forked from sofienkaabar/the-book-of-trading-strategies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPattern_TD_Camouflage.py
48 lines (36 loc) · 1.4 KB
/
Pattern_TD_Camouflage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Base parameters
expected_cost = 0.5 * (lot / 10000)
assets = asset_list(1)
window = 1000
# Trading parameters
horizon = 'H1'
# Mass imports
my_data = mass_import(0, horizon)
def signal(Data):
# True Low Calculation
for i in range(len(Data)):
Data[i, 4] = min(Data[i, 2], Data[i - 2, 2])
# True High Calculation
for i in range(len(Data)):
Data[i, 5] = max(Data[i, 1], Data[i - 2, 1])
# Bullish signal
for i in range(len(Data)):
if Data[i, 3] < Data[i - 1, 3] and Data[i, 3] > Data[i, 0] and Data[i, 2] < Data[i - 2, 4]:
Data[i, 6] = 1
# Bearish signal
for i in range(len(Data)):
if Data[i, 3] > Data[i - 1, 3] and Data[i, 3] < Data[i, 0] and Data[i, 1] > Data[i - 2, 5]:
Data[i, 7] = -1
return Data
############################################################################## 1
my_data = adder(my_data, 10)
my_data = signal(my_data)
if sigchart == True:
signal_chart_ohlc_color(my_data, assets[0], 3, 6, 7, window = 250)
holding(my_data, 6, 7, 8, 9)
my_data_eq = equity_curve(my_data, 8, expected_cost, lot, investment)
performance(my_data_eq, 8, my_data, assets[0])
plt.plot(my_data_eq[:, 3], linewidth = 1, label = assets[0])
plt.grid()
plt.legend()
plt.axhline(y = investment, color = 'black', linewidth = 1)