-
Notifications
You must be signed in to change notification settings - Fork 61
/
yolov8_pose.cpp
121 lines (113 loc) · 4.71 KB
/
yolov8_pose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include"yolov8_pose.h"
//using namespace std;
//using namespace cv;
//using namespace cv::dnn;
bool Yolov8Pose::ReadModel(cv::dnn::Net& net, std::string& netPath, bool isCuda = false) {
try {
if (!CheckModelPath(netPath))
return false;
#if CV_VERSION_MAJOR==4 &&CV_VERSION_MINOR<7
std::cout << "OBB Need OpenCV Version >=4.7.0" << std::endl;
return false;
#endif
net = cv::dnn::readNetFromONNX(netPath);
#if CV_VERSION_MAJOR==4 &&CV_VERSION_MINOR==7&&CV_VERSION_REVISION==0
net.enableWinograd(false); //bug of opencv4.7.x in AVX only platform ,https://github.com/opencv/opencv/pull/23112 and https://github.com/opencv/opencv/issues/23080
//net.enableWinograd(true); //If your CPU supports AVX2, you can set it true to speed up
#endif
}
catch (const std::exception&) {
return false;
}
if (isCuda) {
//cuda
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); //or DNN_TARGET_CUDA_FP16
}
else {
//cpu
std::cout << "Inference device: CPU" << std::endl;
net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
}
return true;
}
bool Yolov8Pose::Detect(cv::Mat& srcImg, cv::dnn::Net& net, std::vector<OutputParams>& output) {
cv::Mat blob;
output.clear();
int col = srcImg.cols;
int row = srcImg.rows;
cv::Mat netInputImg;
cv::Vec4d params;
LetterBox(srcImg, netInputImg, params, cv::Size(_netWidth, _netHeight));
cv::dnn::blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(0, 0, 0), true, false);
//**************************************************************************************************************************************************/
//如果在其他设置没有问题的情况下但是结果偏差很大,可以尝试下用下面两句语句
// If there is no problem with other settings, but results are a lot different from Python-onnx , you can try to use the following two sentences
//
//$ cv::dnn::blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(104, 117, 123), true, false);
//$ cv::dnn::blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(114, 114,114), true, false);
//****************************************************************************************************************************************************/
net.setInput(blob);
std::vector<cv::Mat> net_output_img;
net.forward(net_output_img, net.getUnconnectedOutLayersNames()); //get outputs
std::vector<int> class_ids;// res-class_id
std::vector<float> confidences;// res-conf
std::vector<cv::Rect> boxes;// res-box
std::vector<std::vector<PoseKeyPoint>> pose_key_points; //保存kpt
cv::Mat output0 = cv::Mat(cv::Size(net_output_img[0].size[2], net_output_img[0].size[1]), CV_32F, (float*)net_output_img[0].data).t(); //[bs,20,21504]=>[bs,21504,20]
int net_width = output0.cols;
int rows = output0.rows;
int key_point_length = net_width - 5;
int key_point_num = 17; //_bodyKeyPoints.size(), shape[x, y, confidence]
if (key_point_num * 3 != key_point_length) {
std::cout << "Pose should be shape [x, y, confidence] with 17-points" << std::endl;
return false;
}
float* pdata = (float*)output0.data;
for (int r = 0; r < rows; ++r) {
float max_class_socre=pdata[4];
if (max_class_socre >= _classThreshold) {
//rect [x,y,w,h]
float x = (pdata[0] - params[2]) / params[0];
float y = (pdata[1] - params[3]) / params[1];
float w = pdata[2] / params[0];
float h = pdata[3] / params[1];
class_ids.push_back(0);
confidences.push_back(max_class_socre);
int left = MAX(int(x - 0.5 * w + 0.5), 0);
int top = MAX(int(y - 0.5 * h + 0.5), 0);
boxes.push_back(cv::Rect(left, top, int(w + 0.5), int(h + 0.5)));
std::vector<PoseKeyPoint> temp_kpts;
for (int kpt = 0; kpt < key_point_length; kpt += 3) {
PoseKeyPoint temp_kp;
temp_kp.x = (pdata[5 + kpt] - params[2]) / params[0];
temp_kp.y = (pdata[6 + kpt] - params[3]) / params[1];
temp_kp.confidence = pdata[7 + kpt];
temp_kpts.push_back(temp_kp);
}
pose_key_points.push_back(temp_kpts);
}
pdata += net_width;//next line
}
//NMS
std::vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, _classThreshold, _nmsThreshold, nms_result);
std::vector<std::vector<float>> temp_mask_proposals;
cv::Rect holeImgRect(0, 0, srcImg.cols, srcImg.rows);
for (int i = 0; i < nms_result.size(); ++i) {
int idx = nms_result[i];
OutputParams result;
result.id = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx]& holeImgRect;
result.keyPoints = pose_key_points[idx];
if (result.box.area() < 1)
continue;
output.push_back(result);
}
if (output.size())
return true;
else
return false;
}