-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifarN.py
512 lines (438 loc) · 21.8 KB
/
train_cifarN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import random
import os
import argparse
import numpy as np
from net import *
from sklearn.mixture import GaussianMixture
import dataloader_cifarn as dataloader
from utils import *
from fmix import *
from losses import *
import wandb
import time
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
parser.add_argument('--batch_size', default=256, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.05, type=float, help='initial learning rate')
parser.add_argument('--noise_type', type=str, help='clean, aggre, worst, rand1, rand2, rand3, clean100, noisy100',
default='clean')
parser.add_argument('--noise_path', type=str, help='path of CIFAR-10_human.pt', default=None)
parser.add_argument('--num_epochs', default=150, type=int)
parser.add_argument('--seed', default=123, type=int)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--num_class', default=100, type=int)
parser.add_argument('--data_path', default=None, type=str, help='path to dataset')
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--rho_range', default='0.5,0.5', type=str,
help='ratio of clean labels (rho)')
parser.add_argument('--tau', default=0.99, type=float,
help='high-confidence selection threshold')
parser.add_argument('--pretrain_ep', default=10, type=int)
parser.add_argument('--warmup_ep', default=30, type=int)
parser.add_argument('--threshold', default=0.95, type=float)
parser.add_argument('--fmix', action='store_true', default=False)
parser.add_argument('--start_expand', default=100, type=int)
parser.add_argument('--examp', default=50000, type=int)
parser.add_argument('--save_note', type=str, default='')
parser.add_argument('--use_wandb', type=bool, default=True)
parser.add_argument('--is_human', action='store_true', default=False)
parser.add_argument('--lr_u', default=1, type=int)
parser.add_argument('--lr_v', default=10, type=int)
parser.add_argument('--lr_trans', default=0.00001, type=float)
args = parser.parse_args()
wandb.init(project="Promix_based", entity="tyrantyyk")
wandb.config.update(args)
[args.rho_start, args.rho_end] = [float(item) for item in args.rho_range.split(',')]
print(args)
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Hyper Parameters
noise_type_map = {'clean': 'clean_label', 'worst': 'worse_label', 'aggre': 'aggre_label', 'rand1': 'random_label1',
'rand2': 'random_label2', 'rand3': 'random_label3', 'clean100': 'clean_label',
'noisy100': 'noisy_label'}
args.noise_type = noise_type_map[args.noise_type]
# load dataset
if args.data_path is None:
if args.dataset == 'cifar10':
args.data_path = './data/cifar-10'
elif args.dataset == 'cifar100':
args.data_path = './data/cifar-100'
else:
pass
if args.noise_path is None:
if args.dataset == 'cifar10':
args.noise_path = './data/CIFAR-10_human.pt'
elif args.dataset == 'cifar100':
args.noise_path = './data/CIFAR-100_human.pt'
else:
pass
def momentum_update_ema(net, ema_model, eman=False, momentum=0.999):
if eman:
state_dict_main = net.state_dict()
state_dict_ema = ema_model.state_dict()
for (k_main, v_main), (k_ema, v_ema) in zip(state_dict_main.items(), state_dict_ema.items()):
assert k_main == k_ema, "state_dict names are different!"
assert v_main.shape == v_ema.shape, "state_dict shapes are different!"
