500, random_state=rng)\n", + "rvs2 = stats.norm.rvs(loc=5.57, scale=5, size=500, random_state=rng)\n", + "stats.ttest_ind(rvs1, rvs2)" + ] + }, + { + "cell_type": "markdown", + "id": "65dac05f-17d7-4972-8d53-5fb8e8c2c6b9", + "metadata": {}, + "source": [ + "**statsmodels**" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "8e8706f0-00f5-4979-8951-18572cb9417e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: y R-squared: 0.004\n", + "Model: OLS Adj. R-squared: 0.003\n", + "Method: Least Squares F-statistic: 4.185\n", + "Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0411\n", + "Time: 10:19:40 Log-Likelihood: -3001.1\n", + "No. Observations: 1000 AIC: 6006.\n", + "Df Residuals: 998 BIC: 6016.\n", + "Df Model: 1 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 5.0487 0.218 23.180 0.000 4.621 5.476\n", + "x1 0.6301 0.308 2.046 0.041 0.026 1.235\n", + "==============================================================================\n", + "Omnibus: 0.183 Durbin-Watson: 2.112\n", + "Prob(Omnibus): 0.913 Jarque-Bera (JB): 0.129\n", + "Skew: -0.024 Prob(JB): 0.938\n", + "Kurtosis: 3.027 Cond. No. 2.62\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "# The same as above, but using a linear regression model \n", + "# (tip for life: any almost basic stastical tests is just a particular instation of a linear regression model).\n", + "\n", + "import statsmodels.api as sm\n", + "\n", + "y=np.concatenate((rvs1, rvs2))\n", + "X=np.column_stack(([1]*len(y), \n", + " [0]*len(rvs1) + [1]*len(rvs2)))\n", + "model = sm.OLS(endog=y, exog=X)\n", + "res = model.fit()\n", + "print(res.summary())" + ] + }, + { + "cell_type": "markdown", + "id": "01bfbd31-287f-4da8-aed4-a438594b0451", + "metadata": {}, + "source": [ + "### Command-Line Terminal Programming\n", + "\n", + "- Programming that takes place in a **terminal**, which a text-based interface for interacting directly with the computer.\n", + "- Commands in a terminal are interpreted by a **shell**. Common shells include Bash (popular on Linux and macOS), Zsh (modern and customizable), and PowerShell (Windows-specific).\n", + "- **Essential for managing files, running scripts, and interacting with compute clusters (e.g. SLURM).**\n", + "\n", + "In Jupyter notebooks, you can execute shell commands by prefixing them with `!`. \n", + "\n", + "For example, we can navigate directories:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "3e077d21-8fac-402d-98b3-19e98344bece", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/javi/Documentos/docencia/DS-1002/DS1002-book/chapters\n", + "01-getting_started.md\tmodule-1 module-4 wrap-up.ipynb\n", + "02-python-basics.ipynb\tmodule-2 module-5\n", + "04-python-basics.ipynb\tmodule-3 my_folder\n" + ] + } + ], + "source": [ + "# Print the current directory\n", + "!pwd\n", + "\n", + "# List files in the directory\n", + "!ls" + ] + }, + { + "cell_type": "markdown", + "id": "f961542d-8435-4701-9336-9eb85aaa41e4", + "metadata": {}, + "source": [ + "We can also manage files and directories:" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "898cc000-738e-4596-83c2-f394e531f12b", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new folder and file\n", + "!mkdir -p my_folder # make new dir; -p option to not raise an error if it already existed\n", + "!rm -f my_folder/* # Remove preexisting content; -f option to not raise an error if the folder was already empty\n", + "!touch my_folder/hello_world.py # Create a new file named \"hello world.py\"\n", + "!echo \"print('Hello, World!\\nCode run from:', __file__)\" > my_folder/hello_world.py # Add some a line of code to this file" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "6c70e822-b505-48f0-b31f-a2ef36a615bb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello_world.py\n" + ] + } + ], + "source": [ + "# List contents of the folder\n", + "!ls my_folder" + ] + }, + { + "cell_type": "markdown", + "id": "f2fb53a8-51e5-47d2-90ff-4f96469dc87e", + "metadata": {}, + "source": [ + "And run scripts:" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "34b98b2c-d216-4110-ac89-38fe9e4a2f90", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello, World!\n", + "Code run from: /home/javi/Documentos/docencia/DS-1002/DS1002-book/chapters/my_folder/hello_world.py\n" + ] + } + ], + "source": [ + "!python my_folder/hello_world.py" + ] + }, + { + "cell_type": "markdown", + "id": "1e9ae7ae-ab8d-46cb-89eb-4fb1132bd12d", + "metadata": {}, + "source": [ + "### GitHub\n", + "\n", + "- Web-based platform for version control and collaboration built on top of Git, a version control system.\n", + "- It also has a powerful terminal programming where to easily interact and change your repositories.\n", + "- Allows you to track changes, collaborate with others, and share your work.\n", + "\n", + "Common Use Cases:\n", + "\n", + "- **Code Management**: Store and version codebases for projects/libraries. \n", + "- **Team Collaboration**: Coordinated team efforts on software development or data science projects.\n", + "- **Portfolio Hosting**: Showcase projects and skills for personal branding.\n", + "- **Open Source Contribution**: Contribute to or learn from public repositories.\n", + "- **Documentation**: Use GitHub Pages to create project websites or host documentation." + ] + }, + { + "cell_type": "markdown", + "id": "343eee57-2b06-4799-9b69-a9e820d8547c", + "metadata": {}, + "source": [ + "A few personal examples:\n", + "- Personal porfolio: https://github.com/jrasero\n", + "- This very course's book: https://github.com/UVADS/DS1002-book\n", + "- Niphlem: NeuroImaging-oriented Physiological Log Extraction for Modeling, toolbox: https://github.com/CoAxLab/niphlem, and [its documentation (rendered through Github)](https://coaxlab.github.io/niphlem)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/chapters/01-getting_started.html b/chapters/01-getting_started.html index 1112f35..32443b7 100644 --- a/chapters/01-getting_started.html +++ b/chapters/01-getting_started.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    +
    diff --git a/chapters/02-python-basics.html b/chapters/02-python-basics.html index 16d0b12..4105d9b 100644 --- a/chapters/02-python-basics.html +++ b/chapters/02-python-basics.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    +
    diff --git a/chapters/04-python-basics.html b/chapters/04-python-basics.html index 73e6e86..17e1f43 100644 --- a/chapters/04-python-basics.html +++ b/chapters/04-python-basics.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/012-intro_python (copia).html b/chapters/module-1/012-intro_python (copia).html index 58a1f31..8697b8e 100644 --- a/chapters/module-1/012-intro_python (copia).html +++ b/chapters/module-1/012-intro_python (copia).html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/012-intro_python.html b/chapters/module-1/012-intro_python.html index a090768..4034072 100644 --- a/chapters/module-1/012-intro_python.html +++ b/chapters/module-1/012-intro_python.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/013-intro_R.html b/chapters/module-1/013-intro_R.html index 6cac5c8..35aecc1 100644 --- a/chapters/module-1/013-intro_R.html +++ b/chapters/module-1/013-intro_R.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/Practice.html b/chapters/module-1/Practice.html index 775c938..0476a97 100644 --- a/chapters/module-1/Practice.html +++ b/chapters/module-1/Practice.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/about_course.html b/chapters/module-1/about_course.html index cd6f559..18b9bb7 100644 --- a/chapters/module-1/about_course.html +++ b/chapters/module-1/about_course.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/jupyter_notebooks.html b/chapters/module-1/jupyter_notebooks.html index d431345..4f7e1dc 100644 --- a/chapters/module-1/jupyter_notebooks.html +++ b/chapters/module-1/jupyter_notebooks.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/programming.html b/chapters/module-1/programming.html index 3b639d4..c1e352a 100644 --- a/chapters/module-1/programming.html +++ b/chapters/module-1/programming.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/tech_stack.html b/chapters/module-1/tech_stack.html index c5c9ac4..17a2773 100644 --- a/chapters/module-1/tech_stack.html +++ b/chapters/module-1/tech_stack.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-1/your_first_program.html b/chapters/module-1/your_first_program.html index f6545a5..c3cff9d 100644 --- a/chapters/module-1/your_first_program.html +++ b/chapters/module-1/your_first_program.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/02-cover.html b/chapters/module-2/02-cover.html index 203b94c..e0d62c5 100644 --- a/chapters/module-2/02-cover.html +++ b/chapters/module-2/02-cover.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/021-variables.html b/chapters/module-2/021-variables.html index 26e9f51..b85867e 100644 --- a/chapters/module-2/021-variables.html +++ b/chapters/module-2/021-variables.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/022-operators.html b/chapters/module-2/022-operators.html index d5171e2..cfa7406 100644 --- a/chapters/module-2/022-operators.html +++ b/chapters/module-2/022-operators.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/023-strings.html b/chapters/module-2/023-strings.html index f9f49b8..ca1afc3 100644 --- a/chapters/module-2/023-strings.html +++ b/chapters/module-2/023-strings.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/024-structures.html b/chapters/module-2/024-structures.html index b504c8d..cba1a4e 100644 --- a/chapters/module-2/024-structures.html +++ b/chapters/module-2/024-structures.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/0241-structures_exercises.html b/chapters/module-2/0241-structures_exercises.html index 25bf667..79ba597 100644 --- a/chapters/module-2/0241-structures_exercises.html +++ b/chapters/module-2/0241-structures_exercises.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/025-conditional.html b/chapters/module-2/025-conditional.html index e775456..24819bf 100644 --- a/chapters/module-2/025-conditional.html +++ b/chapters/module-2/025-conditional.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/0251-conditional_exercises.html b/chapters/module-2/0251-conditional_exercises.html index cecd267..c0488c4 100644 --- a/chapters/module-2/0251-conditional_exercises.html +++ b/chapters/module-2/0251-conditional_exercises.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/026-iterables_and_iterators.html b/chapters/module-2/026-iterables_and_iterators.html index d2ff0f2..e4a38cf 100644 --- a/chapters/module-2/026-iterables_and_iterators.html +++ b/chapters/module-2/026-iterables_and_iterators.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/0261-functions_exercises.html b/chapters/module-2/0261-functions_exercises.html index 7e8de7a..e3c5393 100644 --- a/chapters/module-2/0261-functions_exercises.html +++ b/chapters/module-2/0261-functions_exercises.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-2/027-functions.html b/chapters/module-2/027-functions.html index e4a69c7..f8588a9 100644 --- a/chapters/module-2/027-functions.html +++ b/chapters/module-2/027-functions.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-3/029-packages.html b/chapters/module-3/029-packages.html index 0b337c6..a11959f 100644 --- a/chapters/module-3/029-packages.html +++ b/chapters/module-3/029-packages.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + @@ -646,7 +661,9 @@

