-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtdm_embedding_normalization.py
72 lines (49 loc) · 2.58 KB
/
tdm_embedding_normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import json
import torch
import random
import argparse
import tqdm
import os
import utils
from sentence_transformers import SentenceTransformer, util
def main(args):
torch.manual_seed(args.seed)
random.seed(args.seed)
gold_data = utils.read_json(args.gold_tdm_path)
model_output = utils.read_json(args.tdm_output_path + 'manually_refined_output.json')
labels_dict = {'Task': set(), 'Dataset': set(), 'Metric': set()}
for paper in gold_data:
for item in gold_data[paper]['TDMs']:
labels_dict['Task'].add(item['Task'])
labels_dict['Dataset'].add(item['Dataset'])
labels_dict['Metric'].add(item['Metric'])
labels_dict['Task'] = list(labels_dict['Task'])
labels_dict['Dataset'] = list(labels_dict['Dataset'])
labels_dict['Metric'] = list(labels_dict['Metric'])
encoder = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True)
corpus_embeddings = {'Task': encoder.encode(labels_dict['Task'], convert_to_tensor=True),
'Dataset': encoder.encode(labels_dict['Dataset'], convert_to_tensor=True),
'Metric': encoder.encode(labels_dict['Metric'], convert_to_tensor=True)}
normalized_output = {}
for i, paper in enumerate(tqdm.tqdm(model_output, total=len(model_output))):
tdms = json.loads(model_output[paper]['output'])
normalized_tdms = []
for tdm in tdms:
normalized_tdm = {}
for key in tdm:
if key != 'Result' and tdm[key] not in labels_dict[key]:
candidate_embedding = encoder.encode(tdm[key], convert_to_tensor=True)
normalized_tdm[key] = labels_dict[key][util.semantic_search(candidate_embedding, corpus_embeddings[key], top_k=1)[0][0]['corpus_id']]
else:
normalized_tdm[key] = str(tdm[key])
normalized_tdms.append(normalized_tdm)
normalized_output[paper] = {'normalized_output': normalized_tdms, 'source_documents': model_output[paper]['source_documents']}
os.makedirs(args.tdm_output_path + 'embedding_normalization/', exist_ok=True)
with open(args.tdm_output_path + 'embedding_normalization/embedding_normalized_output.json', "w") as fw:
json.dump(normalized_output, fw, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gold_tdm_path', required=True, type=str)
parser.add_argument('--tdm_output_path', required=True, type=str)
parser.add_argument('--seed', default=0, type=int)
main(parser.parse_args())