if 'num_batches_tracked' in k_ema:
v_ema.copy_(v_main)
else:
v_ema.copy_(v_ema * momentum + (1. - momentum) * v_main)
else:
for param_q, param_k in zip(net.parameters(), ema_model.parameters()):
param_k.data = param_k.data * 0.999 + param_q.data * (1. - 0.999)
# Training
def train(epoch, net, ema_net, net2, ema_net2, labeled_trainloader, confi_weight1, confi_weight2):
net.train()
net2.train()
w = linear_rampup2(epoch, args.warmup_ep)
for batch_idx, (inputs_x, inputs_x2, labels_x, w_x, w_x2, true_labels, index) in enumerate(labeled_trainloader):
batch_size = inputs_x.size(0)
# Transform label to one-hot
loss_hard, loss_cr, loss_hard2, loss_cr2, sop_loss, sop_loss2, loss_ce, loss_ce2 = 0, 0, 0, 0, 0, 0, 0, 0
d1_label = labels_x.clone().cuda()
d1_label2 = labels_x.clone().cuda()
labels_x2 = torch.zeros(batch_size, args.num_class).cuda().scatter_(1, labels_x.cuda().view(-1, 1), 1)
labels_x = torch.zeros(batch_size, args.num_class).cuda().scatter_(1, labels_x.cuda().view(-1, 1), 1)
w_x = w_x.view(-1, 1).type(torch.FloatTensor)
w_x2 = w_x2.view(-1, 1).type(torch.FloatTensor)
index = index.cuda()
inputs_x, inputs_x2, labels_x, w_x, w_x2 = inputs_x.cuda(), inputs_x2.cuda(), labels_x.cuda(), w_x.cuda(), w_x2.cuda()
outputs_x = net(inputs_x)
outputs_x2 = net(inputs_x2)
outputs_a = ema_net(inputs_x)
outputs_x21 = net2(inputs_x)
outputs_x22 = net2(inputs_x2)
outputs_a2 = ema_net2(inputs_x)
# loss 1 for net 1
with torch.no_grad():
# label refinement of labeled samples
px = train_loss1.target[index]
px2 = train_loss2.target[index]
plabel = torch.argmax(px, dim=1)
plabel2 = torch.argmax(px2, dim=1)
pred_net = F.one_hot(px.max(dim=1)[1], args.num_class).float()
pred_net2 = F.one_hot(px2.max(dim=1)[1], args.num_class).float()
if epoch >= args.num_epochs - args.start_expand:
# correct
high_conf_correct = px.max(dim=1)[0] > args.tau
high_conf_correct2 = px2.max(dim=1)[0] > args.tau
d1_label[high_conf_correct] = plabel[high_conf_correct]
d1_label2[high_conf_correct2] = plabel2[high_conf_correct2]
labels_x = torch.zeros(batch_size, args.num_class).cuda().scatter_(1, d1_label.view(-1, 1), 1)
labels_x2 = torch.zeros(batch_size, args.num_class).cuda().scatter_(1, d1_label2.view(-1, 1), 1)
w_x[high_conf_correct] = 1
w_x2[high_conf_correct2] = 1
# dismatch
dismatch = px.max(dim=1)[1] != px2.max(dim=1)[1]
w_x[dismatch] = 0
w_x2[dismatch] = 0
pseudo_label_l = labels_x * w_x + pred_net * (1 - w_x)
pseudo_label_l2 = labels_x2 * w_x2 + pred_net2 * (1 - w_x2)
idx_chosen = torch.where(w_x == 1)[0]
idx_chosen2 = torch.where(w_x2 == 1)[0]
l = np.random.beta(4, 4)
l = max(l, 1 - l)
X_w_c = inputs_x[idx_chosen]
pseudo_label_c = pseudo_label_l[idx_chosen]
idx = torch.randperm(X_w_c.size(0))
X_w_c_rand = X_w_c[idx]
pseudo_label_c_rand = pseudo_label_c[idx]
X_w_c_mix = l * X_w_c + (1 - l) * X_w_c_rand
pseudo_label_c_mix = l * pseudo_label_c + (1 - l) * pseudo_label_c_rand
logits_mix = net(X_w_c_mix)
loss_mix = CEsoft(logits_mix, targets=pseudo_label_c_mix).mean()
# mixup loss
x_fmix = fmix(X_w_c)
logits_fmix = net(x_fmix)
loss_fmix = fmix.loss(logits_fmix, (pseudo_label_c.detach()).long())
if epoch < args.num_epochs - args.start_expand:
sop_loss = train_loss1(index, outputs_x, outputs_x, labels_x, epoch, confi_weight1)
else:
loss_cr = CEsoft(outputs_x2[idx_chosen], targets=pseudo_label_l[idx_chosen]).mean()
# loss_ce = CEsoft(outputs_x[idx_chosen], targets=pseudo_label_l[idx_chosen]).mean()
update_pseudolabel = train_loss1(index, outputs_x, outputs_a, labels_x, epoch, confi_weight1)
loss_net1 = sop_loss + w * (loss_cr + loss_mix + loss_fmix) + loss_ce
l = np.random.beta(4, 4)
l = max(l, 1 - l)
X_w_c = inputs_x[idx_chosen2]
