We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Now it throws a big error:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In [20], line 5 3 organ_obs = adata_query.obs['organ'].copy() 4 adata_query.obs.drop('organ', 1, inplace=True) ----> 5 mvatlas_mapped = mva.tl.add_query(mvatlas, adata_query) File /nfs/team205/ed6/bin/multi-view-atlas/src/multi_view_atlas/tl/map_query.py:78, in add_query(mvatlas, adata_query) 74 if depth > 0: 75 adata_query_concat = adata_query_concat[ 76 new_view_assign.loc[adata_query_concat.obs_names, current_view] == 1 77 ].copy() ---> 78 v_assign, next_view_adata = map_next_view( 79 mvatlas, adata_query_concat, current_view=current_view, next_view=next_view 80 ) 81 vdata_dict[next_view] = next_view_adata 82 new_view_assign = pd.concat([new_view_assign, v_assign], 1) File /nfs/team205/ed6/bin/multi-view-atlas/src/multi_view_atlas/tl/map_query.py:192, in map_next_view(mvatlas, adata_query, current_view, next_view, batch_key, batch_categories) 189 # Get assignment to next view 190 Y_assign_atlas = v_assign.loc[curr_view_adata.obs_names].values.ravel() --> 192 v_assign_query = assign_from_similarity(Y_assign_atlas, X_similarity_atlas, X_similarity_query, v_assign) 193 v_assign_query.index = adata_query.obs_names 195 v_assign = pd.concat([v_assign, v_assign_query], axis=0) File /nfs/team205/ed6/bin/multi-view-atlas/src/multi_view_atlas/tl/map_query.py:127, in assign_from_similarity(Y_assign_atlas, X_similarity_atlas, X_similarity_query, v_assign, k) 124 raise ValueError("v_assign must have only one column") 126 clf = KNeighborsClassifier(n_neighbors=k, metric="euclidean").fit(X_similarity_atlas, Y_assign_atlas) --> 127 Y_assign_query = clf.predict(X_similarity_query) 128 assign_predict = pd.DataFrame(Y_assign_query, columns=v_assign.columns) 129 return assign_predict File ~/my-conda-envs/patho-signatures-2/lib/python3.9/site-packages/sklearn/neighbors/_classification.py:226, in KNeighborsClassifier.predict(self, X) 210 """Predict the class labels for the provided data. 211 212 Parameters (...) 221 Class labels for each data sample. 222 """ 223 if self.weights == "uniform": 224 # In that case, we do not need the distances to perform 225 # the weighting so we do not compute them. --> 226 neigh_ind = self.kneighbors(X, return_distance=False) 227 neigh_dist = None 228 else: File ~/my-conda-envs/patho-signatures-2/lib/python3.9/site-packages/sklearn/neighbors/_base.py:745, in KNeighborsMixin.kneighbors(self, X, n_neighbors, return_distance) 743 X = _check_precomputed(X) 744 else: --> 745 X = self._validate_data(X, accept_sparse="csr", reset=False, order="C") 747 n_samples_fit = self.n_samples_fit_ 748 if n_neighbors > n_samples_fit: File ~/my-conda-envs/patho-signatures-2/lib/python3.9/site-packages/sklearn/base.py:577, in BaseEstimator._validate_data(self, X, y, reset, validate_separately, **check_params) 575 raise ValueError("Validation should be done on X, y or both.") 576 elif not no_val_X and no_val_y: --> 577 X = check_array(X, input_name="X", **check_params) 578 out = X 579 elif no_val_X and not no_val_y: File ~/my-conda-envs/patho-signatures-2/lib/python3.9/site-packages/sklearn/utils/validation.py:909, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name) 907 n_samples = _num_samples(array) 908 if n_samples < ensure_min_samples: --> 909 raise ValueError( 910 "Found array with %d sample(s) (shape=%s) while a" 911 " minimum of %d is required%s." 912 % (n_samples, array.shape, ensure_min_samples, context) 913 ) 915 if ensure_min_features > 0 and array.ndim == 2: 916 n_features = array.shape[1] ValueError: Found array with 0 sample(s) (shape=(0, 1)) while a minimum of 1 is required by KNeighborsClassifier.
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Now it throws a big error:
The text was updated successfully, but these errors were encountered: