forked from Rheinwalt/FacetFlowNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFacetFlowNetwork.pyx
300 lines (279 loc) · 10 KB
/
FacetFlowNetwork.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import sys
import numpy as np
from libc.stdlib cimport free
__version__ = '0.1'
__author__ = 'Aljoscha Rheinwalt'
__author_email__ = '[email protected]'
cdef extern from "main.c":
void network(unsigned int *net, double *w, double *a, double *d, double *p, double *t,
const unsigned int *tri, const double *x, const double *y, const double *z,
const unsigned int m, const unsigned int n)
void tunnel(unsigned int *net, double *w, double *a,
const unsigned int *tri, const double *x, const double *y, const double *z,
const unsigned int m, const unsigned int n, const unsigned int ml)
void linkthroughput(double *ltp,
const unsigned int *net, const double *w, const double *a,
const unsigned int m)
unsigned int * upstreamnetwork(const unsigned int *net,
const unsigned int m, unsigned int *l)
class ffn:
"""
Facet flow network class
"""
def __init__(self, x = None, y = None, z = None,
tri = None, fname = None,
tunneling = True, tunnelmaxlen = 100):
cdef double[:] xv, yv, zv
cdef unsigned int[:,:] tv
cdef unsigned int[:,:] nv
cdef unsigned int m, n
cdef double[:,:] wv, av
cdef double[:] dv, pv, sv
if fname is None:
if tri is None:
print('Delaunay triangulation ..')
from scipy.spatial import Delaunay
tri = Delaunay(np.transpose((x-np.mean(x), y-np.mean(y))),
qhull_options = 'Qt').simplices.astype('uint32')
if x is None:
sys.exit('error: fname and x are both not specified!')
self.x = np.array(x)
self.y = np.array(y)
self.z = np.array(z)
self.tri = tri
self.tunneled = False
self.ltp = None
self.m = tri.shape[0]
self.n = len(x)
self.net = np.zeros((self.m, 2), dtype = 'uint32')
self.w = np.zeros((self.m, 2), dtype = 'float64')
self.a = np.zeros((self.m, 2), dtype = 'float64')
self.d = np.zeros(self.m, dtype = 'float64')
self.aspect = np.zeros(self.m, dtype = 'float64')
self.slope = np.zeros(self.m, dtype = 'float64')
m = self.m
n = self.n
nv = self.net
wv = self.w
av = self.a
dv = self.d
pv = self.aspect
sv = self.slope
xv = self.x
yv = self.y
zv = self.z
tv = self.tri
print('FFN construction ..')
network(&nv[0,0], &wv[0,0], &av[0,0], &dv[0], &pv[0], &sv[0],
&tv[0,0], &xv[0], &yv[0], &zv[0], m, n)
self.aspect *= 180 / np.pi
self.slope *= 180 / np.pi
if tunneling:
print('resolving sinks by tunneling ..')
tunnel(&nv[0,0], &wv[0,0], &av[0,0],
&tv[0,0], &xv[0], &yv[0], &zv[0],
m, n, tunnelmaxlen)
self.tunneled = True
else:
from h5py import File
f = File(fname, 'r')
self.x = f['x'][:]
self.y = f['y'][:]
self.z = f['z'][:]
self.tri = f['tri'][:]
self.net = f['net'][:]
self.w = f['w'][:]
self.a = f['a'][:]
self.d = f['d'][:]
self.aspect = f['aspect'][:]
self.slope = f['slope'][:]
flags = f['flags'][:]
self.tunneled = bool(flags[0])
self.ltp = None
self.m = self.tri.shape[0]
self.n = self.x.shape[0]
def __str__(self):
return 'ffn(%.1e points, %.1e facets)' % (self.n, self.m)
def tunneling(self, tunnelmaxlen = 100):
"""
Tunnel flow out of sinks
"""
cdef double[:] xv, yv, zv
cdef unsigned int[:,:] tv
cdef unsigned int[:,:] nv
cdef unsigned int m, n
cdef double[:,:] wv, av
if not self.tunneled:
m = self.m
n = self.n
nv = self.net
wv = self.w
av = self.a
xv = self.x
yv = self.y
zv = self.z
tv = self.tri
tunnel(&nv[0,0], &wv[0,0], &av[0,0],
&tv[0,0], &xv[0], &yv[0], &zv[0],
m, n, tunnelmaxlen)
self.tunneled = True
def upstream(self):
"""
Returns the FFN in reverse, links point upstream
"""
cdef unsigned int[:] rv
cdef unsigned int[:,:] nv
cdef unsigned int m, l
cdef unsigned int *p
cdef unsigned int[:] pv
nv = self.net
m = self.m
p = upstreamnetwork(&nv[0,0], m, &l)
pv = <unsigned int[:l]> p
r = np.asarray(pv).copy()
free(p)
return r
def sca(self):
"""
Specific catchment area
"""
cdef double[:,:] lv, wv, av