    Images are Numerical Data
    Requirement already satisfied: fonttools>=4.22.0 in /home/javi/anaconda3/lib/python3.11/site-packages (from matplotlib) (4.51.0)
     Requirement already satisfied: kiwisolver>=1.0.1 in /home/javi/anaconda3/lib/python3.11/site-packages (from matplotlib) (1.4.4)
     Requirement already satisfied: pyparsing>=2.3.1 in /home/javi/anaconda3/lib/python3.11/site-packages (from matplotlib) (3.0.9)
     Requirement already satisfied: python-dateutil>=2.7 in /home/javi/anaconda3/lib/python3.11/site-packages (from matplotlib) (2.9.0.post0)
    diff --git a/chapters/module-3/03-cover.html b/chapters/module-3/03-cover.html
    index df9132d..49ceed2 100644
    --- a/chapters/module-3/03-cover.html
    +++ b/chapters/module-3/03-cover.html
    @@ -210,6 +210,21 @@
     
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    +
    diff --git a/chapters/module-3/031-errors_and_exceptions.html b/chapters/module-3/031-errors_and_exceptions.html index 19f36da..46a15f7 100644 --- a/chapters/module-3/031-errors_and_exceptions.html +++ b/chapters/module-3/031-errors_and_exceptions.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-3/031-errors_and_exceptions_w_sols.html b/chapters/module-3/031-errors_and_exceptions_w_sols.html index 7cdf663..fbd78f3 100644 --- a/chapters/module-3/031-errors_and_exceptions_w_sols.html +++ b/chapters/module-3/031-errors_and_exceptions_w_sols.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-3/032-classes.html b/chapters/module-3/032-classes.html index a3f8838..ce8cf40 100644 --- a/chapters/module-3/032-classes.html +++ b/chapters/module-3/032-classes.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-3/033-reading_writing_files.html b/chapters/module-3/033-reading_writing_files.html index 256fd39..1abca80 100644 --- a/chapters/module-3/033-reading_writing_files.html +++ b/chapters/module-3/033-reading_writing_files.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-3/lab-recursion.html b/chapters/module-3/lab-recursion.html index 27e2e68..a978a54 100644 --- a/chapters/module-3/lab-recursion.html +++ b/chapters/module-3/lab-recursion.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-4/041-numpyI.html b/chapters/module-4/041-numpyI.html index f7a8955..1cdf8c9 100644 --- a/chapters/module-4/041-numpyI.html +++ b/chapters/module-4/041-numpyI.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + @@ -483,7 +498,7 @@

    The ndarray object -
    0.9983151051472091 <class 'float'>
    +
    1.5106196181630014 <class 'float'>
     
    @@ -497,8 +512,8 @@

    The ndarray object -
    [[-0.16765433  0.29513178  0.46948154]
    - [ 0.37200198 -1.24104694  0.01450445]] <class 'numpy.ndarray'>
    +
    [[ 0.50357981  1.60435582  0.06693117]
    + [-0.76137145  1.07623844 -0.00815216]] <class 'numpy.ndarray'>
     
    @@ -511,8 +526,8 @@

    The ndarray object -
    array([[ -1.67654327,   2.95131775,   4.69481541],
    -       [  3.7200198 , -12.41046939,   0.14504455]])
    +
    array([[ 5.03579813, 16.04355815,  0.66931166],
    +       [-7.61371454, 10.76238442, -0.08152162]])
     
    @@ -527,10 +542,10 @@

    The ndarray object -
    [[-0.33530865  0.59026355  0.93896308]
    - [ 0.74400396 -2.48209388  0.02900891]]
    -[[-0.33530865  0.59026355  0.93896308]
    - [ 0.74400396 -2.48209388  0.02900891]]
    +
    [[ 1.00715963  3.20871163  0.13386233]
    + [-1.52274291  2.15247688 -0.01630432]]
    +[[ 1.00715963  3.20871163  0.13386233]
    + [-1.52274291  2.15247688 -0.01630432]]
     
    @@ -558,9 +573,9 @@

    The ndarray object -
    [[-0.16765433  0.29513178]
    - [ 0.46948154  0.37200198]
    - [-1.24104694  0.01450445]]
    +
    [[ 0.50357981  1.60435582]
    + [ 0.06693117 -0.76137145]
    + [ 1.07623844 -0.00815216]]
     (3, 2)
     
