diff --git a/urbansim/urbanchoice/tests/test_mnl.py b/urbansim/urbanchoice/tests/test_mnl.py index a939e462..9e7f095c 100644 --- a/urbansim/urbanchoice/tests/test_mnl.py +++ b/urbansim/urbanchoice/tests/test_mnl.py @@ -111,30 +111,54 @@ def choosers_dm(choosers, test_data): @pytest.fixture def fit_coeffs(dm, chosen, num_alts): log_like, fit = mnl.mnl_estimate(dm.as_matrix(), chosen, num_alts) - return fit.Coefficient.values + return fit -def test_mnl_estimate(dm, chosen, num_alts, test_data): - log_like, fit = mnl.mnl_estimate(dm.as_matrix(), chosen, num_alts) - result = pd.Series(fit.Coefficient.values, index=dm.columns) +@pytest.fixture +def fit_normalize(dm, chosen, num_alts): + log_like, fit = mnl.mnl_estimate(dm.as_matrix(), chosen, num_alts, normalize=True) + return fit + + +def test_mnl_estimate(fit_coeffs, fit_normalize, dm, chosen, num_alts, test_data): + result = pd.Series(fit_coeffs.Coefficient.values, index=dm.columns) result, expected = result.align(test_data['est_expected']) npt.assert_allclose(result.values, expected.values, rtol=1e-4) + l1 = abs(fit_normalize.Coefficient).sum() + _, fit_3 = mnl.mnl_estimate(dm.as_matrix(), chosen, num_alts, normalize=True, l1=0.1) + fit_3_l1 = abs(fit_3.Coefficient).sum() + assert fit_3_l1 < l1, "we asked that the l1 norm be minimized so it should be smaller" + + l2 = np.square(fit_normalize.Coefficient).sum() + _, fit_3 = mnl.mnl_estimate(dm.as_matrix(), chosen, num_alts, normalize=True, l1=0.2) + fit_3_l2 = np.square(fit_3.Coefficient).sum() + assert fit_3_l2 < l2, "we asked that the l2 norm be minimized so it should be smaller" + -def test_mnl_simulate(dm, fit_coeffs, num_alts, test_data, choosers_dm): +def test_mnl_simulate(dm, fit_coeffs, fit_normalize, num_alts, test_data, choosers_dm): # check that if all the alternatives have the same numbers # we get an even probability distribution data = np.array( [[10 ** (x + 1) for x in range(len(dm.columns))]] * num_alts) probs = mnl.mnl_simulate( - data, fit_coeffs, num_alts, returnprobs=True) + data, fit_coeffs.Coefficient.values, num_alts, returnprobs=True) npt.assert_allclose(probs, [[1 / num_alts] * num_alts]) # now test with real data probs = mnl.mnl_simulate( - choosers_dm.as_matrix(), fit_coeffs, num_alts, returnprobs=True) + choosers_dm.as_matrix(), fit_coeffs.Coefficient.values, num_alts, returnprobs=True) + results = pd.DataFrame(probs, columns=test_data['sim_expected'].columns) + results, expected = results.align(test_data['sim_expected']) + npt.assert_allclose(results.as_matrix(), expected.as_matrix(), rtol=1e-4) + + # now test with real data + probs = mnl.mnl_simulate( + choosers_dm.as_matrix(), fit_normalize.Coefficient.values, num_alts, returnprobs=True, + normalization_mean=fit_normalize['Normalization Mean'].values, + normalization_std=fit_normalize['Normalization Std'].values) results = pd.DataFrame(probs, columns=test_data['sim_expected'].columns) results, expected = results.align(test_data['sim_expected']) npt.assert_allclose(results.as_matrix(), expected.as_matrix(), rtol=1e-4)