forked from microsoft/LightGBM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunExperiments.sh
74 lines (66 loc) · 4.74 KB
/
runExperiments.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/bin/bash
cd experiments || exit
rm -r models # ATTENTION: deletes all models in the models folder
mkdir -p models
ms=64000
for dataset in "california_housing" "kin8nm"; do
mkdir -p models/${dataset}
for tree in 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 100 200 500 1000 10000; do
for depth in 3 5 7; do
if "$1" config=train.conf objective=regression metric=rmse train_data=data/${dataset}.train valid_data=data/${dataset}.test max_depth=$depth num_trees=$tree output_model=models/${dataset}/data-${dataset}ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.txt > models/${dataset}/data-${dataset}-ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.out; then
echo "Training model fp $fp tp $tp trees $tree depth $depth complete"
else
echo "Training model fp $fp tp $tp failed / not complete"
fi
if "$1" config=train.conf objective=regression metric=rmse train_data=data/${dataset}.train valid_data=data/${dataset}.test tinygbdt_forestsize=$ms max_depth=$depth num_trees=$tree output_model=models/${dataset}/data-${dataset}ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.txt > models/${dataset}/data-${dataset}-ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.out; then
echo "Training model fp $fp tp $tp trees $tree depth $depth complete"
else
echo "Training model fp $fp tp $tp failed / not complete"
fi
for i in $(seq -10 1 15); do
for j in $(seq -10 1 15); do
fp=$(python3 -c "print(float(2**$i))" )
tp=$(python3 -c "print(float(2**$j))" )
if "$1" config=train.conf objective=regression metric=rmse train_data=data/${dataset}.train valid_data=data/${dataset}.test max_depth=$depth num_trees=$tree tinygbdt_forestsize=$ms tinygbdt_penalty_split=$tp tinygbdt_penalty_feature=$fp output_model=models/${dataset}/data-${dataset}ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.txt > models/${dataset}/data-${dataset}-ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.out; then
echo "Training model fp $fp tp $tp trees $tree depth $depth complete"
else
echo "Training model fp $fp tp $tp failed / not complete"
fi
done
done
done
done
done
for dataset in "breastcancer" "kr-vs-kp" "mushroom" "covtype"; do
mkdir -p models/${dataset}
for tree in 1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 100 200 500 1000 10000; do
for depth in 3 5 7; do
if "$1" config=train.conf objective=regression metric=rmse train_data=data/${dataset}.train valid_data=data/${dataset}.test max_depth=$depth num_trees=$tree output_model=models/${dataset}/data-${dataset}ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.txt > models/${dataset}/data-${dataset}-ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.out; then
echo "Training model fp $fp tp $tp trees $tree depth $depth complete"
else
echo "Training model fp $fp tp $tp failed / not complete"
fi
if "$1" config=train.conf objective=regression metric=rmse train_data=data/${dataset}.train valid_data=data/${dataset}.test tinygbdt_forestsize=$ms max_depth=$depth num_trees=$tree output_model=models/${dataset}/data-${dataset}ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.txt > models/${dataset}/data-${dataset}-ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.out; then
echo "Training model fp $fp tp $tp trees $tree depth $depth complete"
else
echo "Training model fp $fp tp $tp failed / not complete"
fi
for i in $(seq -10 1 15); do
for j in $(seq -10 1 15); do
fp=$(python3 -c "print(float(2**$i))" )
tp=$(python3 -c "print(float(2**$j))" )
if "$1" config=train.conf objective=binary metric=auc train_data=data/${dataset}.train valid_data=data/${dataset}.test max_depth=$depth num_trees=$tree tinygbdt_forestsize=$ms tinygbdt_penalty_split=$tp tinygbdt_penalty_feature=$fp output_model=models/${dataset}/data-${dataset}ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.txt > models/${dataset}/data-${dataset}-ms-$ms-fp-$fp-tp-$tp-tree-${tree}-depth-${depth}.out; then
echo "Training model fp $fp tp $tp trees $tree depth $depth complete"
else
echo "Training model fp $fp tp $tp failed / not complete"
fi
done
done
done
done
done
cd python || exit
for dataset in "breastcancer" "covtype" "kr-vs-kp" "mushroom" "kin8nm" "california_housing"; do
python3 evaluate_models.py ${dataset}
done
cd ..