    @@ -847,11 +862,11 @@

    Creating ndarrays - @@ -819,13 +834,13 @@

    Boolean slicing
    ['Bob' 'Joe' 'Will' 'Bob' 'Will' 'Joe' 'Joe']
    -[[-0.36748832  0.41549724 -0.07892885  1.03054864]
    - [ 2.1515256   0.0252963  -0.50860192 -0.81510486]
    - [-1.50438063  1.34625813  0.19001997 -2.75474839]
    - [-2.02413974 -0.40117379 -1.11674174 -0.04430263]
    - [-1.68668132  0.4919675   0.46076492  1.68898003]
    - [ 2.05100384  2.15532653  0.63420939 -0.05512468]
    - [ 0.16083873 -2.08108768  0.47970436 -1.7483949 ]]
    +[[-0.7237047  -0.50762254 -0.48204371 -1.6133627 ]
    + [ 1.69705017  0.80812228 -0.66722951  1.33247531]
    + [-2.81200144  0.89421787 -0.02931852 -1.05156439]
    + [-1.06524316 -1.54260722  0.02495081  0.20867737]
    + [-0.14302032  0.81352009 -0.07620839  0.59158928]
    + [ 2.03311889 -0.3202367  -0.01237379 -1.41072045]
    + [-0.56663455  1.16679853 -1.34970156 -0.41449339]]
     

    @@ -864,8 +879,8 @@

    Boolean slicing -
    array([[-0.36748832,  0.41549724, -0.07892885,  1.03054864],
    -       [-2.02413974, -0.40117379, -1.11674174, -0.04430263]])
    +
    array([[-0.7237047 , -0.50762254, -0.48204371, -1.6133627 ],
    +       [-1.06524316, -1.54260722,  0.02495081,  0.20867737]])
     
    @@ -878,8 +893,8 @@

    Boolean slicing -
    array([[-0.07892885,  1.03054864],
    -       [-1.11674174, -0.04430263]])
    +
    array([[-0.48204371, -1.6133627 ],
    +       [ 0.02495081,  0.20867737]])
     
    @@ -894,11 +909,11 @@

    Boolean slicing -
    array([[ 2.1515256 ,  0.0252963 , -0.50860192, -0.81510486],
    -       [-1.50438063,  1.34625813,  0.19001997, -2.75474839],
    -       [-1.68668132,  0.4919675 ,  0.46076492,  1.68898003],
    -       [ 2.05100384,  2.15532653,  0.63420939, -0.05512468],
    -       [ 0.16083873, -2.08108768,  0.47970436, -1.7483949 ]])
    +
    array([[ 1.69705017,  0.80812228, -0.66722951,  1.33247531],
    +       [-2.81200144,  0.89421787, -0.02931852, -1.05156439],
    +       [-0.14302032,  0.81352009, -0.07620839,  0.59158928],
    +       [ 2.03311889, -0.3202367 , -0.01237379, -1.41072045],
    +       [-0.56663455,  1.16679853, -1.34970156, -0.41449339]])
     
    @@ -911,11 +926,11 @@

    Boolean slicing - @@ -949,12 +964,12 @@

    Boolean slicing
    array([[ 7.        ,  7.        ,  7.        ,  7.        ],
    -       [ 2.1515256 ,  0.0252963 , -0.50860192, -0.81510486],
    +       [ 1.69705017,  0.80812228, -0.66722951,  1.33247531],
            [ 7.        ,  7.        ,  7.        ,  7.        ],
            [ 7.        ,  7.        ,  7.        ,  7.        ],
            [ 7.        ,  7.        ,  7.        ,  7.        ],
    -       [ 2.05100384,  2.15532653,  0.63420939, -0.05512468],
    -       [ 0.16083873, -2.08108768,  0.47970436, -1.7483949 ]])
    +       [ 2.03311889, -0.3202367 , -0.01237379, -1.41072045],
    +       [-0.56663455,  1.16679853, -1.34970156, -0.41449339]])
     

    @@ -1306,8 +1321,8 @@

    More useful calculations -
    0x7f6150364bd0
    -0x7f6150365110
    +
    0x7f73825a3450
    +0x7f735b82c030
     
    @@ -1586,7 +1601,7 @@

    More useful calculations -
    @@ -1463,7 +1478,7 @@

    An introduction to some attributes and methods - @@ -1340,7 +1355,7 @@

    Summarizing data -
    @@ -1337,7 +1353,7 @@

    Summarizing data - diff --git a/chapters/module-4/045-PandasIII-manipulation.html b/chapters/module-4/045-PandasIII-manipulation.html index c3512f9..6e8cc1c 100644 --- a/chapters/module-4/045-PandasIII-manipulation.html +++ b/chapters/module-4/045-PandasIII-manipulation.html @@ -32,9 +32,9 @@ - + - + @@ -61,6 +61,7 @@ + @@ -210,6 +211,20 @@
  • Introduction to Pandas
  • Pandas: Data Exploration
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    +

    @@ -3907,6 +3922,15 @@

    Practice exercisesPandas: Data Exploration

    + +
    +

    next

    +

    Pandas: Advanced Data Manipulation and Aggregation

    +
    + +

    diff --git a/chapters/module-4/045-PandasIII-manipulation_sols.html b/chapters/module-4/045-PandasIII-manipulation_sols.html index 339c22a..07c5271 100644 --- a/chapters/module-4/045-PandasIII-manipulation_sols.html +++ b/chapters/module-4/045-PandasIII-manipulation_sols.html @@ -32,9 +32,9 @@ - + - + @@ -217,12 +217,14 @@

    Module 5: R

    +

    Wrapping up

    +

    diff --git a/chapters/module-4/046-PandasIII-Merging_Concatenating_Aggregating.html b/chapters/module-4/046-PandasIII-Merging_Concatenating_Aggregating.html deleted file mode 100644 index 511e924..0000000 --- a/chapters/module-4/046-PandasIII-Merging_Concatenating_Aggregating.html +++ /dev/null @@ -1,1109 +0,0 @@ - - - - - - - - - - - Concatenating and Merging — DS-1002 Programming for Data Science - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - -
    -
    -
    -
    -
    - - - - -
    -
    - - - - - -
    - - - - - - - - - - - - - -
    - -
    - - - -
    - -
    -
    - -
    -
    - -
    - -
    - -
    - - -
    - -
    - -
    - - - - - - - - - - - - - - - - - - - -
    - -
    - -
    -
    - - - - - - - - -
    - -
    -
    -
    import pandas as pd
    -import numpy as np
    -
    -
    -
    -
    -
    -
    -
    iris_df = pd.read_csv("https://raw.githubusercontent.com/mwaskom/seaborn-data/refs/heads/master/iris.csv")
    -iris_df
    -
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
    05.13.51.40.2setosa
    14.93.01.40.2setosa
    24.73.21.30.2setosa
    34.63.11.50.2setosa
    45.03.61.40.2setosa
    ..................
    1456.73.05.22.3virginica
    1466.32.55.01.9virginica
    1476.53.05.22.0virginica
    1486.23.45.42.3virginica
    1495.93.05.11.8virginica
    -

    150 rows × 5 columns

    -
    -
    -
    -

    Concatenating and Merging#

    -
    -

    Concate: pd.concat()#

    -

    Concatenate pandas objects along an axis

    -

    Details

    -

    Create two dfs and vertically stack them

    -
    -
    -
    df1 = pd.DataFrame(np.random.randn(3, 4))
    -df2 = pd.DataFrame(np.random.randn(3, 4))
    -
    -print(df1)
    -print('-'*45)
    -print(df2)
    -
    -df3 = pd.concat([df1, df2], axis=0)
    -
    -print('-'*45)
    -print(df3)
    -
    -
    -
    -
    -
              0         1         2         3
    -0 -0.974224 -0.361428 -1.260157 -0.425635
    -1  0.917031 -0.046927  1.048192  0.075938
    -2  0.624287 -0.835596 -2.225162 -2.354256
    ----------------------------------------------
    -          0         1         2         3
    -0 -0.367434 -2.306643 -1.030095 -0.373502
    -1 -0.179604 -1.704118  0.127096  0.098003
    -2  2.444379  0.584522 -0.991921 -0.355007
    ----------------------------------------------
    -          0         1         2         3
    -0 -0.974224 -0.361428 -1.260157 -0.425635
    -1  0.917031 -0.046927  1.048192  0.075938
    -2  0.624287 -0.835596 -2.225162 -2.354256
    -0 -0.367434 -2.306643 -1.030095 -0.373502
    -1 -0.179604 -1.704118  0.127096  0.098003
    -2  2.444379  0.584522 -0.991921 -0.355007
    -
    -
    -
    -
    -

