From fce61d788c6897484e60e0e1b59d5c4b9c0e71e6 Mon Sep 17 00:00:00 2001
From: Vaishnavi Bhushan <96589133+VB-deeksha@users.noreply.github.com>
Date: Sun, 11 Jun 2023 12:58:54 +0530
Subject: [PATCH] Create Covid_19_data
---
Data Analytics/Covid_19_data | 507 +++++++++++++++++++++++++++++++++++
1 file changed, 507 insertions(+)
create mode 100644 Data Analytics/Covid_19_data
diff --git a/Data Analytics/Covid_19_data b/Data Analytics/Covid_19_data
new file mode 100644
index 00000000..9cc4697d
--- /dev/null
+++ b/Data Analytics/Covid_19_data
@@ -0,0 +1,507 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "cc9cd027",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "2b0336a0",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "data = pd.read_csv(r\"C:\\Users\\vaish\\OneDrive\\Documents\\Kaggle Datasets\\covid_19_dataset.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "1457edd1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " SNo | \n",
+ " ObservationDate | \n",
+ " Province/State | \n",
+ " Country/Region | \n",
+ " Last Update Time | \n",
+ " Confirmed | \n",
+ " Deaths | \n",
+ " Recovered | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 22-01-2020 | \n",
+ " Anhui | \n",
+ " Mainland China | \n",
+ " 22-01-2020 17:00 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 22-01-2020 | \n",
+ " Beijing | \n",
+ " Mainland China | \n",
+ " 22-01-2020 17:00 | \n",
+ " 14 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 22-01-2020 | \n",
+ " Fujian | \n",
+ " Mainland China | \n",
+ " 22-01-2020 17:00 | \n",
+ " 6 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 22-01-2020 | \n",
+ " Gansu | \n",
+ " Mainland China | \n",
+ " 22-01-2020 17:00 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 22-01-2020 | \n",
+ " Guangdong | \n",
+ " Mainland China | \n",
+ " 22-01-2020 17:00 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " SNo ObservationDate Province/State Country/Region Last Update Time \\\n",
+ "0 1 22-01-2020 Anhui Mainland China 22-01-2020 17:00 \n",
+ "1 2 22-01-2020 Beijing Mainland China 22-01-2020 17:00 \n",
+ "2 3 22-01-2020 Fujian Mainland China 22-01-2020 17:00 \n",
+ "3 4 22-01-2020 Gansu Mainland China 22-01-2020 17:00 \n",
+ "4 5 22-01-2020 Guangdong Mainland China 22-01-2020 17:00 \n",
+ "\n",
