-
Notifications
You must be signed in to change notification settings - Fork 20
/
repvit_db.yml
173 lines (166 loc) · 3.51 KB
/
repvit_db.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
Global:
device: gpu
epoch_num: &epoch_num 500
log_smooth_window: 20
print_batch_step: 100
save_model_dir: ./output/det_repsvtr_db
save_epoch_step: 10
eval_batch_step:
- 0
- 1000
cal_metric_during_train: false
checkpoints:
pretrained_model: openocr_det_repvit_ch.pth
save_inference_dir: null
use_visualdl: false
infer_img: ./testA
save_res_path: ./checkpoints/det_db/predicts_db.txt
distributed: true
model_type: det
Architecture:
algorithm: DB
Backbone:
name: RepSVTR_det
Neck:
name: RSEFPN
out_channels: 96
shortcut: True
Head:
name: DBHead
k: 50
# Loss:
# name: DBLoss
# balance_loss: true
# main_loss_type: DiceLoss
# alpha: 5
# beta: 10
# ohem_ratio: 3
# Optimizer:
# name: Adam
# beta1: 0.9
# beta2: 0.999
# lr:
# name: Cosine
# learning_rate: 0.001 #(8*8c)
# warmup_epoch: 2
# regularizer:
# name: L2
# factor: 5.0e-05
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.4
max_candidates: 1000
unclip_ratio: 1.5
score_mode: 'slow'
# Metric:
# name: DetMetric
# main_indicator: hmean
# Train:
# dataset:
# name: SimpleDataSet
# data_dir: ./train_data/icdar2015/text_localization/
# label_file_list:
# - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
# ratio_list: [1.0]
# transforms:
# - DecodeImage:
# img_mode: BGR
# channel_first: false
# - DetLabelEncode: null
# - CopyPaste: null
# - IaaAugment:
# augmenter_args:
# - type: Fliplr
# args:
# p: 0.5
# - type: Affine
# args:
# rotate:
# - -10
# - 10
# - type: Resize
# args:
# size:
# - 0.5
# - 3
# - EastRandomCropData:
# size:
# - 640
# - 640
# max_tries: 50
# keep_ratio: true
# - MakeBorderMap:
# shrink_ratio: 0.4
# thresh_min: 0.3
# thresh_max: 0.7
# total_epoch: *epoch_num
# - MakeShrinkMap:
# shrink_ratio: 0.4
# min_text_size: 8
# total_epoch: *epoch_num
# - NormalizeImage:
# scale: 1./255.
# mean:
# - 0.485
# - 0.456
# - 0.406
# std:
# - 0.229
# - 0.224
# - 0.225
# order: hwc
# - ToCHWImage: null
# - KeepKeys:
# keep_keys:
# - image
# - threshold_map
# - threshold_mask
# - shrink_map
# - shrink_mask
# loader:
# shuffle: true
# drop_last: false
# batch_size_per_card: 8
# num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- DetResizeForTest:
# image_shape: [1280, 1280]
# keep_ratio: True
# padding: True
limit_side_len: 960
limit_type: max
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- shape
- polys
- ignore_tags
loader:
shuffle: false
drop_last: false
batch_size_per_card: 1
num_workers: 2
profiler_options: null