diff --git a/py/src/main.py b/py/src/main.py index a518d39b..3a8f78f6 100644 --- a/py/src/main.py +++ b/py/src/main.py @@ -1,6 +1,6 @@ -from src.config.Config import ConfigStore, LocalConfig, RemoteConfig -from src.pipeline.Capture import CVCapture -from src.output.StreamServer import StreamServer +from config.Config import ConfigStore, LocalConfig, RemoteConfig +from pipeline.Capture import CVCapture +from output.StreamServer import StreamServer import time @@ -24,6 +24,7 @@ fps = None frame_count += 1 if time.time() - last_print > 1: + last_print = time.time() fps = frame_count print("Running at", frame_count, "fps") frame_count = 0 diff --git a/py/src/pipeline/Detector.py b/py/src/pipeline/Detector.py index 460d1f95..e4dae04e 100644 --- a/py/src/pipeline/Detector.py +++ b/py/src/pipeline/Detector.py @@ -3,6 +3,7 @@ from src.config.Config import ConfigStore from typing import Dict +from pycoral.adapters.common import input_size from pycoral.adapters.detect import get_objects, Object from pycoral.utils.edgetpu import run_inference from pycoral.utils.edgetpu import make_interpreter @@ -24,6 +25,8 @@ def __init__(self, config: ConfigStore): self._interpreter.allocate_tensors() self._labels = read_label_file(config.local_config.label_path) + self._inference_size = input_size(self._interpreter) + if self._interpreter is None: print("Failed to create interpreter. Exiting.") sys.exit(1) diff --git a/py/src/pipeline/Sort.py b/py/src/pipeline/Sort.py new file mode 100644 index 00000000..88b97029 --- /dev/null +++ b/py/src/pipeline/Sort.py @@ -0,0 +1,342 @@ +""" + SORT: A Simple, Online and Realtime Tracker + Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" +from __future__ import print_function + +import os +import numpy as np +import matplotlib + +matplotlib.use('TkAgg') +import matplotlib.pyplot as plt +import matplotlib.patches as patches +from skimage import io + +import glob +import time +import argparse +from filterpy.kalman import KalmanFilter + +np.random.seed(0) + + +def linear_assignment(cost_matrix): + try: + import lap + _, x, y = lap.lapjv(cost_matrix, extend_cost=True) + return np.array([[y[i], i] for i in x if i >= 0]) # + except ImportError: + from scipy.optimize import linear_sum_assignment + x, y = linear_sum_assignment(cost_matrix) + return np.array(list(zip(x, y))) + + +def iou_batch(bb_test, bb_gt): + """ + From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] + """ + bb_gt = np.expand_dims(bb_gt, 0) + bb_test = np.expand_dims(bb_test, 1) + + xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) + yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) + xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) + yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) + w = np.maximum(0., xx2 - xx1) + h = np.maximum(0., yy2 - yy1) + wh = w * h + o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) + + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) + return (o) + + +def convert_bbox_to_z(bbox): + """ + Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form + [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is + the aspect ratio + """ + w = bbox[2] - bbox[0] + h = bbox[3] - bbox[1] + x = bbox[0] + w / 2. + y = bbox[1] + h / 2. + s = w * h # scale is just area + r = w / float(h) + return np.array([x, y, s, r]).reshape((4, 1)) + + +def convert_x_to_bbox(x, score=None): + """ + Takes a bounding box in the centre form [x,y,s,r] and returns it in the form + [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right + """ + w = np.sqrt(x[2] * x[3]) + h = x[2] / w + if (score == None): + return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4)) + else: + return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5)) + + +class KalmanBoxTracker(object): + """ + This class represents the internal state of individual tracked objects observed as bbox. + """ + count = 0 + + def __init__(self, bbox): + """ + Initialises a tracker using initial bounding box. + """ + # define constant velocity model + self.kf = KalmanFilter(dim_x=7, dim_z=4) + self.kf.F = np.array( + [[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]]) + self.kf.H = np.array( + [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]]) + + self.kf.R[2:, 2:] *= 10. + self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities + self.kf.P *= 10. + self.kf.Q[-1, -1] *= 0.01 + self.kf.Q[4:, 4:] *= 0.01 + + self.kf.x[:4] = convert_bbox_to_z(bbox) + self.time_since_update = 0 + self.id = KalmanBoxTracker.count + KalmanBoxTracker.count += 1 + self.history = [] + self.hits = 0 + self.hit_streak = 0 + self.age = 0 + + def update(self, bbox): + """ + Updates the state vector with observed bbox. + """ + self.time_since_update = 0 + self.history = [] + self.hits += 1 + self.hit_streak += 1 + self.kf.update(convert_bbox_to_z(bbox)) + + def predict(self): + """ + Advances the state vector and returns the predicted bounding box estimate. + """ + if ((self.kf.x[6] + self.kf.x[2]) <= 0): + self.kf.x[6] *= 0.0 + self.kf.predict() + self.age += 1 + if (self.time_since_update > 0): + self.hit_streak = 0 + self.time_since_update += 1 + self.history.append(convert_x_to_bbox(self.kf.x)) + return self.history[-1] + + def get_state(self): + """ + Returns the current bounding box estimate. + """ + return convert_x_to_bbox(self.kf.x) + + +def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3): + """ + Assigns detections to tracked object (both represented as bounding boxes) + + Returns 3 lists of matches, unmatched_detections and unmatched_trackers + """ + if (len(trackers) == 0): + return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int) + + iou_matrix = iou_batch(detections, trackers) + + if min(iou_matrix.shape) > 0: + a = (iou_matrix > iou_threshold).astype(np.int32) + if a.sum(1).max() == 1 and a.sum(0).max() == 1: + matched_indices = np.stack(np.where(a), axis=1) + else: + matched_indices = linear_assignment(-iou_matrix) + else: + matched_indices = np.empty(shape=(0, 2)) + + unmatched_detections = [] + for d, det in enumerate(detections): + if (d not in matched_indices[:, 0]): + unmatched_detections.append(d) + unmatched_trackers = [] + for t, trk in enumerate(trackers): + if (t not in matched_indices[:, 1]): + unmatched_trackers.append(t) + + # filter out matched with low IOU + matches = [] + for m in matched_indices: + if (iou_matrix[m[0], m[1]] < iou_threshold): + unmatched_detections.append(m[0]) + unmatched_trackers.append(m[1]) + else: + matches.append(m.reshape(1, 2)) + if (len(matches) == 0): + matches = np.empty((0, 2), dtype=int) + else: + matches = np.concatenate(matches, axis=0) + + return matches, np.array(unmatched_detections), np.array(unmatched_trackers) + + +class Sort(object): + def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3): + """ + Sets key parameters for SORT + """ + self.max_age = max_age + self.min_hits = min_hits + self.iou_threshold = iou_threshold + self.trackers = [] + self.frame_count = 0 + + def update(self, dets=np.empty((0, 5))): + """ + Params: + dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] + Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections). + Returns the a similar array, where the last column is the object ID. + + NOTE: The number of objects returned may differ from the number of detections provided. + """ + self.frame_count += 1 + # get predicted locations from existing trackers. + trks = np.zeros((len(self.trackers), 5)) + to_del = [] + ret = [] + for t, trk in enumerate(trks): + pos = self.trackers[t].predict()[0] + trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] + if np.any(np.isnan(pos)): + to_del.append(t) + trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) + for t in reversed(to_del): + self.trackers.pop(t) + matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold) + + # update matched trackers with assigned detections + for m in matched: + self.trackers[m[1]].update(dets[m[0], :]) + + # create and initialise new trackers for unmatched detections + for i in unmatched_dets: + trk = KalmanBoxTracker(dets[i, :]) + self.trackers.append(trk) + i = len(self.trackers) + for trk in reversed(self.trackers): + d = trk.get_state()[0] + if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): + ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1)) # +1 as MOT benchmark requires positive + i -= 1 + # remove dead tracklet + if (trk.time_since_update > self.max_age): + self.trackers.pop(i) + if (len(ret) > 0): + return np.concatenate(ret) + return np.empty((0, 5)) + + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='SORT demo') + parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]', + action='store_true') + parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data') + parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train') + parser.add_argument("--max_age", + help="Maximum number of frames to keep alive a track without associated detections.", + type=int, default=1) + parser.add_argument("--min_hits", + help="Minimum number of associated detections before track is initialised.", + type=int, default=3) + parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3) + args = parser.parse_args() + return args + + +if __name__ == '__main__': + # all train + args = parse_args() + display = args.display + phase = args.phase + total_time = 0.0 + total_frames = 0 + colours = np.random.rand(32, 3) # used only for display + if (display): + if not os.path.exists('mot_benchmark'): + print( + '\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') + exit() + plt.ion() + fig = plt.figure() + ax1 = fig.add_subplot(111, aspect='equal') + + if not os.path.exists('output'): + os.makedirs('output') + pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt') + for seq_dets_fn in glob.glob(pattern): + mot_tracker = Sort(max_age=args.max_age, + min_hits=args.min_hits, + iou_threshold=args.iou_threshold) # create instance of the SORT tracker + seq_dets = np.loadtxt(seq_dets_fn, delimiter=',') + seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0] + + with open(os.path.join('output', '%s.txt' % (seq)), 'w') as out_file: + print("Processing %s." % (seq)) + for frame in range(int(seq_dets[:, 0].max())): + frame += 1 # detection and frame numbers begin at 1 + dets = seq_dets[seq_dets[:, 0] == frame, 2:7] + dets[:, 2:4] += dets[:, 0:2] # convert to [x1,y1,w,h] to [x1,y1,x2,y2] + total_frames += 1 + + if (display): + fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg' % (frame)) + im = io.imread(fn) + ax1.imshow(im) + plt.title(seq + ' Tracked Targets') + + start_time = time.time() + trackers = mot_tracker.update(dets) + cycle_time = time.time() - start_time + total_time += cycle_time + + for d in trackers: + print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1' % (frame, d[4], d[0], d[1], d[2] - d[0], d[3] - d[1]), + file=out_file) + if (display): + d = d.astype(np.int32) + ax1.add_patch(patches.Rectangle((d[0], d[1]), d[2] - d[0], d[3] - d[1], fill=False, lw=3, + ec=colours[d[4] % 32, :])) + + if (display): + fig.canvas.flush_events() + plt.draw() + ax1.cla() + + print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % ( + total_time, total_frames, total_frames / total_time)) + + if (display): + print("Note: to get real runtime results run without the option: --display") \ No newline at end of file