+ " Confirmed Deaths Recovered \n",
+ "0 1 0 0 \n",
+ "1 14 0 0 \n",
+ "2 6 0 0 \n",
+ "3 1 0 0 \n",
+ "4 0 0 0 "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "030a514e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['SNo', 'ObservationDate', 'Province/State', 'Country/Region',\n",
+ " 'Last Update Time', 'Confirmed', 'Deaths', 'Recovered'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "31928232",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " SNo | \n",
+ " Confirmed | \n",
+ " Deaths | \n",
+ " Recovered | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 50.00000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ " 50.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 25.50000 | \n",
+ " 28.240000 | \n",
+ " 0.820000 | \n",
+ " 1.280000 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 14.57738 | \n",
+ " 97.839218 | \n",
+ " 4.119094 | \n",
+ " 5.838087 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 1.00000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 13.25000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 25.50000 | \n",
+ " 4.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 37.75000 | \n",
+ " 14.750000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 50.00000 | \n",
+ " 549.000000 | \n",
+ " 24.000000 | \n",
+ " 31.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " SNo Confirmed Deaths Recovered\n",
+ "count 50.00000 50.000000 50.000000 50.000000\n",
+ "mean 25.50000 28.240000 0.820000 1.280000\n",
+ "std 14.57738 97.839218 4.119094 5.838087\n",
+ "min 1.00000 0.000000 0.000000 0.000000\n",
+ "25% 13.25000 1.000000 0.000000 0.000000\n",
+ "50% 25.50000 4.000000 0.000000 0.000000\n",
+ "75% 37.75000 14.750000 0.000000 0.000000\n",
+ "max 50.00000 549.000000 24.000000 31.000000"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f4fa263f",
+ "metadata": {},
+ "source": [
+ "# Relating the variables with scatterplots"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "5086bca7",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHqCAYAAADLbQ06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsQklEQVR4nO3de3SU1b3/8c8QkiEhyQBGcpEIUYIVAYuiENQAykWOReLtKNoKdbXFElCKCGKPR6xIENfRqijeWvBYLazfAawHIRKtCVDkbgoC0oBBUk1IQ2EmJGQCYf/+oJnDkIRLbrOHeb/WetZi9rPnyTe71A/PZT/bYYwxAgAAVmoT6AIAAEDDCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsNgFH9TGGHk8HvFeFwBAMLrgg7q8vFwul0vl5eWBLgUAgPN2wQc1AADBjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALNY20AUAAGA7d2W1yo5Uy1N1TLGR4YprHyFXVESr/GyCGgCAM/j+8FFNX7JNawrKfG3pqXGac1cfJXWIbPGfz6VvAAAa4K6srhPSkrS6oExPLNkmd2V1i9dAUAMA0ICyI9V1QrrW6oIylR0hqAEACBhP1bEz7i8/y/7mQFADANCA2HbhZ9wfc5b9zYGgBgCgAXHREUpPjat3X3pqnOKiW/7Jb4IaAIAGuKIiNOeuPnXCOj01Ts/f1adVpmg5jDGmxX9KAHk8HrlcLrndbsXGxga6HABAEKqdR11edUwx7cIVF808agAArOGKar1gPh2XvgEAsBhBDQCAxQIa1PPnz1efPn0UGxur2NhYpaWlaeXKlb79xhjNnDlTSUlJioyM1ODBg7Vjx44AVgwAQOsKaFB36dJFc+bM0ebNm7V582bdfPPNGj16tC+M586dqxdffFHz5s3Tpk2blJCQoGHDhqm8vDyQZQMA0Gqse+q7U6dOeuGFF/TQQw8pKSlJkydP1vTp0yVJXq9X8fHxev755zV+/PhzOh5PfQMAgpk196hramq0aNEiVVRUKC0tTYWFhSopKdHw4cN9fZxOpwYNGqR169YFsFIAAFpPwKdnbd++XWlpaaqqqlJ0dLSWLVumnj17+sI4Pj7er398fLy+/fbbBo/n9Xrl9Xp9nz0eT8sUDgBAKwj4GfUVV1yh/Px8rV+/Xr/85S81duxY7dy507ff4XD49TfG1Gk7VVZWllwul29LTk5usdoBAGhp1t2jHjp0qC6//HJNnz5dl19+ubZu3aq+ffv69o8ePVodOnTQu+++W+/36zujTk5O5h41ACAoBfyM+nTGGHm9XqWkpCghIUE5OTm+fdXV1crLy9PAgQMb/L7T6fRN96rdAAAIVgG9R/3kk09q5MiRSk5OVnl5uRYtWqTc3FxlZ2fL4XBo8uTJmj17tlJTU5WamqrZs2crKipK999/fyDLBgCg1QQ0qA8cOKCf/OQnKi4ulsvlUp8+fZSdna1hw4ZJkqZNm6ajR49qwoQJOnTokPr3769Vq1YpJiYmkGUDANBqrLtH3dyYRw0ACGbW3aMGAAD/h6AGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgsbaBLgAAEDjuymqVHamWp+qYYiPDFdc+Qq6oiECXhVMQ1AAQor4/fFTTl2zTmoIyX1t6apzm3NVHSR0iA1gZTsWlbwAIQe7K6johLUmrC8r0xJJtcldWB6gynI6gBoAQVHakuk5I11pdUKayIwS1LQhqAAhBnqpjZ9xffpb9aD0ENQCEoNh24WfcH3OW/Wg9BDUAhKC46Ailp8bVuy89NU5x0Tz5bQuCGgBCkCsqQnPu6lMnrNNT4/T8XX2YomURhzHGBLqIluTxeORyueR2uxUbGxvocgDAKrXzqMurjimmXbjioplHbRvmUQNACHNFEcy249I3AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUCGtRZWVm67rrrFBMTo86dOysjI0O7d+/26zNu3Dg5HA6/bcCAAQGqGACA1hXQoM7Ly1NmZqbWr1+vnJwcHT9+XMOHD1dFRYVfv1tvvVXFxcW+bcWKFQGqGACA1tU2kD88Ozvb7/OCBQvUuXNnbdmyRenp6b52p9OphISE1i4PAICAs+oetdvtliR16tTJrz03N1edO3dWjx499POf/1ylpaUNHsPr9crj8fhtAAAEK4cxxgS6CEkyxmj06NE6dOiQ1qxZ42tfvHixoqOj1bVrVxUWFuqpp57S8ePHtWXLFjmdzjrHmTlzpp555pk67W63W7GxsS36OwAA0NysCerMzEx9/PHHWrt2rbp06dJgv+LiYnXt2lWLFi3SnXfeWWe/1+uV1+v1ffZ4PEpOTiaoAQBBKaD3qGtNmjRJH330kVavXn3GkJakxMREde3aVQUFBfXudzqd9Z5pAwAQjAIa1MYYTZo0ScuWLVNubq5SUlLO+p2DBw+qqKhIiYmJrVAhAACBFdCHyTIzM/WHP/xBH3zwgWJiYlRSUqKSkhIdPXpUknTkyBFNnTpVX3zxhfbt26fc3FyNGjVKcXFxuuOOOwJZOgAArSKg96gdDke97QsWLNC4ceN09OhRZWRk6Msvv9Thw4eVmJioIUOG6Nlnn1VycvI5/QyPxyOXy8U9agBAULLmYbKWQlADAIKZVfOoAQCAP4IaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIBDeqsrCxdd911iomJUefOnZWRkaHdu3f79THGaObMmUpKSlJkZKQGDx6sHTt2BKhiAABaV0CDOi8vT5mZmVq/fr1ycnJ0/PhxDR8+XBUVFb4+c+fO1Ysvvqh58+Zp06ZNSkhI0LBhw1ReXh7AygEAaB0OY4wJdBG1/vGPf6hz587Ky8tTenq6jDFKSkrS5MmTNX36dEmS1+tVfHy8nn/+eY0fP/6sx/R4PHK5XHK73YqNjW3pXwEAgGZl1T1qt9stSerUqZMkqbCwUCUlJRo+fLivj9Pp1KBBg7Ru3bp6j+H1euXxePw2AACClTVBbYzRlClTdOONN6pXr16SpJKSEklSfHy8X9/4+HjfvtNlZWXJ5XL5tuTk5JYtHACAFmRNUE+cOFHbtm3TH//4xzr7HA6H32djTJ22WjNmzJDb7fZtRUVFLVIvAACtoW2gC5CkSZMm6aOPPtLq1avVpUsXX3tCQoKkk2fWiYmJvvbS0tI6Z9m1nE6nnE5nyxYMAEArCegZtTFGEydO1NKlS/XnP/9ZKSkpfvtTUlKUkJCgnJwcX1t1dbXy8vI0cODA1i4XAIBWF9Az6szMTH3wwQf605/+pJiYGN99Z5fLpcjISDkcDk2ePFmzZ89WamqqUlNTNXv2bEVFRen+++8PZOkAALSKgE7Paug+84IFCzRu3DhJJ8+6n3nmGb355ps6dOiQ+vfvr9dee833wNnZMD0LABDMrJpH3RIIagBAMLPmqW8AAFAXQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABZre64dPR7POR80Nja2UcUAAAB/5xzUHTp0kMPhOKe+NTU1jS4IAAD8n3MO6s8//9z353379umJJ57QuHHjlJaWJkn64osv9O677yorK6v5qwQAIEQ5jDHmfL90yy236Gc/+5nGjBnj1/7BBx/orbfeUm5ubnPV12Qej0cul0tut5tL8gCAoNOoh8m++OIL9evXr057v379tHHjxiYXBQAATmpUUCcnJ+uNN96o0/7mm28qOTm5yUUBAICTzvke9aleeukl3XXXXfrkk080YMAASdL69eu1d+9eLVmypFkLBAAglDXqHrUkFRUVaf78+fr6669ljFHPnj318MMPW3dGzT1qAEAwa3RQBwuCGgAQzBr9ZrI1a9boxz/+sQYOHKjvvvtOkvTee+9p7dq1zVYcAAChrlFBvWTJEo0YMUKRkZHaunWrvF6vJKm8vFyzZ89u1gIBAAhljQrqWbNm6Y033tDbb7+t8PBwX/vAgQO1devWZisOAIBQ16ig3r17t9LT0+u0x8bG6vDhw02tCQAA/EujgjoxMVF79uyp07527VpddtllTS4KAACc1KigHj9+vB599FFt2LBBDodD33//vd5//31NnTpVEyZMaO4aAQAIWY164cm0adPkdrs1ZMgQVVVVKT09XU6nU1OnTtXEiRObu0YAAELWec+jrqmp0dq1a9W7d2+1a9dOO3fu1IkTJ9SzZ09FR0e3VJ2NxjxqAEAwa9QLT9q1a6ddu3YpJSWlJWpqVgQ1ACCYNeoede/evfXNN980dy0AAOA0jQrq5557TlOnTtXy5ctVXFwsj8fjtwEAgObRqEvfbdr8X747HA7fn40xcjgcqqmpaZ7qmgGXvgEAwaxRT31//vnnzV0HAACoB6tnAQBgMVbPAgDAYqyeBQCAxVg9CwAAi7F6FgAAFmP1LAAALMbqWQAAWIzVswAAsFiT5lFXVlayehYAAC2oUZe+3333XVVUVCgqKkr9+vXT9ddfb2VIAwAQ7BoV1FOnTlXnzp113333afny5Tp+/Hhz1wUAANTIoC4uLtbixYsVFham++67T4mJiZowYYLWrVvX3PUBABDSmvyu78rKSi1btkwffPCBPv30U3Xp0kV79+5trvqajHvUAIBg1uh3fdeKiorSiBEjNHLkSKWmpmrfvn3n/N3Vq1dr1KhRSkpKksPh0Icffui3f9y4cXI4HH7bgAEDmloyAABBo9FBXVlZqffff1//9m//pqSkJL300kvKyMjQV199dc7HqKio0NVXX6158+Y12OfWW29VcXGxb1uxYkVjSwYAIOg0ah71mDFj9L//+7+KiorSPffco9zcXA0cOPC8jzNy5EiNHDnyjH2cTqcSEhIaUyYAAEGvUUHtcDi0ePFijRgxQm3bNuoQ5yw3N1edO3dWhw4dNGjQID333HPq3Llzi/5MAABs0aiU/eCDD5q7jnqNHDlS99xzj7p27arCwkI99dRTuvnmm7VlyxY5nc56v+P1en3LbkonHyYDACBYNfoedV5enkaNGqXu3bsrNTVVt99+u9asWdOctenee+/Vbbfdpl69emnUqFFauXKl/va3v+njjz9u8DtZWVlyuVy+LTk5uVlrAgCgNTUqqP/whz9o6NChioqK0iOPPKKJEycqMjJSt9xyS4uebScmJqpr164qKChosM+MGTPkdrt9W1FRUYvVAwBAS2vUpe/nnntOc+fO1a9+9Stf26OPPqoXX3xRzz77rO6///5mK/BUBw8eVFFRkRITExvs43Q6G7wsDgBAsGnUGfU333yjUaNG1Wm//fbbVVhYeM7HOXLkiPLz85Wfny9JKiwsVH5+vvbv368jR45o6tSp+uKLL7Rv3z7l5uZq1KhRiouL0x133NGYsgEACDqNCurk5GR99tlnddo/++yz87onvHnzZvXt21d9+/aVJE2ZMkV9+/bVf/7nfyosLEzbt2/X6NGj1aNHD40dO1Y9evTQF198oZiYmMaUDQBA0GnUpe/HHntMjzzyiPLz8zVw4EA5HA6tXbtWCxcu1Msvv3zOxxk8eLDO9AbTTz75pDHlAQBwwWj0u76XLVum//qv/9KuXbskSVdeeaUef/xxjR49ulkLbCre9Q0ACGZNXpTDdgQ1ACCYNeoe9aZNm7Rhw4Y67Rs2bNDmzZubXBQAADipUUGdmZlZ7/zk7777TpmZmU0uCgAAnNSooN65c6euueaaOu19+/bVzp07m1wUAAA4qVFB7XQ6deDAgTrtxcXFLb5IBwAAoaRRQT1s2DDfqzprHT58WE8++aSGDRvWbMUBABDqGvXU93fffaf09HQdPHjQ97KS/Px8xcfHKycnx6qFMHjqGwAQzBo9PauiokLvv/++/vrXvyoyMlJ9+vTRmDFjFB4e3tw1NglBDQAIZsyjBgDAYo1ej/q9997TjTfeqKSkJH377beSpJdeekl/+tOfmq04AABCXaOCev78+ZoyZYpGjhypQ4cOqaamRpLUsWNH/fa3v23O+gAACGmNCupXX31Vb7/9tn7961/7Tcfq16+ftm/f3mzFAQAQ6hoV1IWFhb6nvU/ldDpVUVHR5KIAAMBJjQrqlJQU5efn12lfuXKlrrzyyqbWBAAA/qVRrxF7/PHHlZmZqaqqKhljtHHjRv3xj3/U7Nmz9bvf/a65awQAIGQ1Kqh/+tOf6vjx45o2bZoqKyt1//3365JLLtGrr76qm266qblrBAAgZDV5HnVZWZlOnDihmpoazZ49W++8846OHj3aXPU1GfOoAQDB7LzuUR8+fFgPPPCALr74YiUlJemVV15Rp06d9Nprr6l79+5av369fv/737dUrQAAhJzzuvT95JNPavXq1Ro7dqyys7P1q1/9StnZ2aqqqtKKFSs0aNCglqoTAICQdF5B/fHHH2vBggUaOnSoJkyYoO7du6tHjx685AQAgBZyXpe+v//+e/Xs2VOSdNlll6ldu3b62c9+1iKFAQCA8wzqEydO+K2OFRYWpvbt2zd7UQAA4KTzuvRtjNG4cePkdDolSVVVVXr44YfrhPXSpUubr0IAAELYeQX12LFj/T7/+Mc/btZiAACAP9ajBgDAYo1ejxoAALQ8ghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsFNKhXr16tUaNGKSkpSQ6HQx9++KHffmOMZs6cqaSkJEVGRmrw4MHasWNHYIoFACAAAhrUFRUVuvrqqzVv3rx698+dO1cvvvii5s2bp02bNikhIUHDhg1TeXl5K1cKAEBgOIwxJtBFSJLD4dCyZcuUkZEh6eTZdFJSkiZPnqzp06dLkrxer+Lj4/X8889r/Pjx53Rcj8cjl8slt9ut2NjYliofAIAWYe096sLCQpWUlGj48OG+NqfTqUGDBmndunUNfs/r9crj8fhtAAAEK2uDuqSkRJIUHx/v1x4fH+/bV5+srCy5XC7flpyc3KJ1AgDQkqwN6loOh8PvszGmTtupZsyYIbfb7duKiopaukQAAFpM20AX0JCEhARJJ8+sExMTfe2lpaV1zrJP5XQ65XQ6W7w+AABag7Vn1CkpKUpISFBOTo6vrbq6Wnl5eRo4cGAAKwMAoPUE9Iz6yJEj2rNnj+9zYWGh8vPz1alTJ1166aWaPHmyZs+erdTUVKWmpmr27NmKiorS/fffH8CqAQBoPQEN6s2bN2vIkCG+z1OmTJEkjR07VgsXLtS0adN09OhRTZgwQYcOHVL//v21atUqxcTEBKpkAABalTXzqFsK86gBAMHM2nvUAACAoAYAwGoENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFrM6qGfOnCmHw+G3JSQkBLosAABaTdtAF3A2V111lT799FPf57CwsABWAwBA67I+qNu2bctZNAAgZFl96VuSCgoKlJSUpJSUFN1333365ptvAl0SAACtxmGMMYEuoiErV65UZWWlevTooQMHDmjWrFn6+uuvtWPHDl100UX1fsfr9crr9fo+ezweJScny+12KzY2trVKBwCgWVgd1KerqKjQ5ZdfrmnTpmnKlCn19pk5c6aeeeaZOu0ENQAgGFl/6ftU7du3V+/evVVQUNBgnxkzZsjtdvu2oqKiVqwQAIDmZf3DZKfyer3atWuXbrrppgb7OJ1OOZ3OVqwKAICWY/UZ9dSpU5WXl6fCwkJt2LBBd999tzwej8aOHRvo0gAAaBVWn1H//e9/15gxY1RWVqaLL75YAwYM0Pr169W1a9dAlwYAQKsIqofJGsPj8cjlcvEwGQAgKFl96RsAgFBHUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAi7UNdAFoPHdltcqOVMtTdUyxkeGKax8hV1REoMsCADQjgjpIfX/4qKYv2aY1BWW+tvTUOM25q4+SOkQGsDIAQHPi0ncQcldW1wlpSVpdUKYnlmyTu7I6QJUBAJobQR2Eyo5U1wnpWqsLylR2hKAGgAsFQR2EPFXHzri//Cz7AQDBg6AOQrHtws+4P+Ys+wEAwYOgDkJx0RFKT42rd196apzionnyGwAuFAR1EHJFRWjOXX3qhHV6apyev6sPU7QA4ALiMMaYQBfRkjwej1wul9xut2JjYwNdTrOqnUddXnVMMe3CFRfNPGoAuNAwjzqIuaIIZgC40HHpGwAAixHUAABYjKAGAMBi3KNuQee7aEZ9/SWx8AYAhDCCuoWc76IZ9fW/KTVOmUO666GFm1RZXXPWYwAALjxc+m4B57toRkP91xSU6dU/F+ihG1POegwAwIWJoG4B57toxpn6/2XPQfVN7nDWYwAALkwEdQs430Uzztbfe/zEWY8BALgwEdQt4HwXzThbf2fbuv8zsfAGAIQGgroFnO+iGWfqf0P3i/Rl0eGzHgMAcGEiqFvA+S6a0VD/m1LjNOnmVP1+beFZjwEAuDCxKEcLOt9FM+rrL4mFNwAghDGPugWd76IZDfUnmAEgdHHpGwAAixHUAABYLCgufb/++ut64YUXVFxcrKuuukq//e1vddNNN7VqDd8fqpT3+AlVHqtRpbdGsZFtFdm2jeRwqKK6RuVHjykmMlztI8IUJqmipkaHjhyTKzJcsf9qLy336vDRY2ofEaZ24WE6duKEwhwOXRzt5PI2AKBe1gf14sWLNXnyZL3++uu64YYb9Oabb2rkyJHauXOnLr300lapYf/BCn1/+Khe/XyP/rLnoKSTU6oW/yJN//nRdl+bJN3Y/SLNvP0qOdu00dT/91cVHTqqG7tfpFkZvfXQwk0qOnRU0slpVxOHdFfVsROas/Jr/WZ0L97fDQCow/qnvvv3769rrrlG8+fP97VdeeWVysjIUFZW1lm/39Snvv9+qFJr/vYPLd9e7BfIvxvbT7//S6FfW60bu1+kiTd3V1REW90+7y++tmm3/sD3WToZ1rf1TtT37iptKzqsV8f05cwaAODH6nvU1dXV2rJli4YPH+7XPnz4cK1bt67e73i9Xnk8Hr+tKcqrjqtzbLs6gdw51llvSEvS2j0H1d7ZVm3D2vi1nfpZOvke7/jYduqb3IH3dwMA6mV1UJeVlammpkbx8fF+7fHx8SopKan3O1lZWXK5XL4tOTm5STV4jh6r913bR6pqzvi9I1Un71uf6vTP0sn3eNcen/d3AwBOZ3VQ13I4HH6fjTF12mrNmDFDbrfbtxUVFTXpZ8dGhtf7ru3odmFn/F50uzDFRPq/j/v0z9LJ93jXHp/3dwMATmd1UMfFxSksLKzO2XNpaWmds+xaTqdTsbGxfltTxLRrq1JPlW7ofpF/DR6vbjytrdaN3S9Shfe4jtec8Gs79bN08h71AU+Vviw6zPu7AQD1sjqoIyIidO211yonJ8evPScnRwMHDmyVGrp0jNIN3eM0aUiqX1hPX7JNz9zeq05