-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
318 lines (273 loc) · 13.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import numpy as np
import pandas as pd
import orca
import pandana as pdna
from urbansim.utils import misc
from urbansim.utils import networks
from urbansim.models import transition
import utils
import variables
import datasources
@orca.step('neighborhood_vars')
def neighborhood_vars(net):
nodes = networks.from_yaml(net, "neighborhood_vars.yaml")
nodes = nodes.fillna(0)
print nodes.describe()
orca.add_table("nodes", nodes)
@orca.step('price_vars')
def price_vars(net):
nodes2 = networks.from_yaml(net, "price_vars.yaml")
nodes2 = nodes2.fillna(0)
print nodes2.describe()
nodes = orca.get_table('nodes')
nodes = nodes.to_frame().join(nodes2)
orca.add_table("nodes", nodes)
@orca.step('build_networks')
def build_networks(parcels):
st = pd.HDFStore(os.path.join(misc.data_dir(), "osm_sandag.h5"), "r")
nodes, edges = st.nodes, st.edges
net = pdna.Network(nodes["x"], nodes["y"], edges["from"], edges["to"],
edges[["weight"]])
net.precompute(3000)
orca.add_injectable("net", net)
p = parcels.to_frame(parcels.local_columns)
p['node_id'] = net.get_node_ids(p['x'], p['y'])
orca.add_table("parcels", p)
@orca.step('households_transition')
def households_transition(households, annual_household_control_totals, year):
ct = annual_household_control_totals.to_frame()
tran = transition.TabularTotalsTransition(ct, 'total_number_of_households')
model = transition.TransitionModel(tran)
hh = households.to_frame(households.local_columns + ['activity_id'])
new, added_hh_idx, empty_dict = \
model.transition(hh, year,)
new.loc[added_hh_idx, "building_id"] = -1
orca.add_table("households", new)
@orca.step('households_transition_basic')
def households_transition_basic(households):
return utils.simple_transition(households, .01, "building_id")
@orca.step('jobs_transition')
def jobs_transition(jobs):
return utils.simple_transition(jobs, .01, "building_id")
@orca.step('households_relocation')
def households_relocation(households, settings):
rate = settings['rates']['households_relocation']
return utils.simple_relocation(households, rate, "building_id")
@orca.step('jobs_relocation')
def jobs_relocation(jobs, settings):
rate = settings['rates']['jobs_relocation']
return utils.simple_relocation(jobs, rate, "building_id")
@orca.step('nrh_estimate')
def nrh_estimate(costar, aggregations):
return utils.hedonic_estimate("nrh.yaml", costar, aggregations)
@orca.step('nrh_simulate')
def nrh_simulate(buildings, aggregations):
return utils.hedonic_simulate("nrh.yaml", buildings, aggregations,
"nonres_rent_per_sqft")
@orca.step('nrh_estimate2')
def nrh_estimate2(costar, aggregations):
return utils.hedonic_estimate("nrh2.yaml", costar, aggregations)
@orca.step('nrh_simulate2')
def nrh_simulate2(buildings, aggregations):
return utils.hedonic_simulate("nrh2.yaml", buildings, aggregations,
"nonres_rent_per_sqft")
@orca.step('rsh_estimate')
def rsh_estimate(assessor_transactions, aggregations):
return utils.hedonic_estimate("rsh.yaml", assessor_transactions, aggregations)
@orca.step('rsh_simulate')
def rsh_simulate(buildings, aggregations):
return utils.hedonic_simulate("rsh.yaml", buildings, aggregations,
"res_price_per_sqft")
@orca.step('elcm_estimate')
def elcm_estimate(jobs, buildings, aggregations):
return utils.lcm_estimate("elcm.yaml", jobs, "building_id",
buildings, aggregations)
@orca.step('elcm_simulate')
def elcm_simulate(jobs, buildings, aggregations):
return utils.lcm_simulate("elcm.yaml", jobs, buildings, aggregations,
"building_id", "job_spaces",
"vacant_job_spaces")
@orca.step('hlcm_estimate')
def hlcm_estimate(households, buildings, aggregations):
return utils.lcm_estimate("hlcm.yaml", households, "building_id",
buildings, aggregations)
@orca.step('hlcm_simulate')
def hlcm_simulate(households, buildings, aggregations, settings):
return utils.lcm_simulate("hlcm.yaml", households, buildings,
aggregations,
"building_id", "residential_units",
"vacant_residential_units",
settings.get("enable_supply_correction", None))
@orca.step('feasibility')
def feasibility(parcels, settings,
parcel_sales_price_sqft_func,
parcel_is_allowed_func):
kwargs = settings['feasibility']
utils.run_feasibility(parcels,
parcel_sales_price_sqft_func,