pseudo_label_c = pseudo_label_l2[idx_chosen2]
idx = torch.randperm(X_w_c.size(0))
X_w_c_rand = X_w_c[idx]
pseudo_label_c_rand = pseudo_label_c[idx]
X_w_c_mix2 = l * X_w_c + (1 - l) * X_w_c_rand
pseudo_label_c_mix2 = l * pseudo_label_c + (1 - l) * pseudo_label_c_rand
logits_mix2 = net2(X_w_c_mix2)
loss_mix2 = CEsoft(logits_mix2, targets=pseudo_label_c_mix2).mean()
# mixup loss
x_fmix2 = fmix(X_w_c)
logits_fmix2 = net2(x_fmix2)
loss_fmix2 = fmix.loss(logits_fmix2, (pseudo_label_c.detach()).long())
if epoch < args.num_epochs - args.start_expand:
sop_loss2 = train_loss2(index, outputs_x21, outputs_x21, labels_x2, epoch, confi_weight2)
else:
loss_cr2 = CEsoft(outputs_x22[idx_chosen2], targets=pseudo_label_l2[idx_chosen2]).mean()
# loss_ce2 = CEsoft(outputs_x21[idx_chosen2], targets=pseudo_label_l2[idx_chosen2]).mean()
update_pseudolabel = train_loss2(index, outputs_x21, outputs_a2, labels_x2, epoch, confi_weight2)
loss_net2 = sop_loss2 + w * (loss_cr2 + loss_mix2 + loss_fmix2) + loss_ce2
loss = loss_net1 + loss_net2
# compute gradient and do SGD step
optimizer1.zero_grad()
if epoch < args.num_epochs - args.start_expand:
optimizer_trans.zero_grad()
optimizer_trans2.zero_grad()
optimizer_overparametrization.zero_grad()
optimizer_overparametrization2.zero_grad()
loss.backward()
optimizer1.step()
if epoch < args.num_epochs - args.start_expand:
optimizer_overparametrization.step()
optimizer_overparametrization2.step()
optimizer_trans.step()
optimizer_trans2.step()
momentum_update_ema(net, ema_net, eman=True)
momentum_update_ema(net2, ema_net2, eman=True)
wandb.log({"loss_net1": loss})
def warmup(epoch, net, ema1, net2, ema2, dataloader):
net.train()
net2.train()
for batch_idx, (inputs_w, inputs_s, labels, index, _) in enumerate(dataloader):
batch_size = inputs_w.size(0)
inputs_w, inputs_s, labels = inputs_w.cuda(), inputs_s.cuda(), labels.cuda()
outputs = net(inputs_w)
outputs21 = net2(inputs_w)
# network 1
penalty = conf_penalty(outputs)
ce_loss = CEloss(outputs, labels)
loss1 = ce_loss + penalty
y_pred = F.softmax(outputs, dim=1)
y_pred = torch.clamp(y_pred, 1e-4, 1.0 - 1e-4)
y_pred_ = y_pred.data.detach()
beta = (0.1 - train_loss1.beta) * epoch / train_loss1.epoch_all + 1
train_loss1.target[index] = beta * train_loss1.target[index] + (1 - beta) * (
y_pred_ / y_pred_.sum(dim=1, keepdim=True))
# network 2
penalty2 = conf_penalty(outputs21)
ce_loss2 = CEloss(outputs21, labels)
loss2 = ce_loss2 + penalty2
y_pred = F.softmax(outputs21, dim=1)
y_pred = torch.clamp(y_pred, 1e-4, 1.0 - 1e-4)
y_pred_ = y_pred.data.detach()
beta = (0.1 - train_loss2.beta) * epoch / train_loss2.epoch_all + 1
train_loss2.target[index] = beta * train_loss2.target[index] + (1 - beta) * (
y_pred_ / y_pred_.sum(dim=1, keepdim=True))
loss = loss1 + loss2
optimizer1.zero_grad()
loss.backward()
optimizer1.step()
momentum_update_ema(net, ema1, eman=True)
momentum_update_ema(net2, ema2, eman=True)
wandb.log({"warmup loss": loss})
def test(epoch, net1, net2):
net1.eval()
net2.eval()
correct = 0
correct2 = 0
correctmean = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
outputs2 = net2(inputs)
score1, predicted = torch.max(outputs1, 1)
score2, predicted_2 = torch.max(outputs2, 1)
outputs_mean = (outputs1 + outputs2) / 2
_, predicted_mean = torch.max(outputs_mean, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
correct2 += predicted_2.eq(targets).cpu().sum().item()
correctmean += predicted_mean.eq(targets).cpu().sum().item()
acc = 100. * correct / total
acc2 = 100. * correct2 / total
accmean = 100. * correctmean / total
lr = optimizer1.state_dict()['param_groups'][0]['lr']
print("| Test Epoch #%d\t Acc Net1: %.2f%%, Acc Net2: %.2f%% Acc Mean: %.2f%%\n" % (epoch, acc, acc2, accmean))