    Concat columns
    -This assumes that the indexes represent IDs of specific things or events

    -
    -
    -
    df4 = pd.concat([df1,df2], axis = 1, keys = ['foo', 'bar'])
    -
    -df4
    -
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    foobar
    01230123
    0-0.974224-0.361428-1.260157-0.425635-0.367434-2.306643-1.030095-0.373502
    10.917031-0.0469271.0481920.075938-0.179604-1.7041180.1270960.098003
    20.624287-0.835596-2.225162-2.3542562.4443790.584522-0.991921-0.355007
    -
    -
    -
    -
    -
    df4.foo
    -
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    0123
    0-0.974224-0.361428-1.260157-0.425635
    10.917031-0.0469271.0481920.075938
    20.624287-0.835596-2.225162-2.354256
    -
    -
    -
    -
    -
    df4.bar
    -
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    0123
    0-0.367434-2.306643-1.030095-0.373502
    1-0.179604-1.7041180.1270960.098003
    22.4443790.584522-0.991921-0.355007
    -
    -
    -
    -
    -

    merge: merge()#

    -

    SQL-style joining of tables (DataFrames)

    -

    Important parameters include:

    -
      -
    • how : type of merge {‘left’, ‘right’, ‘outer’, ‘inner’, ‘cross’}, default ‘inner’

    • -
    • on : names to join on

    • -
    -

    Details

    -

    Very useful!

    -

    Create two tables, left and right. Then right join them on key.
    -Right join means include all records from table on right.
    -The key is used for matching up the records.

    -
    -
    -
    left = pd.DataFrame({"key": ["jamie", "bill"], "lval": [15, 22]})
    -right = pd.DataFrame({"key": ["jamie", "bill", "asher"], "rval": [4, 5, 8]})
    -
    -joined = pd.merge(left, right, on="key", how="right")
    -
    -print('---left')
    -print(left)
    -print('\n---right')
    -print(right)
    -print('\n---joined')
    -print(joined)
    -
    -
    -
    -
    -
    ---left
    -     key  lval
    -0  jamie    15
    -1   bill    22
    -
    ----right
    -     key  rval
    -0  jamie     4
    -1   bill     5
    -2  asher     8
    -
    ----joined
    -     key  lval  rval
    -0  jamie  15.0     4
    -1   bill  22.0     5
    -2  asher   NaN     8
    -
    -
    -
    -
    -
    -
    -
    -

    Summary#

    -
      -
    • Use join if you have shared indexes

    • -
    • Use merge if you do not have shared indexes

    • -
    • Use concat to combine based on shared indexes or columns

    • -
    -
    -
    -

    Data Aggregation#

    -

    Involves one or more of:

    -
      -
    • splitting the data into groups

    • -
    • applying a function to each group

    • -
    • combining results

    • -
    -
    -

    Aggregation by .groupby()#

    -

    Compute mean of each column, grouped (separately) by species

    -
    -
    -
    iris_df.groupby("species").mean()
    -
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    sepal_lengthsepal_widthpetal_lengthpetal_width
    species
    setosa5.0063.4281.4620.246
    versicolor5.9362.7704.2601.326
    virginica6.5882.9745.5522.026
    -
    -
    -
    -
    -

    pd.pivot_table()#

    -

    Apply a function aggfunc to selected values grouped by columns

    -

    Details

    -

    Compute mean sepal length for each species:

    -
    -
    -
    pd.pivot_table(iris_df, values="sepal_length", columns=["species"], aggfunc = np.mean)
    -
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - -
    speciessetosaversicolorvirginica
    sepal_length5.0065.9366.588
    -
    -
    -
    -
    -
    -

    Reshaping Data#

    -
    -
    -

    .reshape()#

    -

    Changes the object’s shape

    -

    We illustrate creating pandas Series, extracting array of length 6, and reshaping to 3x2 array.

    -
    -
    -
    # create a series
    -ser = pd.Series([1, 1, 2, 3, 5, 8])
    -
    -# extract values
    -vals = ser.values
    -
    -print('orig data:', vals)
    -print('orig type:', type(vals))
    -print('orig shape:', vals.shape)
    -
    -# reshaping series
    -reshaped_vals = vals.reshape((3, 2))
    -
    -print('\n reshaped vals:')
    -print(reshaped_vals)
    -print('\n new type:', type(reshaped_vals))
    -print('new shape:', reshaped_vals.shape)
    -
    -
    -
    -
    -
    orig data: [1 1 2 3 5 8]
    -orig type: <class 'numpy.ndarray'>
    -orig shape: (6,)
    -
    - reshaped vals:
    -[[1 1]
    - [2 3]
    - [5 8]]
    -
    - new type: <class 'numpy.ndarray'>
    -new shape: (3, 2)
    -
    -
    -
    -
    -
    - - - - -
    - - - - - - -
    - -
    -
    -
    - -
    - - - - - - -
    -
    - - -
    - - -
    -
    -
    - - - - - -
    -
    - - \ No newline at end of file diff --git a/chapters/module-4/046-PandasIV-advanced_manipulation_aggregation.html b/chapters/module-4/046-PandasIV-advanced_manipulation_aggregation.html index e5edf2f..7fb79a5 100644 --- a/chapters/module-4/046-PandasIV-advanced_manipulation_aggregation.html +++ b/chapters/module-4/046-PandasIV-advanced_manipulation_aggregation.html @@ -32,9 +32,9 @@ - + - + @@ -213,6 +213,18 @@
  • Pandas: Data Manipulation
  • Pandas: Advanced Data Manipulation and Aggregation
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    +

    @@ -564,22 +576,22 @@

    Concate: pd.con

              a         b         c         d
    -0  2.185435  1.002872 -0.029634  2.028856
    -1 -0.875013 -1.323426 -0.517671 -0.519281
    -2 -0.655456  0.708395 -0.419140  1.257233
    +0  0.174450 -1.018138  0.968461 -0.412483
    +1  0.703028 -0.594527  1.997723 -1.159000
    +2 -0.415667  0.290691  1.538168  0.236634
     ---------------------------------------------
               a         b         c         d
    -0 -0.640966 -2.015608 -0.241571 -0.303553
    -1 -1.782508 -0.317744 -0.998355 -0.939285
    -2  0.455360 -0.545225  0.459453  0.282877
    +0  1.141372  0.539766  0.924608 -1.013957
    +1  1.333616 -0.966171  1.258023  0.185296
    +2 -0.060995  0.330361 -0.710879 -0.408728
     ---------------------------------------------
               a         b         c         d
    -0  2.185435  1.002872 -0.029634  2.028856
    -1 -0.875013 -1.323426 -0.517671 -0.519281
    -2 -0.655456  0.708395 -0.419140  1.257233
    -0 -0.640966 -2.015608 -0.241571 -0.303553
    -1 -1.782508 -0.317744 -0.998355 -0.939285
    -2  0.455360 -0.545225  0.459453  0.282877
    +0  0.174450 -1.018138  0.968461 -0.412483
    +1  0.703028 -0.594527  1.997723 -1.159000
    +2 -0.415667  0.290691  1.538168  0.236634
    +0  1.141372  0.539766  0.924608 -1.013957
    +1  1.333616 -0.966171  1.258023  0.185296
    +2 -0.060995  0.330361 -0.710879 -0.408728
     
