forked from 3d-pli/SLIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
executable file
·49 lines (45 loc) · 1.78 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
from SLIX import io, toolbox
import time
import numpy
if toolbox.gpu_available:
import cupy
use_gpu = True
else:
use_gpu = False
import urllib.request
import tqdm.auto
# Download example image for visualization
input_file_name = './Vervet1818_s0512_60um_SLI_090_Stack_1day.nii'
url = 'https://object.cscs.ch/v1/AUTH_227176556f3c4bb38df9feea4b91200c/' \
'hbp-d000048_ScatteredLightImaging_pub/Vervet_Brain/coronal_sections/' \
'Vervet1818_s0512_60um_SLI_090_Stack_1day.nii'
urllib.request.urlretrieve(url, input_file_name)
image = io.imread(input_file_name)
# Main benchmark loop
times = []
for i in tqdm.tqdm(range(10)):
start = time.time()
if use_gpu:
image = cupy.array(image)
sig_peaks = toolbox.significant_peaks(image, use_gpu=use_gpu,
return_numpy=False)
centroid = toolbox.centroid_correction(image, sig_peaks, use_gpu=use_gpu,
return_numpy=False)
toolbox.direction(sig_peaks, centroid, use_gpu=use_gpu)
toolbox.num_peaks(image, use_gpu=use_gpu)
toolbox.peak_distance(sig_peaks, centroid, use_gpu=use_gpu)
toolbox.mean_peak_distance(sig_peaks, centroid, use_gpu=use_gpu)
toolbox.peak_prominence(image, sig_peaks, use_gpu=use_gpu)
toolbox.mean_peak_prominence(image, sig_peaks, use_gpu=use_gpu)
toolbox.peak_width(image, sig_peaks, use_gpu=use_gpu)
toolbox.mean_peak_width(image, sig_peaks, use_gpu=use_gpu)
del sig_peaks
del centroid
total_time = time.time() - start
times.append(total_time)
# Show mean time and standard deviation
average_time = numpy.array(times).mean()
std_time = numpy.array(times).std()
print('Used GPU:', toolbox.gpu_available)
print('Average time is:', average_time, '+-', std_time)