test_log.write('Epoch:%d Accuracy:%.2f\n' % (epoch, acc))
test_log.flush()
wandb.log({"test acc1": acc,
"test acc2": acc2,
"test acc_mean": accmean,
"epoch": epoch,
"lr": lr})
def test_ema(epoch, net1, net2):
net1.eval()
net2.eval()
correct = 0
correct2 = 0
correctmean = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
outputs2 = net2(inputs)
score1, predicted = torch.max(outputs1, 1)
score2, predicted_2 = torch.max(outputs2, 1)
outputs_mean = (outputs1 + outputs2) / 2
_, predicted_mean = torch.max(outputs_mean, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
correct2 += predicted_2.eq(targets).cpu().sum().item()
correctmean += predicted_mean.eq(targets).cpu().sum().item()
acc = 100. * correct / total
acc2 = 100. * correct2 / total
accmean = 100. * correctmean / total
lr = optimizer1.state_dict()['param_groups'][0]['lr']
print("| Test Epoch #%d\t Acc Super teacher: %.2f%%, Acc Net2: %.2f%% Acc Mean: %.2f%%\n" % (
epoch, acc, acc2, accmean))
test_log.write('Epoch:%d Accuracy:%.2f\n' % (epoch, acc))
test_log.flush()
def cleanset_eval(teacher, student, true_label, targets_list):
# student net
idx_chosen_student = student == 1
precision_s = (targets_list[idx_chosen_student] == true_label[
idx_chosen_student]).sum() * 100 / idx_chosen_student.sum()
recall_s = (targets_list[idx_chosen_student] == true_label[idx_chosen_student]).sum() * 100 / (
targets_list == true_label).sum()
# teacher net
idx_chosen_teacher = teacher == 1
precision_t = (targets_list[idx_chosen_teacher] == true_label[
idx_chosen_teacher]).sum() * 100 / idx_chosen_teacher.sum()
recall_t = (targets_list[idx_chosen_teacher] == true_label[idx_chosen_teacher]).sum() * 100 / (
targets_list == true_label).sum()
wandb.log({"precision_s": precision_s,
"recall_s": recall_s,
"precision_t": precision_t,
"recall_t": recall_t
})
def eval_train(model, rho, id):
model.eval()
losses = torch.zeros(50000)
true_label = torch.zeros(50000)
targets_list = torch.zeros(50000)
confi_weight = torch.zeros(50000)
num_class = 0
with torch.no_grad():
for batch_idx, (inputs, targets, index, label) in enumerate(eval_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
num_class = outputs.shape[1]
if id == 0:
confi_w = CE(train_loss1.target[index], targets)
else:
confi_w = CE(train_loss2.target[index], targets)
targets_cpu = targets.cpu()
true_label[index] = label.float()
for b in range(inputs.size(0)):
losses[index[b]] = confi_w[b]
confi_weight[index[b]] = confi_w[b]
targets_list[index[b]] = targets_cpu[b]
losses = (losses - losses.min()) / (losses.max() - losses.min())
confi_weight = (confi_weight - confi_weight.min()) / (confi_weight.max() - confi_weight.min())
prob = np.zeros(targets_list.shape[0])
idx_chosen_sm = []
min_len = 1e10
for j in range(num_class):
indices = np.where(targets_list.cpu().numpy() == j)[0]
if len(indices) == 0:
continue
bs_j = targets_list.shape[0] * (1. / num_class)
pseudo_loss_vec_j = losses[indices]
sorted_idx_j = pseudo_loss_vec_j.sort()[1].cpu().numpy()
partition_j = max(min(int(math.ceil(bs_j * rho)), len(indices)), 1)
# at least one example
idx_chosen_sm.append(indices[sorted_idx_j[:partition_j]])
min_len = min(min_len, partition_j)
idx_chosen_sm = np.concatenate(idx_chosen_sm)
prob[idx_chosen_sm] = 1
return prob, targets_list, true_label, confi_weight
def linear_rampup(current, warm_up, rampup_length=16):
current = np.clip((current - warm_up) / rampup_length, 0.0, 1.0)
return args.lambda_u * float(current)
class NegEntropy(object):
def __call__(self, outputs):
outputs = outputs.clamp(min=1e-12)
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log() * probs, dim=1))
def create_model():
