forked from sofienkaabar/the-book-of-trading-strategies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStructured_Parabolic_MA.py
60 lines (44 loc) · 1.87 KB
/
Structured_Parabolic_MA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Base parameters
expected_cost = 0.2 * (lot / 10000)
assets = asset_list(1)
window = 1000
# Trading parameters
horizon = 'H1'
# Indicator / Strategy parameters
ma_lookback = 100
# Mass imports
my_data = mass_import(0, horizon)
def signal(Data, close, psar, hull_ma, buy, sell):
Data = adder(Data, 10)
for i in range(len(Data)):
if Data[i, close] > Data[i, psar] and Data[i, close] > Data[i, hull_ma] and Data[i - 1, close] < Data[i - 1, hull_ma]:
Data[i, buy] = 1
elif Data[i, close] < Data[i, psar] and Data[i, close] < Data[i, hull_ma] and Data[i - 1, close] > Data[i - 1, hull_ma]:
Data[i, sell] = -1
return Data
############################################################################## 1
# Converting to a pandas Data frame
my_data = pd.DataFrame(my_data)
# Renaming columns to fit the function
my_data.columns = ['open','high','low','close']
# Calculating the Parabolic SAR
Parabolic = sar(my_data, 0.02, 0.2)
# Converting the Parabolic values back to an array
Parabolic = np.array(Parabolic)
# Reshaping
Parabolic = np.reshape(Parabolic, (-1, 1))
# Concatenating with the OHLC Data
my_data = np.concatenate((my_data, Parabolic), axis = 1)
my_data = hull_moving_average(my_data, 3, ma_lookback, 5)
my_data = signal(my_data, 3, 4, 5, 6, 7)
if sigchart == True:
signal_chart_ohlc_color(my_data, assets[0], 3, 6, 7, window = 250)
plt.plot(my_data[-250:, 4])
plt.plot(my_data[-250:, 5])
holding(my_data, 6, 7, 8, 9)
my_data_eq = equity_curve(my_data, 8, expected_cost, lot, investment)
performance(my_data_eq, 8, my_data, assets[0])
plt.plot(my_data_eq[:, 3], linewidth = 1, label = assets[0])
plt.grid()
plt.legend()
plt.axhline(y = investment, color = 'black', linewidth = 1)