    @@ -632,33 +644,33 @@

    Concate: pd.con 0 - 0.189000 - -1.051835 - 0.675315 - 0.983315 - -0.667326 - -0.367171 - -0.650382 + 0.358929 + -0.851815 + 0.313507 + 0.727029 + 0.732533 + -1.176725 + 0.359086 1 - -0.819721 - 0.084818 - 0.254183 - 0.300219 - 1.210534 - 0.201252 - -0.409164 + 1.212873 + -1.549474 + 0.040366 + 0.525790 + 1.353637 + 1.343218 + -0.161630 2 - -0.911595 - -1.838310 - -0.582055 - -0.404169 - 1.912954 - 0.288270 - 1.105270 + -0.344516 + -0.645047 + -0.412381 + 0.107239 + -0.375055 + -0.723952 + 0.493891 diff --git a/chapters/module-4/047-PandasV-Intro_Feature_Engineering.html b/chapters/module-4/047-PandasV-Intro_Feature_Engineering.html index 79e5910..ae6ae5c 100644 --- a/chapters/module-4/047-PandasV-Intro_Feature_Engineering.html +++ b/chapters/module-4/047-PandasV-Intro_Feature_Engineering.html @@ -32,9 +32,9 @@ - + - + @@ -61,6 +61,7 @@ + @@ -212,6 +213,18 @@
  • Pandas: Data Manipulation
  • Pandas: Advanced Data Manipulation and Aggregation
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    +

    @@ -1411,6 +1424,15 @@

    Practice exercisesPandas: Advanced Data Manipulation and Aggregation

    + +
    +

    next

    +

    Introduction to R

    +
    + +

    diff --git a/chapters/module-4/07-numpy-continued.html b/chapters/module-4/07-numpy-continued.html index c5be5d4..5787685 100644 --- a/chapters/module-4/07-numpy-continued.html +++ b/chapters/module-4/07-numpy-continued.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    +

    diff --git a/chapters/module-4/Untitled.html b/chapters/module-4/Untitled.html index c6e16b2..25e9e49 100644 --- a/chapters/module-4/Untitled.html +++ b/chapters/module-4/Untitled.html @@ -210,6 +210,21 @@
  • NumPy (Part II)
  • Introduction to Pandas
  • Pandas: Data Exploration
  • +
  • Pandas: Data Manipulation
  • +
  • Pandas: Advanced Data Manipulation and Aggregation
  • +
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-4/Untitled1.html b/chapters/module-4/Untitled1.html index 1ada748..9e46511 100644 --- a/chapters/module-4/Untitled1.html +++ b/chapters/module-4/Untitled1.html @@ -32,9 +32,9 @@ - + - + @@ -213,6 +213,18 @@
  • Pandas: Data Manipulation
  • Pandas: Advanced Data Manipulation and Aggregation
  • Pandas: Introduction to Feature Engineering
  • + +

    Module 5: R

    + +

    Wrapping up

    + diff --git a/chapters/module-5/051-intro_to_R.html b/chapters/module-5/051-intro_to_R.html index a4d03f1..bbcc470 100644 --- a/chapters/module-5/051-intro_to_R.html +++ b/chapters/module-5/051-intro_to_R.html @@ -32,9 +32,9 @@ - + - + @@ -223,6 +223,10 @@
  • Control Structures
  • Functions
  • R for data science: Tidyverse
  • + +

    Wrapping up

    + @@ -424,7 +428,7 @@

    Introduction to R -../../_images/404f063734e2f5dcb1228730ff1f99d7066229bac488649789a0c8d01fc3ca2b.png +../../_images/267a46e09f7430ad3fccb6b619c25d6382d080de21e885f22ad6dcdbd24172b9.png

    The standard normal distribution is a special case of a Gaussian distribution with mean (average location) of 1 and a standard deviation (average dispersion) of 0. The gaussian distribution has a characteristic bell shape, as shown in the histogram below using the R’s hist function.

    @@ -435,7 +439,7 @@

    Introduction to R -../../_images/f51cf89b081544448e064cb8ce537e13c1baa630e0be650380df0813287266cf.png +../../_images/e56d5aba8799217f6afe138ed710ed222a315c174f283c71639551057f692abb.png
    diff --git a/chapters/module-5/052-data-structures.html b/chapters/module-5/052-data-structures.html index bea2ed5..85b0fef 100644 --- a/chapters/module-5/052-data-structures.html +++ b/chapters/module-5/052-data-structures.html @@ -32,9 +32,9 @@ - + - + @@ -222,7 +222,11 @@
  • Data Structures
  • Control Structures
  • Functions
  • -
  • R for data science
  • +
  • R for data science: Tidyverse
  • + +

    Wrapping up

    + diff --git a/chapters/module-5/053-Control-structures-sols.html b/chapters/module-5/053-Control-structures-sols.html index 76b3153..b56b4d2 100644 --- a/chapters/module-5/053-Control-structures-sols.html +++ b/chapters/module-5/053-Control-structures-sols.html @@ -32,9 +32,9 @@ - + - + @@ -219,12 +219,14 @@

    Module 5: R

    +

    Wrapping up

    + diff --git a/chapters/module-5/053-Control-structures.html b/chapters/module-5/053-Control-structures.html index d095339..41cd08c 100644 --- a/chapters/module-5/053-Control-structures.html +++ b/chapters/module-5/053-Control-structures.html @@ -32,9 +32,9 @@ - + - + @@ -223,6 +223,10 @@
  • Control Structures
  • Functions
  • R for data science: Tidyverse
  • + +

    Wrapping up

    + diff --git a/chapters/module-5/054-functions-sols.html b/chapters/module-5/054-functions-sols.html index a49ac95..2dd457c 100644 --- a/chapters/module-5/054-functions-sols.html +++ b/chapters/module-5/054-functions-sols.html @@ -32,9 +32,9 @@ - + - + @@ -219,12 +219,14 @@

    Module 5: R

    +

    Wrapping up

    + @@ -612,8 +614,8 @@

    Built-in functions -
    1. 3.44318044976882
    2. 10.9381169236683
    3. 18.8495873534953
    4. 2.41687744073499
    5. 9.08140659032006
    6. 13.8851224456932
    7. 6.25564070974601
    8. 4.19221253135156
    9. 14.8982453260319
    10. 15.849869591281
    -
    9.98102593620911
    10.0097617569942
    +
    1. 17.1064024290231
    2. 4.50870321766152
    3. 13.9520701862171
    4. 5.69629448075557
    5. 4.41933655917822
    6. 3.41442028590302
    7. 16.6392789808824
    8. 9.2228576498917
    9. -3.18074141775111
    10. 16.2434599266992
    +
    8.80220822984607
    7.45957606532364

    Function help#

    diff --git a/chapters/module-5/054-functions.html b/chapters/module-5/054-functions.html index dc4eb7d..126d3a2 100644 --- a/chapters/module-5/054-functions.html +++ b/chapters/module-5/054-functions.html @@ -32,9 +32,9 @@ - + - + @@ -223,6 +223,10 @@
  • Control Structures
  • Functions
  • R for data science: Tidyverse
  • + +

    Wrapping up

    + @@ -605,8 +609,8 @@

    Built-in functions -
    1. 13.1963451166444
    2. 8.72797219132438
    3. 13.1711611847993
    4. 8.81686471098759
    5. 5.77526507710081
    6. 12.9391842738982
    7. 16.3681944750152
    8. 10.6781215679532
    9. 10.4963780372093
    10. 4.00038680441802
    -
    10.416987343935
    10.5872498025813
    +
    1. 17.3154600272022
    2. 2.33314450866007
    3. 2.65690099102852
    4. 17.8482261024962
    5. -0.877821425385072
    6. 16.0673664447932
    7. 11.2335652420367
    8. 13.3946342021372
    9. 1.33792095135807
    10. 10.1419139756298
    +
    9.1451311019957
    10.6877396088333

