-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudiowriter.py
542 lines (489 loc) · 18.3 KB
/
audiowriter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Copyright 2020 Google Research. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Convert raw COCO 2017 dataset to TFRecord.
Example usage:
python create_coco_tf_record.py --logtostderr \
--image_dir="${TRAIN_IMAGE_DIR}" \
--image_info_file="${TRAIN_IMAGE_INFO_FILE}" \
--object_annotations_file="${TRAIN_ANNOTATIONS_FILE}" \
--caption_annotations_file="${CAPTION_ANNOTATIONS_FILE}" \
--output_file_prefix="${OUTPUT_DIR/FILE_PREFIX}" \
--num_shards=100
"""
from PIL import Image
from pathlib import Path
import collections
import hashlib
import io
import json
import multiprocessing
import os
from multiprocessing import Process, Queue
from absl import app
from absl import flags
from absl import logging
import numpy as np
from PIL import Image, ImageOps
import audioread.ffdec # Use ffmpeg decoder
import tensorflow as tf
import tfrecord_util
import librosa
from audiodataset import load_data, SpectrogramData
from multiprocessing import Pool
import tensorflow_hub as hub
import psutil
def create_tf_example(sample, labels):
"""Converts image and annotations to a tf.Example proto.
Args:
image: dict with keys: [u'license', u'file_name', u'coco_url', u'height',
u'width', u'date_captured', u'flickr_url', u'id']
image_dir: directory containing the image files.
bbox_annotations:
list of dicts with keys: [u'segmentation', u'area', u'iscrowd',
u'image_id', u'bbox', u'category_id', u'id'] Notice that bounding box
coordinates in the official COCO dataset are given as [x, y, width,
height] tuples using absolute coordinates where x, y represent the
top-left (0-indexed) corner. This function converts to the format
expected by the Tensorflow Object Detection API (which is which is
[ymin, xmin, ymax, xmax] with coordinates normalized relative to image
size).
category_index: a dict containing COCO category information keyed by the
'id' field of each category. See the label_map_util.create_category_index
function.
caption_annotations:
list of dict with keys: [u'id', u'image_id', u'str'].
include_masks: Whether to include instance segmentations masks
(PNG encoded) in the result. default: False.
Returns:
example: The converted tf.Example
num_annotations_skipped: Number of (invalid) annotations that were ignored.
Raises:
ValueError: if the image pointed to by data['filename'] is not a valid JPEG
"""
data = sample.spectogram_data
# audio_data = librosa.amplitude_to_db(data.spect)
# mel = librosa.power_to_db(data.mel, ref=np.max)
# mel = data.mel
tags = sample.tags_s
track_ids = " ".join(map(str, sample.track_ids))
feature_dict = {
"audio/rec_id": tfrecord_util.bytes_feature(str(sample.rec_id).encode("utf8")),
"audio/track_id": tfrecord_util.bytes_feature(track_ids.encode("utf8")),
"audio/sample_rate": tfrecord_util.int64_feature(sample.sr),
"audio/min_freq": tfrecord_util.float_feature(
-1 if sample.min_freq is None else sample.min_freq
),
"audio/max_freq": tfrecord_util.float_feature(