model = DualNet(args.num_class)
model = model.cuda()
return model
stats_log = open('./checkpoint/%s_%s_%s' % (args.dataset, args.noise_type, args.num_epochs) + '_stats.txt', 'w')
test_log = open('./checkpoint/%s_%s_%s' % (args.dataset, args.noise_type, args.num_epochs) + '_acc.txt', 'w')
warm_up = args.pretrain_ep
loader = dataloader.cifarn_dataloader(args.dataset, noise_type=args.noise_type, noise_path=args.noise_path,
is_human=args.is_human, batch_size=args.batch_size, num_workers=8,
root_dir=args.data_path, log=stats_log,
noise_file='%s/%s.json' % (args.data_path, args.noise_type))
print('| Building net')
dualnet = create_model()
ema_net = create_model()
for param_main, param_ema in zip(dualnet.net1.parameters(), ema_net.net1.parameters()):
param_ema.data.copy_(param_main.data) # initialize
param_ema.requires_grad = False # not update by gradient
for param_main, param_ema in zip(dualnet.net2.parameters(), ema_net.net2.parameters()):
param_ema.data.copy_(param_main.data) # initialize
param_ema.requires_grad = False # not update by gradient
train_loss1 = sop_balance_loss(50000, args.num_class).cuda()
train_loss2 = sop_balance_loss(50000, args.num_class).cuda()
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
reparam_params = [{'params': train_loss1.u, 'lr': args.lr_u, 'weight_decay': 0},
{'params': train_loss1.v, 'lr': args.lr_v, 'weight_decay': 0}]
reparam_params2 = [{'params': train_loss2.u, 'lr': args.lr_u, 'weight_decay': 0},
{'params': train_loss2.v, 'lr': args.lr_v, 'weight_decay': 0}]
trans_params = [{'params': train_loss1.trans, 'lr': args.lr_trans, 'weight_decay': 0}]
trans_params2 = [{'params': train_loss2.trans, 'lr': args.lr_trans, 'weight_decay': 0}]
conf_penalty = NegEntropy()
optimizer_overparametrization = optim.SGD(reparam_params)
optimizer_overparametrization2 = optim.SGD(reparam_params2)
optimizer1 = optim.SGD([{'params': dualnet.net1.parameters()},
{'params': dualnet.net2.parameters()}], lr=args.lr, momentum=0.9, weight_decay=5e-4)
optimizer_trans = optim.SGD(trans_params)
optimizer_trans2 = optim.SGD(trans_params2)
scheduler1 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer1, args.num_epochs)
scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_trans, args.num_epochs - args.start_expand)
scheduler3 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_trans2, args.num_epochs - args.start_expand)
fmix = FMix()
fmix2 = FMix()
CE = nn.CrossEntropyLoss(reduction='none')
CEloss = nn.CrossEntropyLoss()
CEsoft = CE_Soft_Label()
eval_loader, noise_or_not = loader.run('eval_train')
test_loader = loader.run('test')
start = time.time()
for epoch in range(args.num_epochs):
# adjust_learning_rate(args, optimizer1, epoch)
if epoch < warm_up:
warmup_trainloader, noisy_labels = loader.run('warmup')
print('Warmup Net1')
warmup(epoch, dualnet.net1, ema_net.net1, dualnet.net2, ema_net.net2, warmup_trainloader)
scheduler1.step()
else:
rho = args.rho_start + (args.rho_end - args.rho_start) * linear_rampup2(epoch, args.warmup_ep)
prob1, targets_list, true_label, confi_weight1 = eval_train(ema_net.net1, rho, 1)
prob2, _, _, confi_weight2 = eval_train(ema_net.net2, rho, 0)
pred1 = (prob1 == 1)
cleanset_eval(prob1, prob2, targets_list, true_label)
# print('Train Net1')
total_trainloader, noisy_labels = loader.run('train', pred1, prob1, prob2) # co-divide
train(epoch, dualnet.net1, ema_net.net1, dualnet.net2, ema_net.net2, total_trainloader, confi_weight1,
confi_weight2)
scheduler1.step()
if epoch < args.num_epochs - args.start_expand:
scheduler2.step()
scheduler3.step()
test(epoch, dualnet.net1, dualnet.net2)
test_ema(epoch, ema_net.net1, ema_net.net2)
wandb.log({"time": time.time() - start})