parcel_is_allowed_func,
**kwargs)
@orca.step('residential_developer')
def residential_developer(feasibility, households, buildings, parcels, year,
settings, summary, form_to_btype_func,
add_extra_columns_func):
kwargs = settings['residential_developer']
new_buildings = utils.run_developer(
"residential",
households,
buildings,
"residential_units",
parcels.parcel_size,
parcels.ave_sqft_per_unit,
parcels.total_residential_units,
feasibility,
year=year,
form_to_btype_callback=form_to_btype_func,
add_more_columns_callback=add_extra_columns_func,
**kwargs)
summary.add_parcel_output(new_buildings)
@orca.step('non_residential_developer')
def non_residential_developer(feasibility, jobs, buildings, parcels, year,
settings, summary, form_to_btype_func,
add_extra_columns_func):
kwargs = settings['non_residential_developer']
new_buildings = utils.run_developer(
["office", "retail", "industrial"],
jobs,
buildings,
"job_spaces",
parcels.parcel_size,
parcels.ave_sqft_per_unit,
parcels.total_job_spaces,
feasibility,
year=year,
form_to_btype_callback=form_to_btype_func,
add_more_columns_callback=add_extra_columns_func,
residential=False,
**kwargs)
summary.add_parcel_output(new_buildings)
def get_year():
year = orca.get_injectable('year')
if year is None:
year = 2012
return year
@orca.step('scheduled_development_events')
def scheduled_development_events(buildings, scheduled_development_events):
year = get_year()
sched_dev = scheduled_development_events.to_frame()
sched_dev = sched_dev[sched_dev.year_built==year]
sched_dev['residential_sqft'] = sched_dev.sqft_per_unit*sched_dev.residential_units
sched_dev['job_spaces'] = sched_dev.non_residential_sqft/400
if len(sched_dev) > 0:
max_bid = buildings.index.values.max()
idx = np.arange(max_bid + 1,max_bid+len(sched_dev)+1)
sched_dev['building_id'] = idx
sched_dev = sched_dev.set_index('building_id')
from urbansim.developer.developer import Developer
merge = Developer(pd.DataFrame({})).merge
b = buildings.to_frame(buildings.local_columns)
all_buildings = merge(b,sched_dev[b.columns])
orca.add_table("buildings", all_buildings)
@orca.step('model_integration_indicators')
def model_integration_indicators():
year = get_year()
#Households by MGRA
print 'Exporting indicators: households by MGRA'
hh = orca.get_table('households')
hh = hh.to_frame(hh.local_columns + ['mgra_id', 'activity_id'])
mgra_indicators = hh.groupby(['mgra_id', 'activity_id']).size().reset_index()
mgra_indicators.columns = ['mgra_id', 'activity_id', 'number_of_households']
mgra_indicators.to_csv('./data/mgra_hh_%s.csv'%year, index = False)
#Space by LUZ
print 'Exporting indicators: space by LUZ'
b = orca.get_table('buildings')
b = b.to_frame(b.local_columns + ['luz_id'])
luz_res_indicators = b[b.residential_units > 0].groupby(['luz_id', 'development_type_id']).residential_units.sum().reset_index()
luz_res_indicators.columns = ['luz_id', 'development_type_id', 'residential_units']
luz_res_indicators.to_csv('./data/luz_du_%s.csv'%year, index = False)
luz_nonres_indicators = b[b.non_residential_sqft > 0].groupby(['luz_id', 'development_type_id']).non_residential_sqft.sum().reset_index()
luz_nonres_indicators.columns = ['luz_id', 'development_type_id', 'non_residential_sqft']
luz_nonres_indicators.to_csv('./data/luz_nrsf_%s.csv'%year, index = False)
@orca.step('buildings_to_uc')
def buildings_to_uc(buildings, settings):
if settings['urbancanvas']:
# Export newly predicted buildings (from proforma or scheduled_development_events) to Urban Canvas
import urbancanvas
year = get_year()
b = buildings.to_frame(buildings.local_columns)
# Only buildings for this simulation year
new_buildings = b[b.year_built == year]
# Required columns
if 'development_type_id' in new_buildings.columns:
new_buildings = new_buildings.rename(columns = {'development_type_id':'building_type_id'})
new_buildings['building_sqft'] = new_buildings.residential_sqft + new_buildings.non_residential_sqft
new_buildings['sqft_per_unit'] = new_buildings.residential_sqft/new_buildings.residential_units
new_buildings = new_buildings[['parcel_id', 'building_type_id', 'improvement_value', 'residential_units', 'non_residential_sqft', 'stories', 'year_built', 'building_sqft', 'sqft_per_unit']] # These are the fields you need. And index should be named 'building_id'.