-1 if sample.max_freq is None else sample.max_freq
),
"audio/length": tfrecord_util.float_feature(sample.length),
"audio/signal_percent": tfrecord_util.float_feature(
0 if sample.signal_percent is None else sample.signal_percent
),
"audio/raw_length": tfrecord_util.float_feature(data.raw_length),
"audio/start_s": tfrecord_util.float_feature(sample.start),
"audio/class/text": tfrecord_util.bytes_feature(tags.encode("utf8")),
"audio/raw": tfrecord_util.float_list_feature(np.float32(data.raw.ravel())),
}
if data.buttered is not None:
feature_dict["audio/buttered"] = tfrecord_util.float_list_feature(
np.float32(data.buttered.ravel())
)
if sample.predicted_labels is not None:
predicted_labels = ",".join(sample.predicted_labels)
pred_dic = {
"audio/embed_predictions": tfrecord_util.bytes_feature(
predicted_labels.encode("utf8"),
),
}
feature_dict.update(pred_dic)
if sample.embeddings is not None:
pred_dic = {
EMBEDDING: tfrecord_util.float_list_feature(sample.embeddings.ravel()),
LOGITS: tfrecord_util.float_list_feature(sample.logits.ravel()),
EMBEDDING_SHAPE: (
tfrecord_util.int64_list_feature(sample.embeddings.shape),
),
}
feature_dict.update(pred_dic)
print("Adding embeddings", sample.embeddings.shape)
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
return example, 0
EMBEDDING = "embedding"
RAW_AUDIO = "raw_audio"
RAW_AUDIO_SHAPE = "raw_audio_shape"
LOGITS = "logits"
EMBEDDING_SHAPE = "embedding_shape"
def create_tf_embed(sample, labels):
tags = sample.tags_s
track_ids = " ".join(map(str, sample.track_ids))
feature_dict = {
"audio/rec_id": tfrecord_util.bytes_feature(str(sample.rec_id).encode("utf8")),
"audio/track_id": tfrecord_util.bytes_feature(track_ids.encode("utf8")),
"audio/sample_rate": tfrecord_util.int64_feature(sample.sr),
"audio/length": tfrecord_util.float_feature(sample.length),
"audio/start_s": tfrecord_util.float_feature(sample.start),
"audio/class/text": tfrecord_util.bytes_feature(tags.encode("utf8")),
EMBEDDING: tfrecord_util.float_list_feature(sample.embeddings.ravel()),
LOGITS: tfrecord_util.float_list_feature(sample.logits.ravel()),
EMBEDDING_SHAPE: (tfrecord_util.int64_list_feature(sample.embeddings.shape),),
}
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
return example, 0
config = None
labels = None
writer = None
base_dir = None
saved = 0
writer_i = 0
model = None
embedding_model = None
embedding_labels = None
DO_EMBEDDING = False
#
# def worker_init(c, l, d):
# global config
# global labels
# global base_dir
# labels = l
# config = c
# base_dir = d
# assign_writer()
#
# if DO_EMBEDDING:
# global embedding_model
# global embedding_labels
# global model
# global embedding_model
# # Load the model.
# model = hub.load("https://tfhub.dev/google/bird-vocalization-classifier/1")
# embedding_model = tf.keras.models.load_model("./embedding_model")
# meta_file = "./embedding_model/metadata.txt"
# with open(str(meta_file), "r") as f:
# meta_data = json.load(f)
#
# embedding_labels = meta_data.get("labels")
def process_job(queue, labels, config, base_dir):
