forked from ManuelvOK/cbs-with-runtime-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask.h
235 lines (190 loc) · 7.57 KB
/
task.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#pragma once
#include <chrono>
#include <functional>
#include <fstream>
#include <iostream>
#include <semaphore>
#include <thread>
#include <queue>
#include <predictor/predictor.h>
#include "rt.h"
#include "task_lib_tracepoint.h"
using namespace std::chrono_literals;
using time_point = std::chrono::time_point<std::chrono::steady_clock>;
using duration = typename std::chrono::nanoseconds;
time_point thread_now();
class TaskBase {
protected:
int _id;
bool _prediction_enabled;
bool _realtime_enabled;
std::counting_semaphore<> _sem;
duration _execution_time;
duration _period;
std::vector<unsigned> _cpus;
time_point _last_checkpoint;
std::vector<double> _runtimes;
atlas::estimator _predictor;
std::thread _thread;
bool _running = true;
int _pid = 0;
double _result = 1.5;
void run_task() {
this->_pid = gettid();
lttng_ust_tracepoint(task_lib, init_task, this->_id, this->_pid);
if (not this->_cpus.empty()) {
cpu_set_t set;
CPU_ZERO(&set);
for (const auto &cpu: this->_cpus) {
std::cout << "task " << this->_id << " on cpu " << cpu << std::endl;
CPU_SET(cpu, &set);
}
int ret = sched_setaffinity(0, sizeof(set), &set);
if (ret < 0) {
perror("sched_setaffinity");
exit(-1);
}
lttng_ust_tracepoint(task_lib, migrated_task, this->_id, 0);
}
if (this->_realtime_enabled) {
/* configure deadline scheduling */
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;
attr.sched_policy = SCHED_DEADLINE;
if (this->_execution_time > 1us) {
attr.sched_runtime = this->_execution_time / 1ns;
} else {
attr.sched_runtime = (0.9*this->_period) / 1ns;
}
attr.sched_period = attr.sched_deadline = this->_period / 1ns;
int ret = sched_setattr(0, &attr, flags);
if (ret < 0) {
perror("initial sched_setattr");
std::cerr << "runtime: " << attr.sched_runtime << std::endl;
std::cerr << "period: " << attr.sched_period << std::endl;
exit(-1);
}
lttng_ust_tracepoint(task_lib, started_real_time_task, this->_id);
sched_yield();
}
/* run jobs if there are some */
int job_id = 0;
while (true) {
lttng_ust_tracepoint(task_lib, acquire_sem, this->_id);
this->_sem.acquire();
lttng_ust_tracepoint(task_lib, acquired_sem, this->_id);
if (not this->jobs_left()) {
this->_running = false;
lttng_ust_tracepoint(task_lib, finished_task, this->_id);
break;
}
this->run_job(job_id);
job_id++;
}
}
virtual void run_job(int id) = 0;
virtual bool jobs_left() = 0;
TaskBase(int id, bool prediction_enabled, bool realtime_enabled, duration execution_time, duration period,
std::vector<unsigned> cpus)
: _id(id), _prediction_enabled(prediction_enabled), _realtime_enabled(realtime_enabled),
_sem(0), _execution_time(execution_time), _period(period), _cpus(cpus) {
this->_thread = std::thread(&TaskBase::run_task, this);
}
public:
void join() {
this->_thread.join();
}
int id() const {
return this->_id;
}
std::counting_semaphore<> &sem() {
return this->_sem;
}
duration period() const {
return this->_period;
}
};
template <typename T>
class Task : public TaskBase {
std::function<std::vector<double> (T)> _generate;
std::function<void (T)> _execute;
std::queue<T> _jobs;
void run_job(int id) override {
/* get jobs parameters */
T arg = this->_jobs.front();
this->_jobs.pop();
if (this->_prediction_enabled and this->_realtime_enabled) {
std::vector<double> metrics = this->_generate(arg);
duration prediction = this->_predictor.predict(0, id, metrics.data(), metrics.size());
/* first prediction is always 90% of the period. It will most likely not take this time
* but we make sure to get the first measurement asap. 90% is already configured at
* initialisation if prediction is enabled, so here goes only the first checkpoint */
if (not this->_runtimes.size()) {
this->_last_checkpoint = thread_now();
} else {
lttng_ust_tracepoint(task_lib, prediction, this->_id, id, prediction / 1ns);
/* configure deadline scheduling */
struct sched_attr attr;
sched_getattr(gettid(), &attr, sizeof(attr), 0);
attr.sched_runtime = prediction / 1ns;
attr.sched_runtime = std::min(attr.sched_runtime, attr.sched_period);
int ret = sched_setattr(0, &attr, 0);
if (ret < 0) {
perror("job sched_setattr");
std::cerr << "runtime: " << attr.sched_runtime << std::endl;
std::cerr << "period: " << attr.sched_period << std::endl;
exit(-1);
}
}
}
lttng_ust_tracepoint(task_lib, begin_job, this->_id, id);
this->_execute(arg);
time_point now = thread_now();
auto runtime = now - this->_last_checkpoint;
this->_last_checkpoint = now;
this->_runtimes.push_back(runtime / 1ns);
if (this->_prediction_enabled and this->_realtime_enabled) {
this->_predictor.train(0, id, duration_cast<std::chrono::nanoseconds>(
std::chrono::duration<double>{runtime} + 0.5ns));
}
lttng_ust_tracepoint(task_lib, end_job, this->_id, id, runtime / 1ns);
if (this->_prediction_enabled and this->_realtime_enabled and this->_runtimes.size() == 1) {
sched_yield();
}
}
bool jobs_left() override {
return not this->_jobs.empty();
};
public:
/* Non real-time task */
Task(int id, std::function<void (T)> execute,
std::vector<unsigned> cpus = std::vector<unsigned>())
: TaskBase(id, false, false, duration(0), duration(0), cpus),
_execute(execute) {}
/* task without prediction */
Task(int id, duration period, std::function<void (T)> execute,
duration execution_time, std::vector<unsigned> cpus = std::vector<unsigned>())
: TaskBase(id, false, true, execution_time, period, cpus),
_execute(execute) {}
/* task with prediction but without metrics */
Task(int id, duration period, std::function<void (T)> execute,
std::vector<unsigned> cpus = std::vector<unsigned>())
: TaskBase(id, true, true, duration(0), period, cpus),
_execute(execute) {
this->_generate = [](T t) { (void)t; return std::vector<double>(); };
}
/* task with prediction and metrics */
Task(int id, duration period, std::function<void (T)> execute,
std::function<std::vector<double> (T)> generate,
std::vector<unsigned> cpus = std::vector<unsigned>())
: TaskBase(id, true, true, duration(0), period, cpus),
_generate(generate),
_execute(execute) {}
void add_job(T arg) {
this->_jobs.push(arg);
}
};