    Function help#

    diff --git a/chapters/module-5/055-tidyverse.html b/chapters/module-5/055-tidyverse.html index 6ece696..d7d203d 100644 --- a/chapters/module-5/055-tidyverse.html +++ b/chapters/module-5/055-tidyverse.html @@ -32,9 +32,9 @@ - + - + @@ -63,6 +63,7 @@ + @@ -222,6 +223,10 @@
  • Control Structures
  • Functions
  • R for data science: Tidyverse
  • + +

    Wrapping up

    + @@ -424,7 +429,7 @@

    Loading the tidyverse
    -
    ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
    +
    -
    ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
    +
                     
                   
    diff --git a/chapters/module-5/old/013-Control Structures.html b/chapters/module-5/old/013-Control Structures.html
    index 67e96d6..3dfb95c 100644
    --- a/chapters/module-5/old/013-Control Structures.html	
    +++ b/chapters/module-5/old/013-Control Structures.html	
    @@ -32,9 +32,9 @@
         
         
         
    -    
    +    
         
    -    
    +    
         
       
       
    @@ -217,12 +217,14 @@
     

    Module 5: R

    +

    Wrapping up

    +
    diff --git a/chapters/module-5/old/051-dataframes-in-r-student.html b/chapters/module-5/old/051-dataframes-in-r-student.html index 42dbc20..a597761 100644 --- a/chapters/module-5/old/051-dataframes-in-r-student.html +++ b/chapters/module-5/old/051-dataframes-in-r-student.html @@ -32,9 +32,9 @@ - + - + @@ -217,12 +217,14 @@

    Module 5: R

    +

    Wrapping up

    +
    diff --git a/chapters/module-5/old/051-dataframes-in-r.html b/chapters/module-5/old/051-dataframes-in-r.html index 18bc464..379a17b 100644 --- a/chapters/module-5/old/051-dataframes-in-r.html +++ b/chapters/module-5/old/051-dataframes-in-r.html @@ -32,9 +32,9 @@ - + - + @@ -219,12 +219,14 @@

    Module 5: R

    +

    Wrapping up

    +
    diff --git a/chapters/wrap-up.html b/chapters/wrap-up.html new file mode 100644 index 0000000..ef47b3b --- /dev/null +++ b/chapters/wrap-up.html @@ -0,0 +1,880 @@ + + + + + + + + + + + Wrapping up — DS-1002 Programming for Data Science + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    Wrapping up

    + +
    + +
    +
    + + + + +
    + +
    +

    Wrapping up#

    +

    Throughout this course, we have covered the most important foundational programming skills a future Data Scientist needs, with a particular emphasis on Python.

    +

    For both languages, we explored their syntax, different data types, and how to work with data structures. We also delved into implementing loops, functions, and even classes (which is uncommon in beginner programming courses). Additionally, we discussed basic data science operations in both languages, particularly focusing on how to inspect and interact with raw data.

    +

    Now, coming to the question of Python vs. R: which one should you choose? It’s entirely up to you—both are excellent tools, as we have emphasized throughout the course. Keep in mind that you can essentially achieve the same results in one language as in the other. For example, when it comes to data manipulation, see this comparison: Python vs R.

    +

    Here is my personal perspective though:

    +
      +
    • Python: Ideal for programmatic scenarios such as developing complex libraries, thanks to its versatility, simple syntax, and readability. Moreover, for machine learning and deep learning applications, Python remains the top choice.

    • +
    • R: Best suited for advanced statistical analysis, such as mixed linear modeling, factor analysis, mediation analysis, and Bayesian statistics. In addition, while I do not use it as often as I should, ggplot2 can produce exceptionally high-quality graphs—so be sure to consider this in the future!

    • +
    +
    +

    Looking Ahead#

    +

    There are certain things we have not covered in this course that a Data Scientist should likely master in the future. Here are some examples:

    +
    +

    Visualization#

    +

    Clear and effective visualization is crucial for communicating with data.

    +

    Here are a few examples:

    +
      +
    • Python: matplotlib, seaborn

    • +
    • R: ggplot2

    • +
    • Cross-platform: plotly, shiny

    • +
    +

    Matplotlib

    +
    +
    +
    import matplotlib.pyplot as plt
    +plt.style.use('classic')
    +%matplotlib inline
    +import numpy as np
    +import pandas as pd
    +
    +
    +
    +
    +
    +
    +
    # Create some data
    +rng = np.random.RandomState(0)              # creates a random range seeded from 0
    +x = np.linspace(0, 10, 500)                 # creates evenly spaced numbers of a specified interval
    +y = np.cumsum(rng.randn(500, 6), 0)         # creates the sum of random numbers within a range.
    +
    +
    +
    +
    +
    +
    +
    # Plot the data with Matplotlib defaults
    +plt.plot(x, y)
    +plt.legend('ABCDEF', ncol=3, loc='upper left');
    +
    +
    +
    +
    +../_images/49ed94f15827ce8ac14e383ab6e9d4653c651f6dfb2edba2708c8d0fc1abc493.png +
    +
    +

    Seaborn

    +
    +
    +
    import seaborn as sns
    +
    +
    +
    +
    +
    +
    +
    xy_df = pd.concat([pd.DataFrame({"x": x}), 
    +                pd.DataFrame(y, columns=["A", "B", "C", "D", "E", "F"])], axis=1)
    +xy_df = pd.melt(xy_df, id_vars=["x"], var_name="group", value_name="y")
    +xy_df
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    xgroupy
    00.00000A1.764052
    10.02004A2.714141
    20.04008A3.475178
    30.06012A3.788246
    40.08016A6.058001
    ............
    29959.91984F-10.465950
    29969.93988F-9.613061
    29979.95992F-9.165378
    29989.97996F-9.004272
    299910.00000F-9.084870
    +

    3000 rows × 3 columns

    +
    +
    +
    +
    +
    sns.set(style="whitegrid")
    +sns.lineplot(x="x", y="y", hue="group", data=xy_df)
    +plt.legend(ncol=3, loc='upper left')
    +
    +
    +
    +
    +
    <matplotlib.legend.Legend at 0x7fb2609bdb90>
    +
    +
    +../_images/8393299fa27a42e0b7e0f92dbf4b389608087a22bb19b8d8552621c98c9857b5.png +
    +
    +
    +
    +

    Analysis#

    +

    Hera are a few examples of basic libraries for data anaylis in Python and R, with a bit of predominance bias towards the former:

    +
      +
    • Statistics: scipy (Python), statsmodels (Python), Base R, lme4 (R), blme (R).

    • +
    • Machine lerning: scikit-learn (Python), caret (R), xgboost (cross-platform).

    • +
    • Deep lerning: keras (Python), pytorch (Python), tensorflow(Python).

    • +
    +

    scikit-learn

    +
    +
    +
    from sklearn.tree import DecisionTreeClassifier
    +from sklearn.model_selection import cross_val_score
    +from sklearn.datasets import load_iris
    +
    +X, y = load_iris()["data"], load_iris()["target"]
    +clf = DecisionTreeClassifier()
    +
    +res = cross_val_score(clf, X, y, cv=5)
    +
    +print("the average accuracy in classifying the types of Iris using a decision tree and cross-validation is:", 
    +      res.mean())
    +
    +
    +
    +
    +
    the average accuracy in classifying the types of Iris using a decision tree and cross-validation is: 0.9600000000000002
    +
    +
    +
    +
    +

    scipy

    +
    +
    +
    # A two-sample t-test, adapted from https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
    +import numpy as np
    +from scipy import stats
    +rng = np.random.RandomState(1234)
    +
    +rvs1 = stats.norm.rvs(loc=5, scale=5, size=500, random_state=rng)
    +rvs2 = stats.norm.rvs(loc=5.57, scale=5, size=500, random_state=rng)
    +stats.ttest_ind(rvs1, rvs2)
    +
    +
    +
    +
    +
    TtestResult(statistic=-2.0456709273958644, pvalue=0.04105049135941344, df=998.0)
    +
    +
    +
    +
    +

    statsmodels

    +
    +
    +
    # The same as above, but using a linear regression model 
    +# (tip for life: any almost basic stastical tests is just a particular instation of a linear regression model).
    +
    +import statsmodels.api as sm
    +
    +y=np.concatenate((rvs1, rvs2))
    +X=np.column_stack(([1]*len(y), 
    +                   [0]*len(rvs1) + [1]*len(rvs2)))
    +model = sm.OLS(endog=y, exog=X)
    +res = model.fit()
    +print(res.summary())
    +
    +
    +
    +
    +
                                OLS Regression Results                            
    +==============================================================================
    +Dep. Variable:                      y   R-squared:                       0.004
    +Model:                            OLS   Adj. R-squared:                  0.003
    +Method:                 Least Squares   F-statistic:                     4.185
    +Date:                Wed, 04 Dec 2024   Prob (F-statistic):             0.0411
    +Time:                        21:16:01   Log-Likelihood:                -3001.1
    +No. Observations:                1000   AIC:                             6006.
    +Df Residuals:                     998   BIC:                             6016.
    +Df Model:                           1                                         
    +Covariance Type:            nonrobust                                         
    +==============================================================================
    +                 coef    std err          t      P>|t|      [0.025      0.975]
    +------------------------------------------------------------------------------
    +const          5.0487      0.218     23.180      0.000       4.621       5.476
    +x1             0.6301      0.308      2.046      0.041       0.026       1.235
    +==============================================================================
    +Omnibus:                        0.183   Durbin-Watson:                   2.112
    +Prob(Omnibus):                  0.913   Jarque-Bera (JB):                0.129
    +Skew:                          -0.024   Prob(JB):                        0.938
    +Kurtosis:                       3.027   Cond. No.                         2.62
    +==============================================================================
    +
    +Notes:
    +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
    +
    +
    +
    +
    +
    +
    +

    Command-Line Terminal Programming#

    +
      +
    • Programming that takes place in a terminal, which a text-based interface for interacting directly with the computer.

    • +
    • Commands in a terminal are interpreted by a shell. Common shells include Bash (popular on Linux and macOS), Zsh (modern and customizable), and PowerShell (Windows-specific).

    • +
    • Essential for managing files, running scripts, and interacting with compute clusters (e.g. SLURM).

    • +
    +

    In Jupyter notebooks, you can execute shell commands by prefixing them with !.

    +

    For example, we can navigate directories:

    +
    +
    +
    # Print the current directory
    +!pwd
    +
    +# List files in the directory
    +!ls
    +
    +
    +
    +
    +
    /home/javi/Documentos/docencia/DS-1002/DS1002-book/chapters
    +
    +
    +
    01-getting_started.md	module-1  module-4   wrap-up.ipynb
    +02-python-basics.ipynb	module-2  module-5
    +04-python-basics.ipynb	module-3  my_folder
    +
    +
    +
    +
    +

    We can also manage files and directories:

    +
    +
    +
    # Create a new folder and file
    +!mkdir -p my_folder # make new dir; -p option to not raise an error if it already existed
    +!rm -f my_folder/* # Remove preexisting content; -f option to not raise an error if the folder was already empty
    +!touch my_folder/hello_world.py # Create a new file named "hello world.py"
    +!echo "print('Hello, World!\nCode run from:', __file__)" > my_folder/hello_world.py # Add some a line of code to this file
    +
    +
    +
    +
    +
    +
    +
    # List contents of the folder
    +!ls my_folder
    +
    +
    +
    +
    +
    hello_world.py
    +
    +
    +
    +
    +

    And run scripts:

    +
    +
    +
    !python my_folder/hello_world.py
    +
    +
    +
    +
    +
    Hello, World!
    +Code run from: /home/javi/Documentos/docencia/DS-1002/DS1002-book/chapters/my_folder/hello_world.py
    +
    +
    +
    +
    +
    +
    +

    GitHub#

    +
      +
    • Web-based platform for version control and collaboration built on top of Git, a version control system.

    • +
    • It also has a powerful terminal programming where to easily interact and change your repositories.

    • +
    • Allows you to track changes, collaborate with others, and share your work.

    • +
    +

    Common Use Cases:

    +
      +
    • Code Management: Store and version codebases for projects/libraries.

    • +
    • Team Collaboration: Coordinated team efforts on software development or data science projects.

    • +
    • Portfolio Hosting: Showcase projects and skills for personal branding.

    • +
    • Open Source Contribution: Contribute to or learn from public repositories.

    • +
    • Documentation: Use GitHub Pages to create project websites or host documentation.

    • +
    +

    A few personal examples:

    + +
    +
    +
    + + + + +
    + + + + + + +
    + +
    +
    +
    + +
    + + + + + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/epilogue.html b/epilogue.html new file mode 100644 index 0000000..b868941 --- /dev/null +++ b/epilogue.html @@ -0,0 +1,887 @@ + + + + + + + + + + + Wrapping up — DS-1002 Programming for Data Science + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    Wrapping up

    + +
    + +
    +
    + + + + +
    + +
    +

    Wrapping up#

    +

    Throughout this course, we have covered the most important foundational programming skills a future Data Scientist needs, with a particular emphasis on Python.

    +

    For both languages, we explored their syntax, different data types, and how to work with data structures. We also delved into implementing loops, functions, and even classes (which is uncommon in beginner programming courses). Additionally, we discussed basic data science operations in both languages, particularly focusing on how to inspect and interact with raw data.

    +

    Now, coming to the question of Python vs. R: which one should you choose? It’s entirely up to you—both are excellent tools, as we have emphasized throughout the course. Keep in mind that you can essentially achieve the same results in one language as in the other. For example, when it comes to data manipulation, see this comparison: Python vs R.

    +

    Here is my personal perspective though:

    +
      +
    • Python: Ideal for programmatic scenarios such as developing complex libraries, thanks to its versatility, simple syntax, and readability. Moreover, for machine learning and deep learning applications, Python remains the top choice.

    • +
    • R: Best suited for advanced statistical analysis, such as mixed linear modeling, factor analysis, mediation analysis, and Bayesian statistics. In addition, while I do not use it as often as I should, ggplot2 can produce exceptionally high-quality graphs—so be sure to consider this in the future!

    • +
    +
    +

    Looking Ahead#

    +

    There are certain things we have not covered in this course that a Data Scientist should likely master in the future. Here are some examples:

    +
    +

    Visualization#

    +

    Clear and effective visualization is crucial for communicating with data.

    +

    Here are a few examples:

    +
      +
    • Python: matplotlib, seaborn

    • +
    • R: ggplot2

    • +
    • Cross-platform: plotly, shiny

    • +
    +

    Matplotlib

    +
    +
    +
    import matplotlib.pyplot as plt
    +plt.style.use('classic')
    +%matplotlib inline
    +import numpy as np
    +import pandas as pd
    +
    +
    +
    +
    +
    +
    +
    # Create some data
    +rng = np.random.RandomState(0)              # creates a random range seeded from 0
    +x = np.linspace(0, 10, 500)                 # creates evenly spaced numbers of a specified interval
    +y = np.cumsum(rng.randn(500, 6), 0)         # creates the sum of random numbers within a range.
    +
    +
    +
    +
    +
    +
    +
    # Plot the data with Matplotlib defaults
    +plt.plot(x, y)
    +plt.legend('ABCDEF', ncol=3, loc='upper left');
    +
    +
    +
    +
    +_images/49ed94f15827ce8ac14e383ab6e9d4653c651f6dfb2edba2708c8d0fc1abc493.png +
    +
    +

    Seaborn

    +
    +
    +
    import seaborn as sns
    +
    +
    +
    +
    +
    +
    +
    xy_df = pd.concat([pd.DataFrame({"x": x}), 
    +                pd.DataFrame(y, columns=["A", "B", "C", "D", "E", "F"])], axis=1)
    +xy_df = pd.melt(xy_df, id_vars=["x"], var_name="group", value_name="y")
    +xy_df
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    xgroupy
    00.00000A1.764052
    10.02004A2.714141
    20.04008A3.475178
    30.06012A3.788246
    40.08016A6.058001
    ............
    29959.91984F-10.465950
    29969.93988F-9.613061
    29979.95992F-9.165378
    29989.97996F-9.004272
    299910.00000F-9.084870
    +

    3000 rows × 3 columns

    +
    +
    +
    +
    +
    sns.set(style="whitegrid")
    +sns.lineplot(x="x", y="y", hue="group", data=xy_df)
    +plt.legend(ncol=3, loc='upper left')
    +
    +
    +
    +
    +
    <matplotlib.legend.Legend at 0x7fcffd3316d0>
    +
    +
    +_images/8393299fa27a42e0b7e0f92dbf4b389608087a22bb19b8d8552621c98c9857b5.png +
    +
    +
    +
    +

    Analysis#

    +

    Hera are a few examples of basic libraries for data anaylis in Python and R, with a bit of predominance bias towards the former:

    +
      +
    • Statistics: scipy (Python), statsmodels (Python), Base R, lme4 (R), blme (R).