for col in ['parcel_id', 'residential_units', 'non_residential_sqft', 'year_built',
'stories', 'building_sqft', 'sqft_per_unit', 'improvement_value']:
new_buildings[col] = new_buildings[col].fillna(0).astype('int32')
# Export to database
urbancanvas.buildings_to_uc(new_buildings, year)
else:
print 'Urban Canvas setting not on.'
@orca.injectable("add_extra_columns_func", autocall=False)
def add_extra_columns(df):
for col in ['improvement_value', 'res_price_per_sqft', 'nonres_rent_per_sqft']:
df[col] = 0.0
df["note"] = 'simulated'
df["year_built"] = get_year()
df['dua'] = df.residential_units / (df.parcel_size / 43560.0)
df['development_type_id'] = 0
df.development_type_id[(df.form == 'residential') & (df.dua < 12)] = 19
df.development_type_id[(df.form == 'residential') & (df.dua >= 12) & (df.dua < 25)] = 20
df.development_type_id[(df.form == 'residential') & (df.dua >= 26)] = 21
df.development_type_id[(df.form == 'retail')] = 5
df.development_type_id[(df.form == 'industrial')] = 2
df.development_type_id[(df.form == 'office')] = 4
return df
@orca.step('luz_indicators')
def luz_indicators():
bsim = orca.get_table('buildings').to_frame(columns = ['luz_id', 'note', 'res_price_per_sqft', 'nonres_rent_per_sqft', 'residential_units', 'non_residential_sqft'])
luz_res_price = bsim[bsim.residential_units > 0].groupby('luz_id').res_price_per_sqft.mean()
luz_nonres_price = bsim[bsim.non_residential_sqft > 0].groupby('luz_id').nonres_rent_per_sqft.mean()
bsim = bsim[(bsim.note == 'simulated') | bsim.note.str.startswith('Sitespec')]
luz_simdu = bsim.groupby('luz_id').residential_units.sum()
luz_simnr = bsim.groupby('luz_id').non_residential_sqft.sum()
luz_df = pd.DataFrame({'du':luz_simdu, 'nrsf':luz_simnr, 'res_price':luz_res_price, 'nonres_price':luz_nonres_price})
luz_df = luz_df[luz_df.index.values != 0].fillna(0)
luz_df.index = luz_df.index.values.astype('int')
luz_df.index.name = 'luz_id'
luz_base_indicators = orca.get_table('luz_base_indicators').to_frame()
hh_sim = orca.get_table('households').to_frame(columns = ['luz_id'])
emp_sim = orca.get_table('jobs').to_frame(columns = ['luz_id'])
luz_df['hh_diff'] = hh_sim.groupby('luz_id').size().fillna(0) - luz_base_indicators.hh_base.fillna(0)
luz_df['emp_diff'] = emp_sim.groupby('luz_id').size().fillna(0) - luz_base_indicators.emp_base.fillna(0)
luz_df = luz_df.fillna(0)
print luz_df.sum()
luz_df.to_csv('./data/luz_sim_indicators.csv')
@orca.step('msa_indicators')
def msa_indicators():
# Summarize results at MSA level
b = orca.get_table('buildings').to_frame(columns = ['msa_id', 'mgra_id', 'residential_units', 'non_residential_sqft', 'note'])
new_du_by_msa = b[b.note == 'simulated'].groupby('msa_id').residential_units.sum()
new_nrsf_by_msa = b[b.note == 'simulated'].groupby('msa_id').non_residential_sqft.sum()
proportion_du_by_msa = new_du_by_msa / new_du_by_msa.sum()
proportion_nrsf_by_msa = new_nrsf_by_msa / new_nrsf_by_msa.sum()
print proportion_du_by_msa
print proportion_nrsf_by_msa
# this if the function for mapping a specific building that we build to a
# specific building type
@orca.injectable("form_to_btype_func", autocall=False)
def form_to_btype_func(building):
settings = orca.get_injectable('settings')
form = building.form
dua = building.residential_units / (building.parcel_size / 43560.0)
# precise mapping of form to building type for residential
if form is None or form == "residential":
if dua < 12:
return 19
elif dua < 25:
return 20
return 21
return settings["form_to_btype"][form][0]