forked from sofienkaabar/the-book-of-trading-strategies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pattern_Differentials.py
71 lines (54 loc) · 3.18 KB
/
Pattern_Differentials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Base parameters
expected_cost = 0.5 * (lot / 10000)
assets = asset_list(1)
window = 1000
# Trading parameters
horizon = 'H1'
# Mass imports
my_data = mass_import(0, horizon)
def signal(Data, what, true_low, true_high, buy, sell, differential = 1):
if differential == 1:
for i in range(len(Data)):
# True low
Data[i, true_low] = min(Data[i, 2], Data[i - 1, what])
Data[i, true_low] = Data[i, what] - Data[i, true_low]
# True high
Data[i, true_high] = max(Data[i, 1], Data[i - 1, what])
Data[i, true_high] = Data[i, what] - Data[i, true_high]
# TD Differential
if Data[i, what] < Data[i - 1, what] and Data[i - 1, what] < Data[i - 2, what] and Data[i, true_low] > Data[i - 1, true_low] and Data[i, true_high] < Data[i - 1, true_high]:
Data[i, buy] = 1
if Data[i, what] > Data[i - 1, what] and Data[i - 1, what] > Data[i - 2, what] and Data[i, true_low] < Data[i - 1, true_low] and Data[i, true_high] > Data[i - 1, true_high]:
Data[i, sell] = -1
if differential == 2:
for i in range(len(Data)):
# True low
Data[i, true_low] = min(Data[i, 2], Data[i - 1, what])
Data[i, true_low] = Data[i, what] - Data[i, true_low]
# True high
Data[i, true_high] = max(Data[i, 1], Data[i - 1, what])
Data[i, true_high] = Data[i, what] - Data[i, true_high]
# TD Reverse Differential
if Data[i, what] < Data[i - 1, what] and Data[i - 1, what] < Data[i - 2, what] and Data[i, true_low] < Data[i - 1, true_low] and Data[i, true_high] > Data[i - 1, true_high]:
Data[i, buy] = 1
if Data[i, what] > Data[i - 1, what] and Data[i - 1, what] > Data[i - 2, what] and Data[i, true_low] > Data[i - 1, true_low] and Data[i, true_high] < Data[i - 1, true_high]:
Data[i, sell] = -1
if differential == 3: # TD Anti-Differential
for i in range(len(Data)):
if Data[i, what] < Data[i - 1, what] and Data[i - 1, what] > Data[i - 2, what] and Data[i - 2, what] < Data[i - 3, what] and Data[i - 3, what] < Data[i - 4, what]:
Data[i, buy] = 1
if Data[i, what] > Data[i - 1, what] and Data[i - 1, what] < Data[i - 2, what] and Data[i - 2, what] > Data[i - 3, what] and Data[i - 3, what] > Data[i - 4, what]:
Data[i, sell] = -1
return Data
############################################################################## 1
my_data = adder(my_data, 10)
my_data = signal(my_data, 3, 4, 5, 6, 7, 1)
if sigchart == True:
signal_chart_ohlc_color(my_data, assets[0], 3, 6, 7, window = 250)
holding(my_data, 6, 7, 8, 9)
my_data_eq = equity_curve(my_data, 8, expected_cost, lot, investment)
performance(my_data_eq, 8, my_data, assets[0])
plt.plot(my_data_eq[:, 3], linewidth = 1, label = assets[0])
plt.grid()
plt.legend()
plt.axhline(y = investment, color = 'black', linewidth = 1)