From 59e98a3b9c5fc404f1da42f7fc9d5a7c7db2a9b2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sini=C5=A1a=20=C5=A0egvi=C4=87?= Date: Tue, 24 Oct 2023 13:56:38 +0200 Subject: [PATCH] Update lab1.md --- lab/lab1.md | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/lab/lab1.md b/lab/lab1.md index b5d785d..8106be5 100644 --- a/lab/lab1.md +++ b/lab/lab1.md @@ -85,9 +85,11 @@ tako da 6 parametara afine transformacije istaknemo kao nepoznanice te ih zapisati u matričnom obliku kako slijedi: -$$ {\left\lbrack \matrix{q_{si1} & q_{si2} & 0 & 0 & 1 & 0\cr 0 & 0 & q_{si1} & q_{si2} & 0 & 1} \right\rbrack} -\cdot \left\lbrack \matrix{a_{11} \cr a_{12} \cr a_{21} \cr a_{22} \cr b_{1} \cr b_{2}} \right\rbrack -= \left\lbrack \matrix{q_{di1} \cr q_{di2}} \right\rbrack +$$ +\left\lbrack \matrix{q_{si1} \cr q_{si2}} \right\rbrack = + \left\lbrack \matrix{q_{di1} & q_{di2} & 0 & 0 & 1 & 0\cr 0 & 0 & q_{di1} & q_{di2} & 0 & 1} \right\rbrack + \cdot + \left\lbrack \matrix{a_{11} \cr a_{12} \cr a_{21} \cr a_{22} \cr b_{1} \cr b_{2}} \right\rbrack $$ Ako dodamo još dvije korespondencije, dobit ćemo sustav $$6\times 6$$