Yn3zqu5cSYyOV+f5WX9usjN6+z1LtU9+pSnRF6utiD+/vBgDUy/qnvhcvXqyf/OQneuONN5SWlqa33npLb7/9tnbs2KGuXbue9fvN9a7v0+dRx0S2VdSp86j/9S7uqIgwtdXJedSHK062uU6bRx0VEabI8DAdP3FCbZhHDQA4A+vnUd977706ePCgfvOb36i4uFi9evXSihUrzimkm1NSx6gmH4MwBgCcL+vPqJsqkKtnAQDQVFbfowYAINQR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFrN+9aymql1zxOPxBLgSAAD8xcTEyOFwnLHPBR/U5eXlkqTk5OQAVwIAgL9zWdnxgl/m8sSJE/r+++/P6V8tZ+PxeJScnKyioiKWzDwF41I/xqV+jEv9GJf6Xejjwhm1pDZt2qhLly7NeszY2NgL8i9MUzEu9WNc6se41I9xqV8ojwsPkwEAYDGCGgAAixHU58HpdOrpp5+W0+kMdClWYVzqx7jUj3GpH+NSP8YlBB4mAwAgmHFGDQCAxQhqAAAsRlADAGAxgvo8vP7660pJSVG7du107bXXas2aNYEuqUWtXr1ao0aNUlJSkhwOhz788EO//cYYzZw5U0lJSYqMjNTgwYO1Y8cOvz5er1eTJk1SXFyc2rdvr9tvv11///vfW/G3aF5ZWVm67rrrFBMTo86dOysjI0O7d+/26xOK4zJ//nz16dPHN9c1LS1NK1eu9O0PxTGpT1ZWlhwOhyZPnuxrC8WxmTlzphwOh9+WkJDg2x+KY3JGBudk0aJFJjw83Lz99ttm586d5tFHHzXt27c33377baBLazErVqwwv/71r82SJUuMJLNs2TK//XPmzDExMTFmyZIlZvv27ebee+81iYmJxuPx+Po8/PDD5pJLLjE5OTlm69atZsiQIebqq682x48fb+XfpnmMGDHCLFiwwHz11VcmPz/f3HbbbebSSy81R44c8fUJxXH56KOPzMcff2x2795tdu/ebZ588kkTHh5uvvrqK2NMaI7J6TZu3Gi6detm+vTpYx599FFfeyiOzdNPP22uuuoqU1xc7NtKS0t9+0NxTM6EoD5H119/vXn44Yf92n7wgx+YJ554IkAVta7Tg/rEiRMmISHBzJkzx9dWVVVlXC6XeeONN4wxxhw+fNiEh4ebRYsW+fp89913pk2bNiY7O7vVam9JpaWlRpLJy8szxjAup+rYsaN55513GBNjTHl5uUlNTTU5OTlm0KBBvqAO1bF5+umnzdVXX13vvlAdkzPh0vc5qK6u1pYtWzR8+HC/9uHDh2vdunUBqiqwCgsLVVJS4jcmTqdTgwYN8o3Jli1bdOzYMb8+SUlJ6tWr1wUzbm63W5LUqVMnSYyLJNXU1GjRokWqqKhQWloaYyIpMzNTt912m4YOHerXHspjU1BQoKSkJKWkpOi+++7TN998Iym0x6QhF/y7vptDWVmZampqFB8f79ceHx+vkpKSAFUVWLW/d31j8u233/r6REREqGPHjnX6XAjjZozRlClTdOONN6pXr16SQntctm/frrS0NFVVVSk6OlrLli1Tz549ff/hDMUxkaRFixZpy5Yt2rx5c519ofr3pX///vrv//5v9ejRQwcOHNCsWbM0cOBA7dixI2TH5EwI6vNw+gonxpgmr8gV7BozJhfKuE2cOFHbtm3T2rVr6+wLxXG54oorlJ+fr8OHD2vJkiUaO3as8vLyfPtDcUyKior06KOPatWqVWrXrl2D/UJtbEaOHOn7c+/evZWWlqbLL79c7777rgYMGCAp9MbkTLj0fQ7i4uIUFhZW519qpaWldf7VFypqn9A805gkJCSourpahw4darBPsJo0aZI++ugjff75536rs4XyuERERKh79+7q16+fsrKydPXVV+vll18O6THZsmWLSktLde2116pt27Zq27at8vLy9Morr6ht27a+3y0Ux+ZU7du3V+/evVVQUBDSf18aQlCfg4iICF177bXKycnxa8/JydHAgQMDVFVgpaSkKCEhwW9MqqurlZeX5xuTa6+9VuHh4X59iouL9dVXXwXtuBljNHHiRC1dulR//vOflZKS4rc/VMelPsYYeb3ekB6TW265Rdu3b1d+fr5v69evnx544AHl5+frsssuC9mxOZXX69WuXbuUmJgY0n9fGhSIJ9iCUe30rN/97ndm586dZvLkyaZ9+/Zm3759gS6txZSXl5svv/zSfPnll0aSefHFF82XX37pm5I2Z84c43K5zNKlS8327dvNmDFj6p