cdef unsigned int[:,:] nv
cdef unsigned int m
if self.ltp is None:
self.ltp = np.zeros((self.m, 2), dtype = 'float64')
lv = self.ltp
nv = self.net
wv = self.w
av = self.a
m = self.m
linkthroughput(&lv[0,0], &nv[0,0], &wv[0,0], &av[0,0], m)
a = self.ltp.sum(axis = 1)
return a / self.d
def tda(self):
"""
Total drainage area
"""
cdef double[:,:] lv, wv, av
cdef unsigned int[:,:] nv
cdef unsigned int m
if self.ltp is None:
self.ltp = np.zeros((self.m, 2), dtype = 'float64')
lv = self.ltp
nv = self.net
wv = self.w
av = self.a
m = self.m
linkthroughput(&lv[0,0], &nv[0,0], &wv[0,0], &av[0,0], m)
a = self.ltp.sum(axis = 1)
return a
def fatp(self, var):
"""
Facet values averaged to point values
"""
cdef unsigned int i, k
cdef double[::] rv
cdef double[:] vv
cdef unsigned int[::] cv
cdef unsigned int[:, :] tv
assert len(var) == self.m, '%i facets and %i values' % (self.m, len(var))
r = np.zeros(self.n, dtype = 'float64')
c = np.zeros(self.n, dtype = 'uint32')
rv = r
cv = c
tv = self.tri
vv = var
for i in range(self.m):
for k in range(3):
rv[tv[i, k]] += vv[i]
cv[tv[i, k]] += 1
return r / c
def fmtp(self, var):
"""
Facet values maximum to point values
"""
cdef unsigned int i, k
cdef double[::] rv
cdef double[:] vv
cdef unsigned int[:, :] tv
assert len(var) == self.m, '%i facets and %i values' % (self.m, len(var))
r = np.zeros(self.n, dtype = 'float64')
rv = r
tv = self.tri
vv = var
for i in range(self.m):
for k in range(3):
if vv[i] > rv[tv[i, k]]:
rv[tv[i, k]] = vv[i]
return r
def facet_centroids(self):
"""
Return the 3D centroids of the facets
"""
return np.transpose((self.x[self.tri].mean(1),
self.y[self.tri].mean(1),
self.z[self.tri].mean(1)))
def save(self, fname, compr = 'gzip', copts = 9):
"""
Save FFN to a compressed HDF file
"""
import os
from h5py import File
fn, fe = os.path.splitext(fname)
f = File('%s.hdf' % fn, 'w')
f.create_dataset('x', data = self.x, compression = compr, compression_opts = copts)
f.create_dataset('y', data = self.y, compression = compr, compression_opts = copts)
f.create_dataset('z', data = self.z, compression = compr, compression_opts = copts)
f.create_dataset('tri', data = self.tri, compression = compr, compression_opts = copts)
f.create_dataset('net', data = self.net, compression = compr, compression_opts = copts)
f.create_dataset('w', data = self.w, compression = compr, compression_opts = copts)
f.create_dataset('a', data = self.a, compression = compr, compression_opts = copts)
f.create_dataset('d', data = self.d, compression = compr, compression_opts = copts)
f.create_dataset('aspect', data = self.aspect, compression = compr, compression_opts = copts)
f.create_dataset('slope', data = self.slope, compression = compr, compression_opts = copts)
flags = np.zeros(2, dtype = 'int')
if self.tunneled:
flags[0] = 1
f.create_dataset('flags', data = flags, compression = compr, compression_opts = copts)
f.close()
def export(self, fname, var, pnts = None, cmap = None):
"""
Export point cloud to LAS file with RGB colors according to var
"""
import laspy
import os
from subprocess import call
if cmap is None:
from matplotlib.cm import magma_r
cmap = magma_r
fn, fe = os.path.splitext(fname)
v = var - np.min(var)
v /= v.max()
rgb = cmap(v)
rgb = rgb[:, :3]
rgb *= 65535
rgb = rgb.astype('uint')
header = laspy.header.Header()
header.data_format_id = 2
f = laspy.file.File('%s.las' % fn, mode = 'w', header = header)
f.header.scale = [0.001, 0.001, 0.001]
if pnts is None:
f.header.offset = [self.x.min(), self.y.min(), self.z.min()]
f.x = self.x
f.y = self.y
f.z = self.z
else:
f.header.offset = [pnts[:,0].min(), pnts[:,1].min(), pnts[:,2].min()]
f.x = pnts[:, 0]
f.y = pnts[:, 1]
f.z = pnts[:, 2]
f.set_red(rgb[:, 0])
f.set_green(rgb[:, 1])
f.set_blue(rgb[:, 2])
f.close()
try:
r = call(['laszip', '%s.las' % fn])
if not r:
r = call(['rm', '%s.las' % fn])
except:
pass