-
Notifications
You must be signed in to change notification settings - Fork 163
/
inverse_model.py
162 lines (140 loc) · 5.23 KB
/
inverse_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import print_function
from os.path import join
import os
import numpy as np
import itertools
import sys
import numpy as np
rdm = np.random.RandomState(345345)
if len(sys.argv) > 1:
dataset_name = sys.argv[1]
threshold = float(sys.argv[2])
else:
#dataset_name = 'FB15k-237'
#dataset_name = 'YAGO3-10'
#dataset_name = 'WN18'
#dataset_name = 'FB15k'
dataset_name = 'WN18'
threshold = 0.8
print(threshold)
base_path = 'data/{0}/'.format(dataset_name)
files = ['train.txt', 'valid.txt', 'test.txt']
data = []
for p in files:
with open(join(base_path, p)) as f:
data = f.readlines() + data
e_set = set()
rel_set = set()
test_cases = {}
rel_to_tuple = {}
e1rel2e2 = {}
existing_triples = set()
rel2tuple_train = {}
for p in files:
test_cases[p] = []
for p in files:
with open(join(base_path, p)) as f:
for i, line in enumerate(f):
e1, rel, e2 = line.split('\t')
e1 = e1.strip()
e2 = e2.strip()
rel = rel.strip()
e_set.add(e1)
e_set.add(e2)
rel_set.add(rel)
existing_triples.add((e1, rel, e2))
if (e1, rel) not in e1rel2e2: e1rel2e2[(e1, rel)] = set()
e1rel2e2[(e1, rel)].add(e2)
if rel not in rel_to_tuple:
rel_to_tuple[rel] = set()
if rel not in rel2tuple_train:
rel2tuple_train[rel] = set()
rel_to_tuple[rel].add((e1,e2))
test_cases[p].append([e1, rel, e2])
if p == 'train.txt':
rel2tuple_train[rel].add((e1, e2))
def check_for_reversible_relations(rel_to_tuple, threshold=0.80):
rel2reversal_rel = {}
pairs = set()
for i, rel1 in enumerate(rel_to_tuple):
if i % 100 == 0:
print('Processed {0} relations...'.format(i))
for rel2 in rel_to_tuple:
tuples2 = rel2tuple_train[rel2]
tuples1 = rel2tuple_train[rel1]
# check if the entire set of (e1, e2) is contained in the set of the
# other relation, but in a reversed manner
# that is ALL (e1, e2) -> (e2, e1) for rel 1 are contained in set entity tuple set of rel2 (and vice versa)
# if this is true for ALL entities, that is the sets completely overlap, then add a rule that
# (e1, rel1, e2) == (e2, rel2, e1)
n1 = float(len(tuples1))
n2 = float(len(tuples2))
left = np.sum([(e2,e1) in tuples2 for (e1,e2) in tuples1])/n1
right = np.sum([(e1,e2) in tuples1 for (e2,e1) in tuples2])/n2
if left >= threshold or right >= threshold:
print(left, right, rel1, rel2, n1, n2)
rel2reversal_rel[rel1] = rel2
rel2reversal_rel[rel2] = rel1
if (rel2, rel1) not in pairs:
pairs.add((rel1, rel2))
#print(rel1, rel2, left, right)
return rel2reversal_rel, pairs
rel2reversal_rel, banned_pairs = check_for_reversible_relations(rel_to_tuple, threshold)
print(rel2reversal_rel)
print(len(rel2reversal_rel))
evaluate = True
if evaluate:
all_cases = []
rel2tuples = {}
train_dev = test_cases['train.txt'] + test_cases['valid.txt']
for e1, rel, e2 in train_dev:
if rel not in rel2tuples: rel2tuples[rel] = set()
rel2tuples[rel].add((e1, e2))
if rel in rel2reversal_rel:
rel2 = rel2reversal_rel[rel]
if rel2 not in rel2tuples: rel2tuples[rel2] = set()
rel2tuples[rel2].add((e2, e1))
num_entities = len(e_set)
ranks = []
for i, (e1, rel, e2) in enumerate(test_cases['test.txt']):
if i % 1000 == 0: print(i)
ranks.append(0)
ranks.append(0)
if (e1, e2) in rel2tuples[rel]:
ranks[-1] += 1
ranks[-2] += 1
for e2_neg in e_set:
if (e1, rel, e2_neg) in existing_triples: continue
if (e1, e2_neg) in rel2tuples[rel]:
ranks[-1] += 1
for e1_neg in e_set:
if (e1_neg, rel, e2) in existing_triples: continue
if (e1_neg, e2) in rel2tuples[rel]:
ranks[-2] += 1
ranks[-1] = rdm.randint(1, ranks[-1]+1)
ranks[-2] = rdm.randint(1, ranks[-2]+1)
else:
existing_entities1=0
existing_entities2=0
for e2_neg in e_set:
if (e1, rel, e2_neg) in existing_triples:
existing_entities1+=1
continue
if (e1, e2_neg) in rel2tuples[rel]:
ranks[-1] += 1
for e1_neg in e_set:
if (e1_neg, rel, e2) in existing_triples:
existing_entities2+=1
continue
if (e1_neg, e2) in rel2tuples[rel]:
ranks[-2] += 1
ranks[-1] = rdm.randint(1,num_entities+1-existing_entities1)
ranks[-2] = rdm.randint(1,num_entities+1-existing_entities2)
n = float(len(ranks))
print(n)
ranks = np.array(ranks)
for i in range(10):
print('Hits@{0}: {1:.7}'.format(i+1, np.sum(ranks <= i+1)/n))
print("MR: {0}".format(np.mean(ranks)))
print("MRR: {0}".format(np.mean(1.0/ranks)))
print(threshold)