-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAIPlayer.py
119 lines (87 loc) · 3.54 KB
/
AIPlayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from Player import Player
import random
import sys
import copy
import time
class AIPlayer(Player):
def __init__(self,color,controller):
Player.__init__(self,color,controller)
self.name="AI"
self.maximizing=True
self.searchDepth=3
def getName(self):
return self.name
def isMaximizing(self):
return self.maximizing
def setupFirstTwoTiles(self,boardSize):
self.controller.placeTile([((boardSize//2)-1),((boardSize//2)-1)],self.color)
self.controller.placeTile([(boardSize//2),(boardSize//2)],self.color)
def myMove(self, playingField):
validMoves=Player.returnValidMoves(self,self.color, playingField)
return validMoves
def calcBestMove(self,board,validMoves):
self.counter=0
points=-1000
moveToMake=None
startTime=time.perf_counter()
for move in validMoves:
newboard=self.updateBoard(board, move, self.color)
res=self.minimax(newboard,self.searchDepth,self.maximizing,self.color,-1000,1000,)
if res>=points:
moveToMake=move
points=res
totalTime=time.perf_counter()-startTime
# print(totalTime)
print("Number of nodes evaluated; "+str(self.counter)+ " search depth is: " + str(self.searchDepth))
return moveToMake
def minimax(self, boardState, depth,maximizing, playerColor,alpha,beta):
if playerColor=="W":
other="B"
else:
other="W"
validMoves=Player.returnValidMoves(self,playerColor, boardState)
if (depth == 0) or (not validMoves):
points=self.calcPoints(boardState, playerColor)
if not maximizing:
points=-points
return points
else:
childBoards = []
for move in validMoves:
childBoards.append(self.updateBoard(boardState, move, playerColor))
if maximizing:
maxEval = - 1000
for board in childBoards:
evaluation = self.minimax(board, depth - 1,False, other,alpha,beta)
maxEval = max(maxEval, evaluation)
alpha=max(alpha,evaluation)
if beta<=alpha:
#print("Pruning")
break
return maxEval
else:
minEval = 1000
for board in childBoards:
evaluation = self.minimax(board, depth - 1, True, other,alpha,beta)
minEval = min(minEval, evaluation)
beta=min(beta,evaluation)
if beta<=alpha:
#print("Pruning")
break
return minEval
def calcPoints(self, board, playerColor):
points = 0
for row in board:
for tile in row:
if tile == playerColor:
points += 1
return points
def updateBoard(self, board , move, color):
newBoard = copy.deepcopy(board)
tilesToFlip= move.getTilesToFlip()
self.counter+=1
for tiles in tilesToFlip:
newBoard[tiles[0]][tiles[1]]=color
return newBoard
#minimax returns pos for move
#makemove takes matrix, runs minimax,returns posiion to gamecontroller