    • +
    • Machine lerning: scikit-learn (Python), caret (R), xgboost (cross-platform).

    • +
    • Deep lerning: keras (Python), pytorch (Python), tensorflow(Python).

    • +
    +

    scikit-learn

    +
    +
    +
    from sklearn.tree import DecisionTreeClassifier
    +from sklearn.model_selection import cross_val_score
    +from sklearn.datasets import load_iris
    +
    +X, y = load_iris()["data"], load_iris()["target"]
    +clf = DecisionTreeClassifier()
    +
    +res = cross_val_score(clf, X, y, cv=5)
    +
    +print("the average accuracy in classifying the types of Iris using a decision tree and cross-validation is:", 
    +      res.mean())
    +
    +
    +
    +
    +
    the average accuracy in classifying the types of Iris using a decision tree and cross-validation is: 0.9666666666666668
    +
    +
    +
    +
    +

    scipy

    +
    +
    +
    # A two-sample t-test, adapted from https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
    +import numpy as np
    +from scipy import stats
    +rng = np.random.RandomState(1234)
    +
    +rvs1 = stats.norm.rvs(loc=5, scale=5, size=500, random_state=rng)
    +rvs2 = stats.norm.rvs(loc=5.57, scale=5, size=500, random_state=rng)
    +stats.ttest_ind(rvs1, rvs2)
    +
    +
    +
    +
    +
    TtestResult(statistic=-2.0456709273958644, pvalue=0.04105049135941344, df=998.0)
    +
    +
    +
    +
    +

    statsmodels

    +
    +
    +
    # The same as above, but using a linear regression model 
    +# (tip for life: any almost basic stastical tests is just a particular instation of a linear regression model).
    +
    +import statsmodels.api as sm
    +
    +y=np.concatenate((rvs1, rvs2))
    +X=np.column_stack(([1]*len(y), 
    +                   [0]*len(rvs1) + [1]*len(rvs2)))
    +model = sm.OLS(endog=y, exog=X)
    +res = model.fit()
    +print(res.summary())
    +
    +
    +
    +
    +
                                OLS Regression Results                            
    +==============================================================================
    +Dep. Variable:                      y   R-squared:                       0.004
    +Model:                            OLS   Adj. R-squared:                  0.003
    +Method:                 Least Squares   F-statistic:                     4.185
    +Date:                Wed, 04 Dec 2024   Prob (F-statistic):             0.0411
    +Time:                        21:16:04   Log-Likelihood:                -3001.1
    +No. Observations:                1000   AIC:                             6006.
    +Df Residuals:                     998   BIC:                             6016.
    +Df Model:                           1                                         
    +Covariance Type:            nonrobust                                         
    +==============================================================================
    +                 coef    std err          t      P>|t|      [0.025      0.975]
    +------------------------------------------------------------------------------
    +const          5.0487      0.218     23.180      0.000       4.621       5.476
    +x1             0.6301      0.308      2.046      0.041       0.026       1.235
    +==============================================================================
    +Omnibus:                        0.183   Durbin-Watson:                   2.112
    +Prob(Omnibus):                  0.913   Jarque-Bera (JB):                0.129
    +Skew:                          -0.024   Prob(JB):                        0.938
    +Kurtosis:                       3.027   Cond. No.                         2.62
    +==============================================================================
    +
    +Notes:
    +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
    +
    +
    +
    +
    +
    +
    +

    Command-Line Terminal Programming#

    +
      +
    • Programming that takes place in a terminal, which a text-based interface for interacting directly with the computer.

    • +
    • Commands in a terminal are interpreted by a shell. Common shells include Bash (popular on Linux and macOS), Zsh (modern and customizable), and PowerShell (Windows-specific).

    • +
    • Essential for managing files, running scripts, and interacting with compute clusters (e.g. SLURM).

    • +
    +

    In Jupyter notebooks, you can execute shell commands by prefixing them with !.

    +

    For example, we can navigate directories:

    +
    +
    +
    # Print the current directory
    +!pwd
    +
    +# List files in the directory
    +!ls
    +
    +
    +
    +
    +
    /home/javi/Documentos/docencia/DS-1002/DS1002-book
    +
    +
    +
    06_numpy_intro.ipynb  _build	_config.yml  epilogue.ipynb  index.md
    +admonition	      chapters	data	     imgs	     _toc.yml
    +
    +
    +
    +
    +

    We can also manage files and directories:

    +
    +
    +
    # Create a new folder and file
    +!mkdir -p my_folder # make new dir; -p option to not raise an error if it already existed
    +!rm -f my_folder/* # Remove preexisting content; -f option to not raise an error if the folder was already empty
    +!touch my_folder/hello_world.py # Create a new file named "hello world.py"
    +!echo "print('Hello, World!\nCode run from:', __file__)" > my_folder/hello_world.py # Add some a line of code to this file
    +
    +
    +
    +
    +
    +
    +
    # List contents of the folder
    +!ls my_folder
    +
    +
    +
    +
    +
    hello_world.py
    +
    +
    +
    +
    +

    And run scripts:

    +
    +
    +
    !python my_folder/hello_world.py
    +
    +
    +
    +
    +
    Hello, World!
    +Code run from: /home/javi/Documentos/docencia/DS-1002/DS1002-book/my_folder/hello_world.py
    +
    +
    +
    +
    +
    +
    +

    GitHub#

    +
      +
    • Web-based platform for version control and collaboration built on top of Git, a version control system.

    • +
    • It also has a powerful terminal programming where to easily interact and change your repositories.

    • +
    • Allows you to track changes, collaborate with others, and share your work.

    • +
    +

    Common Use Cases:

    +
      +
    • Code Management: Store and version codebases for projects/libraries.

    • +
    • Team Collaboration: Coordinated team efforts on software development or data science projects.

    • +
    • Portfolio Hosting: Showcase projects and skills for personal branding.

    • +
    • Open Source Contribution: Contribute to or learn from public repositories.

    • +
    • Documentation: Use GitHub Pages to create project websites or host documentation.

    • +
    +

    A few personal examples:

    + +
    +
    +
    + + + + +
    + + + + + + + + +
    + + + + + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/genindex.html b/genindex.html index 5491a8b..9a2bdfb 100644 --- a/genindex.html +++ b/genindex.html @@ -220,6 +220,10 @@
  • Control Structures
  • Functions
  • R for data science: Tidyverse
  • + +

    Epilogue

    +
    diff --git a/index.html b/index.html index 9787bf9..6812427 100644 --- a/index.html +++ b/index.html @@ -224,6 +224,10 @@
  • Control Structures
  • Functions
  • R for data science: Tidyverse
  • + +

    Epilogue

    +
    @@ -396,6 +400,8 @@

    Welcome to DS-1002 +
    +