import gc
# Load the model.
model = None
embedding_model = None
embedding_labels = None
if DO_EMBEDDING:
model = hub.load("https://tfhub.dev/google/bird-vocalization-classifier/1")
pid = os.getpid()
writer_i = 1
name = f"{writer_i}-{pid}.tfrecord"
options = tf.io.TFRecordOptions(compression_type="GZIP")
writer = tf.io.TFRecordWriter(str(base_dir / name), options=options)
i = 0
saved = 0
while True:
i += 1
rec = queue.get()
try:
if rec == "DONE":
writer.close()
break
else:
saved += save_data(
rec,
writer,
model,
embedding_model,
base_dir,
config,
embedding_labels,
config.filter_frequency,
)
del rec
if saved > 500:
logging.info("Closing old writer")
writer.close()
writer_i += 1
name = f"{writer_i}-{pid}.tfrecord"
logging.info("Opening %s", name)
saved = 0
writer = tf.io.TFRecordWriter(str(base_dir / name), options=options)
if i % 10 == 0:
logging.info("Clear gc")
gc.collect()
except:
logging.error("Process_job error %s", rec.filename, exc_info=True)
def close_writer(empty=None):
global writer
if writer is not None:
logging.info("Closing old writer")
writer.close()
def assign_writer():
close_writer()
pid = os.getpid()
global writer_i
writer_i += 1
w = name = f"{writer_i}-{pid}.tfrecord"
logging.info("assigning writer %s", w)
options = tf.io.TFRecordOptions(compression_type="GZIP")
global writer
writer = tf.io.TFRecordWriter(str(base_dir / name), options=options)
def save_data(
rec,
writer,
model,
embedding_model,
base_dir,
config,
embedding_labels,
filter_frequency,
):
resample = 48000
try:
aro = audioread.ffdec.FFmpegAudioFile(rec.filename)
orig_frames, sr = librosa.load(aro, sr=None)
aro.close()
except:
logging.error("Error loading rec %s ", rec.filename, exc_info=True)
try:
aro.close()
except:
pass
return 0
try:
if DO_EMBEDDING:
frames32 = librosa.resample(orig_frames, orig_sr=sr, target_sr=32000)
# hack to handle getting new samples without knowing length until load
if resample is not None and resample != sr:
frames = librosa.resample(orig_frames, orig_sr=sr, target_sr=resample)
sr = resample
else:
frames = orig_frames
orig_frames = None
for t in rec.tracks:
if t.end is None:
# logging.info(
# "Track end is none so setting to rec length %s", len(frames) / sr
# )
t.end = len(frames) / sr
# rec.tracks[0].end = len0(frames) / sr
print(config.filter_frequency)
rec.load_samples(
config.segment_length,
config.segment_stride,
do_overlap=not config.filter_frequency,
)
samples = rec.samples
rec.sample_rate = resample
for i, sample in enumerate(samples):
try:
min_freq = sample.min_freq
max_freq = sample.max_freq
spec = load_data(
config,
sample.start,
frames,
sr,
end=sample.end,
min_freq=min_freq,
max_freq=max_freq,
)
if DO_EMBEDDING:
start = sample.start * 32000
start = round(start)
end = round(sample.end * 32000)
if (end - start) > 32000 * config.segment_length:
end = start + 32000 * config.segment_length
data = frames32[start:end]
data = np.pad(data, (0, 32000 * 5 - len(data)))
logits, embeddings = model.infer_tf(data[np.newaxis, :])
sample.logits = logits.numpy()[0]
sample.embeddings = embeddings.numpy()[0]
logging.info("Mem %s", psutil.virtual_memory()[2])
# print("mel is", mel.shape)
# print("adjusted start is", sample.start, " becomes", sample.start - start)
if spec is None:
logging.warn("error loading spec for %s", rec.id)
continue
# data[i] = spec
sample.spectogram_data = spec
sample.sr = resample
except:
logging.error("Error %s ", rec.id, exc_info=True)
tf_example, num_annotations_skipped = create_tf_example(sample, labels)
writer.write(tf_example.SerializeToString())
del sample
saved = len(samples)
del samples
del frames
del orig_frames
except:
logging.error("Got error %s", rec.filename, exc_info=True)
print("ERRR return None")
return 0
del rec
logging.info("Total Saved %s", saved)
return saved
def save_embeddings(rec):
global writer
resample = 32000
tf_examples = []
try:
aro = audioread.ffdec.FFmpegAudioFile(rec.filename)
frames, sr = librosa.load(aro, sr=None)
aro.close()
except:
logging.error("Error loading rec %s ", rec.filename, exc_info=True)
try:
aro.close()
except:
pass
return None
try:
# hack to handle getting new samples without knowing length until load
if resample is not None and resample != sr:
frames = librosa.resample(frames, orig_sr=sr, target_sr=resample)
sr = resample
for t in rec.tracks:
if t.end is None:
logging.info(
"Track end is none so setting to rec length %s", len(frames) / sr
)
t.end = len(frames) / sr
# rec.tracks[0].end = len0(frames) / sr
rec.load_samples(config.segment_length, config.segment_stride)
samples = rec.samples
rec.sample_rate = resample
for i, sample in enumerate(samples):
try:
start = sample.start * sr
start = round(start)
end = round(sample.end * sr)
s_data = frames[start:end]
data_length = len(s_data) / sr
if len(s_data) < int(config.segment_length * sr):
s_data = np.pad(
s_data, (0, config.segment_length * sr - len(s_data))
)
sample.sr = resample
sample.spectogram_data = s_data
except:
logging.error("Error %s ", rec.id, exc_info=True)
get_embeddings(samples)
for s in samples:
print(
"embeddings",
s.embeddings.shape,
s.logits.shape,
s.embeddings.dtype,
s.logits.dtype,
)
tf_example, num_annotations_skipped = create_tf_embed(sample, labels)
writer.write(tf_example.SerializeToString())
global saved
saved += len(samples)
del rec
del samples
# samples = None
# rec = None
except:
logging.error("Got error %s", rec.filename, exc_info=True)
print("ERRR return None")
return None
logging.info("Total Saved %s", saved)
if saved > 200:
assign_writer()
def get_embeddings(samples):
# model = models.TaxonomyModelTF(32000,"./models/chirp-model/", 5.0, 5.0)
input = np.array([s.spectogram_data for s in samples])
logging.info("Getting embeddings %s", len(samples))
for s in samples:
logits, embeddings = model.infer_tf(s.spectogram_data[np.newaxis, :])
s.logits = logits.numpy()[0]
s.embeddings = embeddings.numpy()[0]
# return logits, embeddings
def create_tf_records(dataset, output_path, labels, num_shards=1, cropped=True):
output_path = Path(output_path)
if output_path.is_dir():
logging.info("Clearing dir %s", output_path)
for child in output_path.glob("*"):
if child.is_file():
child.unlink()
output_path.mkdir(parents=True, exist_ok=True)
samples = dataset.recs
samples = sorted(
samples,
key=lambda sample: sample.id,
)
np.random.shuffle(samples)
num_labels = len(labels)
logging.info("writing to output path: %s for %s samples", output_path, len(samples))
logging.info("labels are %s", labels)
num_processes = 8
total_recs = len(samples)
try:
job_queue = Queue()
processes = []
for i in range(num_processes):
p = Process(
target=process_job,
args=(job_queue, labels, dataset.config, output_path),
)
processes.append(p)
p.start()
for s in samples:
job_queue.put(s)
logging.info("Processing %d", job_queue.qsize())
for i in range(len(processes)):
job_queue.put(("DONE"))
for process in processes:
try:
process.join()
except KeyboardInterrupt:
logging.info("KeyboardInterrupt, terminating.")
for process in processes:
process.terminate()
exit()
logging.info("Saved %s", len(samples))
except:
logging.error("Error saving track info", exc_info=True)
for r in dataset.recs:
r.rec_data = None
for s in r.samples:
s.spectogram_data = None
logging.info("Finished writing")
import sys
from types import ModuleType, FunctionType
from gc import get_referents
# Custom objects know their class.
# Function objects seem to know way too much, including modules.
# Exclude modules as well.
BLACKLIST = type, ModuleType, FunctionType
def getsize(obj):
"""sum size of object & members."""
if isinstance(obj, BLACKLIST):
raise TypeError("getsize() does not take argument of type: " + str(type(obj)))
seen_ids = set()
size = 0
objects = [obj]
while objects:
need_referents = []
for obj in objects:
if not isinstance(obj, BLACKLIST) and id(obj) not in seen_ids:
seen_ids.add(id(obj))
if isinstance(obj, np.ndarray):
size += obj.nbytes
else:
size += sys.getsizeof(obj)
need_referents.append(obj)
objects = get_referents(*need_referents)
return size * 0.000001