Skip to content

Latest commit

 

History

History
72 lines (50 loc) · 3.27 KB

README.md

File metadata and controls

72 lines (50 loc) · 3.27 KB

Recreating Our Experiments

Below you find the instructions on how to reproduce the results of Sections 4 and 5 of the M2QA paper. For the results of Section "5.1 SQuAD Metric - Adaptation for Chinese" have a look at M2QA_Metric/README.md.

XLM-R Baselines, MAD-X+Domain & MAD-X²

Use the m2qa_experiments conda environment from environment.yml

conda env create -f environment.yml
conda activate m2qa_experiments

Training

We uploaded the trained adapters to Hugging Face: AdapterHub M2QA Adapter Collection

Evaluation

The evaluation for our XLM-R Baselines, the MAD-X+Domain and MAD-X² setup are done via evaluate_model.py:

  • Have a look at the available arguments by executing python3 evaluate_model.py --help
  • E.g. to evaluate all models on SQuADv2, XQuAD and M2QA: python3 evaluate_model.py --evaluate_xlm_r --evaluate_xlm_r_domain_adapted --evaluate_mad_x_domain --evaluate_squad --evaluate_xquad --evaluate_m2qa
  • Important: If you want to evaluate other adapters than the ones trained by us and uploaded to Hugging Face, you have to exchange the paths to the adapters in the variable PATHS in evaluate_model.py.

LLMs

We evaluated gpt-3.5-turbo-0613, gpt-3.5-turbo-0301, Llama 2-chat (13b), Llama 3-instruct (8b) and Aya-23 (8b) on the M2QA dataset. This is described in detail here: LLM_evaluation/README.md

MAD-X² / MAD-X+Domain Adapters Code Example

MAD-X²

from adapters import AutoAdapterModel
from adapters.composition import Stack

model = AutoAdapterModel.from_pretrained("xlm-roberta-base")

# 1. Load language adapter
language_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-2-english") 

# 2. Load domain adapter
domain_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-2-product-reviews")

# 3. Load QA head adapter
qa_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-2-qa-head")

# 4. Activate them via the adapter stack
model.active_adapters = Stack(language_adapter_name, domain_adapter_name, qa_adapter_name)

MAD-X+Domain

The code for loading and stacking the MAD-X+Domain adapters is the same except for the different adapter names:

from adapters import AutoAdapterModel
from adapters.composition import Stack

model = AutoAdapterModel.from_pretrained("xlm-roberta-base")

# 1. Load language adapter
language_adapter_name = model.load_adapter("de/wiki@ukp") # MAD-X+Domain uses the MAD-X language adapter

# 2. Load domain adapter
domain_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-domain-product-reviews")

# 3. Load QA head adapter
qa_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-domain-qa-head")

# 4. Activate them via the adapter stack
model.active_adapters = Stack(language_adapter_name, domain_adapter_name, qa_adapter_name)