-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
149 lines (112 loc) · 4.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import math
import matplotlib as plt
#from torchsummary import summary
from BirdNets import BirdNetComplexV1, BirdNetComplexV2, BirdNetComplexV3
from BirdData import BirdDataset
import logging
import re
import warnings
logging.captureWarnings(True)
warnings.filterwarnings("always", category=UserWarning, module=r'^{0}\.'.format(re.escape(__name__)))
if __name__ == '__main__':
warnings.filterwarnings("ignore", category=UserWarning)
#set backends
#print(f"CUDNN Version {torch.backends.cudnn.version()}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# if (torch.backends.cudnn.is_available()):
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
# define Model and Optimizer
MODEL_PATH = './birdnetcomplexV3_3_weights.pth'
model = BirdNetComplexV3(dropout = 0.5).to(device)
#model.load_state_dict(torch.load(MODEL_PATH))
# model = torch.load(MODEL_PATH)
#summary(model, input_size=(3, 244, 244))
print(model)
print(device)
model = model.to(device)
LR = 0.0001
#opt = optim.Adam(model.parameters(), lr=LR, weight_decay=0.005)
opt = optim.SGD(model.parameters(), lr=LR, weight_decay=0.0005, momentum=0.9)
#opt = optim.SGD(model.parameters, momentum=0.9, weight_decay=0.005)
loss_fn = nn.CrossEntropyLoss()
# Model Training History
history = {
'train_loss': [],
'train_acc': [],
'val_loss': [],
'val_acc': []
}
# Dataset Parameters
BATCH_SIZE = 16
DATA_DIR = './data/'
PATH = 'birdnetcomplexV3_3_weights.pth'
# Create Training Dataset
train_ds = BirdDataset(os.path.join(DATA_DIR), os.path.join(DATA_DIR, 'birds.csv'), split='train', transform=True)
train_dl = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True) # num_workers=2,
# Create Validation Dataset
val_ds = BirdDataset(os.path.join(DATA_DIR), os.path.join(DATA_DIR, 'birds.csv'), split='valid')
val_dl = DataLoader(val_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True) # num_workers=2,
# Calcluate # of batches
train_steps = len(train_dl.dataset) // BATCH_SIZE
val_steps = len(val_dl.dataset) // BATCH_SIZE
# Define Training Hyperparameters
EPOCHS = 25
best_val_acc = 0
for epoch in range(EPOCHS):
total_train_loss = 0
total_val_loss = 0
train_tp_tn = 0
val_tp_tn = 0
# Inner loop for each epoch
for x, y in tqdm(train_dl):
# Load the batch
x, y = x.to(device, non_blocking=True), y.to(device, non_blocking=True)
# Predict classes of batch
pred = model(x)
# Calculate loss
loss = loss_fn(pred, y)
# Update parameters
opt.zero_grad(set_to_none=True)
loss.backward()
opt.step()
# Update metrics
total_train_loss += loss
train_tp_tn += (pred.argmax(1) == y).type(torch.float).sum().item()
# Evaluate on validation partition
with torch.no_grad():
model.eval()
# Loop over validation dataset
for x, y in tqdm(val_dl):
# Load the batch
x, y = x.to(device, non_blocking=True), y.to(device, non_blocking=True)
# Predict val labels
pred = model(x)
# Update metrics
total_val_loss += loss_fn(pred, y)
val_tp_tn += (pred.argmax(1) == y).type(torch.float).sum().item()
if val_tp_tn > best_val_acc:
best_val_acc = val_tp_tn
torch.save(model.state_dict(), 'current_best_state_V3_3.pth')
# Calculate Training Final Metrics
avgTrainLoss = total_train_loss / train_steps
avgValLoss = total_val_loss / val_steps
trainCorrect = train_tp_tn / len(train_dl.dataset)
valCorrect = val_tp_tn / len(val_dl.dataset)
# Update History
history["train_loss"].append(avgTrainLoss.cpu().detach().numpy())
history["train_acc"].append(trainCorrect)
history["val_loss"].append(avgValLoss.cpu().detach().numpy())
history["val_acc"].append(valCorrect)
# Log Metrics
print("[INFO] EPOCH: {}/{}".format(epoch + 1, EPOCHS))
print("Train loss: {:.6f}, Train accuracy: {:.4f}".format(avgTrainLoss, trainCorrect))
print("Val loss: {:.6f}, Val accuracy: {:.4f}\n".format(avgValLoss, valCorrect))
#torch.save(model.state_dict(), PATH)
torch.save(model, PATH)