1C0aVLF/Ppp5+arVu3mptvvjmop1D88pe/NC6Xy+Tm5vpNLamsrPT1CcVxmTFjhlm9erUpLCw027ZtM08++aRp06aNWbVqlTEmNMekIac+9W1MaI7NY489ZnJzc80333xj1q9fb370ox+ZmJgY339PQ3FMzoSgPg+vvfaa6dq1q4mIiDDXXHONb0rOherzzz83kupsY8eONcacnEbx9NNPm4SEBON0Ok16errZvn273zGOHj1qJk6caDp16mQiIyPNj370I7N///4A/DbNo77xkGQWLFjg6xOK4/LQQw/5/r9x8cUXm1tuucUX0saE5pg05PSgDsWxqZ0XHR4ebpKSksydd95pduzY4dsfimNyJqyeBQCAxbhHDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ3AxxijX/ziF+rUqZMcDofy8/M1ePBgTZ48OdCl+SxcuFAdOnQIdBlAqyGogSBRUlKiSZMm6bLLLpPT6VRycrJGjRqlzz77rNl+RnZ2thYuXKjly5eruLhYvXr10tKlS/Xss882288AcH5YjxoIAvv27dMNN9ygDh06aO7cuerTp4+OHTumTz75RJmZmfr666+b5efs3btXiYmJfisQderU6Yzfqa6uVkRERLP8fAB1cUYNBIEJEybI4XBo48aNuvvuu9WjRw9dddVVmjJlitavXy9J2r9/v0aPHq3o6GjFxsbq3//933XgwAHfMWbOnKkf/vCHeu+999StWze5XC7dd999Ki8vlySNGzdOkyZN0v79++VwONStWzdJqnPpu1u3bpo1a5bGjRsnl8uln//8577L0cuXL9cVV1yhqKgo3X333aqoqNC7776rbt26qWPHjpo0aZJqamp8x6qurta0adN0ySWXqH379urfv79yc3P9fveFCxfq0ksvVVRUlO644w4dPHiwZQYZsBRBDVjun//8p7Kzs5WZman27dvX2d+hQwcZY5SRkaF//vOfysvLU05Ojvbu3at7773Xr+/evXv14Ycfavny5Vq+fLny8vI0Z84cSdLLL7+s3/zmN+rSpYuKi4u1adOmBmt64YUX1KtXL23ZskVPPfWUJKmyslKvvPKKFi1apOzsbOXm5urOO+/UihUrtGLFCr333nt666239D//8z++4/z0pz/VX/7yFy1atEjbtm3TPffco1tvvVUFBQWSpA0bNuihhx7ShAkTlJ+fryFDhmjWrFlNHlMgqAR28S4AZ7NhwwYjySxdurTBPqtWrTJhYWF+y/zt2LHDSDIbN240xhjz9NNPm6ioKL81fR9//HHTv39/3+eXXnrJdO3a1e/Ypy/L2LVrV5ORkeHXZ8GCBUaS2bNnj69t/PjxJioqypSXl/vaRowYYcaPH2+MMWbPnj3G4XCY7777zu9Yt9xyi5kxY4YxxpgxY8aYW2+91W//vffea1wuV4NjAVxoOKMGLGf+tRKtw+FosM+uXbuUnJys5ORkX1vPnj3VoUMH7dq1y9fWrVs3xcTE+D4nJiaqtLT0vGvq169fnbaoqChdfvnlvs/x8fHq1q2boqOj/dpqf97WrVtljFGPHj0UHR3t2/Ly8rR3717f75WWlub3c07/DFzoeJgMsFxqaqocDod27dqljIyMevsYY+oN8tPbw8PD/fY7HA6dOHHivGuq7xJ8fcc+0887ceKEwsLCtGXLFoWFhfn1qw332n+kAKGMM2rAcp06ddKIESP02muvqaKios7+w4cPq2fPntq/f7+Kiop87Tt37pTb7daVV17ZmuWes759+6qmpkalpaXq3r2735aQkCDp5FWB2oflap3+GbjQEdRAEHj99ddVU1Oj66+/XkuWLFFBQYF27dqlV155RWlpaRo6dKj69OmjBx54QFu3btXGjRv14IMPatCgQfVeprZBjx499MADD+jBBx/U0qVLVVhYqE2bNun555/XihUrJEmPPPKIsrOzNXfuXP3tb3/TvHnzlJ2dHeDKgdZFUANBICUlRVu3btWQIUP02GOPqVevXho2bJg+++wzzZ8/Xw6HQx9++KE6duyo9PR0DR06VJdddpkWL14c6NLPaMGCBXrwwQf12GOP6YorrtDtt9+uDRs2+O61DxgwQO+8845effVV/fCHP9SqVav0H//xHwGuGmhdDsNNIAAArMUZNQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAs9v8Bw93U9JzTuYkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "