forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ga_retinanet_r50_fpn_1x_coco.py
62 lines (62 loc) · 1.94 KB
/
ga_retinanet_r50_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
model = dict(
bbox_head=dict(
_delete_=True,
type='GARetinaHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
approx_anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
square_anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
scales=[4],
strides=[8, 16, 32, 64, 128]),
anchor_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loc_filter_thr=0.01,
loss_loc=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0)))
# training and testing settings
train_cfg = dict(
ga_assigner=dict(
type='ApproxMaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
ga_sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
assigner=dict(neg_iou_thr=0.5, min_pos_iou=0.0),
center_ratio=0.2,
ignore_ratio=0.5)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))